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Part II

Discrete Random Variables

In Part I, we saw that experiments are classified as either having a discrete sample
space, with a countable number of possible outcomes, or a continuous sample
space, with an uncountable number of possible outcomes. In this part, our focus
will be on the discrete world. In Part III we will focus on the continuous world.

We start, in Chapter 3, by introducing the notion of a discrete random variable.
We then show that everything that we’ve learned about probability on events
applies to random variables as well. In this chapter, we cover the most common
discrete distributions: the Bernoulli, Binomial, Geometric, and Poisson.

Chapter 4 is devoted to understanding expectation of discrete random variables.
This includes linearity of expectation and conditional expectation. We end with
a discussion of Simpson’s paradox.

In Chapter 5, we move on to variance and higher moments of discrete random
variables. We also introduce the notion of a sum of random variables, where
the number being summed is itself a random variable. We next turn to the tail
of a random variable, namely the probability that the random variable exceeds
some value, introducing some very simple tail bounds, as well as the concept
of stochastic dominance. We end with a discussion of the inspection paradox,
which is one of the more subtle consequences of high variability.

Finally, in Chapter 6, we finish off our unit on discrete random variables by
introducing the z-transform, a moment-generating function which is tailored
for discrete random variables. The z-transform allows us to quickly compute
all higher moments of random variables. It also has many other applications,
including solving recurrence relations.
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3 Common Discrete Random
Variables

While the previous chapter covered probability on events, in this chapter we will
switch to talking about random variables and their corresponding distributions.
We will cover the most common discrete distributions, define the notion of a joint
distribution, and finish with some practical examples of how to reason about the
probability that one device will fail before another.

3.1 Random Variables

Consider an experiment, such as rolling two dice. Suppose that we are interested
in the sum of the two rolls. That sum could range anywhere from 2 to 12,
with each of these events having a different probability. A random variable, 𝑋 ,
associated with this experiment is a way to represent the value of the experiment
(in this case the sum of the rolls). Specifically, when we write 𝑋 , it is understood
that 𝑋 has many instances, ranging from 2 to 12 and that different instances
occur with different probabilities. For example, P {𝑋 = 3} = 2

36 .

Formally, we say,

Definition 3.1 A random variable (r.v.) is a real-valued function of the out-
come of an experiment involving randomness.

For the above experiment, r.v. 𝑋 could be the sum of the rolls, while r.v. 𝑌 could
be the sum of the squares of the two rolls, and r.v. 𝑍 could be the value of the
first roll only. Any real-valued function of the outcome is legitimate.

As another experiment, we can imagine throwing two darts at the interval [0, 1],
where each dart is equally likely to land anywhere in the interval. Random
variable 𝐷 could then represent the distance between the two darts, while r.v. 𝐿
represents the position of the leftmost dart.
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Definition 3.2 A discrete random variable can take on at most a countably
infinite number of possible values, whereas a continuous random variable
can take on an uncountable set of possible values.

Question: Which of these random variables is discrete and which is continuous?

(a) The sum of the rolls of two dice
(b) The number of arrivals at a website by time 𝑡
(c) The time until the next arrival at a website
(d) The CPU requirement of an HTTP request

Answer: The sum of rolls can take on only a finite number of values – those
between 2 and 12 – so it clearly is a discrete r.v. The number of arrivals at
a website can take on the values: 0, 1, 2, 3, . . . namely a countable set; hence
this is discrete as well. Time, in general, is modeled as a continuous quantity,
even though there is a non-zero granularity in our ability to measure time via a
computer. Thus quantities (c) and (d) are continuous random variables.

We use capital letters to denote random variables. For example, 𝑋 could be a r.v.
denoting the sum of two dice, where

P {𝑋 = 7} = P {(1, 6) or (2, 5) or (3, 4), . . . , or (6, 1)} = 1
6

.

