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Part III

Continuous Random
Variables
In this part of the book, we repeat the material in Part II, but this time we focus
on continuous random variables, which can take on an uncountable number of
values. Continuous random variables are very relevant to computer systems –
how else can we model response time, for example? Working in continuous time
also allows us to leverage everything we know about calculus.

Because continuous-time analysis is often harder for students (no one seems to
remember how to integrate!), we split up our discussion of continuous random
variables into two parts. In Chapter 7, we consider the case of random variables
drawn from a single distribution. Here we introduce the two most common
continuous distributions: the Uniform and the Exponential. In Chapter 8, we move
on to multiple distributions and introduce jointly distributed continuous random
variables. All the topics, such as conditioning, Bayes’ Law, independence, that
were covered in Part II are reintroduced in these two chapters, from the continuous
perspective.

Chapter 9 is devoted to one very important continuous distribution, the Normal,
a.k.a., Gaussian distribution, which occurs throughout nature. We also introduce
the Central Limit Theorem, which we will use multiple times in the book as a
tail approximation.

In Chapter 10 we discuss another very important continuous distribution, the
Pareto distribution. This distribution also occurs throughout nature and is par-
ticularly relevant to computer science. We discuss properties of the Pareto dis-
tribution, in particular the heavy-tailed property and decreasing failure rate, and
their implications for the design of computer systems.

Finally, Chapter 11 is the counterpart to Chapter 6. While z-transforms are the
moment-generating function of choice for discrete random variables, the Laplace
transform is the moment-generating function of choice for continuous random
variables. We illustrate how the Laplace transform can be used to generate
all moments of continuous random variables, and we also show how one can
combine Laplace transforms and z-transforms.
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7 Continuous Random
Variables: Single
Distribution

Until now we have only studied discrete random variables. These are defined by
a probability mass function (p.m.f.). This chapter introduces continuous random
variables, which are defined by a probability density function.

7.1 Probability Density Functions

Definition 7.1 A continuous random variable (r.v.) has a continuous range
of values that it can take on. This might be an interval or a set of intervals.
Thus a continuous r.v. can take on an uncountable set of possible values.

Continuous random variables are extremely common. They might be used to
represent the time of an event, the speed of a device, the location of a satellite, or
the distance between people’s eyeballs. All these quantities can be discretized, of
course, but it’s more accurate to think of them as continuous random variables,
and the math also gets much easier as well, since one can invoke calculus.

The probability that a continuous r.v., 𝑋 , is equal to any particular value is
defined to be zero. We define probability for a continuous r.v. in terms of a
density function.

Definition 7.2 The probability density function (p.d.f.) of a continuous r.v.
𝑋 is a non-negative function 𝑓𝑋 (·), where

P {𝑎 ≤ 𝑋 ≤ 𝑏} =
∫ 𝑏

𝑎

𝑓𝑋 (𝑥)𝑑𝑥 and where
∫ ∞

−∞
𝑓𝑋 (𝑥)𝑑𝑥 = 1.

Definition 7.2 is illustrated in Figure 7.1. To interpret the p.d.f., 𝑓𝑋 (𝑥), think
about a very skinny rectangle of height 𝑓𝑋 (𝑥) and width 𝑑𝑥 with area 𝑓𝑋 (𝑥)𝑑𝑥.
This area represents a tiny probability:

𝑓𝑋 (𝑥)𝑑𝑥 ≈ P {𝑥 ≤ 𝑋 ≤ 𝑥 + 𝑑𝑥} .

Now the integral from 𝑎 to 𝑏 of 𝑓𝑋 (𝑥)𝑑𝑥 is the sum of all these tiny probabilities.
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Figure 7.1 The area under the curve represents the probability that 𝑋 is between 5 and
6, namely

∫ 6
5 𝑓𝑋 (𝑥)𝑑𝑥.

Question: How does P {𝑎 ≤ 𝑋 ≤ 𝑏} compare with P {𝑎 < 𝑋 < 𝑏}?

Answer: These are the same. For continuous distributions we don’t have to be
careful about differentiating between < and ≤, because there is no mass at any
particular value.

Question: Does 𝑓𝑋 (𝑥) have to be below 1 for all 𝑥?

Answer: No, 𝑓𝑋 (𝑥) is not a probability.

Density functions are used everywhere, and are not necessarily related to prob-
ability. We start with a typical example from a calculus class.

Example 7.3 (Density as a rate)

Imagine that we’re filling a bathtub, as in Figure 7.2, where the rate of water out
of the faucet starts out slow but increases over time. Specifically, let

𝑓 (𝑡) = 𝑡2, 𝑡 ≥ 0

denote the rate (in gallons/s) at which water comes out of the faucet.

Question: If we start filling at time 0, what is the total amount of water in the
bathtub by time 4 seconds?

