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27 A Little Bit of Queueing
Theory

We have alluded to the fact that probability is useful in the performance analysis
and design of computer systems. Queueing theory is an area of applied probability
which directly targets systems performance. Here the “system” might refer to
a computer system, a call center, a healthcare system, a manufacturing system,
a banking system, or one of many other examples. Markov chains (particularly
continuous-time chains) are just one of many tools used in queueing theory. In
this final part of the book, we provide a very brief introduction to queueing
theory. For a much more in-depth coverage, see [35].

27.1 What Is Queueing Theory?

Queueing theory is the theory behind what happens when you have lots of
jobs, scarce resources, and subsequently long queues and delays. It is literally
the “theory of queues”: what makes queues appear, how to predict the queue
lengths, and how to improve system design by making the queues get shorter or
go away.

Imagine a computer system, say a web server, where there is only one job. The
job arrives, it uses certain resources (say some CPU, some I/O, some bandwidth),
and then it departs. If we know the job’s resource requirements, it is very easy to
predict exactly when the job will depart. There is no delay because there are no
queues. If every job indeed got to run in isolation on its own computer system,
there would be no need for queueing theory. Unfortunately, that is rarely the case.

Queueing theory applies anywhere that queues come up (see Figure 27.1). We
have all had the experience of waiting in line at the bank, wondering why there
are not more tellers, or waiting in line at the supermarket, wondering why the
express lane is for 8 items or less rather than 15 items or less, or whether it might
be best to actually have two express lanes, one for 8 items or less and the other for
15 items or less. Queues are also at the heart of any computer system. Your CPU
uses a time-sharing scheduler to serve a queue of jobs waiting for CPU time. A
computer disk serves a queue of jobs waiting to read or write blocks. A router
in a network serves a queue of packets waiting to be routed. The router queue is
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Figure 27.1 Illustration of a queue, in which customers wait to be served, and a server.
The picture shows one customer being served at the server and five others waiting in the
queue.

a finite-capacity queue, in which packets are dropped when demand exceeds the
buffer space. Memory banks serve queues of threads requesting memory blocks.
Databases sometimes have lock queues, where transactions wait to acquire the
lock on a record. Server farms consist of many servers, each with its own queue
of jobs. Data centers often have a single central queue, where each job requests
some number of resources to run. The list of examples goes on and on.

The goals of a queueing theorist are three-fold. The first is predicting the system
performance. Typically this means predicting mean delay or delay variability or
the probability that delay exceeds some service level agreement (SLA). However,
it can also mean predicting the number of jobs that will be queueing or the mean
number of servers being utilized (e.g., total power needs), or any other such
metric. The second goal is capacity provisioning, namely determining how many
resources are needed to achieve certain performance goals. One might want to
provision to ensure that the system is stable, meaning that the queue lengths don’t
grow unboundedly. Or one might provision to ensure that certain SLAs are met.
The third goal is finding a superior system design to improve performance. This
often takes the form of a smarter scheduling policy or routing policy to reduce
delays.

27.2 A Single-Server Queue

Figure 27.2 illustrates a single-server queue. The circle represents the server.
One job can be served (worked on) at a time. New jobs arrive over time. If the
server is free, the arriving job is served immediately; otherwise, the job has to
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queue. Unless stated otherwise, we assume that the jobs queue in First-Come-
First-Served (FCFS) order.

λ = 3

μ = 4FCFS

Figure 27.2 Single-server queue. The height of the rectangle indicates the size of the job.

We formally define these quantities associated with the single-server queue:

Service order This is the order in which jobs (packets) will be served by the
server. Unless otherwise stated, assume FCFS.

Average arrival rate This is the average rate, 𝜆, at which jobs arrive to the
server. For example, 𝜆 = 3 jobs/s, indicates that on average 3 jobs are
arriving every second. Of course, some seconds might see more than 3
jobs, and others might see fewer than 3 jobs.

Interarrival time, mean interarrival time It is common to imagine that the
times between arrivals are independent and identically distributed
(i.i.d.), where there is a random variable (r.v.), 𝐼, which represents the
time between successive job arrivals. In this case, E [𝐼] would represent
the mean interarrival time.
Question: How can we think of E [𝐼] in terms of what we’ve already
seen?
Answer: By definition, E [𝐼] = 1

𝜆
. Thus, in our example, the mean

interarrival time would be 1
𝜆
= 1

3 seconds. Note that we have not said
anything about what the distribution of the interarrival time looks like.
It might be Deterministic, meaning that exactly one job arrives every
1
3 seconds, or it might be Exponential with rate 3, meaning that on
average the time between arrivals is 1

3 , but it might be anywhere from 0
to infinity.

Service requirement, size It is common to assume that the sizes of jobs are
i.i.d. and are denoted by the r.v. 𝑆. The size of a job is also called its
service requirement. 𝑆 is expressed in units of time and denotes the time
it would take the job to run on this server if there were no other jobs
around (no queueing). Importantly, the size is typically associated with
the server.

Mean service time This is E [𝑆], namely the average time required to serve a
job on this server, where again “service” does not include queueing time.
For example, we might have E [𝑆] = 0.25 seconds.

Average service rate This is the average rate, 𝜇, at which jobs are served.
Question: How can we think of 𝜇 in terms of what we’ve already seen?
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Answer: By definition, 𝜇 = 1
E[𝑆 ] = 4 jobs/s. Again, we have not said

anything about the job size distribution. 𝑆 might follow a Deterministic
job size distribution, where every job has exactly size 0.25 seconds, or,
for example, a Pareto distribution, with mean 0.25 seconds.

Observe that this way of speaking is different from the way we normally talk
about servers in conversation. For example, nowhere have we mentioned the
absolute speed of the server; rather, we have only defined the server’s speed in
terms of the set of jobs that it is working on.

Imagine that the server is a CPU with a FCFS queue of jobs. In normal conver-
sation, we might say:

• The average arrival rate of jobs is 3 jobs per second.
• Jobs have different service requirements, but the average number of cycles

required by a job is 2,000 cycles per job.
• The CPU speed is 8,000 cycles per second.
• That is, an average of 6,000 cycles of work arrive at the CPU each second,

and the CPU can process 8,000 cycles of work per second.