Key insight: Because the “outcome of the experiment” is just an event, all the
theorems that we learned about events apply to random variables as well.
For example, 𝑋 = 7 above is an event. In particular, the Law of Total Probability
(Theorem 2.18) holds. For example, if 𝑁 denotes the number of arrivals at a
website by time 𝑡, then 𝑁 > 10 is an event. We can then use conditioning on
events to get

P {𝑁 > 10} = P {𝑁 > 10 | weekday } · 5
7
+ P {𝑁 > 10 | weekend } · 2

7
.

All of this will become more concrete when we study examples of random
variables.

3.2 Common Discrete Random Variables

Discrete random variables take on a countable number of values, each with some
probability. A discrete r.v. is associated with a discrete probability distribution
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that represents the likelihood of each of these values occurring. We will some-
times go so far as to define a r.v. by the distribution associated with it, omitting
the whole discussion of an “experiment.”

Definition 3.3 Let 𝑋 be a discrete r.v. Then the probability mass function
(p.m.f.), 𝑝𝑋 (·) of 𝑋 , is defined as:

𝑝𝑋 (𝑎) = P {𝑋 = 𝑎} where
∑︁
𝑥

𝑝𝑋 (𝑥) = 1.

The cumulative distribution function of 𝑋 is defined as:

𝐹𝑋 (𝑎) = P {𝑋 ≤ 𝑎} =
∑︁
𝑥≤𝑎

𝑝𝑋 (𝑥).

The tail of 𝑋 is defined as:

𝐹𝑋 (𝑎) = P {𝑋 > 𝑎} =
∑︁
𝑥>𝑎

𝑝𝑋 (𝑥) = 1 − 𝐹𝑋 (𝑎).

Common discrete distributions include the Bernoulli, the Binomial, the Geomet-
ric, and the Poisson, all of which are discussed next.

3.2.1 The Bernoulli(𝑝) Random Variable

Consider an experiment involving a single coin flip, where the coin has proba-
bility 𝑝 of coming up heads and 1 − 𝑝 of coming up tails.

Let r.v. 𝑋 represent the outcome of the experiment, that is, the value of the coin.
We say that the value is 1 if the coin comes up heads and 0 otherwise. Then,

𝑋 =

{
1 w/ prob 𝑝
0 otherwise .

We say that 𝑋 is a r.v. drawn from the Bernoulli(𝑝) distribution, and we write:

𝑋 ∼ Bernoulli(𝑝).

The p.m.f. of r.v. 𝑋 is defined as follows:

𝑝𝑋 (1) = 𝑝
𝑝𝑋 (0) = 1 − 𝑝.

The p.m.f. is depicted in Figure 3.1.
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Figure 3.1 Probability mass function of the Bernoulli(𝑝 = 0.3) distribution.

3.2.2 The Binomial(𝑛,𝑝) Random Variable

Now consider an experiment where we again have a coin with probability 𝑝

of coming up heads (success). This time we flip the coin 𝑛 times (these are
independent flips).

Let r.v. 𝑋 represent the number of heads (successes). Observe that 𝑋 can take on
any of these (discrete) values: 0, 1, 2, . . . , 𝑛.

The p.m.f. of r.v. 𝑋 is defined as follows:

𝑝𝑋 (𝑖) = P {𝑋 = 𝑖}

=

(
𝑛

𝑖

)
𝑝𝑖 (1 − 𝑝)𝑛−𝑖 , where 𝑖 = 0, 1, 2, . . . , 𝑛.

A r.v. 𝑋 with the above p.m.f. is said to be drawn from the Binomial(𝑛, 𝑝)
distribution, written: 𝑋 ∼ Binomial(𝑛, 𝑝). The p.m.f. is shown in Figure 3.2.
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Figure 3.2 Probability mass function of the Binomial(𝑛 = 20, 𝑝 = 0.3) distribution.
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Observe that the sum of the p.m.f. is 1, as desired:
𝑛∑︁
𝑖=0

𝑝𝑋 (𝑖) =
𝑛∑︁
𝑖=0

(
𝑛

𝑖

)
𝑝𝑖 (1 − 𝑝)𝑛−𝑖 = (𝑝 + (1 − 𝑝))𝑛 = 1. ✓

Here we’ve used the binomial expansion from Section 1.5.

