6 z-Transforms

This chapter is a very brief introduction to the wonderful world of transforms.
Transforms come in many varieties. There are z-transforms, moment-generating
functions, characteristic functions, Fourier transforms, Laplace transforms, and
more. All are very similar in their function. In this chapter, we will study z-
transforms, a variant particularly well suited to common discrete random vari-
ables. In Chapter 11, we will study Laplace transforms, a variant ideally suited
to common continuous random variables.

Transforms are an extremely powerful analysis technique. In this chapter we will
cover two of the most common uses of transforms:

1. Computing higher moments of random variables (see Sections 6.1 — 6.6).

2. Solving recurrence relations, particularly recurrences that will come up later
when we study Markov chains. This will be discussed in Section 6.7 and then
again when we get to infinite-state Markov chains in Chapter 26.

6.1 Motivating Examples

Suppose that you want to know the third moment of a Binomial(n, p) distribution.
Let X ~ Binomial(n, p). Then,

E[x] =) (’Z)p"m -p)" i,

i=0
This is a daunting expression.

As another example, you might want to know the fifth moment of a Poisson (1)
distribution. Let Y ~ Poisson(1). Then,

o e b
.

57 _
B[] = i!
i=0
Again, it’s not easy to see how to derive this. One of the most important uses of
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6.2 The Transform as an Onion 117

transforms is that they allow us to obtain all moments of a random variable, as
we now explain.

6.2 The Transform as an Onion

One can think of the transform of a random variable as an onion, shown in
Figure 6.1. This onion contains inside it all the moments of the random variable.
Getting the moments out of the onion is not an easy task, however, and may
involve some tears as the onion is peeled, where the “peeling process” involves
differentiating the transform. The first moment is stored in the outermost layer
of the onion and thus does not require too much peeling to reach. The second
moment is stored a little deeper, the third moment even deeper (more tears), etc.
Although getting the moments is painful, it is entirely straightforward how to do
it — just keep peeling the layers.

E[X]
E[X°]
E[X’]
E[X*]

Figure 6.1 The z-transform onion.

Definition 6.1 The z-transform, G,(z), of a discrete function, p(i), i =
0,1,2,...is defined as

Gp(z) = Zp(i)zi.
i=0

Observe that the z-transform is a power series in z. Here, z should be thought of
as a placeholder that keeps p (i) separated from p (i + 1), by multiplying p (i) by
z' and multiplying p(i + 1) by z**1.

When we speak of the z-transform of a discrete random variable (r.v.) X, we
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118 6 z-Transforms

are referring to the z-transform of the probability mass function (p.m.f.), px(-),
associated with X.

Definition 6.2 Let X be a non-negative discrete r.v. with p.m.f. px (i), where
i=0,1,2,.... Then the z-transform of r.v. X is written as X(z), where

(o]

X(2) = Gpy(2) =E [2¥] = pr(i)zi.

i=0

Throughout, we assume that 7 is a constant and we will assume that |z| < 1.

The z-transform definition, E [ZX ], can in theory apply to any r.v., X, even if
X takes on negative values or is continuous. However, as Theorem 6.6 shows,
convergence is guaranteed when X is non-negative, discrete, and integer-valued,
and |z| < 1, as specified in Definition 6.2. That does not preclude convergence
in more general settings, and the E [ZX ] definition is often applied more broadly.

Question: What is X (1)?

Theorem 6.3 For all discrete random variables, X,

X(1) =1.

Proof:

X(1) =E[Z¥] |Z:1 = Z px(i) -1 =1. n

i=—o00

6.3 Creating the Transform: Onion Building

The z-transform is defined so as to be really easy to compute for all the commonly
used discrete random variables. Below are some examples.

Example 6.4 Derive the z-transform of X ~ Binomial(n, p):

n

X()=E[*] =) (?)pi(l -p)"7

i=0

= (’f) (zp)'(1 - p)"”
i=0

=(zp+(1-p)".
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6.3 Creating the Transform: Onion Building 119

Example 6.5 Derive the z-transform of X ~ Geometric(p):

)?(z) =E [ZX] = Zp(l - p)l7
i=1
=zp Y (z(1-p))!
i=1

=zp ) (z(1=p))
o
S l-z(1-p)

Question: Can you see where we used the fact that |z| < 1 above?
Answer: We needed |z(1 — p)| < 1 to get 2,72, (z(1 — 7)1 to converge.

