Introduction to Probability for Computing

MOR HARCHOL-BALTER
Cambridge University Press
Illustrated by Elin Zhou
"Based on 20 years of teaching Computer Science and Operations Research at Carnegie Mellon University, Professor Harchol-Balter provides a unique presentation of probability and statistics that is both highly engaging and also strongly motivated by real-world computing applications that students will encounter in industry. This book is approachable and fun for undergraduate students, while also covering advanced concepts relevant to graduate students."

Eytan Modiano, Massachusetts Institute of Technology

"This book provides a fantastic introduction to probability for computer scientists and computing professionals, addressing concepts and techniques crucial to the design and analysis of randomized algorithms, to performance well-designed simulations, to statistical inference and machine learning, and more. Also contains many great exercises and examples. Highly recommend!"

Avrim Blum, Toyota Technological Institute at Chicago

"Mor Harchol-Balter's new book does a beautiful job of introducing students to probability! The book is full of great computer science-relevant examples, wonderful intuition, simple and clear explanations, and mathematical rigor. I love the question-answer style she uses, and could see using this book for students ranging from undergraduate students with zero prior exposure to probability all the way to graduate students (or researchers of any kind) who need to brush up and significantly deepen (and/or broaden) their knowledge of probability."

Anna Karlin, University of Washington

"Probability is at the heart of modeling, design, and analysis of computer systems and networks. This book by a pioneer in the area is a beautiful introduction to the topic for undergraduate students. The material in the book introduces theoretical topics rigorously, but also motivates each topic with practical applications. This textbook is an excellent resource for budding computer scientists who are interested in probability."

R. Srikant, University of Illinois at Urbana-Champaign

"I know probability, and have taught it to undergrads and grads at MIT, UC Berkeley, and Carnegie Mellon University. Yet this book has taught me some wonderfully interesting important material that I did not know. Mor is a great thinker, lecturer, and writer. I would love to have learned from this book as a student - and to have taught from it as an instructor!"

Manuel Blum, U.C. Berkeley and Carnegie Mellon University

To the students at CMU's
School of Computer Science whose curiosity and drive inspire me every day to keep writing.

