Part |l

Continuous Random
Variables

In this part of the book, we repeat the material in Part II, but this time we focus
on continuous random variables, which can take on an uncountable number of
values. Continuous random variables are very relevant to computer systems —
how else can we model response time, for example? Working in continuous time
also allows us to leverage everything we know about calculus.

Because continuous-time analysis is often harder for students (no one seems to
remember how to integrate!), we split up our discussion of continuous random
variables into two parts. In Chapter 7, we consider the case of random variables
drawn from a single distribution. Here we introduce the two most common
continuous distributions: the Uniform and the Exponential. In Chapter 8, we move
on to multiple distributions and introduce jointly distributed continuous random
variables. All the topics, such as conditioning, Bayes’ Law, independence, that
were covered in Part I are reintroduced in these two chapters, from the continuous
perspective.

Chapter 9 is devoted to one very important continuous distribution, the Normal,
a.k.a., Gaussian distribution, which occurs throughout nature. We also introduce
the Central Limit Theorem, which we will use multiple times in the book as a
tail approximation.

In Chapter 10 we discuss another very important continuous distribution, the
Pareto distribution. This distribution also occurs throughout nature and is par-
ticularly relevant to computer science. We discuss properties of the Pareto dis-
tribution, in particular the heavy-tailed property and decreasing failure rate, and
their implications for the design of computer systems.

Finally, Chapter 11 is the counterpart to Chapter 6. While z-transforms are the
moment-generating function of choice for discrete random variables, the Laplace
transform is the moment-generating function of choice for continuous random
variables. We illustrate how the Laplace transform can be used to generate
all moments of continuous random variables, and we also show how one can
combine Laplace transforms and z-transforms.
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7 Continuous Random
Variables: Single
Distribution

Until now we have only studied discrete random variables. These are defined by
a probability mass function (p.m.f.). This chapter introduces continuous random
variables, which are defined by a probability density function.

7.1 Probability Density Functions

Definition 7.1 A continuous random variable (r.v.) has a continuous range
of values that it can take on. This might be an interval or a set of intervals.
Thus a continuous r.v. can take on an uncountable set of possible values.

Continuous random variables are extremely common. They might be used to
represent the time of an event, the speed of a device, the location of a satellite, or
the distance between people’s eyeballs. All these quantities can be discretized, of
course, but it’s more accurate to think of them as continuous random variables,
and the math also gets much easier as well, since one can invoke calculus.

The probability that a continuous r.v., X, is equal to any particular value is
defined to be zero. We define probability for a continuous r.v. in terms of a
density function.

Definition 7.2 The probability density function (p.d.f.) of a continuous r.v.
X is a non-negative function fx(-), where

b )
P{a < X < b} =/ fx(x)dx and where / fx(x)dx = 1.

Definition 7.2 is illustrated in Figure 7.1. To interpret the p.d.f., fx(x), think
about a very skinny rectangle of height fx(x) and width dx with area fx(x)dx.
This area represents a tiny probability:

fx(x)dx ~P{x < X < x+dx}.

Now the integral from a to b of fx(x)dx is the sum of all these tiny probabilities.
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7.1 Probability Density Functions 135

Blue region
represents fy (x)dx

which is approximately _ Pink area
P{x<X<ux+dx} § represents

é P{5<X<6)}

5 x x+dx 6
Figure 7.1 The area under the curve represents the probability that X is between 5 and
6, namely f56 Sfx(x)dx.
Question: How does P {a < X < b} compare with P{a < X < b}?

Answer: These are the same. For continuous distributions we don’t have to be
careful about differentiating between < and <, because there is no mass at any
particular value.

Question: Does fx(x) have to be below 1 for all x?
Answer: No, fx(x) is not a probability.

Density functions are used everywhere, and are not necessarily related to prob-
ability. We start with a typical example from a calculus class.

Example 7.3 (Density as a rate)

Imagine that we’re filling a bathtub, as in Figure 7.2, where the rate of water out
of the faucet starts out slow but increases over time. Specifically, let

f(t) =1 t>0

denote the rate (in gallons/s) at which water comes out of the faucet.