In both the above cases, notice how much easier it is to create the transform than
to compute higher moments.

One might wonder if the series defined by X (z) might in some cases diverge.
This is not the case.

Theorem 6.6 (Convergence of z-transform) X (z) is bounded for any non-
negative, discrete, integer-valued r.v. X, assuming |z| < 1.

Proof: We are given that
-1<z<1

Because i > 0 is an integer, this implies that
1< <1
Multiplying all terms by px (i), we have
-px(i) < 2'px(i) < px(i).
Now summing over all i, we have
= > px(D) < D 2px() < ) px(i),
i i i
which evaluates to

“1<X(2) < 1.

So X (z) is bounded between —1 and 1. u

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.



120 6 z-Transforms

6.4 Getting Moments: Onion Peeling

Once we have created the onion corresponding to a r.v., we can “peel its layers”
to extract the moments of the random variable.

Theorem 6.7 (Onion Peeling Theorem) Letr X be a discrete, integer-valued,
non-negative r.v. with p.m.f. px (i), i = 0, 1,2, .. .. Then we can get the moments
of X by differentiating X (z) as follows:

X'(z)| =E[X]

z=1

X" (2) =EX(X-1)]

=

X" (2) =E [X(X - 1)(X -2)]

X" (z) =EX(X-1)(X -2)(X -3)]

Note: If the above moments are not defined at z = 1, one can instead consider
the limit as 7 — 1, where evaluating the limit may require using L’'Hospital’s
rule.

Proof: Below we provide a sketch of the proof argument. This can be obtained
formally via induction and can also be expressed more compactly. However, we
choose to write it out this way so that you can visualize exactly how the moments
“pop” out of the transform when it’s differentiated:

X(2) = px (0% + px(Dz' + px(2)2% + px(3)2® + px (D) z* + px (5)2° +- -

X'(2) = px(1) + 2px(2)z' +3px(3)2% +4px (4)2° +5px ()2 + -
X2 _, = 1px(1)+2px(D) +3px(3) +4px(4) + 5px(5) + -
—E[X]V

X7'(2) = 2px(2) +3-2px(3)z +4 3px (92 +5 - 4px (5)2° ++ -
R/()] | =2 1px(D)+3-2px(3) +4-3px(#) +5-4px(5)+ -
SE[X(X-1)]V

X"(2)=3-2px(3) +4-3 2px()z+5-4-3px(5)* +---
R(@| =320 1px(3)+4-3-2px(4) 454 3px(5) + -
SE[X(X-1)(X-2)]
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6.5 Linearity of Transforms 121

And soon ... u

Question: What is the insight behind the above proof? How does the transform
hold all these moments?

Answer: The insight is that the “z” term separates the layers, allowing us to get
each successive moment when differentiating. One can think of the z’s as the
pasta in the lasagna that keeps everything from running together.

Let’s consider an example of applying the Onion Peeling Theorem.

Example 6.8 (Variance of Geometric) Ler X ~ Geometric(p). Compute
Var(X).

X(2) = 1-z(1-p)

_d(_zw | ___pr | _1
Elx]= dz(l—z(l—p))zzl_ (1-z(1-p)?|o P

o) 2p(1 - 1_2-
E[X*]=X (Z)|Z:1+E[X]:—(1—pz((1—l;)))3 o Ij: pzp

-p

Var(X) = E [X?] - (E[X])* = ! >
p

Question: As we’ve seen, the z-transform of X is an onion that contains all
moments of X. But does it also contain the distribution of X? Specifically, can
you get the p.m.f., px (i), from the onion, X(z)?

Answer: The answer is yes! In Exercise 6.14 you will derive an algorithm for
extracting px (i) from X (z) for any non-negative discrete r.v. X. This tells us
that there is an injective mapping from the set of discrete non-negative random
variables to the set of z-transforms. Put another way, the z-transform uniquely
determines the distribution.

