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4 Expectation

In Chapter 3, we studied several common discrete distributions. In this chapter
we will learn how to obtain their mean, or expectation. We will also cover some
useful tools that help us to simplify deriving expectations, such as the linearity
of expectation result and deriving expectations by conditioning.

4.1 Expectation of a Discrete Random Variable

The probability mass function (p.m.f.) of a random variable (r.v.) specifies the
possible values of the r.v., each with a probability (“weight”). The expectation of
the random variable, also known as its mean or average, is a way of summarizing
all these different values into a single number. This single number is the sum
of all the values, each weighted by its probability of occurring. Expectation is
typically used to give us a single value when trading off different options.

Example 4.1 (Choosing between startups)

Suppose you have to choose between startups to join. Startup A will give you a
win of ten million dollars with probability 10%, but will cost you one million
dollars with probability 90%. Startup B will give you a win of one million dollars
with probability 50%, but will cost you half a million with probability 50%.

Question: Which do you choose?

Answer: One way of comparing the two options is to think of 𝐴 and 𝐵 as random
variables and compare their expectations:

Expected value of A = 107 · (0.1) + (−106) · (0.9) = 105.
Expected value of B = 106 · (0.5) + (−0.5 · 106) · (0.5) = 2.5 · 105.

By this metric, one might choose startup B. On the other hand, one could also
say that expectation is not the right view, since no startup is worth joining if there
isn’t a potential upside of at least 10 million dollars.
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Definition 4.2 The expectation of a discrete random variable 𝑋 , written
E [𝑋], is the sum of the possible values of 𝑋 , each weighted by its probability:

E [𝑋] =
∑︁
𝑥

𝑥P {𝑋 = 𝑥} .

We can also think of E [𝑋] as representing the mean of the distribution from
which 𝑋 is drawn.

The following example illustrates why expectation is thought of as an average.

Example 4.3 (Average cost of lunch)

Table 4.1 shows the daily cost of my lunch. What is the average cost of my lunch?

Mon Tues Wed Thurs Fri Sat Sun

$7 $7 $12 $12 $12 $0 $9

Table 4.1 Cost of lunch example.

We can think of Cost as a r.v. that takes on each of the values in Table 4.1 with
probability 1

7 . Then,

Average Cost =
7 + 7 + 12 + 12 + 12 + 0 + 9

7

| | |

E [Cost] = 7 ·
(

2
7

)
+ 12 ·

(
3
7

)
+ 9 ·

(
1
7

)
+ 0 ·

(
1
7

)
.

In the expectation view, each possible value (7, 12, 9, and 0) is weighted by its
probability.

Question: If 𝑋 ∼ Bernoulli(𝑝), what is E [𝑋]?

Answer: E [𝑋] = 0 · (1 − 𝑝) + 1 · (𝑝) = 𝑝.

Example 4.4 (Expected time until disk fails)

Question: Suppose a disk has probability 1
3 of failing each year. On average,

how many years will it be until the disk fails?
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Answer: This is simply E [𝑋], where 𝑋 ∼ Geometric(𝑝), with 𝑝 = 1
3 . Assuming

𝑋 ∼ Geometric(𝑝), we have:

E [𝑋] =
∞∑︁
𝑛=1

𝑛(1 − 𝑝)𝑛−1𝑝

= 𝑝 ·
∞∑︁
𝑛=1

𝑛 · 𝑞𝑛−1 where 𝑞 = (1 − 𝑝)

= 𝑝 ·
(
1 + 2𝑞 + 3𝑞2 + 4𝑞3 + . . .

)
= 𝑝 · 1

(1 − 𝑞)2
using (1.4)

= 𝑝 · 1
𝑝2

=
1
𝑝

.

So when 𝑝 = 1
3 , the expected number of years until the disk fails is 3. (This type

of analysis will be repeated throughout the book, so commit it to memory.)

Question: If 𝑋 ∼ Poisson(𝜆), what is E [𝑋]?

Answer:

E [𝑋] =
∞∑︁
𝑖=0

𝑖
𝑒−𝜆𝜆𝑖

𝑖!

=

∞∑︁
𝑖=1

𝑖
𝑒−𝜆𝜆𝑖

𝑖!

= 𝜆𝑒−𝜆
∞∑︁
𝑖=1

𝜆𝑖−1

(𝑖 − 1)!

= 𝜆𝑒−𝜆
∞∑︁
𝑘=0

𝜆𝑘

𝑘!

= 𝜆𝑒−𝜆𝑒𝜆 using (1.11)
= 𝜆.

It is interesting to note that the 𝜆 parameter for the Poisson distribution is also
its mean. The same holds for the 𝑝 parameter of the Bernoulli distribution. By
contrast, the 𝑝 parameter of the Geometric distribution is the reciprocal of its
mean.

One can also consider the expectation of a function of a random variable.
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Definition 4.5 The expectation of a function 𝑔(·) of a discrete random vari-
able 𝑋 is defined as follows:

E [𝑔(𝑋)] =
∑︁
𝑥

𝑔(𝑥) · 𝑝𝑋 (𝑥).

Example 4.6 (Volume of sphere)

Consider a sphere, where the radius is a random variable, 𝑅, where

𝑅 =


1 w/ prob. 1

3
2 w/ prob. 1

3
3 w/ prob. 1

3

.

Question: What is the expected volume of the sphere?

Answer:

E [Volume] = E
[
4
3
𝜋𝑅3

]
=

4
3
𝜋 · 13 · 1

3
+ 4

3
𝜋 · 23 · 1

3
+ 4

3
𝜋 · 33 · 1

3
= 16𝜋.

Observe that
E

[
𝑅3] ≠ (E [𝑅])3 .

Question: Suppose 𝑋 is defined as follows:

𝑋 =


0 w/ prob. 0.2
1 w/ prob. 0.5
2 w/ prob. 0.3

.

What is E [𝑋] and what is E
[
2𝑋2 + 3

]
?

Answer:

E [𝑋] = 0 · (0.2) + 1 · (0.5) + 2 · (0.3).
E

[
2𝑋2 + 3

]
=

(
2 · 02 + 3

)
(0.2) +

(
2 · 12 + 3

)
(0.5) +

(
2 · 22 + 3

)
(0.3).