In the queueing-theoretic way of talking, we would never mention the word
“cycle.” Instead, we would simply say:

• The average arrival rate of jobs is 3 jobs per second.
• The average rate at which the CPU can service jobs is 4 jobs per second.

This second way of speaking suppresses some of the detail and thus makes the
problem a little easier to think about. You should feel comfortable going back
and forth between the two.

27.3 Kendall Notation

In queueing theory there is a shorthand notation, called Kendall notation, which
is used to represent simple commonly seen queueing systems consisting of just
a single queue. Kendall notation is in no way expressive enough to represent
all queueing systems (in particular, it is not useful for representing systems
consisting of multiple queues, like networks), but it is still worth learning this
shorthand.

As we saw in the previous section, what’s most relevant is the distribution of the
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interarrival times of jobs and the distribution of the job sizes (service times). In
Kendall notation there are typically three slots. The first indicates the distribution
of the interarrival times; the second indicates the job size distribution; and the
third indicates the number of servers. So, for example, writing:

𝐷/Pareto(𝛼)/1
indicates that we’re talking about a single-server queue where the interarrival
times follow a Deterministic distribution and the job sizes follow a Pareto(𝛼)
distribution. Likewise, the notation

𝑀/𝑀/1
indicates that we’re talking about a single-server queue where both the interarrival
times and the job sizes are Exponentially distributed; the letter 𝑀 is reserved for
the Exponential distribution, and denotes the Markovian (memoryless) property
of that distribution.

One thing that we have not discussed is independence. Kendall notation typically
assumes (unless otherwise indicated) that the interarrival times are all indepen-
dent random variables drawn from some distribution, and likewise that the job
sizes are independent random variables drawn from some distribution, and that
there is no correlation between interarrival times and the job sizes.

We also have not discussed the scheduling policy. Kendall notation typically
assumes FCFS scheduling. If the service order is something other than FCFS,
such as Shortest-Job-First, that information is sometimes included in a fourth
slot. However we’ll see that the fourth slot can be used for other things as well,
such as indicating that the buffer capacity (number of jobs that can be in the
system) is limited.

Question: Recall that back in Section 26.2, we talked about a queue where time
was discretized. At each discrete time step, with probability 𝑝 a packet (job)
arrived, and with probability 𝑞 a packet (job) departed, if there was a packet
there. How can we represent such a system via Kendall notation?

Answer: Geometric(𝑝)/Geometric(𝑞)/1.

27.4 Common Performance Metrics

We consider these common performance metrics for queueing systems:

• Response time, time in system, 𝑻: We define a job’s response time by

𝑇 = 𝑡depart − 𝑡arrive,
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where 𝑡depart is the time when the job leaves the system, and 𝑡arrive is the time
when the job arrived to the system. We are interested in E [𝑇], the mean
response time; Var(𝑇), the variance in response time; and the tail behavior of
𝑇 , P {𝑇 > 𝑡}.
• Waiting time, delay, 𝑻𝑸: This is the time that the job spends in the queue, not

being served. It is also called the “time in queue” or the “wasted time.”
• Number of jobs in the system, 𝑵: The r.v. 𝑁 includes those jobs in the

queues, plus any jobs in service.
• Number of jobs in queue, 𝑵𝑸: The r.v. 𝑁𝑄 denotes only the number of jobs

waiting (in queues).

Question: For a single-server queue, with FCFS service order, as in Figure 27.2,
what is the relationship between 𝑇 and 𝑇𝑄?

Answer: In a single-server queue with FCFS service order, waiting time can be
defined as the time from when a job arrives to the system until it first receives
service. Here 𝑇 = 𝑇𝑄 + 𝑆.

27.4.1 Immediate Observations about the Single-Server Queue

There are some immediate observations that we can make about the single-
server queue. First, observe that as 𝜆, the mean arrival rate, increases, all the
performance metrics mentioned earlier increase (get worse). Also, as 𝜇, the mean
service rate, increases, all the performance metrics mentioned earlier decrease
(improve).

We require that 𝜆 ≤ 𝜇 (we always assume 𝜆 < 𝜇).

Question: If 𝜆 > 𝜇 what happens?

Answer: If 𝜆 > 𝜇 then it seems like the queue length grows over time. We refer to
this as instability. If the queue were represented by a Markov chain, this would
be a transient chain.

Question: Can you provide the intuition for why the number of jobs in the system
grows over time?

Answer: Consider a large time 𝑡. Let 𝑁 (𝑡) be the number of jobs in the system at
time 𝑡. Let 𝐴(𝑡) (respectively, 𝐶 (𝑡)) denote the number of arrivals (respectively,
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completions) by time 𝑡. Then we have:

𝑁 (𝑡) = 𝐴(𝑡) − 𝐶 (𝑡)
E [𝑁 (𝑡)] = E [𝐴(𝑡)] − E [𝐶 (𝑡)]

≥ 𝜆𝑡 − 𝜇𝑡
= 𝑡 (𝜆 − 𝜇)
→ ∞ as 𝑡 →∞ (when 𝜆 > 𝜇 ).

(The inequality comes from the fact that the expected number of departures by
time 𝑡 is actually smaller than 𝜇𝑡, because the server is not always busy.)

Throughout this book, we assume 𝜆 < 𝜇, which is needed for stability, which is
defined as keeping queue sizes from growing unboundedly with time. When we
later deal with networks of queues, we will also assume stability.

Question: Given the previous stability condition (𝜆 < 𝜇), for a 𝐷/𝐷/1 queue,
what is 𝑇𝑄? What is 𝑇?

Answer: 𝑇𝑄 = 0, and 𝑇 = 𝑆.

Therefore queueing (waiting) results from variability in service time and/or inter-
arrival time distributions. Here is an example of how variability leads to queues:
Let’s discretize time. Suppose at each time step, an arrival occurs with probability
𝑝 = 1/6. Suppose at each time step, a departure occurs with probability 𝑞 = 1/3.
Then there is a non-zero probability that the queue will build up (temporarily) if
several arrivals occur without a departure.

27.5 Another Metric: Throughput

We have already seen four performance metrics: E [𝑁], E [𝑇], E
[
𝑁𝑄

]
, and

E
[
𝑇𝑄

]
. Now we introduce two new performance metrics: throughput and uti-

lization. Throughput is arguably the performance metric most used in conversa-
tion. Everyone wants higher throughput! Is higher throughput related to lower
response time? Let’s see.

