
Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

22 Monte Carlo Randomized
Algorithms

In the last chapter we studied randomized algorithms of the Las Vegas variety.

This chapter is devoted to randomized algorithms of the Monte Carlo variety.

A Monte Carlo algorithm typically runs in a fixed amount of time, where

the runtime is typically independent of the random choices made. However, it

only produces the correct answer some fraction of the time (say half the time).

The error probability depends on the particular random bits. Hence, runs are

independent of each other, and one can improve the correctness by running the

algorithm multiple times (with different sequences of random bits).

This definition is very abstract, so let’s turn to some common examples.

22.1 Randomized Matrix-Multiplication Checking

One of the most common uses of randomized algorithms is to verify the cor-

rectness of a program, a.k.a. program checking. The typical scenario is that

one has a program that one doesn’t totally trust. One would like to check the

correctness of the output very quickly – in way less time than it would take to

run the computation from scratch.

As an example, consider the problem of multiplying two matrices.

Question: Using standard matrix multiplication, how many multiplications are

needed to multiply two = × = matrices, A and B?

Answer: Θ(=3).

Question: How many multiplications are needed using the currently fastest

method for multiplying matrices?

Answer: You’ve probably heard of Strassen’s algorithm, which uses

$(=log2 7+>(1)) ≈ $(=2.8) multiplications. Until recently, the fastest algorithm

was due to Coppersmith and Winograd [15], using $(=2.376) multiplications.

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

384 22 Monte Carlo Randomized Algorithms

Recently, a CMU PhD student, Virginia Vassilevska, improved this to $(=2.373)
multiplications [79].

The Coppersmith and Winograd (C-W) algorithm is complex to implement,

and the Vassilevska algorithm is even more so. Suppose that someone has an

implementation of the Vassilevska algorithm. You might not trust their code.

You would ideally like to be able to check each output that the Vassilevska

implementation gives you. That is, every time that you input two = × = matrices,

A and B, into the Vassilevska implementation, and it outputs C, you’d like to

check if in fact A · B = C.

Of course we could check that A · B = C using standard matrix multiplication.

But this would take Θ(=3) time, which would defeat the whole point of using the

Θ(=2.37) implementation.

We now illustrate a randomized algorithm due to Freivalds [29] that allows us to

check whether A ·B = C using only Θ(=2) multiplications. Hence, we can afford

to run our checker every time that we run the Vassilevska implementation.

Algorithm 22.1 (Freivalds’ matrix multiplication checking algorithm)

Inputs: A, B, C all of dimension = × =, with elements in R.

1. Choose a random vector ®A = (A1, A2, A3, . . . , A=), where A8 ∈ {0, 1}.
2. Compute B®A.
3. Compute A (B®A).
4. Compute C®A.
5. If A (B®A) ≠ C®A, then return: A · B ≠ C. Otherwise, return A · B = C.

Question: How many multiplications are needed by Freivalds’ algorithm?

Answer: Each of steps 2, 3, and 4 only involve multiplication of a matrix by a

vector, and hence use only Θ(=2) multiplications.

Question: If Freivalds’ algorithm returns A · B ≠ C, is it correct?

Answer: Yes. Suppose, by contradiction, that A · B = C. Then, ∀®A , it must be

the case that A · B · ®A = C · ®A.

Definition 22.2 When A · B ≠ C, and ®A is a vector such that

A · B · ®A ≠ C · ®A,
then we say that ®A is a witness to the fact that A · B ≠ C, because it provides

us with a proof that A · B ≠ C.

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

22.1 Randomized Matrix-Multiplication Checking 385

Thus the only time that Freivalds’ algorithm might be wrong is if it returns

A · B = C, even though A · B ≠ C. This is referred to as one-sided error.

Theorem 22.3 shows that the probability of this type of mistake is ≤ 1
2
, given

that ®A is chosen at random.

Theorem 22.3 (Freivalds error) Let A, B, and C denote=×=matrices, where

A ·B ≠ C, and let ®A be a vector chosen uniformly at random from {0, 1}=. Then,

P {A · B · ®A = C · ®A} ≤ 1

2
.