You may have noticed that E
[
2𝑋2 + 3

]
= 2E

[
𝑋2] + 3. This is no coincidence

and is due to Linearity of Expectation, to be discussed in Section 4.2.

We can also consider the expectation of a function of multiple random variables.
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Definition 4.7 Let 𝑋 and 𝑌 be random variables. The expectation of the
product 𝑋𝑌 is defined by summing over all possible outcomes (𝑥, 𝑦) as follows:

E [𝑋𝑌 ] =
∑︁
𝑥

∑︁
𝑦

𝑥𝑦 · 𝑝𝑋,𝑌 (𝑥, 𝑦),

where 𝑝𝑋,𝑌 (𝑥, 𝑦) = P {𝑋 = 𝑥 & 𝑌 = 𝑦}.

Theorem 4.8 (Expectation of a product) If 𝑋 ⊥ 𝑌 , then

E [𝑋𝑌 ] = E [𝑋] · E [𝑌 ] .

Proof:

E [𝑋𝑌 ] =
∑︁
𝑥

∑︁
𝑦

𝑥𝑦 · P {𝑋 = 𝑥,𝑌 = 𝑦}

=
∑︁
𝑥

∑︁
𝑦

𝑥𝑦 · P {𝑋 = 𝑥} P {𝑌 = 𝑦} (by definition of ⊥)

=
∑︁
𝑥

𝑥P {𝑋 = 𝑥} ·
∑︁
𝑦

𝑦P {𝑌 = 𝑦}

= E [𝑋] E [𝑌 ] . ■

The same proof shows that if 𝑋 ⊥ 𝑌 , then

E [𝑔(𝑋) 𝑓 (𝑌 )] = E [𝑔(𝑋)] · E [ 𝑓 (𝑌 )] , (4.1)

for arbitrary functions 𝑔 and 𝑓 . A consequence of (4.1) is that if 𝑋 ⊥ 𝑌 , then:

E
[
𝑋

𝑌

]
= E [𝑋] · E

[
1
𝑌

]
.

Question: If E [𝑋𝑌 ] = E [𝑋] E [𝑌 ], does that imply that 𝑋 ⊥ 𝑌?

Answer: No, see Exercise 4.7.

We end this section with Theorem 4.9, which offers an alternative way of com-
puting expectations that can be very useful in practice. Remember this!

Theorem 4.9 (Alternative definition of expectation) Let r.v. 𝑋 be non-
negative, discrete, and integer-valued. Then

E [𝑋] =
∞∑︁
𝑥=0

P {𝑋 > 𝑥} . (4.2)

Proof: See Exercise 4.16. ■
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4.2 Linearity of Expectation

The following is one of the most powerful theorems of probability:

Theorem 4.10 (Linearity of Expectation) For random variables 𝑋 and 𝑌 ,

E [𝑋 + 𝑌 ] = E [𝑋] + E [𝑌 ] .

Question: Does Theorem 4.10 require 𝑋 ⊥ 𝑌?

Answer: Surprisingly not!

Proof: Theorem 4.10 holds for both discrete and continuous random variables.
We show below a proof for the case of discrete random variables and will re-prove
this in Chapter 8 for the case of continuous random variables.

E [𝑋 + 𝑌 ] =
∑︁
𝑦

∑︁
𝑥

(𝑥 + 𝑦)𝑝𝑋,𝑌 (𝑥, 𝑦)

=
∑︁
𝑦

∑︁
𝑥

𝑥𝑝𝑋,𝑌 (𝑥, 𝑦) +
∑︁
𝑦

∑︁
𝑥

𝑦𝑝𝑋,𝑌 (𝑥, 𝑦)

=
∑︁
𝑥

∑︁
𝑦

𝑥𝑝𝑋,𝑌 (𝑥, 𝑦) +
∑︁
𝑦

∑︁
𝑥

𝑦𝑝𝑋,𝑌 (𝑥, 𝑦)

=
∑︁
𝑥

𝑥
∑︁
𝑦

𝑝𝑋,𝑌 (𝑥, 𝑦) +
∑︁
𝑦

𝑦
∑︁
𝑥

𝑝𝑋,𝑌 (𝑥, 𝑦)

=
∑︁
𝑥

𝑥𝑝𝑋 (𝑥) +
∑︁
𝑦

𝑦𝑝𝑌 (𝑦)

= E [𝑋] + E [𝑌 ] . ■

Observe that the same proof can also be used to show that

E [ 𝑓 (𝑋) + 𝑔(𝑌 )] = E [ 𝑓 (𝑋)] + E [𝑔(𝑌 )] .

Linearity of Expectation can simplify many proofs. We show some examples.

Example 4.11 (Mean of Binomial)

Let 𝑋 ∼ Binomial(𝑛, 𝑝). What is E [𝑋]?

Recall E [𝑋] = ∑𝑛
𝑖=0 𝑖

(𝑛
𝑖

)
𝑝𝑖 (1 − 𝑝)𝑛−𝑖 . This expression may appear daunting.

Question: Can we instead think of Binomial(𝑛, 𝑝) as a sum of random variables?
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Answer:

𝑋 = number of heads (successes) in 𝑛 trials = 𝑋1 + 𝑋2 + · · · + 𝑋𝑛,

where

𝑋𝑖 =

{
1 if trial 𝑖 is successful
0 otherwise

E [𝑋𝑖] = 𝑝.

Then,
E [𝑋] = E [𝑋1] + E [𝑋2] + · · · + E [𝑋𝑛] = 𝑛E [𝑋𝑖] = 𝑛𝑝.

Question: What is the intuition behind this result?

Answer: There are 𝑛 coin flips, each with probability 𝑝 of coming up heads,
which should result in an average of 𝑛𝑝 heads.

The 𝑋𝑖’s above are called indicator random variables because they take on
values 0 or 1. In the previous example, the 𝑋𝑖’s were independent and identically
distributed (i.i.d.). However, even if the trials were not independent, we would
still have

E [𝑋] = E [𝑋1] + · · · + E [𝑋𝑛] .

The following example makes this clear.