Question: In Figure 27.3, which system has higher throughput?

Answer: You might be tempted to think that the top queue has higher throughput,
since its server is faster and thus jobs complete more quickly. While the top queue
does have lower mean response time, both queues have the same throughput.
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Figure 27.3 Comparing throughput of two systems.

Definition 27.1 Throughput, denoted by 𝑋 , is the long-run rate of job com-
pletions over time. We write:

𝑋 = lim
𝑡→∞

𝐶 (𝑡)
𝑡

,

where 𝐶 (𝑡) denotes the number of completions by time 𝑡. Note that 𝑋 is tradi-
tionally capitalized even though it’s not a random variable.

Question: What is the throughput, 𝑋 , of the queues in Figure 27.3?

Answer: Both systems have the same throughput of 𝑋 = 𝜆 = 3 jobs/s. No matter
how high we make 𝜇, the completion rate is still bounded by the arrival rate:
“Rate in = Rate out.” Changing 𝜇 affects the maximum possible 𝑋 , but not the
actual 𝑋 .

We now move on to understanding throughput for more complex systems.

27.5.1 Throughput for 𝑀/𝐺/𝑘

Figure 27.4 illustrates a 𝑘-server queueing system with a single shared queue.
Whenever a server is free, it picks the job at the head of the queue to work on;
if there is no job there, it sits idling until a job arrives. Because there is only
one queue, we can describe this with Kendall notation. For example, this might
be an 𝑀/𝐺/𝑘 queue with arrival rate 𝜆 jobs per second, where the 𝑀 indicates
that the interarrival times are distributed as Exp(𝜆). The 𝐺 here denotes that job
sizes are i.i.d. following some general distribution, which we haven’t specified.
We use r.v. 𝑆 to denote job size where the service rate at each server, 𝜇, is defined
to be 𝜇 = 1

E[𝑆 ] . Here there are 𝑘 servers, and a single FCFS queue, where the
servers all pick their jobs from the same queue.

Question: What condition is needed to keep the system in Figure 27.4 stable?
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Figure 27.4 A 𝑘-server queueing system.

Answer: To keep the queue from growing unboundedly, we need to ensure that
the total arrival rate of jobs into the system, 𝜆, is less than the total rate at which
jobs can leave the system, 𝑘𝜇. So we want 𝜆 < 𝑘𝜇.

Question: What is the throughput of the system in Figure 27.4?

Answer: Assuming a stable system, what comes in all goes out, so the completion
rate is the arrival rate, namely 𝑋 = 𝜆.

In today’s data centers, it is commonly the case that a job occupies multiple
servers simultaneously rather than just occupying a single server. Exercise 27.7
examines how the above answers change in these multi-server job settings.

27.5.2 Throughput for Network of Queues with Probabilistic
Routing

Figure 27.5 shows a network of queues. Here, server 𝑖 receives external arrivals
(“outside arrivals”) with average rate 𝑟𝑖 . However, server 𝑖 also receives internal
arrivals from some of the other servers. A job that leaves server 𝑖 next goes to
server 𝑗 with probability 𝑃𝑖 𝑗 . Server 𝑖 processes jobs with average rate 𝜇𝑖 .

Note that we have not said anything about the distribution of the interarrival
times or the service times, but that won’t matter for questions of stability or
throughput.



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

27.5 Another Metric: Throughput 519

Server 1

μ1

μ2

Server 3

Server 2

μ3

r2

r3

r1

P12 P23

P2, out

P1, out

P13

P31

Figure 27.5 Network of queues with probabilistic routing.

Question: Assuming that the system is stable, what is the system throughput, 𝑋
in Figure 27.5?

Answer: All jobs that arrive will also leave, so the rate of departures is the total
rate of arrivals, namely: 𝑋 =

∑
𝑖 𝑟𝑖 .

Question: What is the throughput at server 𝑖, 𝑋𝑖?

Answer: 𝑋𝑖 is the rate of completions at server 𝑖. Let 𝜆𝑖 denote the total arrival
rate into server 𝑖 (including both external and internal arrivals). Then 𝑋𝑖 = 𝜆𝑖 .
But to get 𝜆𝑖 we need to solve these simultaneous equations:

𝜆𝑖 = 𝑟𝑖 +
∑︁
𝑗

𝜆 𝑗𝑃 𝑗𝑖 . (27.1)

Here, 𝑟𝑖 denotes the rate of outside arrivals into server 𝑖, while 𝜆 𝑗𝑃 𝑗𝑖 denotes the
rate of internal arrivals into server 𝑖 from server 𝑗 . Note that 𝜆 𝑗 here represents
the total departure rate from server 𝑗 (which is equal to the total arrival rate into
server 𝑗).

Question: How are the 𝑟𝑖’s constrained in these equations?

Answer: To maintain stability, we must have 𝜆𝑖 < 𝜇𝑖 , ∀𝑖, and this constrains the
𝑟𝑖’s (see Exercise 27.8).

27.5.3 Throughput for Network of Queues with Deterministic
Routing

In the queueing network in Figure 27.6, all jobs follow a predetermined route:
CPU to disk 1 to disk 2 to disk 1 to disk 2 to disk 1 and then out.
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λ

CPU Disk 1

Disk 2
2 × around

(Disk 1,2,1,2,1)

Figure 27.6 Network of queues with non-probabilistic routing.

Question: What is 𝑋 in Figure 27.6?

Answer: 𝑋 = 𝜆.

Question: What are 𝑋Disk1 and 𝑋Disk2?

Answer: 𝑋Disk1 = 3𝜆 and 𝑋Disk2 = 2𝜆.

27.5.4 Throughput for Finite Buffer

The queue in Figure 27.7 has finite capacity. The outside arrival rate is 𝜆 and the
service rate is 𝜇. Any arrival that finds no room is dropped.

λ

Space for 10 

jobs total

μ

Figure 27.7 Single-server network with finite buffer capacity.

Question: What is 𝑋?

Answer: Here, 𝑋 < 𝜆 because not all arrivals are admitted. The exact formula
is 𝑋 = 𝜆 · P {job is admitted}.

27.6 Utilization

When we talk about “utilization,” we’re almost always talking about the utiliza-
tion of a single device (think single server), which we call “device utilization.”
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Definition 27.2 The device utilization, denoted by 𝜌, is the long-run fraction
of time the device is busy. This is also called the device load.