3.2.3 The Geometric(𝑝) Random Variable

Again consider an experiment where we have a coin with probability 𝑝 of
coming up heads (success). We now flip the coin until we get a success; these
are independent trials, each distributed Bernoulli(𝑝).

Let r.v. 𝑋 represent the number of flips until we get a success.

The p.m.f. of 𝑋 is defined as follows:

𝑝𝑋 (𝑖) = P {𝑋 = 𝑖}
= (1 − 𝑝)𝑖−1𝑝, where 𝑖 = 1, 2, 3, . . . .

A r.v. 𝑋 with the above p.m.f. is said to be drawn from the Geometric(𝑝)
distribution, written: 𝑋 ∼ Geometric(𝑝). The p.m.f. is shown in Figure 3.3.
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Figure 3.3 Probability mass function of the Geometric(𝑝 = 0.3) distribution.

Question: What is 𝐹𝑋 (𝑖)?

Answer:

𝐹𝑋 (𝑖) = P {𝑋 > 𝑖} = P {First 𝑖 flips were tails} = (1 − 𝑝)𝑖 .
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Observe that the sum of the p.m.f. is 1, as desired:
∞∑︁
𝑖=1

𝑝𝑋 (𝑖) =
∞∑︁
𝑖=1
(1 − 𝑝)𝑖−1 · 𝑝 =

∞∑︁
𝑖=0
(1 − 𝑝)𝑖 · 𝑝 = 𝑝 · 1

1 − (1 − 𝑝) = 1. ✓

Here we’ve used the Geometric series sum from Section 1.1.

Question: Let’s review. Suppose you have a room of 𝑛 disks. Each disk inde-
pendently dies with probability 𝑝 each year. How are the following quantities
distributed?

(a) The number of disks that die in the first year
(b) The number of years until a particular disk dies
(c) The state of a particular disk after one year

Answer: The distributions are: (a) Binomial(𝑛, 𝑝); (b) Geometric(𝑝); (c)
Bernoulli(𝑝).

3.2.4 The Poisson(𝜆) Random Variable

We define the Poisson(𝜆) distribution via its p.m.f. Although the p.m.f. does
not appear to have any meaning at present, we will see that it comes up in
many applications where the distribution is bell-shaped, but has a lower bound
of 0. For example, we will see in Chapter 5 that the Poisson distribution is a
good representation of the number of pairs of shoes owned by people. Likewise,
in Chapter 12, we will see that the Poisson distribution occurs naturally when
looking at a mixture of a very large number of independent sources, each with a
very small individual probability. It can therefore be a reasonable approximation
for the distribution of the number of arrivals to a website or a router.

If 𝑋 ∼ Poisson(𝜆), then

𝑝𝑋 (𝑖) =
𝑒−𝜆𝜆𝑖

𝑖!
, where 𝑖 = 0, 1, 2, . . . .

The p.m.f. for the Poisson(𝜆) distribution is shown in Figure 3.4.

The sum of the p.m.f. is again 1, as desired:
∞∑︁
𝑖=0

𝑝𝑋 (𝑖) =
∞∑︁
𝑖=0

𝑒−𝜆𝜆𝑖

𝑖!
= 𝑒−𝜆

∞∑︁
𝑖=0

𝜆𝑖

𝑖!
= 𝑒−𝜆 · 𝑒𝜆 = 1. ✓

Here we’ve used the Taylor series expansion from (1.11) of Section 1.4.

Question: Does the shape of the Poisson distribution remind you of other distri-
butions?
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Figure 3.4 Probability mass function of the Poisson(𝜆 = 6) distribution.