6.5 Linearity of Transforms

Since transforms are just expectations, it makes sense that one might have a law
similar to Linearity of Expectation. However, since transforms encompass all
moments, it also makes sense that such a law might require independence of the
random variables being added. Theorem 6.9 encapsulates these points.
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122 6 z-Transforms

Theorem 6.9 (Linearity) Let X and Y be independent discrete random vari-
ables. Let W = X + Y. Then the z-transform of W is W(z) = X(z) - Y(2).

Proof:
W(z) =E["]
- [ZX+Y]
=E[X "]
—E[] B[]
=X(z)-Y(2). L]
Question: Where did we use the fact that X 1L Y?

Answer: In splitting up the expectation into a product of expectations.
Example 6.10 (From Bernoulli to Binomial)

Let X ~ Bernoulli(p). Let Y ~ Binomial(n, p).

Question: (a) What is X (z)? (b) How can we use X (z) to get Y (z)?
Answer:

@ X(x)=(1-p)-L+p-zl=1-p+pz.

(b) Y = 3", X;. Given that X; ~ X, for all , and the X;’s are independent,

P(2) = (%) = (1=p+pa)
Example 6.11 (Sum of Binomials)

Let X ~ Binomial(n, p) and Y ~ Binomial (m, p), where X LY.
Question: What is the distribution of Z = X +Y?

Answer:
Z(2) =X(2) - Y(2)
=(@zp+A=p)"-(zp+(1-p)"
=(zp+(1-p)™™".
Observe that (zp + (1 — p))™*" is the z-transform of a Binomial r.v. with pa-

rameters m + n and p. Thus, the distribution of Z must be Binomial(m + n, p),
which should make sense.
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6.6 Conditioning

Theorem 6.12 Let X, A, and B be discrete random variables where

X = A w/probp
" | B whprobl-p -

Then,
X(z)=p-A(2)+(1-p)-B(2).

Theorem 6.12 should be interpreted as first tossing a p-coin (coin with probability
p of heads). If that coin comes up heads, then set X = A. Otherwise set X = B.

Proof:
X(z) =E
K|X=A]-p+E[|X=B]-(1-p)
| p+E[®]-(1-p)
= pA(2) + (1= p)B(2). n

("]
[
[

=E
=E

Question: In the examples in the previous section, we considered the sum of a
constant number (1) of random variables. How can we use conditioning to derive
the z-transform of the sum of a r.v. number (V) of random variables?

Answer: Exercise 6.10 walks you through the proof of Theorem 6.13, which
generalizes Theorem 5.14 to all higher moments.

Theorem 6.13 (Summing a random number of i.i.d. random variables)
Let X1, X5, X3, ... be i.id. discrete random variables, where X; ~ X. Let N be
a positive, integer-valued, discrete r.v., where N L X; for alli. Let

N
S = Z X;.
i=1
Then,
S() =N ().

that is, we substitute in X (z) as the z-parameter in N (z). Observe that this
argument, X (z), is a constant since X (z) is an expectation. Also, if X is discrete,
non-negative, and integer-valued, then by Theorem 6.6, —1 < X(z) < 1.
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124 6 z-Transforms

6.7 Using z-Transforms to Solve Recurrence Relations

Recurrence relations are prevalent throughout computer science, biology, signal
processing, and economics, just to name a few fields. One of the most common
types of recurrence relations is a linear homogeneous recurrence, of the form:

Jien = a1 fisn-1 + @2 fisn—2+ -+ anfi.
A popular example of such a recurrence relation is the following:
fivz = fir1 + [ (6.1)
where fop =0and f; = 1.

Question: Do you recognize the relation?

L i L L
R ¥ R
\\_‘ \\_‘ \\_‘
i i i ad_$ i . $ ad_$
s ° S ° S ° S ° 5 ° Q ° Q ° s ° S °
\b I \b I \b \b I \b \b I \b \b \b
- - e e e e e e T

Figure 6.2 Fibonacci sequence.

Answer: Equation (6.1) is the Fibonacci sequence. It was used to model the
growth in the population of rabbits, where f; denotes the number of rabbits in
month i.