Think about watching the device for a long period of time, 𝑡. Let 𝐵(𝑡) denote the
total time during the observation period that the device is non-idle (busy). Then

𝜌 = lim
𝑡→∞

𝐵(𝑡)
𝑡

.

Question: Looking at the two queues in Figure 27.3, what do you think 𝜌 is for
each server?

Answer: Intuitively it seems that 𝜌 = 3
6 = 1

2 for the top server, while 𝜌 = 3
4 for

the bottom one. For example, for the bottom queue we imagine that there are 3
jobs coming in per second, and each occupies the server for 1

4 second on average,
so the server is occupied for 3

4 fraction of each second. This is NOT a proof! In
Section 27.11, we will formally prove that

𝜌 =
𝜆

𝜇
(27.2)

in the case of a single-server queue with arrival rate 𝜆 and service rate 𝜇.

Although utilization almost always refers to a single device, if all the devices in
a system are homogeneous and receive stochastically the same arrivals, then we
often define the system load to be the same as a single server load.

For example, in the 𝑀/𝐺/𝑘 of Figure 27.4, we would say:

system load =
𝜆

𝑘𝜇
. (27.3)

To see this, observe that, by symmetry, an individual server receives 1
𝑘

of the
arrivals, on average, so its arrival rate is 𝜆

𝑘
and its service rate is 𝜇, leading to a

server utilization of 𝜆/𝑘
𝜇

= 𝜆
𝑘𝜇

. The case where a job occupies multiple servers is
not much more complicated, see Exercise 27.7.

27.7 Introduction to Little’s Law

Thus far, we have not discussed how one can determine the response time in a
queueing system. One way in which this is done is to first represent the queueing
system via a Markov chain. Then we solve for the stationary distribution of the
Markov chain, which gives us E [𝑁], the mean number of jobs in the system.
We then use a beautiful theorem, called Little’s Law, which allows us to convert
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from E [𝑁] to E [𝑇], the mean response time. The purpose of this section is to
present and prove Little’s Law.

As a side note: Not all queueing systems can be represented easily as Markov
chains. The

Geometric(𝑝)/Geometric(𝑞)/1
queue forms a nice discrete-time Markov chain (DTMC), because the Geometric
distribution is memoryless. Likewise, the 𝑀/𝑀/1 queue (for the same reason
of memorylessness) can be represented by a Markov chain, but this time a
continuous-time Markov chain (CTMC) is required. However, what do we do
when the interarrival times or service times are not memoryless? It turns out that
one can usually approximate general distributions by mixtures of memoryless
distributions, see [35, chpt. 21]. This ends up being very convenient for modeling
queueing systems via Markov chains. On the other hand, there are also many
techniques for getting to E [𝑇] without going through a Markov chain.

Little’s Law does more than relate E [𝑁] to E [𝑇]. It provides a formal law for
obtaining an average by dividing two averages, a trick that has many applications!
One important application of Little’s Law is that it allows us to prove the formula
for device utilization (𝜌 = 𝜆

𝜇
) that we saw in (27.2).

One of the reasons that Little’s Law is so powerful is that it holds for any
ergodic queueing system, no matter how complex, no matter how many queues,
no matter what routing between the queues, no matter what service order within
each queue, etc.

Question: What do we mean when we talk about an “ergodic system”?

Answer: Recall that for a Markov chain, we said that the Markov chain is
ergodic if it is (1) irreducible, (2) aperiodic, and (3) positive recurrent. These
ergodicity properties were sufficient to ensure that the time-averages were equal
to their ensemble-average counterparts with probability 1. Even if we’re not
explicitly talking about a Markov chain, the same points apply. Generally, any
“well-behaved” system is ergodic. By “well-behaved” we mean that the system
is stable, in that queue lengths do not grow to infinity, and that the mean time
between the system emptying is finite (as in positive recurrent).

27.8 Intuitions for Little’s Law

Before we state Little’s Law, it is worth trying to guess what it might say on
your own. It should seem intuitive that E [𝑇] and E [𝑁] are proportional. For
example, a fast-food restaurant gets people out fast (low E [𝑇]) and also does not
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require much waiting room (low E [𝑁]). By contrast, a slow-service restaurant
gets people out slowly (high E [𝑇]) and therefore needs a lot more seating room
(high E [𝑁]). Thus it seems that E [𝑇] should be directly proportional to E [𝑁].

Let’s see if you can “guess” what it might be, by just looking at a single-server
queue. Figure 27.8 shows an illustration of a single-server queue with outside
arrival rate 𝜆 jobs/s, and mean job size E [𝑆] = 1

𝜇
seconds/job.

λ = 3

μ = 4FCFS

Figure 27.8 Single-server queue. The height of the rectangle indicates the size of the job.

Question: Suppose we know the mean number of jobs in this system, E [𝑁]. Is
there a way to convert that to the mean response time, E [𝑇]?

Here’s a (WRONG) attempt: Let’s think of E [𝑇] as adding up the work in the
system as seen by an arrival, where 𝑆𝑖 denotes the size of the 𝑖th job, maybe
something like:

E [𝑇] = E [𝑁] · E [𝑆] .

Intuitively the above attempt seems right because an arrival sees E [𝑁] jobs, and
each of these requires E [𝑆] service time. However, it is WRONG for several
reasons. First of all, 𝑁 and 𝑆 are not independent. Second, we’re not taking into
account the remaining service time on the job in service; remember that the job
in service is typically partially complete. Third, this logic in no way generalizes
to larger systems with many queues and servers.

The correct answer is:

E [𝑇] = E [𝑁]
𝜆

. (27.4)

Question: Can you explain intuitively why (27.4) makes sense for a single-server
queue?

Answer: Think about a single FCFS queue, as shown in Figure 27.8. From a
time-average perspective suppose that there are E [𝑁] jobs in the system. Now
observe that, on average,

E [Time between completions] = 1
𝜆

,

not 1/𝜇, because the average rate of completions is 𝑋 = 𝜆 (note that 1/𝜆 is
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larger than 1/𝜇). Hence, intuitively, the expected time until the customer leaves
is E [𝑇] ≈ 1

𝜆
· E [𝑁]. This is NOT a proof, only intuition. Theorem 27.3 will

give us a proof, and that proof will hold for any network of queues.