Answer: In this example, 𝑓 (𝑡) = 𝑡2 is a density function, where 𝑓 (𝑡) is the
instantaneous rate at time 𝑡. If we want to talk about a total amount of water, we
need to integrate the rate (density) over some period of time:∫ 4

0
𝑡2𝑑𝑡 =

64
3

= 21
1
3

gallons.

Question: Is 𝑓 (𝑡) = 𝑡2, where 𝑡 > 0, a p.d.f.?
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Figure 7.2 Here, 𝑓 (𝑡) = 𝑡2 represents the gallons/s coming out at time 𝑡.

Answer: No. For 𝑓 (𝑡) to be a p.d.f., it must be the case that
∫ ∞
−∞ 𝑓 (𝑡)𝑑𝑡 = 1,

which is not true. Also, in our example 𝑓 (𝑡) has no relation to probability.

Now for an example involving a p.d.f.

Example 7.4 (Weight of two-year-olds)

Let’s say that the weight of two-year-olds can range anywhere from 15 pounds
to 35 pounds. Let 𝑓𝑊 (𝑥) denote the p.d.f. of weight for two-year-olds, where

𝑓𝑊 (𝑥) =
{ 3

40 −
3

4000 (𝑥 − 25)2 if 15 ≤ 𝑥 ≤ 35
0 otherwise .

Question: What is the fraction of two-year-olds who weigh > 30 pounds?

Answer: As illustrated in Figure 7.3,

P {Two-year-old weighs > 30 pounds} =
∫ ∞

30
𝑓𝑊 (𝑥)𝑑𝑥 =

∫ 35

30
𝑓𝑊 (𝑥)𝑑𝑥 ≈ 16%.

Definition 7.5 The cumulative distribution function (c.d.f.) F(·) of a contin-
uous r.v. 𝑋 is defined by

𝐹𝑋 (𝑎) = P {−∞ < 𝑋 ≤ 𝑎} =
∫ 𝑎

−∞
𝑓𝑋 (𝑥)𝑑𝑥.

We can express the tail of 𝑋 by

𝐹𝑋 (𝑎) = 1 − 𝐹𝑋 (𝑎) = P {𝑋 > 𝑎} .
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Figure 7.3 Probability density function for the weight of two-year-olds.

Question: We know how to get 𝐹𝑋 (𝑥) from 𝑓𝑋 (𝑥). How do we get 𝑓𝑋 (𝑥) from
𝐹𝑋 (𝑥)?

Answer: By the Fundamental Theorem of Calculus (explained in Section 1.3),

𝑓𝑋 (𝑥) =
𝑑

𝑑𝑥

∫ 𝑥

−∞
𝑓𝑋 (𝑡)𝑑𝑡 =

𝑑

𝑑𝑥
𝐹𝑋 (𝑥).

7.2 Common Continuous Distributions

There are many common continuous distributions. Below we briefly define just
a couple: the Uniform and Exponential distributions.

Uniform(a, b), often written𝑈 (𝑎, 𝑏), models the fact that any interval of length
𝛿 between 𝑎 and 𝑏 is equally likely. Specifically, if 𝑋 ∼ 𝑈 (𝑎, 𝑏), then

𝑓𝑋 (𝑥) =


1

𝑏 − 𝑎 if 𝑎 ≤ 𝑥 ≤ 𝑏

0 otherwise
.

Question: For 𝑋 ∼ 𝑈 (𝑎, 𝑏), what is 𝐹𝑋 (𝑥)?

Answer:

𝐹𝑋 (𝑥) =
∫ 𝑥

𝑎

1
𝑏 − 𝑎 𝑑𝑡 =

𝑥 − 𝑎
𝑏 − 𝑎 , 𝑎 ≤ 𝑥 ≤ 𝑏.

Figure 7.4 depicts 𝑓𝑋 (𝑥) and 𝐹𝑋 (𝑥) graphically.

Exp(𝜆) denotes the Exponential distribution, whose p.d.f. drops off exponen-
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Figure 7.4 The p.d.f., 𝑓𝑋 (𝑥), and c.d.f., 𝐹𝑋 (𝑥), functions for 𝑋 ∼ Uniform(𝑎, 𝑏). The
shaded (pink) region under the p.d.f. has an area equal to the height of the blue segment
in the c.d.f.

tially. We say that a r.v. 𝑋 is distributed Exponentially with rate 𝜆 > 0, written
𝑋 ∼ Exp(𝜆), if

𝑓𝑋 (𝑥) =
{
𝜆𝑒−𝜆𝑥 if 𝑥 ≥ 0
0 if 𝑥 < 0 .

The graph of the p.d.f. is shown in Figure 7.5.
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Figure 7.5 Exponential probability density function, where 𝜆 = 0.5.

The c.d.f., 𝐹𝑋 (𝑥) = P {𝑋 ≤ 𝑥}, is given by

𝐹𝑋 (𝑥) =
∫ 𝑥

−∞
𝑓𝑋 (𝑡)𝑑𝑡 =

{
1 − 𝑒−𝜆𝑥 if 𝑥 ≥ 0
0 if 𝑥 < 0 .