Answer: The Poisson distribution does not look all that different from the Bino-
mial distribution. It too has a bell-like shape. However, it has an infinite range.
In Exercise 3.8 we will see that if 𝑛 is large and 𝑝 is small, then Binomial(𝑛, 𝑝)
is actually very close to Poisson(𝑛𝑝). The Poisson distribution is also similar to
the Normal distribution (Chapter 9), except that it is lower-bounded by 0.

3.3 Multiple Random Variables and Joint Probabilities

We are often interested in probability statements concerning two or more random
variables simultaneously. For example, imagine that we have 𝑛 disks, each of
which fails with probability 𝑝 every day. We might want to know the probability
that all 𝑛 disks fail on the same day, or the probability that disk 1 fails before
disk 2. In asking such questions, we often are assuming that the failure of disks
is independent (in which case we often say that the disks “independently fail”
with probability 𝑝 on each day). By independent, we mean that the fact that one
disk fails doesn’t influence the failure of the other disks. However, it could be
that the failures are positively correlated. By this we mean that the fact that one
disk fails makes it more likely that other disks fail as well (for example, maybe
the fact that a disk failed means there are mice in the building, which in turn can
influence other disks).

In the above scenario, the state of each disk (working or failed) is a r.v. There
are several ways to reason about multiple random variables. We introduce two
techniques in this section. The first technique involves using the joint p.m.f. and is
illustrated in Example 3.6. The second involves conditioning one r.v. on another
and is illustrated in Example 3.8.
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Definition 3.4 The joint probability mass function between discrete random
variables 𝑋 and 𝑌 is defined by

𝑝𝑋,𝑌 (𝑥, 𝑦) = P {𝑋 = 𝑥 & 𝑌 = 𝑦} .

This is equivalently written as P {𝑋 = 𝑥,𝑌 = 𝑦} or as P {𝑋 = 𝑥 ∩ 𝑌 = 𝑦}.
By definition: ∑︁

𝑥

∑︁
𝑦

𝑝𝑋,𝑌 (𝑥, 𝑦) = 1.

Question: What is the relationship between 𝑝𝑋 (𝑥) and 𝑝𝑋,𝑌 (𝑥, 𝑦)?

Answer: Via the Law of Total Probability, we have:

𝑝𝑋 (𝑥) =
∑︁
𝑦

𝑝𝑋,𝑌 (𝑥, 𝑦) and 𝑝𝑌 (𝑦) =
∑︁
𝑥

𝑝𝑋,𝑌 (𝑥, 𝑦).

When written this way, 𝑝𝑋 (𝑥) is often referred to as the marginal probability
mass function of 𝑋 . The term “marginal” comes from the fact that 𝑝𝑋 (𝑥) here
would appear in the margins of a joint p.m.f. table, after summing an entire
column over all 𝑦 values.

Similarly to the way we defined two events 𝐸 and 𝐹 as being independent, we
can likewise define two random variables as being independent. This is because
𝑋 = 𝑥 and 𝑌 = 𝑦 are events.

Definition 3.5 We say that discrete random variables 𝑋 and 𝑌 are indepen-
dent, written 𝑋 ⊥ 𝑌 , if

P {𝑋 = 𝑥 & 𝑌 = 𝑦} = P {𝑋 = 𝑥} · P {𝑌 = 𝑦} , ∀𝑥, 𝑦

or, equivalently,
𝑝𝑋,𝑌 (𝑥, 𝑦) = 𝑝𝑋 (𝑥) · 𝑝𝑌 (𝑦).

Question: If 𝑋 and 𝑌 are independent, what does this say about
P {𝑋 = 𝑥 | 𝑌 = 𝑦}?