27.9 Statement of Little’s Law

Theorem 27.3 (Little’s Law) For any ergodic system (including arbitrarily
complex networks of queues) we have that:

E [𝑁] = 𝜆E [𝑇] , (27.5)

where E [𝑁] is the expected number of jobs in the system, 𝜆 is the average
arrival rate into the system, and E [𝑇] is the mean time jobs spend in the
system.

Arrivals (rate λ) DeparturesAny system

Time in system, T

Figure 27.9 Little’s Law is extremely general.

It is important to note that Little’s Law makes no assumptions about the arrival
process, the number of servers or queues, the service time distributions at the
servers, the network topology, the service order, or anything! Also, since any
portion of a queueing network is still a queueing network, Little’s Law will apply
to that portion as well.

Observe that, because we’re considering ergodic systems, every job that arrives
will complete in finite time (the mean time until the whole system empties is
finite), so we know that

𝜆 = 𝑋

in Figure 27.9. Here,

𝜆 = lim
𝑡→∞

𝐴(𝑡)
𝑡

and 𝑋 = lim
𝑡→∞

𝐶 (𝑡)
𝑡

,

where 𝐴(𝑡) is the number of arrivals by time 𝑡 and 𝐶 (𝑡) is the number of system
completions (departures) by time 𝑡.
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Restatement via Time Averages

Theorem 27.4 is a restatement of Little’s Law in terms of time averages. This is
the version that we’ll actually be proving.

Theorem 27.4 (Little’s Law restated) Given any system, let 𝑀 (𝑠) denote the
number of jobs in the system at time 𝑠. Let 𝑇𝑖 denote the response time of the
𝑖th arriving job.

𝑁
Time Avg

= lim
𝑡→∞

∫ 𝑡

0 𝑀 (𝑠)𝑑𝑠
𝑡

and 𝑇
Time Avg

= lim
𝑡→∞

∑𝐴(𝑡 )
𝑖=1 𝑇𝑖

𝐴(𝑡) .

For any system where the above limits exist and where 𝜆 = 𝑋 , then,

𝑁
Time Avg

= 𝜆 · 𝑇Time Avg. (27.6)

Observe that Little’s Law as stated in Theorem 27.4 is an equality between time
averages on a single sample path, while Little’s Law from Theorem 27.3 is an
equality between ensemble averages.

Question: Does Theorem 27.4 imply Theorem 27.3?

Answer: Yes! Theorem 27.3 assumes ergodicity, which subsumes the assumption
that 𝜆 = 𝑋 , which is needed in Theorem 27.4.1 As we’ve seen in Chapters 25
and 26, if we have an ergodic system then the time average equals the ensemble
average with probability 1. So proving that the time-average equality (27.6) holds
suffices to guarantee that the ensemble averages are equal too. The reason we
need the stronger assumption of ergodicity in Theorem 27.3 is just to make sure
that the ensemble averages exist. Thus, assuming ergodicity, we can apply Little’s
Law in an ensemble average sense, which is what we do.

27.10 Proof of Little’s Law

We are now ready to prove Little’s Law.

Proof: [Theorem 27.4] Let 𝑇𝑖 denote the time that the 𝑖th arrival to the system
spends in the system, as shown in Figure 27.10. Thus the rectangle 𝑇𝑖 marks the
time from when the first job arrives until it completes (this includes time that the
job is being served and time that it spends waiting in various queues).

1 Ergodicity says that the mean time between empties is finite, so clearly every job completes in
finite time, so the long-run rate of arrivals and completions converge.
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Now, for any time 𝑡, consider the area, A, contained within all the rectangles in
Figure 27.10, up to time 𝑡 (this includes most of the rectangle labeled 𝑇5).

The key idea in proving Little’s Law is that this area A is the same, whether we
view it by summing horizontally or by summing vertically. We will first view
A by summing horizontally, and then, equivalently, view it again by summing
vertically.

Time

tArrival

1st job

Departure

1st job

T1

T2

T3

T4

T5

T6

Figure 27.10 Graph of arrivals.

The horizontal view consists of summing up the 𝑇𝑖’s as follows: We observe that
𝐶 (𝑡 )∑︁
𝑖=1

𝑇𝑖 ≤ A ≤
𝐴(𝑡 )∑︁
𝑖=1

𝑇𝑖 ,

where
∑𝐶 (𝑡 )

𝑖=1 𝑇𝑖 denotes the sum of the time in system of those jobs that have
completed by time 𝑡, and

∑𝐴(𝑡 )
𝑖=1 𝑇𝑖 denotes the sum of the time in system of those

jobs that have arrived by time 𝑡 (a slight abuse of notation).

The vertical view ofA adds up the number of jobs in the system at any moment
in time, 𝑀 (𝑠), where 𝑠 ranges from 0 to 𝑡. Thus,

A =

∫ 𝑡

0
𝑀 (𝑠)𝑑𝑠.

Combining these two views, we have
𝐶 (𝑡 )∑︁
𝑖=1

𝑇𝑖 ≤
∫ 𝑡

0
𝑀 (𝑠)𝑑𝑠 ≤

𝐴(𝑡 )∑︁
𝑖=1

𝑇𝑖 .

Dividing by 𝑡 throughout, we get:∑𝐶 (𝑡 )
𝑖=1 𝑇𝑖

𝑡
≤

∫ 𝑡

0 𝑀 (𝑠)𝑑𝑠
𝑡

≤
∑𝐴(𝑡 )

𝑖=1 𝑇𝑖

𝑡
,
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or, equivalently,∑𝐶 (𝑡 )
𝑖=1 𝑇𝑖

𝐶 (𝑡) ·
𝐶 (𝑡)
𝑡
≤

∫ 𝑡

0 𝑀 (𝑠)𝑑𝑠
𝑡

≤
∑𝐴(𝑡 )

𝑖=1 𝑇𝑖

𝐴(𝑡) ·
𝐴(𝑡)
𝑡

.

Taking limits as 𝑡 →∞,

lim
𝑡→∞

∑𝐶 (𝑡 )
𝑖=1 𝑇𝑖

𝐶 (𝑡) · lim
𝑡→∞

𝐶 (𝑡)
𝑡
≤ 𝑁Time Avg ≤ lim

𝑡→∞

∑𝐴(𝑡 )
𝑖=1 𝑇𝑖

𝐴(𝑡) · lim
𝑡→∞

𝐴(𝑡)
𝑡

⇒ 𝑇
Time Avg · 𝑋 ≤ 𝑁Time Avg ≤ 𝑇Time Avg · 𝜆.