Example 4.12 (Drinking from your own cup)

At a party, 𝑛 people put their drink on a table. Later that night, no one can
remember which cup is theirs, so they simply each grab any cup at random
(Figure 4.1). Let 𝑋 denote the number of people who get back their own drink.
Think of this as a random permutation of cups across people.

Question: What is E [𝑋]? How do you imagine that E [𝑋] might depend on 𝑛?

Hint: Start by trying to express 𝑋 as a sum of indicator random variables?

Answer: 𝑋 = 𝐼1 + 𝐼2 + · · · + 𝐼𝑛, where

𝐼𝑖 =

{
1 if the 𝑖th person gets their own drink
0 otherwise .

Although the 𝐼𝑖’s have the same distribution (by symmetry), they are not inde-
pendent of each other! Nevertheless, we can still use Linearity of Expectation to
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Figure 4.1 Each person picks up a random cup.

say

E [𝑋] = E [𝐼1] + E [𝐼2] + · · · + E [𝐼𝑛]
= 𝑛E [𝐼𝑖]

= 𝑛

(
1
𝑛
· 1 + 𝑛 − 1

𝑛
· 0

)
= 1.

Interestingly, the expected number of people who get back their own drink is
independent of 𝑛!

Example 4.13 (Coupon collector)

Imagine there are 𝑛 distinct coupons that we are trying to collect (Figure 4.2).
Every time that we draw a coupon, we get one of the 𝑛 coupons at random,
with each coupon being equally likely. (You can think of this as draws with
replacement, or you can imagine that there are an infinite number of each of the
𝑛 coupon types.) Thus it is quite likely that the same coupon will be drawn more
than one time. The coupon collector question asks:

How many draws does it take in expectation until I get all 𝑛 distinct coupons?

Let 𝐷 denote the number of draws needed to collect all coupons.

Question: What is E [𝐷]?

Answer: It is not at all obvious how to get E [𝐷]. The trick is to try to express
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Figure 4.2 The goal of the coupon collector problem is to collect all 𝑛 coupons.

𝐷 as a sum of random variables:

𝐷 = 𝐷1 + 𝐷2 + · · · + 𝐷𝑛. (4.3)

Question: What should 𝐷𝑖 represent?

Answer: One might think that 𝐷𝑖 should be the number of draws needed to get
coupon number 𝑖. But this doesn’t work, because while I’m trying to get coupon
𝑖, I might be drawing other coupons.

Question: Is there a better definition for 𝐷𝑖 that doesn’t result in over-counting?

Answer: Let𝐷𝑖 denote the number of draws needed to get the 𝑖th distinct coupon,
after getting 𝑖 − 1 distinct coupons. That is, 𝐷1 is the number of draws needed to
get any coupon (namely 𝐷1 = 1). 𝐷2 is the number of additional draws needed
to get a coupon which is distinct from the first coupon. 𝐷3 is the number of
additional draws needed to get a coupon which is distinct from the first two
distinct coupons.

Question: How is 𝐷𝑖 distributed?

Answer:

𝐷1 ∼ Geometric (1) = 1

𝐷2 ∼ Geometric
(
𝑛 − 1
𝑛

)
𝐷3 ∼ Geometric

(
𝑛 − 2
𝑛

)
...

𝐷𝑛 ∼ Geometric
(

1
𝑛

)
.

We are now finally ready to apply Linearity of Expectation to (4.3).
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E [𝐷] = E [𝐷1 + 𝐷2 + · · · + 𝐷𝑛]
= E [𝐷1] + E [𝐷2] + · · · + E [𝐷𝑛]
= 1 + 𝑛

𝑛 − 1
+ 𝑛

𝑛 − 2
+ · · · + 𝑛

1
.

But we can express this in terms of the harmonic series (see Section 1.4) as
follows:

E [𝐷] = 𝑛 ·
(

1
𝑛
+ 1
𝑛 − 1

+ 1
𝑛 − 2

+ · · · + 1
)
= 𝑛 · 𝐻𝑛, (4.4)

where

𝐻𝑛 = 1 + 1
2
+ 1

3
+ . . . + 1

𝑛
.

Question: What is E [𝐷] approximately equal to for large 𝑛?

Answer: From (1.17), it follows that E [𝐷] ≈ 𝑛 ln 𝑛.

4.3 Conditional Expectation

One is often interested in the expected value of a random variable conditioned
on some event. For example, if 𝑋 is a random variable denoting the price of a
hotel room and 𝐴 is the event that the month is March, one might be interested
in E [𝑋 | 𝐴], which is the expected price of the room given that the month is
March.

Recall that 𝑝𝑋 (·) is the p.m.f. for r.v. 𝑋 , where

𝑝𝑋 (𝑥) = P {𝑋 = 𝑥} .

To understand conditional expectation, rather than working with the p.m.f., we
need to work with the conditional p.m.f.

Definition 4.14 Let 𝑋 be a discrete r.v. with p.m.f. 𝑝𝑋 (·) defined over a count-
able sample space. Let 𝐴 be an event s.t. P {𝐴} > 0. Then 𝑝𝑋 |𝐴(·) is the
conditional p.m.f. of 𝑋 given event 𝐴. We define

𝑝𝑋 |𝐴(𝑥) = P {𝑋 = 𝑥 | 𝐴} = P {(𝑋 = 𝑥) ∩ 𝐴}
P {𝐴} .

A conditional probability thus involves narrowing down the probability space.
To see this, let’s consider some examples.
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Example 4.15 (Conditioning on an event)

Let 𝑋 denote the size of a job. Suppose that

𝑋 =


1 w/ prob. 0.1
2 w/ prob. 0.2
3 w/ prob. 0.3
4 w/ prob. 0.2
5 w/ prob. 0.2

.

Let 𝐴 be the event that the job is “small,” meaning that its size is ≤ 3. Our goal
is to understand the conditional p.m.f. of 𝑋 given event 𝐴, colored in blue.

Question: What is 𝑝𝑋 (1)?

Answer: 𝑝𝑋 (1) = 0.1.

Question: What is 𝑝𝑋 |𝐴(1)?