𝐹𝑋 (𝑥) = 1 − 𝐹𝑋 (𝑥) = 𝑒−𝜆𝑥 , if 𝑥 ≥ 0.
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Both 𝑓𝑋 (𝑥) and 𝐹𝑋 (𝑥) drop off by a constant factor, 𝑒−𝜆, with each unit increase
of 𝑥.

The Exponential distribution has a property called memorylessness.

Definition 7.6 We say that r.v. 𝑋 has the memoryless property if

P {𝑋 > 𝑡 + 𝑠 | 𝑋 > 𝑠} = P {𝑋 > 𝑡} ∀𝑠, 𝑡 ≥ 0.

To understand memorylessness, think of 𝑋 as representing the time until I win
the lottery. Suppose we know that I haven’t yet won the lottery by time 𝑠. Then
the probability that I will need > 𝑡 more time to win the lottery is independent
of 𝑠 (that is, it’s independent of how long I’ve been trying so far).

Equivalently, we say 𝑋 is memoryless if

[𝑋 | 𝑋 > 𝑠] 𝑑
= 𝑠 + 𝑋 , ∀𝑠 ≥ 0.

That is, the r.v. [𝑋 | 𝑋 > 𝑠] and the r.v. 𝑠 + 𝑋 have the same distribution.

Question: Prove that if 𝑋 ∼ Exp(𝜆), then 𝑋 has the memoryless property.

Answer:

P {𝑋 > 𝑡 + 𝑠 | 𝑋 > 𝑠} = P {𝑋 > 𝑡 + 𝑠}
P {𝑋 > 𝑠} =

𝑒−𝜆(𝑡+𝑠)

𝑒−𝜆𝑠
= 𝑒−𝜆𝑡 = P {𝑋 > 𝑡} .

Question: What other distribution has the memoryless property?

Answer: The Geometric distribution.

Question: Does the Uniform distribution also have the memoryless property?

Answer: No. If 𝑋 ∼ Uniform(𝑎, 𝑏) and we are given that 𝑋 > 𝑏 − 𝜖 , then we
know that 𝑋 will end very soon.

The memoryless property is a little counter-intuitive, because it says that history
doesn’t affect the future.

Example 7.7 (The naked mole-rat)

Most living beings have the property that their mortality rate increases as they age.
The naked mole-rat is an exception in that its remaining lifetime is independent
of its age [65].

Question: Let 𝑋 denote the lifetime of the naked mole-rat in years, where
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Figure 7.6 The naked mole-rat’s mortality rate does not increase with age.

𝑋 ∼ Exp(1). If a naked mole-rat is four years old, what is its probability of
surviving at least one more year?

Answer:

P {𝑋 > 4 + 1 | 𝑋 > 4} = P {𝑋 > 5}
P {𝑋 > 4} =

𝑒−5

𝑒−4 = 𝑒−1.

Question: If a naked mole-rat is 24 years old, what is its probability of surviving
at least one more year?

Answer: Same thing! P {𝑋 > 24 + 1 | 𝑋 > 24} = 𝑒−1.

Example 7.8 (Post office)

Suppose that a post office has two clerks. When customer 𝐴 walks in, customer
𝐵 is being served by one clerk, and customer𝐶 is being served by the other clerk.
All service times are Exponentially distributed with rate 𝜆.

Question: What is P {𝐴 is the last to leave}?

Answer: 1
2 . Note that one of 𝐵 or 𝐶 will leave first. Without loss of generality,

let us say 𝐵 leaves first. Then 𝐶 and 𝐴 will have the same distribution on their
remaining service time. It does not matter that 𝐶 has been served for a while.

We will return to the memoryless property of the Exponential distribution in
Chapter 12. There are additional important continuous distributions, including
the Normal and Pareto distributions, which we defer to Chapters 9 and 10,
respectively.
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7.3 Expectation, Variance, and Higher Moments

The moments of a continuous distribution are derived from its p.d.f., just as we
used the p.m.f. in the case of discrete distributions. Likewise, we can also define
arbitrary functions of a continuous random variable.

Definition 7.9 For a continuous r.v. 𝑋 , with p.d.f. 𝑓𝑋 (·), we have:

E [𝑋] =
∫ ∞

−∞
𝑥 · 𝑓𝑋 (𝑥)𝑑𝑥

E
[
𝑋 𝑖

]
=

∫ ∞

−∞
𝑥𝑖 · 𝑓𝑋 (𝑥)𝑑𝑥.

For any function 𝑔(·), we have:

E [𝑔(𝑋)] =
∫ ∞

−∞
𝑔(𝑥) · 𝑓𝑋 (𝑥)𝑑𝑥.

In particular,

Var(𝑋) = E
[
(𝑋 − E [𝑋])2

]
=

∫ ∞

−∞
(𝑥 − E [𝑋])2 · 𝑓𝑋 (𝑥)𝑑𝑥

Example 7.10 (The Uniform distribution)

Question: Derive the mean and variance of 𝑋 ∼ Uniform(𝑎, 𝑏).