Yet we are given that 𝑋 and 𝜆 are equal. Therefore,

𝑁
Time Avg

= 𝜆 · 𝑇Time Avg. ■

Question: Are we assuming FCFS service order in this argument?

Answer: No, this argument does not depend on service order. Observe that the
second arrival departs after the third arrival departs.

Question: Are we assuming anywhere that this is a single-server system?

Answer: No, this argument holds for any system. In fact, Little’s Law can also
be applied to any part of a system, so long as that part is well behaved (ergodic).
We’ll see this in Example 27.8.

A final remark on the proof: The proof assumes lim𝑡→∞
∑𝐶 (𝑡 )

𝑖=1
𝐶 (𝑡 ) = lim𝑡→∞

∑𝐴(𝑡 )
𝑖=1
𝐴(𝑡 ) .

To see why, observe that the difference in the numerators is just the total work in
the system at time 𝑡, which is finite, whereas the denominators grow with time.
Thus the difference disappears in the limit as 𝑡 →∞.

27.11 Important Corollaries of Little’s Law

Corollary 27.5 (Little’s Law for time in queue) Given any system where
𝑁

Time Avg
𝑄 , 𝑇Time Avg

𝑄 , 𝜆, and 𝑋 exist and where 𝜆 = 𝑋 , then

𝑁
Time Avg
𝑄 = 𝜆 · 𝑇Time Avg

𝑄 ,

where 𝑁𝑄 represents the number of jobs in the queues in the system and 𝑇𝑄
represents the time jobs spend in queues.



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

528 27 A Little Bit of Queueing Theory

Question: How would you prove Corollary 27.5?

Answer: Same proof as for Theorem 27.4, except that now instead of drawing
𝑇𝑖 , we draw 𝑇

(𝑖)
𝑄

, namely the time the 𝑖th arrival to the system spends in queues
(wasted time). Note that 𝑇 (𝑖)

𝑄
may not be a solid rectangle. It may be made up

of several rectangles because the 𝑖th job might be in a queue for a while, then in
service, then waiting in some other queue, then in service again, etc.

Corollary 27.6 (Utilization Law) Consider a single device 𝑖 with its own
queue, possibly within a network of queues. Suppose that the average arrival
rate into device 𝑖 is 𝜆𝑖 jobs/s and the average service rate of device 𝑖 is 𝜇𝑖
jobs/s, where 𝜆𝑖 < 𝜇𝑖 . Let 𝜌𝑖 denote the long-run fraction of time that device 𝑖
is busy. Then,

𝜌𝑖 =
𝜆𝑖

𝜇𝑖
.

We refer to 𝜌𝑖 as the “device utilization” or “device load.”

Proof:

Question: Do you see where to apply Little’s Law to queue 𝑖?

Hint: What should the “system” be for applying Little’s Law?

Answer: Let the “system” consist of just the “service facility” (the server part
without the associated queue), as shown in the shaded box of Figure 27.11. Now
the number of jobs in the “system” is always just 0 or 1.

The “system”

μArrival rate λi Departures

Device i

i

Figure 27.11 Using Little’s Law to prove the Utilization Law.

Question: What is the expected number of jobs in the system as we have defined
it?

Answer: The number of jobs in the system is 1 when the device is busy (this
happens with probability 𝜌𝑖) and is 0 when the device is idle (this happens with
probability 1 − 𝜌𝑖). Hence the expected number of jobs in the system is 𝜌𝑖 . So,
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applying Little’s Law, we have:

𝜌𝑖 = Expected number jobs in service facility for device 𝑖
= (Arrival rate into service facility) · (Mean time in service facility)
= 𝜆𝑖 · E [Service time at device 𝑖]

= 𝜆𝑖 ·
1
𝜇𝑖

. ■

We often express the Utilization Law as:

𝜌𝑖 =
𝜆𝑖
𝜇𝑖

= 𝜆𝑖E [𝑆𝑖] = 𝑋𝑖E [𝑆𝑖] ,

where 𝜌𝑖 , 𝜆𝑖 , 𝑋𝑖 , and E [𝑆𝑖] are the load, average arrival rate, average throughput,
and average service requirement at queue 𝑖, respectively.

Suppose we have some arbitrary network of queues. We’d like to again relate
E [𝑇] to E [𝑁] for the system. However, we are only interested in “red” jobs,
where “red” denotes some type of job. Specifically, we’d like to understand how
E [𝑁red], the mean number of red jobs in the system relates to E [𝑇red], the mean
response time of red jobs.

Question: Suppose we want to apply Little’s Law to just a particular class of
jobs, say the “red” jobs. Can we do this?

Answer: Yes.

Theorem 27.7 (Little’s Law for red jobs) For any ergodic system we have
that:

E [𝑁red] = 𝜆redE [𝑇red] ,

where E [𝑁red] is the expected number of red jobs in the system, 𝜆red is the
average arrival rate of red jobs into the system, and E [𝑇red] is the mean time
that red jobs spend in the system.

Proof: The proof is exactly the same as for Little’s Law, but only the 𝑇𝑖’s
corresponding to the red jobs are included in Figure 27.10. ■

Example 27.8 (Repair center)

Repairs don’t always work. In Jenny’s repair center, shown in Figure 27.12,
every arriving item undergoes a “repair attempt,” but with probability 0.9 the
item needs to go in for another round. We say that the total time for repair, 𝑇 ,
is the time from when the item first arrives until it is fully repaired. Based on
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Jenny’s measurements, on average, 𝜆 = 2 items arrive to the repair center every
hour, the average repair attempt takes E [𝑆] = 2 minutes, and E [𝑇] = 10 hours.

Repair

attempt

λ = 2

0.9

0.1

Figure 27.12 Jenny’s repair center.

Question: What fraction of time is the repair center busy?

Answer: To answer this, we draw a gray box around just the server, as shown in
Figure 27.13.

Repair
attempt

λ = 2

0.9

0.1

Figure 27.13 The “system” here is the gray box.