Question: If we start filling at time 0, what is the total amount of water in the
bathtub by time 4 seconds?

Answer: In this example, f(¢) = ¢> is a density function, where f(¢) is the
instantaneous rate at time ¢. If we want to talk about a fotal amount of water, we
need to integrate the rate (density) over some period of time:

4
64 1
/0 2dt = 3= 21§ gallons.

Question: Is f(¢) = t?, where t > 0, a p.d.f.?
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136 7 Continuous Random Variables: Single Distribution

Rate f(1)
gallons/s

4
f(t)dt = total water
after 4 seconds

Figure 7.2 Here, (1) = 2 represents the gallons/s coming out at time t.
Answer: No. For f(¢) to be a p.d.f., it must be the case that /_0; f(®dt =1,
which is not true. Also, in our example f(z) has no relation to probability.

Now for an example involving a p.d.f.
Example 7.4 (Weight of two-year-olds)

Let’s say that the weight of two-year-olds can range anywhere from 15 pounds
to 35 pounds. Let fy (x) denote the p.d.f. of weight for two-year-olds, where

3 3 2
[ A —-29? if15<x<35
fw(x) { 0 otherwise

Question: What is the fraction of two-year-olds who weigh > 30 pounds?

Answer: As illustrated in Figure 7.3,

0o 35
P {Two-year-old weighs > 30 pounds} = / Jwx)dx = Jw(x)dx =~ 16%.
30 30

Definition 7.5 The camulative distribution function (c.d.f.) F(-) of a contin-
uous r.v. X is defined by

a
Fx(a)=P{-c0 <X <a}= / Sfx(x)dx.
We can express the tail of X by
Fx(a)=1-Fx(a) =P{X > a}.
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Jwx)

A . .
Yol .....

Shaded area
represents 16%

»

15 253035

Figure 7.3 Probability density function for the weight of two-year-olds.

Question: We know how to get Fx(x) from fx(x). How do we get fx(x) from
FX ()C)?

Answer: By the Fundamental Theorem of Calculus (explained in Section 1.3),

f = / f0di = 4 Fx(x)

7.2 Common Continuous Distributions

There are many common continuous distributions. Below we briefly define just
a couple: the Uniform and Exponential distributions.

Uniform(a, b), often written U(a, b), models the fact that any interval of length
6 between a and b is equally likely. Specifically, if X ~ U(a, b), then
1

P ifa<x<b

fx(x) =

0 otherwise

Question: For X ~ U(a, b), what is Fx(x)?

Answer:

X
1 —
FX(X)=/ mdt=z_;l, a<x<b.

Figure 7.4 depicts fx(x) and Fx(x) graphically.

Exp(1) denotes the Exponential distribution, whose p.d.f. drops off exponen-
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138 7 Continuous Random Variables: Single Distribution

A A
1
Fx(x)
1 Jx(x)
.......... _—
b-a | é !
a X b " 0 a x b

Figure 7.4 The p.d.f., fx(x), and c.d.f., Fx(x), functions for X ~ Uniform(a,b). The
shaded (pink) region under the p.d.f. has an area equal to the height of the blue segment
in the c.d.f.

tially. We say that a r.v. X is distributed Exponentially with rate A > 0, written
X ~ Exp(Q), if

de ™ ifx >0
fX(x)‘{o ifx <0

The graph of the p.d.f. is shown in Figure 7.5.

Figure 7.5 Exponential probability density function, where A = 0.5.
The c.d.f., Fx(x) = P{X < x}, is given by

X l—e ™ ifx>0
Fx(x) = / Fe(r)di = { : ISP

Fx(x)=1-Fx(x)=e, ifx>0.
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7.2 Common Continuous Distributions 139

Both fx(x) and Fx(x) drop off by a constant factor, e =, with each unit increase
of x.

The Exponential distribution has a property called memorylessness.