Answer: Again, since 𝑋 = 𝑥 and 𝑌 = 𝑦 are events, we can apply the simple
conditioning formula that we learned in Chapter 2. As expected,

P {𝑋 = 𝑥 | 𝑌 = 𝑦} = P {𝑋 = 𝑥 & 𝑌 = 𝑦}
P {𝑌 = 𝑦} =

P {𝑋 = 𝑥} · P {𝑌 = 𝑦}
P {𝑌 = 𝑦} = P {𝑋 = 𝑥} .

Example 3.6 (Who fails first?)

Here’s a question that commonly comes up in industry, but isn’t immediately
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obvious. You have a disk with probability 𝑝1 of failing each day. You have a
CPU which independently has probability 𝑝2 of failing each day.

Question: What is the probability that your disk fails before your CPU?

Before you look at the answer, try to think for yourself what the answer might
be. Is it |𝑝1 − 𝑝2 |, or 𝑝1

𝑝2
, or 𝑝1 (1 − 𝑝2)?

Answer: We model the problem by considering two Geometric random vari-
ables and deriving the probability that one is smaller than the other. Let
𝑋1 ∼ Geometric(𝑝1) and 𝑋2 ∼ Geometric(𝑝2), where 𝑋1 ⊥ 𝑋2. We want
P {𝑋1 < 𝑋2}.

P {𝑋1 < 𝑋2} =
∞∑︁
𝑘=1

∞∑︁
𝑘2=𝑘+1

𝑝𝑋1,𝑋2 (𝑘 , 𝑘2)

=

∞∑︁
𝑘=1

∞∑︁
𝑘2=𝑘+1

𝑝𝑋1 (𝑘) · 𝑝𝑋2 (𝑘2) (by independence)

=

∞∑︁
𝑘=1

∞∑︁
𝑘2=𝑘+1

(1 − 𝑝1)𝑘−1𝑝1 · (1 − 𝑝2)𝑘2−1𝑝2

=

∞∑︁
𝑘=1
(1 − 𝑝1)𝑘−1𝑝1

∞∑︁
𝑘2=𝑘+1

(1 − 𝑝2)𝑘2−1𝑝2

=

∞∑︁
𝑘=1
(1 − 𝑝1)𝑘−1𝑝1(1 − 𝑝2)𝑘

∞∑︁
𝑘2=1
(1 − 𝑝2)𝑘2−1𝑝2

=

∞∑︁
𝑘=1
(1 − 𝑝1)𝑘−1𝑝1(1 − 𝑝2)𝑘 · 1

= 𝑝1(1 − 𝑝2)
∞∑︁
𝑘=1
[(1 − 𝑝2) (1 − 𝑝1)]𝑘−1

=
𝑝1(1 − 𝑝2)

1 − (1 − 𝑝2) (1 − 𝑝1)
. (3.1)

Question: Explain why your final expression (3.1) makes sense.

Answer: Think about 𝑋1 and 𝑋2 in terms of coin flips. Notice that all the flips
are irrelevant until the final flip, since before the final flip both the 𝑋1 coin and
the 𝑋2 coin only yield tails. P {𝑋1 < 𝑋2} is the probability that on that final flip,
where by definition at least one coin comes up heads, it is the case that the 𝑋1
coin is heads and the 𝑋2 coin is tails. So we’re looking for the probability that
the 𝑋1 coin produces a heads and the 𝑋2 coin produces a tails, conditioned on
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the fact that they’re not both tails, which is derived as:

P {Coin 1 = 𝐻 & Coin 2 = 𝑇 | not both 𝑇} = P {Coin 1 = 𝐻 & Coin 2 = 𝑇}
P {not both 𝑇}

=
𝑝1(1 − 𝑝2)

1 − (1 − 𝑝2) (1 − 𝑝1)
. ✓

Another way to approach Example 3.6 is to use conditioning. In computing the
probability of an event, we saw in Chapter 2 that it is useful to condition on other
events. We can use this same idea in computing probabilities involving random
variables, because 𝑋 = 𝑘 and 𝑌 = 𝑦 are just events. Thus, Theorem 3.7 follows
immediately from the Law of Total Probability (Theorem 2.18).