Contents

Preface page xvi
Acknowledgments xxiii
Part I Fundamentals and Probability on Events
1 Before We Start ... Some Mathematical Basics 2
1.1 Review of Simple Series 2
1.2 Review of Double Integrals and Sums 4
1.3 Fundamental Theorem of Calculus 7
1.4 Review of Taylor Series and Other Limits 8
1.5 A Little Combinatorics 11
1.6 Review of Asymptotic Notation 15
1.6.1 Big-O and Little-o 15
1.6.2 Big-Omega and Little-omega 17
1.6.3 Big-Theta 18
1.7 Exercises 18
2 Probability on Events 21
2.1 Sample Space and Events 21
2.2 Probability Defined on Events 22
2.3 Conditional Probabilities on Events 24
2.4 Independent Events 27
2.5 Law of Total Probability 30
2.6 Bayes' Law 32
2.7 Exercises 34
Part II Discrete Random Variables
3 Common Discrete Random Variables 44
3.1 Random Variables 44
3.2 Common Discrete Random Variables 45
3.2.1 The Bernoulli (p) Random Variable 46
3.2.2 The $\operatorname{Binomial}(n, p)$ Random Variable 47
3.2.3 The $\operatorname{Geometric}(p)$ Random Variable 48
3.2.4 The Poisson (λ) Random Variable 49
3.3 Multiple Random Variables and Joint Probabilities 50
3.4 Exercises 54
4 Expectation 58
4.1 Expectation of a Discrete Random Variable 58
4.2 Linearity of Expectation 63
4.3 Conditional Expectation 67
4.4 Computing Expectations via Conditioning 72
4.5 Simpson's Paradox 74
4.6 Exercises 76
5 Variance, Higher Moments, and Random Sums 83
5.1 Higher Moments 83
5.2 Variance 85
5.3 Alternative Definitions of Variance 86
5.4 Properties of Variance 88
5.5 Summary Table for Discrete Distributions 91
5.6 Covariance 91
5.7 Central Moments 92
5.8 Sum of a Random Number of Random Variables 93
5.9 Tails 97
5.9.1 Simple Tail Bounds 98
5.9.2 Stochastic Dominance 99
5.10 Jensen's Inequality 102
5.11 Inspection Paradox 104
5.12 Exercises 107
6 z-Transforms 116
6.1 Motivating Examples 116
6.2 The Transform as an Onion 117
6.3 Creating the Transform: Onion Building 118
6.4 Getting Moments: Onion Peeling 120
6.5 Linearity of Transforms 121
6.6 Conditioning 123
6.7 Using z-Transforms to Solve Recurrence Relations 124
6.8 Exercises 128
Part III Continuous Random Variables
7 Continuous Random Variables: Single Distribution 134
7.1 Probability Density Functions 134
7.2 Common Continuous Distributions 137
7.3 Expectation, Variance, and Higher Moments 141
7.4 Computing Probabilities by Conditioning on a R.V. 143
7.5 Conditional Expectation and the Conditional Density 146
7.6 Exercises 150
8 Continuous Random Variables: Joint Distributions 153
8.1 Joint Densities 153
8.2 Probability Involving Multiple Random Variables 156
8.3 Pop Quiz 160
8.4 Conditional Expectation for Multiple Random Variables 161
8.5 Linearity and Other Properties 163
8.6 Exercises 163
9 Normal Distribution 170
9.1 Definition 170
9.2 Linear Transformation Property 172
9.3 The Cumulative Distribution Function 173
9.4 Central Limit Theorem 176
9.5 Exercises 178
10 Heavy Tails: The Distributions of Computing 181
10.1 Tales of Tails 181
10.2 Increasing versus Decreasing Failure Rate 183
10.3 UNIX Process Lifetime Measurements 186
10.4 Properties of the Pareto Distribution 187
10.5 The Bounded-Pareto Distribution 189
10.6 Heavy Tails 189
10.7 The Benefits of Active Process Migration 190
10.8 From the 1990s to the 2020s 191
10.9 Pareto Distributions Are Everywhere 192
10.10 Summary Table for Continuous Distributions 194
10.11 Exercises 194
11 Laplace Transforms 198
11.1 Motivating Example 198
11.2 The Transform as an Onion 198
11.3 Creating the Transform: Onion Building 200
11.4 Getting Moments: Onion Peeling 201
11.5 Linearity of Transforms 203
11.6 Conditioning 203
11.7 Combining Laplace and z-Transforms 204
11.8 One Final Result on Transforms 205
11.9 Exercises 206
Part IV Computer Systems Modeling and Simulation
12 The Poisson Process 210
12.1 Review of the Exponential Distribution 210
12.2 Relating the Exponential Distribution to the Geometric 211
12.3 More Properties of the Exponential 213
12.4 The Celebrated Poisson Process 216
12.5 Number of Poisson Arrivals during a Random Time 219
12.6 Merging Independent Poisson Processes 220
12.7 Poisson Splitting 221
12.8 Uniformity 224
12.9 Exercises 225
13 Generating Random Variables for Simulation 229
13.1 Inverse Transform Method 229
13.1.1 The Continuous Case 230
13.1.2 The Discrete Case 231
13.2 Accept-Reject Method 232
13.2.1 Discrete Case 233
13.2.2 Continuous Case 234
13.2.3 A Harder Problem 238
13.3 Readings 238
13.4 Exercises 238
14 Event-Driven Simulation 240
14.1 Some Queueing Definitions 240
14.2 How to Run a Simulation 242
14.3 How to Get Performance Metrics from Your Simulation 244
14.4 More Complex Examples 247
14.5 Exercises 249
Part V Statistical Inference
15 Estimators for Mean and Variance 255
15.1 Point Estimation 255
15.2 Sample Mean 256
15.3 Desirable Properties of a Point Estimator 256
15.4 An Estimator for Variance 259
15.4.1 Estimating the Variance when the Mean is Known 259
15.4.2 Estimating the Variance when the Mean is Unknown 259
15.5 Estimators Based on the Sample Mean 261
15.6 Exercises 263
15.7 Acknowledgment 264
16 Classical Statistical Inference 265
16.1 Towards More General Estimators 265
16.2 Maximum Likelihood Estimation 267
16.3 More Examples of ML Estimators 270
16.4 Log Likelihood 271
16.5 MLE with Data Modeled by Continuous Random Variables 273
16.6 When Estimating More than One Parameter 276