Answer: Recall that

𝑓𝑋 (𝑥) =


1

𝑏 − 𝑎 if 𝑎 ≤ 𝑥 ≤ 𝑏

0 otherwise
.

Thus,

E [𝑋] =
∫ ∞

−∞
𝑓𝑋 (𝑡)𝑡𝑑𝑡 =

∫ 𝑏

𝑎

1
𝑏 − 𝑎 𝑡𝑑𝑡 =

1
𝑏 − 𝑎 ·

𝑏2 − 𝑎2

2
=
𝑎 + 𝑏

2
.

This answer should make sense! Likewise,

E
[
𝑋2] = ∫ ∞

−∞
𝑓𝑋 (𝑡)𝑡2𝑑𝑡 =

∫ 𝑏

𝑎

1
𝑏 − 𝑎 𝑡

2𝑑𝑡 =
1

𝑏 − 𝑎 ·
𝑏3 − 𝑎3

3
=
𝑏2 + 𝑎𝑏 + 𝑎2

3
.

After some algebra, this yields:

Var(𝑋) = E
[
𝑋2] − E [𝑋]2 =

(𝑏 − 𝑎)2
12

.
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Example 7.11 (The Exponential distribution)

Question: Derive the mean and variance of 𝑋 ∼ Exp(𝜆).

Answer: Recall that

𝑓𝑋 (𝑥) =
{
𝜆𝑒−𝜆𝑥 if 𝑥 ≥ 0
0 if 𝑥 < 0 .

Thus,

E [𝑋] =
∫ ∞

−∞
𝑓𝑋 (𝑡)𝑡𝑑𝑡 =

∫ ∞

0
𝜆𝑒−𝜆𝑡 𝑡𝑑𝑡 =

1
𝜆

(integration by parts).

Likewise,

E
[
𝑋2] = ∫ ∞

−∞
𝑓𝑋 (𝑡)𝑡2𝑑𝑡 =

∫ ∞

0
𝜆𝑒−𝜆𝑡 𝑡2𝑑𝑡 =

2
𝜆2 (double integration by parts).

Thus,

Var(𝑋) = E
[
𝑋2] − E [𝑋]2 =

1
𝜆2 .

Observe that whereas the 𝜆 parameter for the Poisson distribution is also its
mean, for the Exponential distribution, the 𝜆 parameter is the reciprocal of the
mean. We thus refer to 𝜆 as the rate of the Exponential. For example, if the
time until the next arrival is Exponentially distributed with rate three arrivals per
second, then the expected time until the next arrival is 1

3 seconds.

Example 7.12 (Time to get from NYC to Boston)

New York City Boston180 miles

Figure 7.7 What is the expected time to get from NYC to Boston?

Suppose that the distance from NYC to Boston is 180 miles. You decide to buy
a motorized bicycle for the trip. Suppose that motorized bikes have speeds that
are Uniformly distributed between 30 and 60 m.p.h., and you buy a random
motorized bike. Let 𝑇 be the time to get from NYC to Boston. What is E [𝑇]?

Consider two ideas for figuring this out:
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Idea 1: Average speed is 45 m.p.h. Thus, E [𝑇] = 180
45 = 4 hours.

Idea 2: E [𝑇] is the average of 180
30 and 180

60 . Thus E [𝑇] is the average of 6 and 3,
which is 4.5 hours.

Question: Which of ideas 1 and 2 is correct?

Answer: Neither is correct! We are interested in

𝑇 =
180
𝑆

,

where 𝑆 ∼ Uniform(30, 60) represents the speed of the bike. Then,

E [𝑇] = E
[
180
𝑆

]
=

∫ 60

30

180
𝑠
· 𝑓𝑆 (𝑠)𝑑𝑠

=

∫ 60

30

180
𝑠
· 1

60 − 30
𝑑𝑠

= 6
∫ 60

30

1
𝑠
𝑑𝑠

= 6 · (ln(60) − ln(30))
≈ 4.15 hours.

7.4 Computing Probabilities by Conditioning on a R.V.

Recall the Law of Total Probability for discrete random variables (Theorem 3.7)
which said the following: For any event 𝐴 and any discrete r.v. 𝑋 ,

P {𝐴} =
∑︁
𝑥

P {𝐴 ∩ (𝑋 = 𝑥)} =
∑︁
𝑥

P {𝐴 | 𝑋 = 𝑥} · 𝑝𝑋 (𝑥) (7.1)

The same result holds when conditioning on a continuous r.v., expect that: (1)
We are working with densities, rather than probabilities, (2) we need to integrate
the densities, rather than summing probabilities, and (3) when we condition on
a continuous r.v., we’re conditioning on a zero-probability event, which can feel
a little odd but is still well defined.