Theorem 3.7 (Law of Total Probability for Discrete R.V.) We can express
the probability of an event 𝐸 by conditioning on a discrete r.v. 𝑌 as follows:

P {𝐸} =
∑︁
𝑦

P {𝐸 ∩ 𝑌 = 𝑦} =
∑︁
𝑦

P {𝐸 | 𝑌 = 𝑦} · P {𝑌 = 𝑦} .

Likewise, for discrete random variables 𝑋 and𝑌 , we can express the probability
of the event 𝑋 = 𝑘 by conditioning on the value of 𝑌 as follows:

P {𝑋 = 𝑘} =
∑︁
𝑦

P {𝑋 = 𝑘 ∩ 𝑌 = 𝑦} =
∑︁
𝑦

P {𝑋 = 𝑘 | 𝑌 = 𝑦} · P {𝑌 = 𝑦} .

As always, being able to condition is a huge tool! It allows us to break a problem
into a number of simpler problems. The trick, as usual, is knowing what to
condition on.

Example 3.8 (Who fails first, revisited)

Suppose again that your disk has probability 𝑝1 of failing each day, and your
CPU independently has probability 𝑝2 of failing each day.

Question: What is the probability that your disk fails before your CPU? This
time use conditioning to determine this probability.

Answer: Again, let 𝑋1 ∼ Geometric(𝑝1) and 𝑋2 ∼ Geometric(𝑝2), where
𝑋1 ⊥ 𝑋2.
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P {𝑋1 < 𝑋2} =
∞∑︁
𝑘=1

P {𝑋1 < 𝑋2 | 𝑋1 = 𝑘} · P {𝑋1 = 𝑘}

=

∞∑︁
𝑘=1

P {𝑘 < 𝑋2 | 𝑋1 = 𝑘} · P {𝑋1 = 𝑘}

=

∞∑︁
𝑘=1

P {𝑋2 > 𝑘} · P {𝑋1 = 𝑘} (by independence)

=

∞∑︁
𝑘=1
(1 − 𝑝2)𝑘 · (1 − 𝑝1)𝑘−1 · 𝑝1

= 𝑝1(1 − 𝑝2)
∞∑︁
𝑘=1
[(1 − 𝑝2) (1 − 𝑝1)]𝑘−1

=
𝑝1(1 − 𝑝2)

1 − (1 − 𝑝2) (1 − 𝑝1)
.

Unsurprisingly, conditioning leads to a simpler solution.

3.4 Exercises

3.1 ORs and ANDs
Two fair coins are flipped. Let 𝑋 represent the logical OR of the two flips.
Let 𝑌 represent the logical AND of the two flips.
(a) What is the distribution of 𝑋?
(b) What is the distribution of 𝑌?
(c) What is the distribution of 𝑋 + 𝑌?

3.2 If at first you don’t succeed
Every day, independently at random, I win a prize with probability 1

100 .
What is the probability that it takes more than 100 days to win a prize?

3.3 Independence
We’re given a joint p.m.f. for two discrete random variables 𝑋 and 𝑌 .

𝑌 = 1 𝑌 = 2 𝑌 = 3
𝑋 = 0 1/8 1/4 1/8
𝑋 = 1 1/8 0 3/8

(a) What is 𝑝𝑋,𝑌 (0, 1)? What is 𝑝𝑋 (0)? What is 𝑝𝑌 (1)?
(b) Are 𝑋 and 𝑌 independent?
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3.4 From 10 disks to 1
Today you have 10 working disks. Suppose that each disk independently
dies with probability 𝑝 each day. What is the probability that tomorrow you
have just 1 working disk?