Definition 7.6 We say that r.v. X has the memoryless property if
P{X>t+s | X>s} =P{X >t} Vs, t > 0.

To understand memorylessness, think of X as representing the time until I win
the lottery. Suppose we know that I haven’t yet won the lottery by time s. Then
the probability that I will need > ¢ more time to win the lottery is independent
of s (that is, it’s independent of how long I’ve been trying so far).

Equivalently, we say X is memoryless if

X[ X>s]2s+X, Vs>0.
That is, the r.v. [X | X > s] and the r.v. s + X have the same distribution.
Question: Prove that if X ~ Exp(4), then X has the memoryless property.

Answer:

P{X>r+ —Alt+s)
P{X>t+s | X>s}= li{X>s}s}:ee—/ls e M =P{X >1}.

Question: What other distribution has the memoryless property?
Answer: The Geometric distribution.
Question: Does the Uniform distribution also have the memoryless property?

Answer: No. If X ~ Uniform(a, b) and we are given that X > b — ¢, then we
know that X will end very soon.

The memoryless property is a little counter-intuitive, because it says that history
doesn’t affect the future.

Example 7.7 (The naked mole-rat)

Most living beings have the property that their mortality rate increases as they age.
The naked mole-rat is an exception in that its remaining lifetime is independent
of its age [65].

Question: Let X denote the lifetime of the naked mole-rat in years, where
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140 7 Continuous Random Variables: Single Distribution

Figure 7.6 The naked mole-rat’s mortality rate does not increase with age.

X ~ Exp(1). If a naked mole-rat is four years old, what is its probability of
surviving at least one more year?

Answer:
P{X>5} e

P{X>4+1|X>4})=—"— - =—=
{ | } P{X>4} e

Question: If a naked mole-rat is 24 years old, what is its probability of surviving
at least one more year?

Answer: Same thing! P{X > 24+ 1| X > 24} = ¢!,
Example 7.8 (Post office)

Suppose that a post office has two clerks. When customer A walks in, customer
B is being served by one clerk, and customer C is being served by the other clerk.
All service times are Exponentially distributed with rate A.

Question: What is P {A is the last to leave}?

Answer: % Note that one of B or C will leave first. Without loss of generality,
let us say B leaves first. Then C and A will have the same distribution on their
remaining service time. It does not matter that C has been served for a while.

We will return to the memoryless property of the Exponential distribution in
Chapter 12. There are additional important continuous distributions, including
the Normal and Pareto distributions, which we defer to Chapters 9 and 10,
respectively.
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7.3 Expectation, Variance, and Higher Moments 141

7.3 Expectation, Variance, and Higher Moments

The moments of a continuous distribution are derived from its p.d.f., just as we
used the p.m.f. in the case of discrete distributions. Likewise, we can also define
arbitrary functions of a continuous random variable.

Definition 7.9 For a continuous r.v. X, with p.d.f. fx(-), we have:
E [X] =/ x - fx(x)dx
E [Xi] =/ x' - fx(x)dx.

o

For any function g(-), we have:

E [¢(X)] = / " o) - fx(x)dr.

In particular,

Var(X) =E [(X -E[X])*] = / : (x —=E[X])?- fx(x)dx

Example 7.10 (The Uniform distribution)

Question: Derive the mean and variance of X ~ Uniform(a, b).

Answer: Recall that
1

ifa<x<b
P ifa<ux

fx(x) =

0 otherwise
Thus,

b2 —a*> a+b

00 b
1 1
] ,/_oofX(t)tt ,/a b—at[ b-a 2 2

This answer should make sense! Likewise,

0 b 3 3 2 2

1 1 b’ —a b+ab+a

E [Xz] :/ fX(f)tzd[ :/ mtzdt = h—a . 3 = 3
—oo a

After some algebra, this yields:

Var(X) =E [X?] -E[X]’ = %.
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142 7 Continuous Random Variables: Single Distribution

Example 7.11 (The Exponential distribution)

Question: Derive the mean and variance of X ~ Exp(1).