Theorem 7.13 (Law of Total Probability: Continuous) Given any event 𝐴
and continuous r.v. 𝑋 , we can compute P {𝐴} by conditioning on the value of
𝑋 , as follows:

P {𝐴} =
∫ ∞

−∞
𝑓𝑋 (𝑥 ∩ 𝐴)𝑑𝑥 =

∫ ∞

−∞
P {𝐴 | 𝑋 = 𝑥} 𝑓𝑋 (𝑥)𝑑𝑥.

Here, 𝑓𝑋 (𝑥 ∩ 𝐴) is notation that we’re adopting to denote the density of the
intersection of the event 𝐴 with 𝑋 = 𝑥.
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Theorem 7.13 is analogous to (7.1), except that now the state space that we’re
conditioning on has been partitioned into an uncountable number of events of
zero mass.

As an example, suppose 𝐴 is the event 𝑋 > 50. Then,

𝑓𝑋 (𝑥 ∩ 𝐴) =
{
𝑓𝑋 (𝑥) if 𝑥 > 50
0 if 𝑥 ≤ 50 .

That is, ∀𝑥 ≤ 50, the quantity 𝑓𝑋 (𝑥 ∩ 𝐴) is simply 0, because the intersection
of 𝑋 = 𝑥 and 𝑋 > 50 is zero. Similarly, ∀𝑥 > 50, the quantity 𝑓𝑋 (𝑥 ∩ 𝐴) is just
𝑓𝑋 (𝑥) because the event 𝑋 > 50 doesn’t add any new information.

Using Theorem 7.13,

P {𝑋 > 50} = P {𝐴} =
∫ ∞

−∞
𝑓𝑋 (𝑥 ∩ 𝐴)𝑑𝑥 =

∫ ∞

50
𝑓𝑋 (𝑥)𝑑𝑥.

Likewise, we get this same answer by writing:

P {𝑋 > 50} =
∫ ∞

−∞
P {𝑋 > 50 | 𝑋 = 𝑥} · 𝑓𝑋 (𝑥)𝑑𝑥 =

∫ ∞

50
1 · 𝑓𝑋 (𝑥)𝑑𝑥.

Question: It may seem confusing to think about P {𝐴 | 𝑋 = 𝑥}. How can this
possibly be well defined? If we write:

P {𝐴 | 𝑋 = 𝑥} = P {𝐴 ∩ 𝑋 = 𝑥}
P {𝑋 = 𝑥} ,

don’t we have zero in the denominator?

Answer: Yes, we do have zero in the denominator, but we also have zero in
the numerator, so this is not necessarily a problem. Both the numerator and
denominator are actually densities. The correct notation is:

P {𝐴 | 𝑋 = 𝑥} = 𝑓𝑋 (𝑥 ∩ 𝐴)
𝑓𝑋 (𝑥)

.

Conditioning on a zero-probability event is best explained via an example.

Example 7.14 (Coin whose probability of heads is a r.v.)

Suppose we have a coin with probability 𝑃 of heads, where 𝑃 is drawn from a
Uniform(0, 1) distribution.

Question: What is the probability that the next 10 flips are all heads?
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Answer:

P {10 Heads} =
∫ 1

0
P {10 Heads | 𝑃 = 𝑝} · 𝑓𝑃 (𝑝)𝑑𝑝

=

∫ 1

0
P {10 Heads | 𝑃 = 𝑝} · 1𝑑𝑝

=

∫ 1

0
𝑝10𝑑𝑝

=
1
11

.

As we saw above, conditioning on a zero-probability event, as in
P {10 Heads | 𝑃 = 𝑝}, makes perfect sense.

Definition 7.15 defines the conditional p.d.f., 𝑓𝑋 |𝐴(𝑥).

Definition 7.15 (Conditional p.d.f. and Bayes’ Law) For a continuous r.v. 𝑋
and an event 𝐴, we define the conditional p.d.f. of r.v. 𝑋 given event 𝐴 as:

𝑓𝑋 |𝐴(𝑥) =
𝑓𝑋 (𝑥 ∩ 𝐴)

P {𝐴} =
P {𝐴 | 𝑋 = 𝑥} · 𝑓𝑋 (𝑥)

P {𝐴} .

Once again, 𝑓𝑋 (𝑥 ∩ 𝐴) denotes the density of the intersection of the event 𝐴
with 𝑋 = 𝑥.

Observe that 𝑓𝑋 |𝐴(𝑥) has a value of 0 when 𝑥 is outside of 𝐴. The conditional
p.d.f. is still a proper p.d.f. in the sense that:∫

𝑥

𝑓𝑋 |𝐴(𝑥)𝑑𝑥 = 1.

Example 7.16 (Pictorial view of conditional density)

A conditional density function can be viewed as a density function whose domain
has been restricted in some way, and then scaled up to compensate. To see this,
imagine we have a density function 𝑓𝑋 (𝑥), where

𝑓𝑋 (𝑥) > 0 for 0 < 𝑥 < 100.