Answer: Intuitively, if we condition on the job being small (blue), we can see
that, of the blue jobs, one-sixth of them have size 1. Algebraically:

𝑝𝑋 |𝐴(1) = P {𝑋 = 1 | 𝐴} = P {𝑋 = 1 & 𝐴}
P {𝐴}

=
P {𝑋 = 1}

P {𝐴}

=

1
10
6
10

=
1
6

.

We have normalized P {𝑋 = 1} by the probability of being in 𝐴.

Question: What is 𝑝𝑋 |𝐴(𝑥), if 𝑥 ∉ 𝐴?

Answer: 0.

Lemma 4.16 A conditional p.m.f. is a p.m.f., that is,∑︁
𝑥

𝑝𝑋 |𝐴(𝑥) =
∑︁
𝑥∈𝐴

𝑝𝑋 |𝐴(𝑥) = 1.

Proof: See Exercise 4.12. ■

We can likewise think of [𝑋 | 𝐴] as a new r.v., where
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[𝑋 | 𝐴] =


1 w/ prob. 𝑝𝑋 |𝐴(1) = 1/6
2 w/ prob. 𝑝𝑋 |𝐴(2) = 2/6
3 w/ prob. 𝑝𝑋 |𝐴(3) = 3/6
4 w/ prob. 𝑝𝑋 |𝐴(4) = 0
5 w/ prob. 𝑝𝑋 |𝐴(5) = 0

.

In the next example, we consider the case where the event, 𝐴, is an instance of
another r.v. For example, 𝐴 might be the event 𝑌 = 𝑦.

Example 4.17 (Conditioning on the value of a random variable)

Two discrete random variables 𝑋 and 𝑌 taking the values {0, 1, 2} have a joint
p.m.f. given by Table 4.2.

𝑌 = 2 0 1
6

1
8

𝑌 = 1 1
8

1
6

1
8

𝑌 = 0 1
6

1
8 0

𝑋 = 0 𝑋 = 1 𝑋 = 2

Table 4.2 Joint p.m.f., 𝑝𝑋,𝑌 (𝑥, 𝑦).

Question: What is 𝑝𝑋 |𝑌=2(1)?

Answer:

𝑝𝑋 |𝑌=2(1) = P {𝑋 = 1 | 𝑌 = 2} = P {𝑋 = 1 & 𝑌 = 2}
P {𝑌 = 2} =

1
6

1
6 +

1
8
=

4
7

.

Question: What is 𝑝𝑋 |𝑌=2(2)?

Answer: By the fact that 𝑝𝑋 |𝑌=2(𝑥) is a p.m.f., and observing that 𝑝𝑋 |𝑌=2(0) = 0,
it must be the case that

𝑝𝑋 |𝑌=2(2) = 1 − 𝑝𝑋 |𝑌=2(1) =
3
7

.

Definition 4.18 For a discrete r.v. 𝑋 , the conditional expectation of 𝑋 given
event 𝐴 is as follows:

E [𝑋 | 𝐴] =
∑︁
𝑥

𝑥𝑝𝑋 |𝐴(𝑥) =
∑︁
𝑥

𝑥 · P {(𝑋 = 𝑥) ∩ 𝐴}
P {𝐴} .
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Simply put, the conditional expectation is the expectation of the r.v. [𝑋 | 𝐴].
That is, we’re taking the usual expectation, but using the conditional p.m.f..

Example 4.19 (Conditional expectation)

Again let 𝑋 denote the size of a job. Suppose that

𝑋 =


1 w/ prob. 0.1
2 w/ prob. 0.2
3 w/ prob. 0.3
4 w/ prob. 0.2
5 w/ prob. 0.2

.

Let 𝐴 be the event that the job is “small,” meaning that its size is ≤ 3.

Question: What is E [𝑋]?

Answer:

E [𝑋] = 1 · 1
10
+ 2 · 2

10
+ 3 · 3

10
+ 4 · 2

10
+ 5 · 2

10
=

32
10

.

Question: What is E [𝑋 | 𝐴]?

Answer: Note that this should be a smaller value than E [𝑋].

E [𝑋 | 𝐴] = 1 · 𝑝𝑋 |𝐴(1) + 2 · 𝑝𝑋 |𝐴(2) + 3 · 𝑝𝑋 |𝐴(3)

= 1 · 1
6
+ 2 · 2

6
+ 3 · 3

6

=
14
6

.

Example 4.20 (More conditional expectation practice)

Two discrete random variables 𝑋 and 𝑌 taking the values {0, 1, 2} have a joint
p.m.f. given by Table 4.3.

𝑌 = 2 0 1
6

1
8

𝑌 = 1 1
8

1
6

1
8

𝑌 = 0 1
6

1
8 0

𝑋 = 0 𝑋 = 1 𝑋 = 2

Table 4.3 Joint p.m.f., 𝑝𝑋,𝑌 (𝑥, 𝑦).

Question: Compute the conditional expectation E [𝑋 | 𝑌 = 2].
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Answer:

E [𝑋 | 𝑌 = 2] = 0 · 𝑝𝑋 |𝑌=2(0) + 1 · 𝑝𝑋 |𝑌=2(1) + 2 · 𝑝𝑋 |𝑌=2(2)

= 1 · 4
7
+ 2 · 3

7
=

10
7

.

Example 4.21 (Indicators: an alternative to conditioning)

Let 𝑆 be a discrete r.v., without loss of generality, say:

𝑆 =



1 w/prob 𝑝𝑆 (1)
2 w/prob 𝑝𝑆 (2)
3 w/prob 𝑝𝑆 (3)
4 w/prob 𝑝𝑆 (4)

...

.

Let 𝐼𝑆≤𝑥 be an indicator r.v. which is 1 when 𝑆 ≤ 𝑥 and 0 otherwise. Likewise,
let 𝐼𝑆>𝑥 be an indicator r.v. which is 1 when 𝑆 > 𝑥 and 0 otherwise.

Question: Argue that

𝑆
𝑑
= 𝑆 · 𝐼𝑆≤𝑥 + 𝑆 · 𝐼𝑆>𝑥 . (4.5)

The 𝑑
= is indicating that the left-hand side and right-hand side of (4.5) are equal

in distribution, that is, they take on the same values with the same probabilities.