Answer: Recall that

Ae™™  ifx >0
fX(x)‘{o ifx <0

Thus,

(o) [e's) 1
E[X] = / fx(t)rdt = / AeMidt = 7 (integration by parts).
—o0 0

Likewise,

[ee] [ee) 2
E [Xz] = /_ fx(t)tzdt = /0 Ae Mi2dr = = (double integration by parts).

Thus,
1
Var(X) =E [X*]| -E[X]* = =

Observe that whereas the A parameter for the Poisson distribution is also its
mean, for the Exponential distribution, the A parameter is the reciprocal of the
mean. We thus refer to A as the rate of the Exponential. For example, if the
time until the next arrival is Exponentially distributed with rate three arrivals per
second, then the expected time until the next arrival is % seconds.

Example 7.12 (Time to get from NYC to Boston)

I
New York City 180 miles Boston

Figure 7.7 What is the expected time to get from NYC to Boston?

Suppose that the distance from NYC to Boston is 180 miles. You decide to buy
a motorized bicycle for the trip. Suppose that motorized bikes have speeds that
are Uniformly distributed between 30 and 60 m.p.h., and you buy a random
motorized bike. Let T be the time to get from NYC to Boston. What is E [T']?

Consider two ideas for figuring this out:
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7.4 Computing Probabilities by Conditioning on a R.V. 143

Idea I: Average speed is 45 m.p.h. Thus, E [T] = % = 4 hours.

Idea 2: E [T] is the average of % and %. Thus E [T] is the average of 6 and 3,
which is 4.5 hours.

Question: Which of ideas 1 and 2 is correct?

Answer: Neither is correct! We are interested in

180
T=—,
S

where S ~ Uniform(30, 60) represents the speed of the bike. Then,
180 % 180
E[T] :E[—] =/ — - fs(s)ds
S 30 N

/60 180 1
= — ——ds
30 N 60 — 30

60 1
= 6/ —ds
30 §
=6 - (In(60) — In(30))
~ 4.15 hours.

7.4 Computing Probabilities by Conditioning on a R.V.

Recall the Law of Total Probability for discrete random variables (Theorem 3.7)
which said the following: For any event A and any discrete r.v. X,

P{A}=) P(AN(X=0)}=) P(A|X=x} px(x) (1D

The same result holds when conditioning on a continuous r.v., expect that: (1)
We are working with densities, rather than probabilities, (2) we need to integrate
the densities, rather than summing probabilities, and (3) when we condition on
a continuous r.v., we’re conditioning on a zero-probability event, which can feel
a little odd but is still well defined.

Theorem 7.13 (Law of Total Probability: Continuous) Given any event A
and continuous r.v. X, we can compute P {A} by conditioning on the value of
X, as follows:

P{A}:/_wfx(xﬂA)dxz‘/_mP{A|X=x}fx(x)dx.

Here, fx(x N A) is notation that we're adopting to denote the density of the
intersection of the event A with X = x.
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144 7 Continuous Random Variables: Single Distribution

Theorem 7.13 is analogous to (7.1), except that now the state space that we’re
conditioning on has been partitioned into an uncountable number of events of
Zero mass.

As an example, suppose A is the event X > 50. Then,

fx(x) ifx>50
0

fX(xmA):{ ifx <50

That is, Vx < 50, the quantity fx(x N A) is simply 0, because the intersection
of X = x and X > 50 is zero. Similarly, Vx > 50, the quantity fx(x N A) is just
Jfx(x) because the event X > 50 doesn’t add any new information.

Using Theorem 7.13,

P{X >50}=P{A} = ‘/00 fx(xNA)dx = ‘/5000 Sx (x)dx.

Likewise, we get this same answer by writing:

P{X>50}:/00P{X>50|X=x}-fx(x)dx=/m1-fX(x)dx.
o 50

Question: It may seem confusing to think about P {A | X = x}. How can this
possibly be well defined? If we write:
P{ANX=x}
P{A|X=x}=————,
{AlX=x}=— X =]
don’t we have zero in the denominator?