Solving a recurrence relation means finding a closed-form expression for f;,.
While (6.1) seems very simple to solve by just “unraveling the recurrence,” it
turns out to be impossible to do this. It also is hard to imagine how one might
“guess” the form of the solution. Fortunately, z-transforms provide an excellent
technique for solving these recurrence relations. In this section, we see how to
derive a closed-form expression for f,, using z-transforms. This method may
seem overly complex. However it’s the easiest technique known for handling
recurrences. We start by defining the z-transform of a sequence.

Definition 6.14 Given a sequence of values: { fo, f1, f>, . ..}. Define
F(2) = Z fiZ'.
i=0

F(z) is the z-transform of the sequence. Note that z just functions as a
placeholder, for the purpose of separating out the f;’s. Note that the f;’s here
are not probabilities, and there is no r.v. associated with this z-transform.
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6.7 Using z-Transforms to Solve Recurrence Relations 125

‘We illustrate the method on a recurrence relation of this form:
fin=>bfin+af; (6.2)

where we assume fy and f; are given and a and b are constants. However,
the method can be applied more generally. Our goal is to derive a closed-form
expression for f;,.

Step 1: Derive F (z) as a ratio of polynomials.

The goal in Step 1 is to derive F' (z). It will be useful to represent F(z) as a ratio
of two polynomials in z. From (6.2), we have:

fin=bfin+af;

fi+21i+2 — bﬁ+lzi+2 + aﬁzi+2
) 00 o0
Z ﬁ+2zl+2 — b Zﬁ+]zl+2 +a Zﬁzl+2
i=0 i=0 i=0
0 0
F()=fiz-fo=bz ) frnz™ +az® ) fid'
i=0 i=0

F(2) - fiz— fo=bz(F (2) - fo) +az’F (2)
(1 - bz—azz) F(2) = fiz+ fo—bzfo
fo+z(fi —bfo)'

1-bz—az? ©3)

F(z) =

Step 2: Rewrite F(z) via partial fractions.

The goal in Step 2 is to apply partial fractions to F (z). Specifically, we want to

write
N(iz) A B

= + ,
D(z) h(z) g(2)
where D (z) = h(z) - g(z) and h, g are (hopefully) linear in z.

F(z) =

Lemma 6.15 If D (z) = az*> + bz + 1, then

vo-(1-)0-5)
ro ry

where ro and ry are the (real) roots of D (z).
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126 6 z-Transforms

Proof: To see that the two ways of writing D(z) are equivalent, we note that the
two quadratic expressions have the same two roots (ry and 1) and furthermore

have the same constant term, 1.

In our case, see (6.3), D (z) = —az2—bz+1,s0

-b-Vb%2+4a -b+Vb%+4a

2a 2a

(ro,r1) =

D(z) = h(z) - g(2)

h(z)=1-—
ro
Z

g(z)=1-—.
ri

We now use N (z) = fo +z (f1 — fob) from (6.3) to solve for A and B:

A B
1z 1-Z

o r

All-2)+B(1-2)

F(z2) =

_(A+B)+Z(_%_%)_N(Z)_fo+z(f1—fob)
(1-2)(1-2) "D Dk

r

Matching the z-coefficients in the numerators of (6.6), we have

A+B=f0
A B
-— - —=h— fob,
rero

which solves to

B= rofo+ (fi = fob) rori
ro—ri

A= fy — B.
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6.7 Using z-Transforms to Solve Recurrence Relations 127

Step 3: Rewrite F(z) via series expansion.

Returning to (6.5), we assume that z is chosen such that 0 < z < rg and
0 < z < ry. This allows us to write:

= —_— an = - .
1-£ rQ 1-= ry

i=0

Thus, the geometric series expansion of F (z) can be rewritten as follows:

F(2) :2f,»z" :Ag(f—o)l+32(%)l. (6.9)

Step 4: Match terms to obtain f,.

Finally, we match the z-coefficients in (6.9) to obtain the f,’s:

A B
ﬂ=ﬁ+ﬁ, (6.10)
0 1

where A and B are obtained from (6.8) and (6.7) and r¢ and r; are obtained from
(6.4).