Answer: 𝑆 · 𝐼𝑆≤𝑥 is a r.v. that returns the same values of 𝑆 if those values are
≤ 𝑥, and otherwise returns 0. Think of this as the r.v. 𝑆 with a bunch of 0’s where
the terms for 𝑆 > 𝑥 would be. For example, if 𝑥 = 2, then:

𝑆 · 𝐼𝑆≤2 =



1 w/prob 𝑝𝑆 (1)
2 w/prob 𝑝𝑆 (2)
0 w/prob 𝑝𝑆 (3)
0 w/prob 𝑝𝑆 (4)

...

𝑆 · 𝐼𝑆>2 =



0 w/prob 𝑝𝑆 (1)
0 w/prob 𝑝𝑆 (2)
3 w/prob 𝑝𝑆 (3)
4 w/prob 𝑝𝑆 (4)

...

.

Adding together 𝑆 · 𝐼𝑆≤𝑥 and 𝑆 · 𝐼𝑆>𝑥 , we get exactly the distribution of 𝑆.

Question: Can we make the stronger statement that

𝑆 = 𝑆 · 𝐼𝑆≤𝑥 + 𝑆 · 𝐼𝑆>𝑥?

Answer: Yes! Let 𝑍 = 𝑆 · 𝐼𝑆≤𝑥 + 𝑆 · 𝐼𝑆>𝑥 . Now,
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• If 𝑆 ≤ 𝑥, then 𝑍 = 𝑆 · 1 + 𝑆 · 0 = 𝑆.
√

• If 𝑆 > 𝑥, then 𝑍 = 𝑆 · 0 + 𝑆 · 1 = 𝑆.
√

Question: How does 𝑆 · 𝐼𝑆≤2 compare to the r.v. [𝑆 | 𝑆 ≤ 2]?

Answer:

𝑆 · 𝐼𝑆≤2 =


1 w/prob 𝑝𝑆 (1)
2 w/prob 𝑝𝑆 (2)
0 w/prob 1 − P {𝑆 ≤ 2}

.

By contrast,

[𝑆 | 𝑆 ≤ 2] =
{

1 w/prob 𝑝𝑆 (1)/P {𝑆 ≤ 2}
2 w/prob 𝑝𝑆 (2)/P {𝑆 ≤ 2} .

Question: How is E [𝑆 · 𝐼𝑆≤2] related to E [𝑆 | 𝑆 ≤ 2]?

Answer:
E [𝑆 · 𝐼𝑆≤2] = 1 · 𝑝𝑆 (1) + 2 · 𝑝𝑆 (2).

More generally,

E [𝑆 · 𝐼𝑆≤𝑥] =
𝑥∑︁
𝑖=1

𝑖𝑝𝑆 (𝑖). (4.6)

By contrast,

E [𝑆 | 𝑆 ≤ 𝑥] =
𝑥∑︁
𝑖=1

𝑖
𝑝𝑆 (𝑖)

P {𝑆 ≤ 𝑥} =
1

P {𝑆 ≤ 𝑥} ·
𝑥∑︁
𝑖=1

𝑖𝑝𝑆 (𝑖). (4.7)

Comparing (4.6) and (4.7), we have:

E [𝑆 · 𝐼𝑆≤𝑥] = E [𝑆 | 𝑆 ≤ 𝑥] · P {𝑆 ≤ 𝑥} . (4.8)

Question: Express E [𝑆] in two ways: (1) using indicator random variables and
(2) via conditioning on 𝑆 ≤ 𝑥.

Answer: For (1), we use (4.5) and take expectations of both sides as follows:

E [𝑆] = E [𝑆 · 𝐼𝑆≤𝑥] + E [𝑆 · 𝐼𝑆>𝑥] . (4.9)

For (2) we use the result from (4.8) to replace each term in (4.9), obtaining:

E [𝑆] = E [𝑆 | 𝑆 ≤ 𝑥] · P {𝑆 ≤ 𝑥} + E [𝑆 | 𝑆 > 𝑥] · P {𝑆 > 𝑥} . (4.10)
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4.4 Computing Expectations via Conditioning

Recall the Law of Total Probability, which says that the probability of an event
can be computed as a sum of conditional probabilities. In the same way, an
expectation can be computed as a sum of conditional expectations – we saw an
example of this in (4.10). Conditioning is often the easiest way to compute an
expectation.

Theorem 4.22 Let events 𝐹1, 𝐹2, 𝐹3, . . . partition the sample space Ω. Then,

E [𝑋] =
∞∑︁
𝑖=1

E [𝑋 | 𝐹𝑖] · P {𝐹𝑖} .

Given a discrete r.v. 𝑌 , if we think of 𝑌 = 𝑦 as an event, then we have:

E [𝑋] =
∑︁
𝑦

E [𝑋 | 𝑌 = 𝑦] P {𝑌 = 𝑦} .

Proof: We show the proof for the second expression in the theorem. The proof
for the first expression follows the same lines.

E [𝑋] =
∑︁
𝑥

𝑥P {𝑋 = 𝑥}

=
∑︁
𝑥

𝑥
∑︁
𝑦

P {𝑋 = 𝑥 | 𝑌 = 𝑦} P {𝑌 = 𝑦}

=
∑︁
𝑥

∑︁
𝑦

𝑥P {𝑋 = 𝑥 | 𝑌 = 𝑦} P {𝑌 = 𝑦}

=
∑︁
𝑦

∑︁
𝑥

𝑥P {𝑋 = 𝑥 | 𝑌 = 𝑦} P {𝑌 = 𝑦}

=
∑︁
𝑦

P {𝑌 = 𝑦}
∑︁
𝑥

𝑥P {𝑋 = 𝑥 | 𝑌 = 𝑦}

=
∑︁
𝑦

P {𝑌 = 𝑦}E [𝑋 | 𝑌 = 𝑦] (by Definition 4.18). ■

Example 4.23 (Expectation of Geometric, revisited)

Recall that in Example 4.4 we computed the mean of a Geometric with parameter
𝑝. How can we redo this more simply via conditioning? Specifically, we seek
E [𝑁], where 𝑁 is the number of flips required to get the first head.