Proof: [Theorem 22.3] Since A · B ≠ C, we know that

D ≡ AB − C ≠ O,

where O is an = × = matrix of all zeros.

Now suppose that ®A is a vector such that

D®A = AB®A − C®A = ®0,

as shown here:

311 312 313 . . . 31=

321 322 323 . . . 32=

331 332 333 . . . 33=

...
...

...
...

...

3=1 3=2 3=3 . . . 3==

·

A1

A2

A3

...

A=

=

0

0

0
...

0

.

Since D ≠ O, we know that D must have at least one non-zero entry. For

notational convenience, we will assume that this non-zero entry is 311 (you will

see that this assumption is made without loss of generality).

Since D®A = ®0, we know that the product of the first row of D and ®A yields 0, that

is,
=∑

9=1

31 9 · A 9 = 0.

But this implies that

311A1 +
=∑

9=2

31 9A 9 = 0

⇒ A1 = −
∑=

9=2 31 9A 9

311

. (22.1)

Recall that 311 ≠ 0 so the denominator of (22.1) is non-zero.

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

386 22 Monte Carlo Randomized Algorithms

Question: Does (22.1) imply that A1 is negative?

Answer: No, 31 9 may be negative.

Now suppose that when choosing the random vector ®A, we choose A2, . . . , A=
before choosing A1. Consider the moment just after we have chosen A2, . . . , A=.

At this moment the right-hand side of (22.1) is determined. Thus there is exactly

one choice for A1 (call this A∗
1
) that will make (22.1) true.

Question: We now flip a 0/1 coin to determine A1. What is P
{
A1 = A∗

1

}
?

Answer: There are two possible values for A1 (namely 0 or 1). They can’t both

be equal to A∗
1
. Thus, P

{
A1 = A∗

1

}
≤ 1

2
. Note this is not an equality because A∗

1
can

be any element of the Reals and thus is not necessarily ∈ {0, 1}. �

At this point we have proven that Freivalds’ algorithm can check matrix multi-

plication in Θ(=2) time with accuracy of at least 1
2
.

Question: How can we improve the accuracy?

Hint: Repeat Freivalds’ algorithm with additional random vectors, ®A ∈ {0, 1}=.

Answer: Suppose we run Freivalds’ algorithm using : randomly chosen ®A vec-

tors. If for any vector ®A we see that A (B®A) ≠ C®A, then we output A · B ≠ C;

otherwise we output A · B = C. If in fact A · B = C, then all : runs will output

“equal,” and we will have the correct answer at the end. If A · B ≠ C, then each

run has independent probability≥ 1
2

of discovering (“witnessing”) this fact. Thus

the probability that it is not discovered that A ·B ≠ C is ≤ 1
2:

. The : runs require

a total runtime of Θ(:=2). If we make : = 100, yielding an extremely low prob-

ability of error, our overall runtime for using the Vassilevska implementation is

still Θ(=2.37 + 100=2) = Θ(=2.37).

Question: Is it a problem if some of the random vectors ®A repeat? Does this

change our confidence in the final answer?

Answer: This is not a problem. All that’s needed is that the vectors are picked

independently. Each time we pick a random ®A, that choice will independently

have probability ≥ 1
2

of being a witness.

Question: Suppose that the error in Freivalds’ algorithm was not one-sided, but

rather two-sided? Would we still be able to use this scheme?

Answer: The exact scheme we’re using assumes one-sided error. However, we

could use a related scheme in the case of two-sided error, where we take the

“majority” output of several runs.

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

22.2 Randomized Polynomial Checking 387

Question: Can we improve our confidence by choosing ®A ∈ {0, 1, 2}=?

Answer: Yes, this drops the probability of error to 1
3

for each Freivalds check

because, again, there is exactly one value of A∗
1

that allows us to mess up, and our

chance of now hitting that value is ≤ 1
3
.

22.2 Randomized Polynomial Checking

We now apply a very similar idea to the question of multiplication of monomials

over some real-valued variable G. Suppose we have a program that purports to

multiply together monomials. For example, our program might take as input a

string of three monomials:

(G − 3) , (G − 5) , (G + 7)
and output the third degree polynomial:

� (G) = G3 − G2 − 41G + 105.