16.7 Linear Regression 277
16.8 Exercises 283
16.9 Acknowledgment 284
17 Bayesian Statistical Inference 285
17.1 A Motivating Example 285
17.2 The MAP Estimator 287
17.3 More Examples of MAP Estimators 290
17.4 Minimum Mean Square Error Estimator 294
17.5 Measuring Accuracy in Bayesian Estimators 299
17.6 Exercises 301
17.7 Acknowledgment 304
Part VI Tail Bounds and Applications
18 Tail Bounds 306
18.1 Markov's Inequality 307
18.2 Chebyshev's Inequality 308
18.3 Chernoff Bound 309
18.4 Chernoff Bound for Poisson Tail 311
18.5 Chernoff Bound for Binomial 312
18.6 Comparing the Different Bounds and Approximations 313
18.7 Proof of Chernoff Bound for Binomial: Theorem 18.4 315
18.8 A (Sometimes) Stronger Chernoff Bound for Binomial 316
18.9 Other Tail Bounds 318
18.10 Appendix: Proof of Lemma 18.5 319
18.11 Exercises 320
19 Applications of Tail Bounds: Confidence Intervals and Balls and Bins 327
19.1 Interval Estimation 327
19.2 Exact Confidence Intervals 328
19.2.1 Using Chernoff Bounds to Get Exact Confidence Intervals 328
19.2.2 Using Chebyshev Bounds to Get Exact Confidence Intervals 331
19.2.3 Using Tail Bounds to Get Exact Confidence Intervals in General Settings 332
19.3 Approximate Confidence Intervals 334
19.4 Balls and Bins 337
19.5 Remarks on Balls and Bins 341
19.6 Exercises 341
20 Hashing Algorithms 346
20.1 What is Hashing? 346
20.2 Simple Uniform Hashing Assumption 348
20.3 Bucket Hashing with Separate Chaining 349
20.4 Linear Probing and Open Addressing 352
20.5 Cryptographic Signature Hashing 355
20.6 Remarks 360
20.7 Exercises 360
Part VII Randomized Algorithms
21 Las Vegas Randomized Algorithms 364
21.1 Randomized versus Deterministic Algorithms 364
21.2 Las Vegas versus Monte Carlo 366
21.3 Review of Deterministic Quicksort 367
21.4 Randomized Quicksort 368
21.5 Randomized Selection and Median-Finding 370
21.6 Exercises 373
22 Monte Carlo Randomized Algorithms 383
22.1 Randomized Matrix-Multiplication Checking 383
22.2 Randomized Polynomial Checking 387
22.3 Randomized Min-Cut 389
22.4 Related Readings 394
22.5 Exercises 394
23 Primality Testing 403
23.1 Naive Algorithms 403
23.2 Fermat's Little Theorem 404
23.3 Fermat Primality Test 408
23.4 Miller-Rabin Primality Test 410
23.4.1 A New Witness of Compositeness 410
23.4.2 Logic Behind the Miller-Rabin Test 411
23.4.3 Miller-Rabin Primality Test 413
23.5 Readings 415
23.6 Appendix: Proof of Theorem 23.9 415
23.7 Exercises 417
Part VIII Discrete-Time Markov Chains
24 Discrete-Time Markov Chains: Finite-State 420
24.1 Our First Discrete-Time Markov Chain 420
24.2 Formal Definition of a DTMC 421
24.3 Examples of Finite-State DTMCs 422
24.3.1 Repair Facility Problem 422
24.3.2 Umbrella Problem 423
24.3.3 Program Analysis Problem 424
24.4 Powers of P: n-Step Transition Probabilities 425
24.5 Limiting Probabilities 426
24.6 Stationary Equations 428
24.7 The Stationary Distribution Equals the Limiting Distribution 429
24.8 Examples of Solving Stationary Equations 432
24.9 Exercises 433
25 Ergodicity for Finite-State Discrete-Time Markov Chains 438
25.1 Some Examples on Whether the Limiting Distribution Exists 439
25.2 Aperiodicity 441
25.3 Irreducibility 442
25.4 Aperiodicity plus Irreducibility Implies Limiting Distribution 443
25.5 Mean Time Between Visits to a State 448
25.6 Long-Run Time Averages 450
25.6.1 Strong Law of Large Numbers 452
25.6.2 A Bit of Renewal Theory 454
25.6.3 Equality of the Time Average and Ensemble Average 455
25.7 Summary of Results for Ergodic Finite-State DTMCs 456
25.8 What If My DTMC Is Irreducible but Periodic? 456
25.9 When the DTMC Is Not Irreducible 457
25.10 An Application: PageRank 458
25.10.1 Problems with Real Web Graphs 461
25.10.2 Google's Solution to Dead Ends and Spider Traps 462
25.10.3 Evaluation of the PageRank Algorithm and Practical Considerations 463
25.11 From Stationary Equations to Time-Reversibility Equations 464
25.12 Exercises 469
26 Discrete-Time Markov Chains: Infinite-State 479
26.1 Stationary $=$ Limiting 479
26.2 Solving Stationary Equations in Infinite-State DTMCs 480
26.3 A Harder Example of Solving Stationary Equations in Infinite- State DTMCs 483
26.4 Ergodicity Questions 484
26.5 Recurrent versus Transient: Will the Fish Return to Shore? 487
26.6 Infinite Random Walk Example 490
26.7 Back to the Three Chains and the Ergodicity Question 492
26.7.1 Figure 26.8(a) is Recurrent 492
26.7.2 Figure 26.8(b) is Transient 492
26.7.3 Figure 26.8(c) is Recurrent 494
26.8 Why Recurrence Is Not Enough 494
26.9 Ergodicity for Infinite-State Chains 496
26.10 Exercises 498
27 A Little Bit of Queueing Theory 510
27.1 What Is Queueing Theory? 510
27.2 A Single-Server Queue 511
27.3 Kendall Notation 513
27.4 Common Performance Metrics 514
27.4.1 Immediate Observations about the Single-Server Queue 515
27.5 Another Metric: Throughput 516
27.5.1 Throughput for $M / G / k$ 517
27.5.2 Throughput for Network of Queues with Probabilistic Routing 518
27.5.3 Throughput for Network of Queues with Deterministic Routing 519
27.5.4 Throughput for Finite Buffer 520
27.6 Utilization 520
27.7 Introduction to Little’s Law 521
27.8 Intuitions for Little's Law 522
27.9 Statement of Little's Law 524
27.10 Proof of Little's Law 525
27.11 Important Corollaries of Little's Law 527
27.12 Exercises 531
References 539
Index 544