Answer: Yes, we do have zero in the denominator, but we also have zero in
the numerator, so this is not necessarily a problem. Both the numerator and
denominator are actually densities. The correct notation is:

fx(xnA)

P{A|X=X}:W

Conditioning on a zero-probability event is best explained via an example.
Example 7.14 (Coin whose probability of heads is a r.v.)

Suppose we have a coin with probability P of heads, where P is drawn from a
Uniform(0, 1) distribution.

Question: What is the probability that the next 10 flips are all heads?
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Answer:

1
P {10 Heads} :/ P{10Heads | P = p} - fp(p)dp
0

1
:/ P{10Heads | P = p} - 1dp
0

1
:,/ p'dp
0

1

11

As we saw above, conditioning on a zero-probability event, as in
P {10 Heads | P = p}, makes perfect sense.

Definition 7.15 defines the conditional p.d.f., fx a(x).

Definition 7.15 (Conditional p.d.f. and Bayes’ Law) For a continuous r.v. X
and an event A, we define the conditional p.d.f. of r.v. X given event A as:

fx(xnA) P{A|X=x} fx(x)
P{A} P{A)}

Once again, fx(x N A) denotes the density of the intersection of the event A
with X = x.

fxja(x) =

Observe that fx|4(x) has a value of O when x is outside of A. The conditional
p.d.f. is still a proper p.d.f. in the sense that:

[ foatoac=1
X
Example 7.16 (Pictorial view of conditional density)

A conditional density function can be viewed as a density function whose domain
has been restricted in some way, and then scaled up to compensate. To see this,
imagine we have a density function fx(x), where

fx(x) >0 for 0<x<100.

Now let A be the event that X > 50. Figure 7.8 shows fx(x) in blue/dashed
and fx|a(x) in red/solid. The fx(x) curve is positive over the interval [0, 100].
The fx|a(x) curve is positive over the interval [50, 100]. The fx|4(x) curveis a
scaled-up version of fx(x), where the scaling factor is m. This allows the
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Jx1a(x)
y
A
Sx(x)
VARRY
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0 50 100

Figure 7.8 In blue/dashed we see the p.d.f. fx(x). In red/solid we see the conditional
p-df. fx)x>50(%).

area under each curve to be 1, so both are proper probability density functions.
Specifically,

fx1a(x) = fxix>s0(x) =

fx(xnX>50) | xS ifx s 50
1o ifx <50 °

P{X>50}
P{X > 50}

Here we’ve used the fact that

fx(x) ifx>50
0

fx(me>50):{ 1220

We furthermore see that the conditional p.d.f. integrates to 1:

100 ~ 100 fX(x) B P{X > 50} B
/xzo Fxia(x)dx = /xzso PIX>s01 Y T Pxss0r

7.5 Conditional Expectation and the Conditional Density

One is often interested in the expected value of a random variable, conditioned on
some event, A. In the continuous world this could, for example, be the expected
height of people if we’re restricted to people of height greater than 6 feet.

It is useful to start by recalling the definition of conditional expectation for the
discrete space, given in Definitions 4.18 and 4.14: For a discrete r.v. X, and an
event A, where P {A} > 0, the conditional expectation of X given event A is:

E[X|A] =) x pxjal), (7.2)

X
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7.5 Conditional Expectation and the Conditional Density 147

where
_ P{(X=x)NnA}

pxja(x) =P{X =x| A} PA)

(7.3)

Definition 7.17 provides the corresponding definitions for a continuous r.v. X
and an event A. Note the use of a conditional p.d.f. for the continuous case,
where we used a conditional p.m.f. for the discrete case.

Definition 7.17 For the case of a continuous r.v. X, corresponding to (7.2),
we similarly define the conditional expectation of .v. X given event A, where
P{A} >0, as:

E[X | A] = / o el

where fx|a(x) is the conditional p.d.f. defined in Definition 7.15.