Now let 𝐴 be the event that 𝑋 > 50. Figure 7.8 shows 𝑓𝑋 (𝑥) in blue/dashed
and 𝑓𝑋 |𝐴(𝑥) in red/solid. The 𝑓𝑋 (𝑥) curve is positive over the interval [0, 100].
The 𝑓𝑋 |𝐴(𝑥) curve is positive over the interval [50, 100]. The 𝑓𝑋 |𝐴(𝑥) curve is a
scaled-up version of 𝑓𝑋 (𝑥), where the scaling factor is 1

P{𝑋>50} . This allows the



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

146 7 Continuous Random Variables: Single Distribution

x

fX(x)

fX|A(x)

00 50 100

y

Figure 7.8 In blue/dashed we see the p.d.f. 𝑓𝑋 (𝑥). In red/solid we see the conditional
p.d.f. 𝑓𝑋 |𝑋>50 (𝑥).

area under each curve to be 1, so both are proper probability density functions.
Specifically,

𝑓𝑋 |𝐴(𝑥) = 𝑓𝑋 |𝑋>50(𝑥) =
𝑓𝑋 (𝑥 ∩ 𝑋 > 50)

P {𝑋 > 50} =

{
𝑓𝑋 (𝑥 )

P{𝑋>50} if 𝑥 > 50
0 if 𝑥 ≤ 50

.

Here we’ve used the fact that

𝑓𝑋 (𝑥 ∩ 𝑋 > 50) =
{
𝑓𝑋 (𝑥) if 𝑥 > 50
0 if 𝑥 ≤ 50 .

We furthermore see that the conditional p.d.f. integrates to 1:∫ 100

𝑥=0
𝑓𝑋 |𝐴(𝑥)𝑑𝑥 =

∫ 100

𝑥=50

𝑓𝑋 (𝑥)
P {𝑋 > 50} 𝑑𝑥 =

P {𝑋 > 50}
P {𝑋 > 50} = 1.

7.5 Conditional Expectation and the Conditional Density

One is often interested in the expected value of a random variable, conditioned on
some event, 𝐴. In the continuous world this could, for example, be the expected
height of people if we’re restricted to people of height greater than 6 feet.

It is useful to start by recalling the definition of conditional expectation for the
discrete space, given in Definitions 4.18 and 4.14: For a discrete r.v. 𝑋 , and an
event 𝐴, where P {𝐴} > 0, the conditional expectation of 𝑋 given event 𝐴 is:

E [𝑋 | 𝐴] =
∑︁
𝑥

𝑥 · 𝑝𝑋 |𝐴(𝑥), (7.2)
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where

𝑝𝑋 |𝐴(𝑥) = P {𝑋 = 𝑥 | 𝐴} = P {(𝑋 = 𝑥) ∩ 𝐴}
P {𝐴} . (7.3)

Definition 7.17 provides the corresponding definitions for a continuous r.v. 𝑋
and an event 𝐴. Note the use of a conditional p.d.f. for the continuous case,
where we used a conditional p.m.f. for the discrete case.

Definition 7.17 For the case of a continuous r.v. 𝑋 , corresponding to (7.2),
we similarly define the conditional expectation of r.v. 𝑋 given event 𝐴, where
P {𝐴} > 0 , as:

E [𝑋 | 𝐴] =
∫
𝑥

𝑥 · 𝑓𝑋 |𝐴(𝑥)𝑑𝑥,

where 𝑓𝑋 |𝐴(𝑥) is the conditional p.d.f. defined in Definition 7.15.

Example 7.18 (Pittsburgh Supercomputing Center)

The Pittsburgh Supercomputing Center (PSC) runs large parallel jobs for scien-
tists from all over the country. Jobs are grouped into different bins based on their
size, where “size” denotes the required number of CPU-hours. Suppose that job
sizes are Exponentially distributed with mean 1000 CPU-hours. Further suppose
that all jobs of size less than 500 CPU-hours are sent to bin 1, and all remaining
jobs are sent to bin 2.

Question: Consider the following questions:

(a) What is P {Job is sent to bin 1}?
(b) What is P {Job size < 200 | job is sent to bin 1}?
(c) What is 𝑓𝑋 |𝐴(𝑥), where 𝑋 is the job size and 𝐴 is the event that the job is

sent to bin 1?
(d) What is E [Job size | job is in bin 1]?

Answer: Start by recalling that for 𝑋 ∼ Exp
(

1
1000

)
we have

𝑓𝑋 (𝑥) =
{ 1

1000𝑒
− 𝑥

1000 if 𝑥 > 0
0 otherwise

𝐹𝑋 (𝑥) = P {𝑋 ≤ 𝑥} = 1 − 𝑒− 1
1000 𝑥 .