Question: What do we condition on?
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Answer: We condition on the value of the first flip, 𝑌 , as follows:

E [𝑁] = E [𝑁 | 𝑌 = 1] P {𝑌 = 1} + E [𝑁 | 𝑌 = 0] P {𝑌 = 0}
= 1 · 𝑝 + (1 + E [𝑁]) · (1 − 𝑝)

𝑝E [𝑁] = 𝑝 + (1 − 𝑝)

E [𝑁] = 1
𝑝

.

The difficult step here is reasoning that E [𝑁 | 𝑌 = 0] = 1 + E [𝑁]. That is,
knowing that we already got a tail on the first flip adds 1 to the expected time
to get a head, because the remaining time needed to get a head “restarts” after
that tail. This is the same idea as a person who has been trying to win the lottery
for the last 100 days. Their remaining time to win the lottery is the same as if
they started today. The fact that they already tried for 100 days just adds 100 to
their total time spent trying to win the lottery. The property that your past doesn’t
affect your future is called memorylessness and will come up again.

Note how conditioning greatly simplifies the original derivation given in Exam-
ple 4.4.

The proof of Theorem 4.22 generalizes to Theorem 4.24:

Theorem 4.24

E [𝑔(𝑋)] =
∑︁
𝑦

E [𝑔(𝑋) | 𝑌 = 𝑦] P {𝑌 = 𝑦} .

Theorem 4.24 will be particularly useful in Chapter 5’s discussion of higher
moments.

4.5 Simpson’s Paradox

We end this chapter with Simpson’s paradox [70]. The paradox is counter-
intuitive because people mistakenly think it is related to conditioning, when it is
not.

The best way to understand Simpson’s paradox is via an example. A common
example from the healthcare area involves the evaluation of two potential treat-
ments for kidney stones: call these Treatment A and Treatment B. Suppose that
patients are classified as having “small” kidney stones or “large” ones. It turns
out that Treatment A is more effective than B on small stones, and also that
Treatment A is more effective than B on large stones. However, paradoxically, if
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we ignore patient classifications, we find that Treatment B is the more effective
treatment. The fact that the “winner” changes when we remove the classification
is called Simpson’s paradox.

Treatment A Treatment B

Small stones 90% effective (winner!) 80% effective
(successful on 90 out of 100) (successful on 800 out of 1000)

Large stones 60% effective (winner!) 50% effective
(successful on 600 out of 1000) (successful on 50 out of 100)

Aggregate mix 63% effective 77% effective (winner!)
(successful on 690 out of 1100) (successful on 850 out of 1100)

Table 4.4 Simpson’s paradox: Treatment A is more effective than Treatment B both on
small stones and on large stones. But Treatment B is more effective than Treatment A
when we ignore stone size.

Question: Spend some time asking yourself: How can this be?

Answer: Table 4.4 shows a numerical instance of the paradox. Looking at the
top left box, (small, A), we see that Treatment A is 90% effective on small
stones – it is effective on 90 out of the 100 small-stone patients who receive
it. By contrast, Treatment B is only 80% effective on small stones, as shown in
box (small, B) – it is effective on 800 out of the 1000 small-stone patients who
receive it. Thus Treatment A is more effective than Treatment B on small-stone
patients. The large stone row of the table shows that Treatment A is 60% effective
on large-stone patients, while Treatment B is only 50% effective on large-stone
patients. Based on the above data, it seems that Treatment A is best.

In the last line of the table, labeled “aggregate mix,” we mix up all the small-stone
and large-stone patients, so that they are no longer classified by their stone size.
We now look at the 1100 patients that received Treatment A and ask how many
of them had success. We find that only 690 of the 1100 patients had success,
meaning that Treatment A is 63% effective. By contrast, of the 1100 patients that
received Treatment B, we find that 77% of them had success. Based on this, it
seems that Treatment B is best.

Question: Which treatment is actually best, A or B?

Answer: Treatment A is best. Treatment A is best when used for patients with
small stones, and it is also best when used for patients with large stones. In
practice, doctors know that Treatment A is best, and they thus reserve it for
patients with large stones, which are the more difficult cases. This is why we
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see bigger studies (1000 patients) where Treatment A is applied to patients with
large stones. Treatment B is more typically reserved for the easier patients, which
is why we see bigger studies (1000 patients) where Treatment B is applied to
patients with small stones.

Question: But if Treatment A is best, why does it turn out to look bad in the
“mix,” where we ignore the patient classification?

Answer: Mathematically, the paradox is caused by a combination of two things:

1. The biggest contributors to the “mix” are quadrants [large, A] and [small, B],
since these both involve tests with 1000 patients.

2. But [small, B] has a higher effectiveness percentage than [large, A] because,
although Treatment A is the better treatment, this fact is dwarfed by the fact
that small stones are so much easier to handle than large ones.

Together, these leave us believing that Treatment B is better when we look at the
aggregate mix.

4.6 Exercises

4.1 Socks
Socks come in two colors: red and blue. There are an infinite number of
socks of each color. Each time we pick a sock, we get a random sock.
What is the expected number of picks until we have a pair (two of the same
color)?

4.2 Random graphs
Consider a “random graph” on 𝑛 vertices, where each pair of vertices is
connected by an edge with probability 𝑝.
(a) What is the expected number of edges in the random graph?
(b) What is the distribution of the degree of vertex 𝑖?

4.3 Multi-round gamble
[Proposed by Rashmi Vinayak] At a casino, you’re attracted to an “amazing”
offer. Every round you bet, you either triple your bet with probability half
or lose your bet with probability half.
(a) What is the obvious betting strategy, that is, how much of your money

should you bet in each round to maximize your winnings?
(b) For this strategy, what is the probability that you end up with no money?

(Are you surprised by the answers to the above two questions?)
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4.4 Probability bounds
You are told that the average file size in a database is 6K bytes.
(a) Explain why it follows (from the definition of expectation) that fewer

than half of the files can have size > 12K.
(b) You are now given the additional information that the minimum file

size is 3K. Derive a tighter upper bound on the percentage of files of
size > 12K.

4.5 Shared birthdays
There are 𝑛 people in a room. A person is “happy” if he/she shares a
birthday with another person in the room. What is the expected number of
happy people?