Applying Little’s Law to this gray box system, we have:

E [𝑁box] = 𝜆box · E [𝑇box] .
Observe that E [𝑁box] = 𝜌. Furthermore, E [𝑇box] = E [𝑆] = 2

60 hours. To get
𝜆box, we note that, on average, an item requires 10 repair attempts. Hence

𝜆box = 10 · 𝜆 = 20 items/hour.

Little’s Law thus yields:

E [𝑁box] = 𝜆box · E [𝑇box]

𝜌 = 20 · 2
60

=
2
3

.

Question: What is the expected number of items in the repair center, E [𝑁]?

Hint: This can be solved in two different ways, depending on how we define our
system of interest in Figure 27.14.
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Repair

attempt

λ = 2

0.9

0.1
Repair

attempt

λ = 2

0.9

0.1

(a) (b)

Figure 27.14 Two different views of the “system,” both with the same E [𝑁].

Answer: If we draw our gray box around the entire system, as shown in Fig-
ure 27.14(a), then 𝜆box = 𝜆 = 2. This yields:

E [𝑁box] = 𝜆box · E [𝑇box]
E [𝑁] = 𝜆 · E [𝑇]

= 2 · 10 = 20 items.

On the other hand, if we draw our gray box around a single attempt, as shown in
Figure 27.14(b), then 𝜆box = 10𝜆. However, E [𝑇box] is only E[𝑇 ]

10 since there are
10 attempts on average. This yields:

E [𝑁box] = 𝜆box · E [𝑇box]
E [𝑁] = (10𝜆) · E

[
𝑇attempt

]
= (10 · 2) · E [𝑇]

10

= 20 · 10
10

= 20 items.

Unsurprisingly, the answer is the same, since Little’s Law applies to any system
or portion of a system.

27.12 Exercises

27.1 Professors and students
A professor practices the following strategy with respect to taking on new
PhD students. On the even-numbered years, she takes on two new PhD
students. On the odd-numbered years, she takes on one new PhD student.
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All students graduate and the average time to graduate is six years. How
many PhD students on average will the professor have in her group? Prove
your answer.

27.2 Professors and students, revisited
A professor practices the following strategy with respect to taking on new
PhD students. On the even-numbered years, she takes on two new PhD
students. On the odd-numbered years, she takes on one new PhD student.
Not all students graduate. Of the students whom the professor takes on,
1
3 end up staying for one year on average and then leave the program;
1
6 graduate after four years; 1

6 graduate after five years; 1
6 graduate after

six years; and 1
6 graduate after seven years. How many PhD students on

average will the professor have in her group? Prove your answer.

27.3 Mean response time at router with infinite capacity
Recall in Section 26.2 we derived the mean number of packets in a router
with infinite capacity, where at every time step, with probability 𝑝 =
1
4 one packet arrives, and, independently, with probability 𝑞 = 1

3 one
packet departs. What is the mean response time, E [𝑇], for this particular
system?

27.4 Mean response time at router with finite capacity
As in Exercise 27.3, we return to the router in Section 26.2, but this time,
the router only has room for a total of 3 packets. Specifically, if a packet
arrives when the state of the DTMC is 3, then the packet is dropped and
the state of the system doesn’t change. What is the mean response time,
E [𝑇], of those packets that are not dropped. [Hint: To create an ergodic
system, you’ll want to think about the “system” as consisting only of the
arrivals that enter.]

27.5 The single-server queue
Kunhe’s system consists of a single-server queue. Based on Kunhe’s mea-
surements, the average arrival rate is 𝜆 = 5 jobs/s; the average job size is
E [𝑆] = 0.1 s; and the average number of jobs is E [𝑁] = 10.5 jobs.
(a) What is the fraction of time that Kunhe’s server is busy?
(b) What is the average time that jobs spend queueing in Kunhe’s system,

E
[
𝑇𝑄

]
?

27.6 The Arthur Ravenel bridge
The Arthur Ravenel bridge in Charleston allows walkers and joggers to
get to downtown Charleston. During my visit to Charleston, I observed
that:
• On average, 20 walkers arrive per hour and take an average of 1 hour

to cross the bridge.
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• On average, 10 joggers arrive per hour and take an average of 20 minutes
to cross the bridge.

Based on this data, estimate the average number of people (walkers plus
joggers) on the bridge at any time.

27.7 Data center utilization
The Clouds-R-Us company runs a data center with 10,000 servers
shown in Figure 27.15. Jobs arrive to the data center with average
rate 𝜆 = 2 jobs/s. Each job requires some number of servers 𝐾 , where
𝐾 ∼ Binomial(1000, 0.05). The job holds onto these 𝐾 servers for some
time 𝑆 seconds, where 𝑆 ∼ Exp(0.02), and then releases all its servers
at once. Assume that 𝐾 and 𝑆 are independent. Jobs are served in FCFS
order. If a job gets to the head of the queue, but the number of servers
that it needs exceeds the number of idle servers, then the job simply
waits (blocking those jobs behind it in the queue) until that number of
servers becomes available. You may assume that the system is ergodic.
On average, how many jobs are running at a time?

λ

Figure 27.15 Data center for Exercise 27.7.

27.8 Maximum outside arrival rate
For the network-of-queues with probabilistic routing given in Figure 27.5,
suppose that each server serves at an average rate of 10 jobs/s; that is,
𝜇𝑖 = 10, ∀𝑖. Suppose that 𝑟2 = 𝑟3 = 1. Suppose that 𝑝12 = 𝑝2,𝑜𝑢𝑡 = 0.8,
𝑝23 = 𝑝13 = 0.2, 𝑝1,𝑜𝑢𝑡 = 0, and 𝑝31 = 1. What is the maximum allowable
value of 𝑟1 to keep this system stable?

27.9 Simplified power usage in data centers
Given that power is expensive, it is common practice to leave servers on
only when they are being used and to turn them off whenever they are



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

534 27 A Little Bit of Queueing Theory

not in use. Assume that the following power-aware algorithm is used:
When a job arrives, it instantly turns on a fresh server (assume zero setup
cost). When the job completes service, it instantly turns off that server.
Assume that there is always a server available for every job (i.e., there is
no queueing). Your goal is to derive the time-average rate at which power
is used in our system. Assume that when a server is on, it consumes power
at a rate of P = 240 watts. Assume 𝜆 = 10 jobs arrive per second and that
the service requirement of jobs is Uniformly distributed, ranging from 1
second to 9 seconds.