3.5 Independence of random variables
Sachit has been studying the definition of independence of discrete random
variables (Definition 3.5). He’s wondering if the following statement is a
corollary of the definition:

If 𝑋 ⊥ 𝑌 , then P {𝑋 > 𝑖 & 𝑌 > 𝑗} = P {𝑋 > 𝑖} · P {𝑌 > 𝑗} .

Prove or disprove this statement.

3.6 More independence practice
We’re given a joint p.m.f. for two random variables 𝑋 and 𝑌 .

𝑌 = 1 𝑌 = 2 𝑌 = 3
𝑋 = 1 3/8 3/16 1/4
𝑋 = 2 1/8 1/16 0

(a) Are 𝑋 and 𝑌 independent?
(b) What is P {𝑋 = 1 | 𝑌 > 1}?
(c) Find an event 𝐴 where 𝑋 and 𝑌 are conditionally independent given 𝐴.

3.7 Sum of two independent Binomials
Let 𝑋 ∼ Binomial(𝑛, 𝑝) and 𝑌 ∼ Binomial(𝑛, 𝑝), where 𝑋 ⊥ 𝑌 . What is
the distribution of 𝑍 = 𝑋 + 𝑌? [Hint: Don’t try to do this via math. Think
about the experiment.]

3.8 Poisson approximation to Binomial
You will prove that the Binomial(𝑛, 𝑝) distribution is well approximated
by the Poisson(𝑛𝑝) distribution when 𝑛 is large and 𝑝 is small. Let 𝑋 ∼
Binomial(𝑛, 𝑝) and consider 𝑝𝑋 (𝑖), for an arbitrary fixed value of 𝑖 ≥ 0. In
your expression for 𝑝𝑋 (𝑖), set 𝑝 = 𝜆/𝑛 so that 𝑝𝑋 (𝑖) is expressed in terms
of only 𝜆 and 𝑛. Expand out all the “choose” terms. Now take the limit
as 𝑛 → ∞, while remembering that 𝑖 is a fixed constant. Show that 𝑝𝑋 (𝑖)
approaches the p.m.f. of a Poisson(𝜆) r.v.

3.9 COVID testing
[Proposed by Vanshika Chowdhary] On day 0, you take a long-distance
flight and you are infected with COVID with probability 1

2 . Being a respon-
sible citizen, you decide to quarantine for 14 days. You also visit a wizard,
who gives you some special beans to help cure you, just in case you are
sick. You take the beans every day, starting on day 1 of your quarantine.
Each day, the beans have a 1

8 chance of immediately curing you. Suppose
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you are tested at the end of day 14 (after 14 days of taking beans) and the
test comes back negative. What is the probability that you were actually
infected with COVID on day 0? Assume that the test is fully accurate.

3.10 Marginal probability
An urn contains 𝑛 balls, which are numbered 1, 2, . . . , 𝑛. Suppose that we
draw 𝑘 < 𝑛 balls without replacement from the urn. Each ball is selected
at random. Specifically, in the first draw, each ball has probability 1

𝑛
of

being selected. In the second draw, each of the remaining 𝑛 − 1 balls has
probability 1

𝑛−1 of being selected, and so on. Let 𝑋𝑖 denote the number on
the 𝑖th ball drawn. Your goal is to prove that

P {𝑋𝑖 = ℓ} =
1
𝑛

.

To do that, follow these steps:
(a) Are the 𝑋𝑖’s independent?
(b) Write an expression for P {𝑋1 = 𝑎1, 𝑋2 = 𝑎2, . . . , 𝑋𝑘 = 𝑎𝑘}, where 1 ≤

𝑎𝑖 ≤ 𝑛.
(c) Express the marginal probability, P {𝑋𝑖 = ℓ}, as a sum

P {𝑋𝑖 = ℓ} =
∑︁

P {𝑋1 = 𝑎1, . . . , 𝑋𝑖−1 = 𝑎𝑖−1, 𝑋𝑖 = ℓ, . . . , 𝑋𝑘 = 𝑎𝑘} .