4.6 Identities
Let 𝐴 and 𝐵 be independent random variables. Assume that 𝐵 ≠ 0 and that
E [𝐵] ≠ 0. Prove or disprove the following statement:

E
[
𝐴

𝐵

]
=

E [𝐴]
E [𝐵] .

4.7 Expectation of product
Prove or disprove the following claim: If

E [𝑋𝑌 ] = E [𝑋] · E [𝑌 ] ,

then 𝑋 and 𝑌 are independent random variables.

4.8 Coin pattern
Your coin produces heads with probability 𝑝. You flip your coin 𝑛 ≥ 3
times. What is the expected number of times that the pattern𝐻𝑇𝐻 appears?
Example: If the 𝑛 flips are ⟨𝐻,𝑇 ,𝐻,𝑇 ,𝐻,𝑇 ,𝐻⟩ then the pattern 𝐻𝑇𝐻

appears three times.

4.9 Random word generation: I love to love
Every minute, a random word generator spits out one word uniformly at
random from the set { I, love, to }. Suppose we let the generator run for 𝑛
minutes. What is the expected number of times that the phrase “I love to
love” appears?

4.10 Permutations
Let 𝜋 be a permutation on [𝑛] = {1, . . . , 𝑛}, where 𝑛 ≥ 3. Here 𝜋(𝑖) denotes
the number in the 𝑖th position of permutation 𝜋. We say that 𝜋 has a local
maximum at 𝑖 ∈ [𝑛] if all these are true:
• 𝜋(𝑖) > 𝜋(𝑖 + 1), if 𝑖 = 1
• 𝜋(𝑖 − 1) < 𝜋(𝑖) and 𝜋(𝑖) > 𝜋(𝑖 + 1), if 1 < 𝑖 < 𝑛
• 𝜋(𝑖 − 1) < 𝜋(𝑖), if 𝑖 = 𝑛
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What is the expected number of local maxima of a random permutation 𝜋 on
[𝑛]? [Hint: Use Linearity of Expectation and indicator random variables.]

4.11 Triangles in random graphs
Consider a “random graph,” 𝐺, on 𝑛 vertices, where each pair of vertices
is connected by an edge with probability 𝑝 = 𝑑

𝑛
. Let 𝑌 denote the number

of triangles in 𝐺. Derive E [𝑌 ]. What does E [𝑌 ] look like for high 𝑛?

4.12 A conditional p.m.f. is a p.m.f
Prove that the conditional p.m.f. 𝑝𝑋 |𝐴(·) is a p.m.f. by showing that∑︁

𝑥

𝑝𝑋 |𝐴(𝑥) = 1.

4.13 Tail of Geometric and memorylessness
Let 𝑋 ∼ Geometric(𝑝).
(a) Derive E [𝑋 | 𝑋 > 5] by summing over the conditional p.m.f. Be care-

ful to get the indices correct.
(b) Your final answer should be extremely simple in light of the memo-

rylessness property of the Geometric distribution. Explain your final
answer.

4.14 Practice with conditional expectation
For the joint p.m.f. in Table 4.2, compute E [𝑋 | 𝑌 ≠ 1].

4.15 More conditional expectation practice
We’re given a joint p.m.f. for two random variables 𝑋 and 𝑌 .

𝑌 = 1 𝑌 = 2 𝑌 = 3
𝑋 = 0 1/4 3/16 1/16
𝑋 = 1 1/8 0 3/8

What is E
[
𝑋
𝑌

�� 𝑋2 + 𝑌2 ≤ 4
]
?

4.16 Alternative definition of expectation: summing the tail
Let 𝑋 be a non-negative, discrete, integer-valued r.v. Prove that

E [𝑋] =
∞∑︁
𝑥=0

P {𝑋 > 𝑥} .

4.17 Simpson’s paradox for PhD admissions
A total of 110 Berkeley undergrads and 110 CMU undergrads apply for
PhD programs in CS at Berkeley and CMU. Assume that all the students
started their grad applications at the very last minute, and as a result were
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only able to apply to their first choice between Berkeley PhD or CMU PhD
(not both). Below are the acceptance rates for each group at each university:

Berkeley Undergrad CMU Undergrad

Berkeley PhD 32% (32 out of 100 applicants) 40% (4 out of 10 applicants)

CMU PhD 10% (1 out of 10 applicants) 18% (18 out of 100 applicants)

Either PhD 30% (33 out of 110 applicants) 20% (22 out of 110 applicants)

(a) Which group of students, CMU students or Berkeley students, had a
higher acceptance rate into the Berkeley PhD program?

(b) Which group of students, CMU students or Berkeley students, had a
higher acceptance rate into the CMU PhD program?

(c) Which group of students, CMU students or Berkeley students, were
more likely to be admitted into a PhD program?

(d) What was Berkeley’s overall acceptance rate and what was CMU’s
overall acceptance rate (assume that no students outside Berkeley or
CMU applied)?

(e) What proportion of the students admitted to either the CMU or Berkeley
PhD programs were admitted to the Berkeley PhD program?

(f) How is it possible that CMU students had a higher acceptance rate
at each of the PhD programs than Berkeley students, and yet a lower
chance of getting into a PhD program overall?

4.18 k heads in a row
Stacy’s fault-tolerant system only crashes if there are 𝑘 consecutive failures.
Assume that every minute a failure occurs independently with probability
𝑝. What is the expected number of minutes until Stacy’s system crashes?
This is equivalent to E [𝑇𝑘], where 𝑇𝑘 denotes the number of flips needed
to get 𝑘 heads in a row when flipping a coin with probability 𝑝 of heads.
[Hint: Write a recurrence relation for the r.v. 𝑇𝑘 in terms of 𝑇𝑘−1.]

4.19 Virus propagation
We start with a network of three computers. Unbeknownst to us, two of
the computers are infected with a hidden virus and the other is not. A
sequence of new uninfected computers now join the network, one at a
time. Each new computer joins the existing network by attaching itself to a
random computer in the network (all computers in the network are equally
likely attachment points). If the new computer attaches itself to an infected
computer, then it immediately becomes infected with the virus; otherwise
the new computer does not get the virus. At the point where the network
consists of 𝑘 total computers, what is the expected fraction of these that is
infected? Assume 𝑘 > 3.