(a)

P {Job is sent to bin 1} = 𝐹𝑋 (500) = 1 − 𝑒− 500
1000 = 1 − 𝑒− 1

2 ≈ 0.39.
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(b)

P {Job size < 200 | job is sent to bin 1} = P {𝑋 < 200 ∩ bin 1}
P {bin 1}

=
𝐹𝑋 (200)
𝐹𝑋 (500) ≈ 0.46.

(c)

𝑓𝑋 |𝐴(𝑥) =
𝑓𝑋 (𝑥 ∩ 𝐴)

P {𝐴} =
𝑓𝑋 (𝑥 ∩ 𝐴)
𝐹𝑋 (500) =


𝑓𝑋 (𝑥 )

𝐹𝑋 (500) =
1

1000 𝑒
− 𝑥

1000

1−𝑒−
1
2

if 𝑥 < 500
0 otherwise

.

We have used the fact that 𝑓𝑋 (𝑥 ∩ 𝐴) = 𝑓𝑋 (𝑥) if and only if 𝑥 < 500.

(d)

E [Job size | job in bin 1] =
∫ ∞

−∞
𝑥 𝑓𝑋 |𝐴(𝑥)𝑑𝑥 =

∫ 500

0
𝑥

1
1000𝑒

− 𝑥
1000

1 − 𝑒− 1
2
𝑑𝑥 ≈ 229.

Question: Why is the expected size of jobs in bin 1 less than 250?

Answer: Consider the shape of the Exponential p.d.f. Now truncate it at 500,
and scale everything by a constant needed to make it integrate to 1. There is
still more weight on the smaller values, so the expected value is less than the
midpoint.

Question: How would the answer to question (d) change if the job sizes were
distributed Uniform(0, 2000), still with mean 1000?

Answer: Logically, given that the job is in bin 1 and the distribution is Uniform,
we should find that the expected job size is 250 CPU-hours. Here is an algebraic
argument:

𝑓𝑋 |𝐴(𝑥) =
𝑓𝑋 (𝑥 ∩ 𝐴)

P {𝐴} =
𝑓𝑋 (𝑥 ∩ 𝐴)
𝐹𝑋 (500) =

{
𝑓𝑋 (𝑥 )

𝐹𝑋 (500) =
1

2000
500
2000

= 1
500 if 𝑥 < 500

0 otherwise
.

E [Job size | job in bin 1] =
∫ ∞

−∞
𝑥 𝑓𝑋 |𝐴(𝑥)𝑑𝑥 =

∫ 500

0
𝑥

1
500

𝑑𝑥 = 250.

This next example talks about a coin. However, it represents the type of math
used all the time when learning the bias of humans, such as a human’s likelihood
for clicking on a particular type of ad, or their likelihood for buying a particular
brand of shoes, etc.
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Example 7.19 (Learning the bias of a coin, or a human)

Suppose that we have a biased coin, with probability 𝑃 of heads. 𝑃 is a r.v. in
that we don’t know what it is. Since we know nothing, our initial assumption is
that 𝑃 ∼ Uniform(0, 1). We are interested in the expected value of 𝑃, given that
the coin has resulted in 10 heads out of the first 10 flips.

At first, one might think that the best estimator of 𝑃 is the fraction of heads
obtained. For example, if the coin has resulted in 7 heads and 3 tails out of 10
flips, then one might be tempted to say that E [𝑃] = 0.7. Likewise, if the coin has
resulted in 10 heads out of 10 flips, one might be tempted to say that E [𝑃] = 1.
However, this reasoning seems shakier if you’ve only seen 1 flip so far, and in
fact the reasoning is incorrect.

We define 𝐴 as the event that 10 heads have occurred in 10 flips. By Defini-
tion 7.17,

E [𝑃 | 𝐴] =
∫ 1

0
𝑓𝑃 |𝐴(𝑝) · 𝑝𝑑𝑝,

where, by Definition 7.15,

𝑓𝑃 |𝐴(𝑝) =
P {𝐴 | 𝑃 = 𝑝} · 𝑓𝑃 (𝑝)

P {𝐴} =
𝑝10 · 1
P {𝐴}

and where

P {𝐴} =
∫ 1

0
P {𝐴 | 𝑃 = 𝑝} · 𝑓𝑃 (𝑝)𝑑𝑝 =

∫ 1

0
𝑝10 · 1𝑑𝑝 =

1
11

.

Putting these together, we have:

E [𝑃 | 𝐴] =
∫ 1

0
𝑓𝑃 |𝐴(𝑝) · 𝑝𝑑𝑝

=

∫ 1

0

𝑝10 · 1
P {𝐴} · 𝑝𝑑𝑝

=

∫ 1

0
11𝑝10 · 𝑝𝑑𝑝

=
11
12

.