Preface

Probability theory has become indispensable in computer science. It is at the core of machine learning and statistics, where one often needs to make decisions under stochastic uncertainty. It is also integral to computer science theory, where most algorithms today are randomized algorithms, involve random coin flips. It is a central part of performance modeling in computer networks and systems, where probability is used to predict delays, schedule jobs and resources, and provision capacity.

Why This Book?

This book gives an introduction to probability as it is used in computer science theory and practice, drawing on applications and current research developments as motivation and context. This is not a typical counting and combinatorics book, but rather it is a book centered on distributions and how to work with them.

Every topic is driven by what computer science students need to know. For example, the book covers distributions that come up in computer science, such as heavy-tailed distributions. There is a large emphasis on variability and higher moments, which are very important in empirical computing distributions. Computer systems modeling and simulation are also discussed, as well as statistical inference for estimating parameters of distributions. Much attention is devoted to tail bounds, such as Chernoff bounds. Chernoff bounds are used for confidence intervals and also play a big role in the analysis of randomized algorithms, which themselves comprise a large part of the book. Finally, the book covers Markov chains, as well as a bit of queueing theory, both with an emphasis on their use in computer systems analysis.

Intended Audience

The material is presented at the advanced undergraduate level. The book is based on an undergraduate class, Probability and Computing (PnC), which I have been teaching at Carnegie Mellon University (CMU) for almost 20 years. While PnC is primarily taken by undergraduates, several Masters and PhD students choose to take the class. Thus we imagine that instructors can use the book for different levels of classes, perhaps spanning multiple semesters.

Question/Answer Writing Style

The book uses a style of writing aimed at engaging the reader to be active, rather than passive. Instead of large blocks of text, we have short "Questions" and "Answers." In working through the book, you should cover up the answers, and write down your own answer to each question, before looking at the given answer. The goal is "thinking" rather than "reading," where each chapter is intended to feel like a conversation.

Exercises

The exercises in this book are an integral part of learning the material. They also introduce many of the computer science and statistics applications. Very few of the exercises are rote. Every problem has important insights, and the insights often build on each other. Exercises are (very roughly) organized from easier to harder. Several of the exercises in the book were contributed by students in the class!

To aid in teaching, solutions to a large subset of the exercises are available for instructors only at www.cambridge.org/harchol-balter. Instructors who need solutions to the remaining exercises can request these from the author. The solutions are for the personal use of the instructor only. They should not be distributed or posted online, so that future generations can continue to enjoy the exercises.