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

80 4 Expectation

4.20 Coupon collector, time to repeat
In the coupon collection problem, there are 𝑛 distinct coupons that we
are trying to collect. Every time we draw a coupon, we get one of the 𝑛
at random, with each coupon being equally likely (the coupon we get is
replaced after each drawing). Thus it is likely that we quickly see a repeat.
Define 𝑁 to be the r.v., where

𝑁 = Number of coupons collected until we first get a repeat.

What is E [𝑁]? [Note: You can leave your answer in the form of a sum.]

4.21 Minimum of n dice
Your goal is to derive a simple expression for the expected minimum value
of 𝑛 independent rolls of a die. Below are some steps to help:
(a) You roll a die twice. What’s the expected value of the minimum of the

rolls? Compute this by simple counting and/or conditioning.
(b) Now redo the problem in (a), but use the result of Exercise 4.16 to

compute your answer.
(c) Now repeat (b), but for the case of 𝑛 rolls. What does your expression

for the expected minimum value become as 𝑛→∞?

4.22 The counter-intuitive nature of conditional independence
A fair coin is flipped 𝑁 times, and 𝐻 heads are obtained (both 𝑁 and 𝐻
are random variables in the experiment). Suppose we are told that 𝐻 = 5.
What is E [𝑁 | 𝐻 = 5]?
(a) If you had to guess, what would you guess is E [𝑁 | 𝐻 = 5]?
(b) Write out E [𝑁 | 𝐻 = 5] based on Definition 4.18. Go as far as you can

in evaluating the expression. What is missing?
(c) Suppose we’re now given a “prior” distribution on 𝑁 , namely that

𝑁 =

{
10 w/prob 0.5
20 w/prob 0.5 .

Use this information to finish evaluating E [𝑁 | 𝐻 = 5]. You will need
a computer for the final evaluation. Is this the answer you originally
expected?

4.23 Revisiting die rolls
Recall Exercise 2.27, where you have two dice. Die A is a fair die (each
of the six numbers is equally likely) and die B is a biased die (the number
six comes up with probability 2

3 and the remaining 1
3 probability is split

evenly across all the other numbers). Kaige picks a die at random and rolls
that die three times. Given that the first two rolls are both sixes, what is the
expected value of the third roll?
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4.24 Expectation of a product
[Proposed by Priyatham Bollimpalli] In his spare time, Priyatham likes to
sit around multiplying random numbers. After studying probability, he has
become interested in the expected value of the product.
(a) Priyatham multiplies two single-digit, non-equal, positive numbers. If

each number is equally likely to be picked from {1, 2, 3, . . . , 9} (without
replacement), what is the expected value of the product? [Note: This
formula may come in handy:

∑𝑛
𝑖=1 𝑖

2 =
𝑛(𝑛+1) (2𝑛+1)

6 ]
(b) What is the expectation of a product of two two-digit numbers, where

all four digits are non-zero, unique, and picked uniformly at random?
For example 45 and 76 are two valid numbers, whereas 45 and 59 are
not since 5 is repeated. [Hint: Solution is short.]

(c) Suppose we didn’t need to assume the digits were unique. Explain in
one line what the answer to part (a) would be now.

4.25 Socks for multi-footed animals
Socks come in two colors: red and blue. There are an infinite number of
socks of each color. Every time we pick a sock, we get a random sock.
(a) A human has two feet. What is the expected number of picks until we

have a pair (sock for each foot) of a single color?
(b) The three-toed sloth needs a sock for each toe. What is the expected

number of picks until we have three socks of the same color?
(c) Prof. Veloso’s new soccer-playing robot has 𝑛 feet (more feet helps it

win). What is the expected number of picks until the robot has a sock
for each foot, where all socks must be of the same color? [Note: Don’t
worry about trying to come up with a closed-form expression.]

4.26 The three rivers of Pittsburgh
[Proposed by Lea Herzberg] In Pittsburgh, three rivers meet as shown in
Figure 4.3. Assume that, for every boat traveling up the Ohio River, with
probability 2

3 the boat continues up the Allegheny and, independently, with
probability 1

3 , the boat continues up the Monongahela.
Let 𝑋 denote the number of boats approaching the fork from the Ohio in
the last hour. Let 𝐴 (respectively, 𝑀) denote the number of boats entering
the Allegheny (respectively, Monongahela) in the last hour.
Suppose 𝑋 ∼ Poisson(𝜆 = 100). Your goal is to derive E [𝑋 | 𝑀 = 100].
(a) Do you have any intuition about what E [𝑋 | 𝑀 = 100] should be?
(b) Using Definition 4.18 for conditional expectation, write an expression

for E [𝑋 | 𝑀 = 100] using all the information given in the problem.
Express your answer in terms of an expression involving 𝜆’s and 𝑥’s
and some sums. Do not worry about simplifying your expression.

(c) Your expression in (b) is very unwieldy and hard to evaluate. Instead,
we will follow a different approach to get to the answer. In following
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Figure 4.3 The three rivers of Pittsburgh, where the arrows represent the direction of the
boats.

this approach, assume 𝑝 = 1
3 and 𝜆 = 100, but express your answers

generally in terms of 𝑝 and 𝜆 until the last part.
(i) Let 𝑍 = [𝑀 | 𝑋 = 𝑥]. How is 𝑍 distributed?

(ii) Using step (i), what is the joint probability 𝑝𝑋,𝑀 (𝑥,𝑚)?
(iii) Use step (ii) to prove that 𝑀 ∼ Poisson(𝜆𝑝).
(iv) Combine steps (ii) and (iii) to derive 𝑝𝑋 |𝑀=𝑚(𝑥), and then use

that to get the distribution of the r.v. [𝑋 − 𝑚 | 𝑀 = 𝑚].
(v) Use the result in (iv) to get E [𝑋 | 𝑀 = 𝑚].

(vi) Returning to the original problem, given that in the last hour 100
boats entered the Monongahela, what is the expected number of
boats leaving the Ohio in the last hour? Note that you will likely
find your intuition from part (a) was incorrect.