To get a final form, recall that we are given that fy = 0 and f; = 1. Furthermore,
a =1and b = 1. Then, from (6.4), we have that

I‘():—(b
r1=¢_1
where
1++5
o= —5—

1 1
=—— and B=—
V5 V5
Substituting these into (6.10), we get
1
fa=—7=(@" = (=$)"").
s
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128 6 z-Transforms

6.8 Exercises

6.1 Moments of Poisson
Use z-transforms to derive E [X(X — 1)(X =2)--- (X -k +1)], for k =
1,2,3,..., where X ~ Poisson(1).

6.2 Sum of Poissons
Let X; ~ Poisson(1;). Let X, ~ Poisson(1;). Suppose X; L Xp. Let
Y = X1 + X,. How is Y distributed? Prove it using z-transforms. Note that
the parameter for the Poisson denotes its mean.

6.3 Moments of Binomial
Use z-transforms to derive E[X(X - 1)(X =2)--- (X -k +1)], for k =
1,2,3,..., where X ~ Binomial(n, p).

6.4 Sums of Binomials
Suppose that X ~ Binomial(#, p) and Y ~ Binomial(n,q) and X L Y. Let
Z = X +Y. Can we say that Z ~ Binomial(n, p + ¢)? If so, prove it via
z-transforms. If not, explain why not.

6.5 z-Transform of linear combination
Suppose X and Y are independent random variables. What is the z-
transform of aX + bY, where a and b are arbitrary integers. Express your
answer as a function of X (+) and ?(-).

6.6 Scaling up random variables via transforms
Let X, X5, and X3 be i.i.d. random variables, all with distribution X. Let
S =X+ X, + Xz and let Y = 3X. Suppose we are told that the z-transform
of X is some function gx(z). What can you say about the z-transform of
S? What can you say about the z-transform of Y'? Express both of these in
terms of gx (+).

6.7 Matching random variables and their z-transforms
Assume that X, Y, Z, and T are independent random variables, where:
e X,Y,Z ~ Binomial(3,0.5)
e T ~ Bernoulli(0.5)
Match each expression on the left to its z-transform on the right.

1. 3T a. 270 (z+1)°
2. X+3 b. 273 (z+1)3- 23
3. X+Y+Z c. 274 (z+1)*+05
4. X-T d. 05-(Z+1)

6.8 Difference transform R
Let W =X —Y, where X L Y. Which of the following represents W (z):
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@ X(2)-Y(2)

X(2)
(b) Y(2)

© X(2)-7 (1)

(d) X(2) =Y (2)

(e) None of the above. R

Justity your answer. Define W(z) = E [ZW] even if W is negative.

6.9 Trip time
A professor walks all the way down Carnegie St. (Figure 6.3). When she
reaches the end, with probability 0.5, she turns down Mellon St. and walks
all the way to the end. Otherwise, with probability 0.5 she turns down
University St. and walks all the way to the end. We are interested in the
professor’s total trip time, 7.
e Let C be ar.v. denoting the time to walk down Carnegie St.
e Let M be ar.v. denoting the time to walk down Mellon St.
e Let U be ar.v. denoting the time to walk down University St.
Assume that you are given E [C],E [C2] ,Var(C), C(z). You are also given
these expressions for M and U. Assume that C, M, and U are independent.
(a) Express E [T] in terms of the given quantities (and constants).
(b) Express Yar(T) in terms of the given quantities (and constants).
(c) Express T(z) in terms of the given quantities (and constants).
You do not have to simplify your answers.

g o 2] %
-\o8
| | 9 S‘VN\L
- - - - Carnegie St. - - - -»Z _ 0
'S“A

Un:
ivey Sity
# t

T : total time

Figure 6.3 Figure for Exercise 6.9.

6.10 Sum of a random number of random variables
Suppose that X1, X5, . .. are i.i.d. discrete random variables, all distributed
as X. Suppose that N is a positive integer-valued discrete r.v., where N L X;
for all i. Let

Xi.

e

~
Il
—_
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(a) Prove that S (2) = N (5(\ (z)). [Hint: Condition on N.]

(b) Suppose that each day that the sun shines, I earn 10 dollars with prob-
ability p = % and 1 dollar with probability p = % The sun shines
every day with probability g = %. Today is sunny. Let S denote the total
money I earn starting today until it turns cloudy.

(i) Write an expression for S(z) using part (a).
(ii) Differentiate your z-transform to get E [S] and Var(S).