Example 7.18 (Pittsburgh Supercomputing Center)

The Pittsburgh Supercomputing Center (PSC) runs large parallel jobs for scien-
tists from all over the country. Jobs are grouped into different bins based on their
size, where “‘size” denotes the required number of CPU-hours. Suppose that job
sizes are Exponentially distributed with mean 1000 CPU-hours. Further suppose
that all jobs of size less than 500 CPU-hours are sent to bin 1, and all remaining
jobs are sent to bin 2.

Question: Consider the following questions:

(a) What is P {Job is sent to bin 1}?

(b) What is P {Job size < 200 | job is sent to bin 1}?

(c) What is fx|a(x), where X is the job size and A is the event that the job is
sent to bin 1?

(d) What is E [Job size | job is in bin 1]?

Answer: Start by recalling that for X ~ Exp (ﬁ) we have

1 —x .
——e 1000 ifx >0
— | 1000
Xx) = .
fx(x) { 0 otherwise

Fx(x) =P{X <x} =1 — ¢"T®~,

(a)
P {Job is sent to bin 1} = Fx(500) = 1 — e~ 100 = | — ™2 ~ 0.39.
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(b)

P{X <200 N bin 1
P {Job size < 200 | job is sent to bin 1} = { <P{bin 5 in 1}

Fx(2
Fx(500)

()

1 X _
fxja(x) = fx(xndA) _ fx(xnA) FQX((;(‘)())) - 10(1)(166*1;00 ifx < 500
Pial Fx(500) 0 otherwise

We have used the fact that fx(x N A) = fx(x) if and only if x < 500.

(d)
oo 500 ﬁe‘ﬁw
E [Job size | jobin bin 1] = / X fxja(x)dx = / X—————dx ~ 229.
—0o0 0 1—-e"2

Question: Why is the expected size of jobs in bin 1 less than 2507

Answer: Consider the shape of the Exponential p.d.f. Now truncate it at 500,
and scale everything by a constant needed to make it integrate to 1. There is
still more weight on the smaller values, so the expected value is less than the
midpoint.

Question: How would the answer to question (d) change if the job sizes were
distributed Uniform(0, 2000), still with mean 1000?

Answer: Logically, given that the job is in bin 1 and the distribution is Uniform,
we should find that the expected job size is 250 CPU-hours. Here is an algebraic
argument:

fxja(x) =

1
fxanA) _ fxrnd) | Al =28 = L ifx <500
P{A} Fx(500) )

0 otherwise

o0 500
1
E [Job size | job in bin 1] = / xfxja(x)dx = / x%dx = 250.
—00 0

This next example talks about a coin. However, it represents the type of math
used all the time when learning the bias of humans, such as a human’s likelihood
for clicking on a particular type of ad, or their likelihood for buying a particular
brand of shoes, etc.
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Example 7.19 (Learning the bias of a coin, or a human)

Suppose that we have a biased coin, with probability P of heads. P is a r.v. in
that we don’t know what it is. Since we know nothing, our initial assumption is
that P ~ Uniform(0, 1). We are interested in the expected value of P, given that
the coin has resulted in 10 heads out of the first 10 flips.

At first, one might think that the best estimator of P is the fraction of heads
obtained. For example, if the coin has resulted in 7 heads and 3 tails out of 10
flips, then one might be tempted to say that E [ P] = 0.7. Likewise, if the coin has
resulted in 10 heads out of 10 flips, one might be tempted to say that E [P] = 1.
However, this reasoning seems shakier if you’ve only seen 1 flip so far, and in
fact the reasoning is incorrect.