Organization of the Material

The book consists of eight parts. Parts I, II, and III provide an introduction to basic probability. Part IV provides an introduction to computer systems modeling and simulation. Part V provides an introduction to statistical inference. Parts VI and VII comprise a course in randomized algorithms, starting with tail bound inequalities and then applying these to analyze a long list of randomized algorithms. Part VIII provides an introduction to stochastic processes as they're used in computing.

Before we describe the parts in more detail, it is worth looking at the dependency structure for the book, given in Figure P1. Aside from Parts I, II, and III, most of the parts can be taught in any order.

In particular, it is possible to imagine at least four different courses being taught from this book, depending on the parts that an instructor might choose to teach. Figure P2 depicts different courses that one might teach. All the courses start with Parts I, II, and III, but then continue with Simulation, or Statistics, or Randomized Algorithms, or Stochastic Processes, depending on the particular course.

Figure P1 The dependency structure between the parts of this book. Most parts are independent of other parts and can be taught in any order.

Description of Each Part

Part I: Foundations and Probability on Events: Part I starts by reviewing the prerequisites for the book. These include series, calculus, elementary combinatorics, and asymptotic notation. Exercises and examples are provided to help in reviewing the prerequisites. The main focus of Part I is on defining probability on events, including conditioning on events, independence of events, the Law of Total Probability, and Bayes' Law. Some examples of applications covered in Part I are: faulty computer networks, Bayesian reasoning for healthcare testing, modeling vaccine efficacy, the birthday paradox, Monty Hall problems, and modeling packet corruption in the Internet.

Part II: Discrete Random Variables: Part II introduces the most common discrete random variables (Bernoulli, Binomial, Geometric, and Poisson), and then

Figure P2 Four different courses that one can teach out of this book.
continues with the standard material on random variables, such as linearity of expectation, conditioning, conditional probability mass functions, joint distributions, and marginal distributions. Some more advanced material is also included, such as: variance and higher moments of random variables; moment-generating functions (specifically z-transforms) and their use in solving recurrence relations; Jensen's inequality; sums of a random number of random variables; tail orderings, and simple tail inequalities. Both Simpson's paradox and the inspection paradox are covered. Some examples of applications covered in Part II are: noisy reading from a flash storage, the binary symmetric channel, approximating a Binomial distribution by a Poisson, the classical marriage algorithm, modeling the time until a disk fails, the coupon collector problem, properties of
random graphs, time until k consecutive failures, computer virus propagation, epidemic growth modeling, hypothesis testing in data analysis, stopping times, total variation distance, and polygon triangulation.

Part III: Continuous Random Variables: Part III repeats the material in Part II, but this time with continuous random variables. We introduce the Uniform, Exponential, and Normal distributions, as well as the Central Limit Theorem. In addition, we introduce the Pareto heavy-tailed distribution, which is most relevant for empirical computing workloads, and discuss its relevance to today's data center workloads. We cover failure rate functions and the heavy-tail property and their relevance to computing workloads. We again cover moment-generating functions, but this time via Laplace transforms, which are more commonly used with continuous random variables. Some applications covered in Part II are: classifying jobs in a supercomputing center, learning the bias of a coin, dart throwing, distributions whose parameters are random variables, relating laptop quality to lifetime, modeling disk delays, modeling web file sizes, modeling compute usage, modeling IP flow durations, and Internet node degrees.

Part IV: Computer Systems Modeling and Simulation: Part IV covers the basics of what is needed to run simulations of computer systems. We start by defining and analyzing the Poisson process, which is the most commonly used model for the arrival process of jobs into computer systems. We then study how to generate random variables for simulation, using the inverse transform method and the accept-reject method. Finally, we discuss how one would program a simple event-driven or trace-driven simulator. Some applications that we cover include: Malware detection of infected hosts, population modeling, reliability theory, generating a Normal random variable, generating Pareto and Bounded Pareto random variables, generating a Poisson random variable, simulation of heavy-tailed distributions, simulation of high-variance distributions, simulation of jointly distributed random variables, simulation of queues, and simulation of networks of queues.

Part V: Statistical Inference: Part V switches gears to statistics, particularly statistical inference, where one is trying to estimate some parameters of an experiment. We start with the most traditional estimators, the sample mean and sample variance. We also cover desirable properties of estimators, including zero bias, low mean squared error, and consistency. We next cover maximum likelihood estimation and linear regression. We complete this part with a discussion of maximum a posterior (MAP) estimators and minimum mean square error (MMSE) estimators. Some applications that we cover include: estimating voting probabilities, deducing the original signal in a noisy environment, estimating true job sizes from user estimates, estimation in interaction graphs, and estimation in networks with error correcting codes.