Thus, the expected bias of the coin is not 1 but is close to 1, as one would
intuit. Observe that the answer depends on our initial assumption that 𝑃 ∼
Uniform(0, 1). That initial assumption is referred to as “the prior” and will be
the focus of Chapter 17.
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7.6 Exercises

7.1 Valid p.d.f.s
Which of the following are plausible probability density functions?

𝑓𝑋 (𝑥) =
{

0.5𝑥−.5 if 0 < 𝑥 < 1
0 otherwise

𝑓𝑋 (𝑥) =
{

2𝑥−2 if 0 < 𝑥 < 1
0 otherwise

𝑓𝑋 (𝑥) =
{
𝑥−2 if 1 < 𝑥 < ∞
0 otherwise .

7.2 Translation
Let 𝑋 ∼ Exp(𝜇). Let 𝑌 = 3𝑋 . What is 𝑓𝑌 (𝑡)?

7.3 Weight of two-year-olds
For Example 7.4, where𝑊 denotes the weight of two-year-olds:
(a) Derive E [𝑊].
(b) Derive Var(𝑊).

7.4 Exponential distribution warm-up
Suppose that the time a customer spends in a bank is Exponentially dis-
tributed with mean 10 minutes.
(a) What is P {Customer spends > 5 min in bank}?
(b) What is P {Customer spends > 15 min total | he is there after 10 min}?

7.5 Memorylessness
Let 𝑋 ∼ Exp(𝜆). What is E [𝑋 | 𝑋 > 10]? Solve this in two ways:
(a) By integrating the conditional p.d.f.
(b) By a two-line argument via the memoryless property of Exponential

distribution.

7.6 Memorylessness continued
Given 𝑋 ∼ Exp(1), what is E

[
𝑋2 | 𝑋 > 10

]
?

7.7 Practice with conditional expectations
Let 𝑋 be a continuous r.v. with the following p.d.f.:

𝑓𝑋 (𝑡) =
{ 3

2𝑡2 if 1 < 𝑡 < 3
0 otherwise .

Derive E [𝑋 | 1 < 𝑋 < 2].
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7.8 When will I hear back?
More than 20 days ago, I interviewed at U-co for a software engineer
position, but I still haven’t heard back. Turns out that this is a common
phenomenon. There are two types of recruiters at U-co:
• Type A: Get back to you in time Exponentially distributed with mean 20

days.
• Type B: Never get back to you.
There are an equal number of Type A and Type B recruiters at U-co. What
is P {My recruiter is type B | I’ve been waiting more than 20 days}?

7.9 Alternative definition of expectation: summing the tail
Let 𝑋 be a non-negative, continuous r.v.
(a) Prove

E [𝑋] =
∫ ∞

𝑥=0
P {𝑋 > 𝑥} 𝑑𝑥.

(b) What is a nicer name for this quantity?∫ ∞

𝑥=0
𝑥P {𝑋 > 𝑥} 𝑑𝑥.

7.10 Transformations
Transforming probability density functions must be handled carefully,
through the cumulative distribution functions.
(a) Let 𝑓𝑋 (·) denote the p.d.f. of r.v. 𝑋 and 𝑓𝑌 (·) denote the p.d.f. of r.v.

𝑌 . Suppose that
𝑌 = 𝑎𝑋 + 𝑏,

where 𝑎 > 0 and 𝑏 > 0 are constants. Express 𝑓𝑌 (·) in terms of 𝑓𝑋 (·).
You will need to work with 𝐹𝑌 (𝑦), the c.d.f. of 𝑌 , or you will get the
wrong answer.

(b) Let 𝑋 ∼ Uniform(−1, 1). Let 𝑌 = 𝑒𝑋. Derive the p.d.f. of 𝑌 from that
of 𝑋 .

7.11 When the first alarm goes off
Before I go to bed, I set three alarms.
• Alarm A goes off after 𝑋𝐴 time, where 𝑋𝐴 ∼ Exp(𝜆𝐴).
• Alarm B goes off after 𝑋𝐵 time, where 𝑋𝐵 ∼ Exp(𝜆𝐵).
• Alarm C goes off after 𝑋𝐶 time, where 𝑋𝐶 ∼ Exp(𝜆𝐶).
Assume that 𝑋𝐴 ⊥ 𝑋𝐵 ⊥ 𝑋𝐶 . Let𝑇 denote the time until the first alarm goes
off. What is E [𝑇]? What is Var(𝑇)? [Hint: It helps to start by analyzing
the tail distribution of 𝑇 .]

7.12 Reliability: when the last server dies
Nivedita has bought two very old servers to host her new online game. At
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the time of purchase, she was told that each of the servers will fail at some
Uniformly distributed random time during the next year, where the servers
fail independently of each other. Half a year later, her game is still up,
which means that at least one server did not yet fail. What is the expected
time until the last server fails?
(a) Start by solving the following easier problem: Let 𝑋1 ∼ Uniform(0, 1)

and 𝑋2 ∼ Uniform(0, 1), where 𝑋1 ⊥ 𝑋2. Let 𝑋 = max(𝑋1, 𝑋2). Derive
E [𝑋].

(b) The original problem is asking, what is: E
[
𝑋 | 𝑋 > 1

2
]
. Derive this

quantity.