We define A as the event that 10 heads have occurred in 10 flips. By Defini-
tion 7.17,

1
E[P|A] = /0 fo1a(p) - pdp,

where, by Definition 7.15,

P{A|P=p} - fp(p) p'°-1

fria(p) = P A} =P

and where

1 1 1
P{A}=/0 P{A|P=1D]“fp(p)d1v=/O plo-ldpzﬁ,

Putting these together, we have:

1
E[P|A] = /O Fora(p) - pdp
~ lp10.1
_/0 play P

1
=/ 11p' - pdp
0

11
12

Thus, the expected bias of the coin is not 1 but is close to 1, as one would
intuit. Observe that the answer depends on our initial assumption that P ~
Uniform(0, 1). That initial assumption is referred to as “the prior” and will be
the focus of Chapter 17.
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7.6 Exercises

7.1 Valid p.d.f.s
Which of the following are plausible probability density functions?

05x7° if0<x<l1
fx(x) _{ 0 otherwise

2x72 if0<x<1
fx(x) _{ 0 otherwise

x?2 ifl<x<oo
fx(x) _{ 0 otherwise

7.2 Translation
Let X ~ Exp(u). Let Y =3X. Whatis fy()?

7.3 Weight of two-year-olds
For Example 7.4, where W denotes the weight of two-year-olds:
(a) Derive E [W].
(b) Derive Var(W).

7.4 Exponential distribution warm-up
Suppose that the time a customer spends in a bank is Exponentially dis-
tributed with mean 10 minutes.
(a) What is P {Customer spends > 5 min in bank}?
(b) Whatis P {Customer spends > 15 min total | he is there after 10 min}?

7.5 Memorylessness
Let X ~ Exp(1). Whatis E [X | X > 10]? Solve this in two ways:
(a) By integrating the conditional p.d.f.
(b) By a two-line argument via the memoryless property of Exponential
distribution.

7.6 Memorylessness continued
Given X ~ Exp(1), whatis E [X? | X > 10]?

7.7 Practice with conditional expectations
Let X be a continuous r.v. with the following p.d.f.:

3

= ifl<t<3
— ) 272 1
fx(1) { 0  otherwise

Derive E[X |1 < X < 2].
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7.8

7.9

7.10

7.11

7.12

When will I hear back?

More than 20 days ago, I interviewed at U-co for a software engineer

position, but I still haven’t heard back. Turns out that this is a common

phenomenon. There are two types of recruiters at U-co:

e Type A: Get back to you in time Exponentially distributed with mean 20
days.

e Type B: Never get back to you.

There are an equal number of Type A and Type B recruiters at U-co. What

is P {My recruiter is type B | I've been waiting more than 20 days}?

Alternative definition of expectation: summing the tail
Let X be a non-negative, continuous r.v.
(a) Prove

E [X] =/:P{X>x}dx.

(b) What is a nicer name for this quantity?

/ xP{X > x}dx.

=0

Transformations

Transforming probability density functions must be handled carefully,

through the cumulative distribution functions.

(a) Let fx(-) denote the p.d.f. of r.v. X and fy(-) denote the p.d.f. of r.v.
Y. Suppose that

Y=aX+b,

where a > 0 and b > 0 are constants. Express fy () in terms of fx(-).
You will need to work with Fy(y), the c.d.f. of Y, or you will get the
wrong answer.

(b) Let X ~ Uniform(—1,1). Let Y = ¢X. Derive the p.d.f. of Y from that
of X.

When the first alarm goes off

Before I go to bed, I set three alarms.

e Alarm A goes off after X4 time, where X4 ~ Exp(14).

e Alarm B goes off after X time, where Xp ~ Exp(4p).

e Alarm C goes off after X time, where X¢ ~ Exp(A¢).

Assumethat X4 L Xp L Xc.LetT denote the time until the first alarm goes
off. What is E [T']? What is Var(T)? [Hint: It helps to start by analyzing
the tail distribution of 7'.]

Reliability: when the last server dies
Nivedita has bought two very old servers to host her new online game. At
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the time of purchase, she was told that each of the servers will fail at some

Uniformly distributed random time during the next year, where the servers

fail independently of each other. Half a year later, her game is still up,

which means that at least one server did not yet fail. What is the expected

time until the last server fails?

(a) Start by solving the following easier problem: Let X; ~ Uniform(0, 1)
and X, ~ Uniform(0, 1), where X; L X,.Let X = max(Xj, X,). Derive
E [X].

(b) The original problem is asking, what is: E [X | X > %] Derive this
quantity.
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