Part VI: Tail Bounds and Applications: Part VI starts with a discussion of tail bounds and concentration inequalities (Markov, Chebyshev, Chernoff), for which we provide full derivations. We provide several immediate applications for these tail bounds, including a variety of classic balls-and-bins applications. The balls and bins framework has immediate application to dispatching tasks to servers in a server farm, as well as immediate application to hashing algorithms, which we also study extensively. We cover applications of tail bounds to defining confidence intervals in statistical estimation, and well as bias estimation, polling schemes, crowd sourcing, and other common settings from computing and statistics.

Part VII: Randomized Algorithms: Part VII introduces a wide range of randomized algorithms. The randomized algorithms include Las Vegas algorithms, such as randomized algorithms for sorting and median finding, as well as Monte Carlo randomized algorithms such as MinCut, MaxCut, matrix multiplication checking, polynomial multiplication, and primality testing. The exercises in this part are particularly relevant because they introduce many additional randomized algorithms such as randomized dominating set, approximate median finding, independent set, AND/OR tree evaluation, knockout tournaments, addition of n-bit numbers, randomized string exchange, path-finding in graphs, and more. We use the tail bounds that we derived earlier in Part VI to analyze the runtimes and accuracy of our randomized algorithms.

Part VIII: Markov Chains with a Side of Queueing Theory: Part VIII provides an introduction to stochastic processes as they come up in computer science. Here we delve deeply into discrete-time Markov chains (both finite and infinite). We discuss not only how to solve for limiting distributions, but also when they exist and why. Ergodicity, positive-recurrence and null-recurrence, passage times, and renewal theory are all covered. We also cover time averages versus ensemble averages and the impact of these different types of averages on running simulations. Queueing theory is integral to Part VIII. We define the performance metrics that computer scientists care about: throughput, response time, and load. We cover Little's Law, stability, busy periods, and capacity provisioning. A huge number of applications are covered in Part VIII, including, for example, the classic PageRank algorithm for ranking web pages, modeling of epidemic spread, modeling of caches, modeling processors with failures, Brownian motion, estimating the spread of malware, reliability theory applications, population modeling, server farm and data center modeling, admission control, and capacity provisioning.

Acknowledgments

Most textbooks begin with a class, and this book is no exception. I created the Probability and Computing (called "PnC" for short) class 20 years ago, with the aim of teaching computer science undergraduates the probability that they need to know to be great computer scientists. Since then I have had a few opportunities to co-teach PnC with different colleagues, and each such opportunity has led to my own learning. I would like to thank my fantastic co-instructors: John Lafferty, Klaus Sutner, Rashmi Vinayak, Ryan O’Donnell, Victor Adamchik, and Weina Wang. I'm particularly grateful to Weina, who collaborated with me on three of the chapters of the book and who is a kindred spirit in Socratic teaching. The book has also benefited greatly from many spirited TAs and students in the class, who proposed fun exercises for the book, many referencing CMU or Pittsburgh.

I would also like to thank my illustrator, Elin Zhou, who painstakingly created every image and figure in the book, while simultaneously managing her undergraduate classes at CMU. I chose Elin as my illustrator because her artwork embodies the spirit of fun and inclusiveness that permeates the PnC class. One of the themes of PnC is chocolate, which is tossed out throughout the class to students who answer questions. This chocolate would not be possible if it weren't for our class sponsor, Citadel, who even paid to have chocolate mailed directly to student homes throughout the pandemic, while classes were online.

I have been fortunate to have several excellent editors at Cambridge University Press: Julie Lancashire, Ilaria Tassistro, and Rachel Norridge. Thanks to their recommendations, the statistics chapters were added, redundant material was removed, and the style and layout of the book improved immensely. My copy editor, Gary Smith, was also fantastic to work with and meticulous!

On a personal note, I want to thank my family. In particular, I'm grateful to my son, Danny Balter, for always telling me that I'm good at explaining things. I'm also grateful to my mom, Irit Harchol, who is one of my best friends, and who takes the time to talk with me every day as I walk to and from work. Thanks to my inlaws, Ann and Richard Young, who are my cheering squad. Finally, I have infinite love and gratitude for my husband, Ary Young, for always making me their top priority and for never leaving my side, even if it means sleeping on my sofa as I sit here typing away.