27.10 Going to the DMV
When getting your driver’s license at the DMV, you have to pass through
two stations: the photo-taking station and the license-creation station.
Unfortunately, at the end of license-creation, with probability 25% they
find something wrong with the photo, and the whole process has to start
all over again. Figure 27.16 shows the process. As shown in the figure,
the average arrival rate of people to the DMV is 𝑟 = 15 people per hour,
the average number of people in the photo station is 10, and the average
number in the license station is 20. Assume that the system is stable in
that the total arrival rate into each station is less than the service rate at
the station. Derive the mean time from when you walk into the DMV until
you walk out with your driver’s license.

Photo station

E [NPhoto]= 10

License station

E [NLicense]= 20
r = 15

¼

¾

Figure 27.16 The DMV process for Exercise 27.10.

27.11 Network that looks like a flip flop
Tianxin’s network, shown in Figure 27.17, looks like a flip flop.
Jobs arrive to Tianxin’s network at a rate of 𝑟 = 1 jobs per second. The
routing probabilities are shown. The service rate at station A is 𝜇𝐴 = 3
jobs per second, and that at station B is 𝜇𝐵 = 4 jobs per second. An
individual job might pass through Station A, then B, then A, then B, etc.,
before it eventually leaves. Tianxin has observed that the expected number
of jobs at station A is E [𝑁𝐴] = 2 and the expected number of jobs at
station B is E [𝑁𝐵] = 1.
(a) Let 𝑇 denote the response time of a job, i.e., the time from when it

arrives until it departs. What is E [𝑇]?
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r = 1 0.5
=3μA

Station A

0.5
=4μB

Station B

0.5

0.5

Figure 27.17 Tianxin’s network for Exercise 27.11.

(b) Let 𝜆𝐴 denote the total arrival rate into station A. Let 𝜆𝐵 denote the
total arrival rate into station B. What are 𝜆𝐴 and 𝜆𝐵?

(c) What is the throughput of the system? What is the throughput of
station A? Which is higher?

(d) Let𝑇𝐴 denote the time it takes for a job to make a single visit to station
A (this includes queueing and then serving at station A). Likewise, let
𝑇𝐵 denote the time it takes for a job to make a single visit to station
B. What are E [𝑇𝐴] and E [𝑇𝐵]?

(e) Let 𝑇𝑄 denote the total time that a job spends queueing while in the
system. This includes the total time that the job is in queues from
when it arrives until it leaves the system. What is E

[
𝑇𝑄

]
?

27.12 Finally a haircut!
For over a year in lockdown, I haven’t been able to get my hair cut, but
finally I can return to the salon! At my salon there are two stations: the
washing station and the cutting station, each with its own queue. The
people who work at the washing station only wash hair. The people who
work at the cutting station only cut hair. When a washing person frees up,
they take the next person in the wash line, and similarly for the cutting
line.
My salon is very quick. The average wash time is only E [𝑆wash] = 1

13
hours and the average cut time is only E [𝑆cut] = 1

7 hours. Unfortunately,
they’re so quick that they sometimes forget to rinse the shampoo, so, with
probability 1

4 , I will need to rejoin the wash line after my wash is complete.
There are two types of customers at my salon: the “wash-and-cut” cus-
tomers, who get their hair washed and then cut, and the “cut-only” cus-
tomers who only get their hair cut (no wash).
Figure 27.18 shows the salon. Assume that 54 customers enter the salon
per hour. Assume that 2

3 are wash-and-cut customers and 1
3 are cut-only

customers.
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Figure 27.18 Hair salon for Exercise 27.12.

(a) What is the bare minimum number of staff (washers + cutters) that
are needed to ensure that the hair salon is stable?

(b) On average, the number of customers at the wash station (either in the
wash queue or having their hair washed) is 9. On average, the number
of customers at the cutting station (either in the cut queue or having
their hair cut) is 18.
(i) What is the expected response time of a random customer (we’re

not told the type of customer)?
(ii) What is the expected response time of a cut-only customer? [Hint:

Think about the experience of a cut-only customer.]

27.13 Little’s Law and the vaccine center
Our local COVID vaccine center is structured as a multi-server queue,
where there are five nurses providing vaccines, and a queue of patients
waiting to receive vaccines, as in Figure 27.19. When a patient is getting
their vaccine, they sit in one of the five chairs. Due to social distancing
rules, there is a limit of 25 on the total number of people allowed in the
vaccine center (this includes the five nurses). There is an overflow queue
of patients outside the vaccine center, waiting to get in. The total number
of patients, 𝑁 , grows and shrinks over time, but, on average there are
E [𝑁] = 80 patients in total (including both the vaccine center and the
overflow queue). The long-run average rate of patients joining the queue
is 𝜆 = 40 patients per hour.
(a) What is the expected total response time (from arrival to departure)?
(b) Suppose we model 𝑁 ∼ Geometric

(
1

80

)
. Let 𝑁center denote the num-

ber of people inside the vaccine center (gray area). Let 𝑇center denote
the time spent inside the vaccine center. What is E [𝑇center]?
[Hint: Start by expressing 𝑁center in terms of 𝑁 . You will need a “min”
term. Then derive E [𝑁center] and apply Little’s Law.]
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Vaccine center

λ = 40

Figure 27.19 Vaccine center.

27.14 Mean slowdown
The slowdown metric is related to response time, but is somewhat more
practical. A job’s slowdown is defined as its response time divided by its
size:

Slowdown of job 𝑗 =
Response time of 𝑗

Size of 𝑗
. (27.7)

The idea is that large jobs (like downloading a whole movie) can tolerate
larger response times (while you go make popcorn), while small jobs (like
downloading a web page) can tolerate only very small response times. The
slowdown metric captures this tolerance better than response time.
(a) Jobs arrive at a server that services them in FCFS order (Figure 27.20).

λ

FCFS

Figure 27.20 Figure for Exercise 27.14.

The average arrival rate is 𝜆 = 1
2 job/s. The job sizes (service times)

are i.i.d. and are represented by r.v. 𝑆, where

𝑆 =

{
1 w/prob 3

4
2 otherwise .

You have measured the mean response time, E [𝑇] = 29
12 . Based on

this information, compute the mean slowdown, E [Slowdown].
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(b) If the service order in part (a) had been Shortest-Job-First, would the
same technique have worked for computing mean slowdown?