6.11 Geometric number of Geometrics
Suppose that X1, X, . .. are i.i.d. discrete random variables, all with distri-
bution Geometric(g). Suppose that N ~ Geometric(p), where N L X; for

alli. Let
N
Y = Z X;.

i=1

Derive the z-transform ?(z). What does the transform say about the distri-
bution of Y? Provide some intuition for the result.

6.12 Mouse in maze with transforms

A mouse is trapped in a maze. Initially it has to choose one of two directions.
If it goes to the right, then it will wander around in the maze for three
minutes and will then return to its initial position. If it goes to the left, then
with probability % it will depart the maze after two minutes of traveling,
and with probability % it will return to its initial position after five minutes
of traveling. Assume that the mouse is at all times equally likely to go to the
left or the right. Let 7 denote the number of minutes that it will be trapped
in the maze. In Exercise 5.26 we computed E [T] and Var(7). This time
compute 7T(z), and then differentiate it to get E [T1].

6.13 The wandering frog

[Proposed by Tianxin Xu] There are three lily pads, A, B, and C. A frog

sits on lily pad A. At each time step, the frog has an equal probability of

jumping from the lily pad that it is currently on to either of the other pads.

(a) What is the expected number of hops before the frog returns to pad A?

(b) What is the z-transform of the number of hops before the frog returns
to A?

(c) What is the probability that the frog is on lily pad A after n hops? Check
your answer by thinking about the case where n — oo.

6.14 Getting distribution from the transform
The transform of a r.v. captures all moments of the r.v., but does it also
capture the distribution? The answer is yes! You are given the z-transform,
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6.15

6.16

X (z), of a non-negative, discrete, integer:yalued r.v., X. Provide an algo-
rithm for extracting the p.m.f. of X from X (z).

Using z-transforms to solve recurrences
This problem will walk you through the process of solving a recurrence
relation:

aps1 = 2a, + 3, ap = 1.
(a) Define A(z) = X,y a,2" to be the z-transform of the sequence of a,,’s.

Multiply every term of the recurrence relation by z”*! and sum over all
n to obtain an expression for A(z) in terms of A(z)’s. You should get:

1+2z
(1-22)(1-2)°
(b) Apply partial fractions to determine the constants v and w that allow
you to break up (6.11) into simpler terms:

A(z) = (6.11)

1427 v N w
(1-22)(1-z) 1-2z 1-7

(c) Recall from Section 1.1 how we can express ﬁ and ﬁ as power
series in z. Use these, and the correct values of v and w, to express
A(z) as a power series in z.

(d) Determine a,, by looking at the coefficient of z" in your power series.

A(z) =

Polygon triangulation

In this problem, we are interested in the number of triangulations of an n-
sided polygon. Figure 6.4 shows all possible triangulations for n = 3,4, 5.
Let

a, = number of triangulations of an n + 1-sided polygon,

where n > 2. Our goal is to derive a clean expression for a,,. We will use
z-transforms, where

A(z) = i anz".
n=0

Follow these steps:
(a) Argue that (6.12) holds for n > 2:

n
a, = Zakan_k, n>2, (6.12)
k=0

where we will set ag = 0, a; = 1, and ap, = 1. This is a counting
argument. Looking at Figure 6.5, first start by assuming that the pink
triangle (1,k + 1,n + 1) is included in your triangulation. Count the
number of ways to triangulate, given that constraint. Now consider all
possibilities for the k£ + 1 endpoint of the included pink triangle.
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Figure 6.4 Figure for Exercise 6.16, showing all possible triangulations of n-sided
polygons.
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Figure 6.5 For Exercise 6.16: counting triangulations in an n + 1-sided polygon.

(b) Using (6.12), argue that
A(z) = 2+ (A(2))*. (6.13)

The first few steps of the derivation are given below:

Explain why each of the above steps is true and then finish the derivation
to get (6.13).

(c) Solve (6.13) to get A(z). You will need to use A(0) =0

(d) All that remains is to express A(z) as a power series of z. To do this,
we are providing you with the Taylor series expansion of V1 —4z in
(6.14):

1 (2n -
1— z—1—2§: ( )" (6.14)
- n\n-1

(e) Obtain a,,.
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