What is the sum over?
(d) Evaluate the summation from (c). Start by evaluating the term inside

the sum. Then determine the number of terms being summed.

3.11 Binary symmetric channel (BSC)
A binary symmetric channel is a communications model used in coding
theory. There is a transmitter who wishes to send a bit, 𝐵. There is noise,
𝑁 , which may corrupt the bit, and there is a final output 𝑌 , where

𝑌 = 𝐵 ⊕ 𝑁 .

Here, ⊕ is a binary sum. Assume that 𝐵 ∼ Bernoulli(𝑝) and that 𝑁 ∼
Bernoulli(0.5) and that 𝑁 ⊥ 𝐵. Can we say that 𝐵 ⊥ 𝑌? Why or why not?

3.12 Noisy reading from flash storage
Flash memories are a type of storage media which provide orders of mag-
nitude faster access to data as compared to hard disks. However, one of the
downsides of flash memories is that they are prone to error when reading.
You have two flash memory devices, F1 and F2. The noisy readings from
F1 and F2 are modeled as follows:
• F1: For any stored bit, the value read is flipped with probability 𝑝1.
• F2: For any stored bit, the value read is flipped with probability 𝑝2.
Suppose you write a bit into both F1 and F2 (i.e., the same bit is written
into both devices), and that F1 and F2 act independently on that bit. A day
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later, you read the bit that you wrote from F1 and from F2. Represent the
value read from F1 by the r.v. 𝑌1 and the value read from F2 by 𝑌2. Assume
that the stored bit is represented by 𝑋 , where 𝑋 is equally likely to be 0 or
1, barring any other information.
(a) Assume that 𝑝1 = 0.1 and 𝑝2 = 0.2, that is, the probability of flip-

ping is low. Are 𝑌1 and 𝑌2 dependent? Explain using the definition of
independence of random variables.

(b) Repeat when 𝑝1 = 0.5 and 𝑝2 = 0.2. Now are 𝑌1 and 𝑌2 dependent?
(c) Repeat when 𝑝1 = 0.7 and 𝑝2 = 0.8. Now are 𝑌1 and 𝑌2 dependent?
(d) For what values of 𝑝1 and 𝑝2 do you conjecture that 𝑌1 and 𝑌2 are

dependent? Why do you think this is?

3.13 Correlated basketball
A basketball player attempts a shot and makes it. She attempts another
shot and misses it. Her subsequent shots have success probability based on
the proportion of her previous successful shots. What’s the probability she
makes 50 out of 100 shots? [Hint: Try looking for a pattern.]

3.14 How to find a mate
Imagine that there are 𝑛 people in the world. You want to find the best
spouse. You date one person at a time. After dating a person, you must
decide if you want to marry them. If you decide to marry, then you’re done.
If you decide not to marry, then that person will never again agree to marry
you (they’re on the “burn list”), and you move on to the next person.
Suppose that after dating a person you can accurately rank them in com-
parison with all the other people you’ve dated so far. You do not, however,
know their rank relative to people you haven’t dated. So, for example, you
might early on date the person who is the best of the 𝑛, but you don’t know
that – you only know that this person is better than the people you’ve dated
so far.
For the purpose of this problem, assume that each candidate has a unique
score, uniformly distributed between 0 and 1. Your goal is to find the
candidate with the highest score.

Algorithm 3.9 (Marriage algorithm)
1. Date 𝑟 ≪ 𝑛 people. Rank those 𝑟 to determine the “best of r.”
2. Now keep dating people until you find a person who is better than that

“best of r” person.
3. As soon as you find such a person, marry them. If you never find such

a person, you’ll stay unwed.

What value of 𝑟 maximizes P {end up marrying the best of 𝑛}? When using
that 𝑟, what is the probability that you end up marrying the best person? In
your analysis, feel free to assume that 𝑛 is large and thus 𝐻𝑛 ≈ ln(𝑛), by
(1.17).