Again, we’d like a way of checking the output of this multiplication program

very quickly, in much less time than the runtime of the program. Here “runtime”

refers to the number of multiplications.

Throughout, let’s define � (G) to be the (true) product of the monomials, that is,

� (G) ≡ (G − 3) (G − 5) (G + 7),
whereas � (G) represents the output of our untrusted program. The goal of the

checker is to determine whether� (G) is equal to the product (G−3) (G−5) (G+7)
without computing � (G).

Question: How many multiplications are needed to multiply 3 monomials?

Answer: $(32). See Exercise 22.3.

We will now present a randomized checker that determines with high certainty

whether our untrusted program is correct using only Θ(3) multiplications. As

before, we start with a simple checker that makes mistakes, and then we improve

the checker to lower its probability of mistakes.

Algorithm 22.4 (Simple Checker for multiplication of d monomials)

1. Pick an integer, A , uniformly at random between 1 and 1003.

2. Evaluate � (A). Evaluate � (A).
3. If � (A) = � (A), then output that the program is correct.

Otherwise, output that it is incorrect.

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

388 22 Monte Carlo Randomized Algorithms

Question: What is the runtime of our Simple Checker?

Answer:Θ(3). Once you replace G by A , there are only 3 multiplications needed.

Question: Under what condition is the Simple Checker wrong?

Answer: If � (G) = � (G), then the Simple Checker will always be correct. If

� (G) ≠ � (G), then the Simple Checker might make an error if it only picks A

values for which � (A) = � (A). Again, this is a situation of one-sided error.

Question: So what is the probability that the Simple Checker is wrong?

Hint: If � (G) ≠ � (G), and each are polynomials of degree 3, what is the

maximum number of values of G on which they can nonetheless agree?

Answer: Assume that � (G) ≠ � (G). Let �(G) = � (G) − � (G). �(G) is at most

a 3-degree polynomial. As such, it has at most 3 roots (assuming �(G) ≠ 0).

Hence, there are at most 3 possible values of A , s.t. �(A) = 0. Equivalently, there

are at most 3 possible values of A on which � (G) and � (G) agree. If we now

limit the range of A from 1 to 1003, then there are still at most 3 values of A for

which � (A) = � (A). Hence, the probability that we have found such an A is at

most 3
1003

=
1

100
.

So our Simple Checker accurately tells us whether our program is correct with

probability 99
100

in only Θ(3) time.

Question: Supposewe’d like to know that our program is correct with probability
999,999

1,000,000
? How can we modify our Simple Checker to get this higher guarantee?

Answer: One idea is to pick our random A from a bigger range. For example, we

can use a range from 1 to 1063. However, this may not be feasible for large 3.

Answer: A better idea is to repeat our Simple Checker with different values of

A . This will give higher accuracy, but require more time.

Algorithm 22.5 (Superior Checker)

1. Repeat the Simple Checker : times, each time with some A drawn uniformly

at random from the set of integers in [1, 1003].
2. If � (A) = � (A) for all : values of A , then output that the program is correct.

Otherwise, output that the program is wrong.

Question: What is the probability that the Superior Checker is wrong?

Answer: The Superior Checker only fails if � (G) ≠ � (G) and yet � (A) = � (A)
for all : values of A . But each time we draw a random A , that A has probability

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

22.3 Randomized Min-Cut 389

≥ 99
100

of resulting in inequality. So the probability that all : values of A result in

equality is ≤ 1
100:

. With just : = 3, we already have our 999,999
1,000,000

confidence.

Observe that the runtime of the Superior Checker is only Θ(:3).

22.3 Randomized Min-Cut

Throughout this section, we assume that we have an undirectedgraph� = (+ , �)
with |+ | = = vertices and |� | = < edges.

Definition 22.6 A cut-set of a graph � = (+ , �) is a set of edges whose

removal breaks the graph into two of more connected components.

Definition 22.7 A min-cut is a minimum cardinality cut set.

The Min-cut Problem is the problem of finding a min-cut. Observe that there

may be several minimum cardinality cut sets possible – we just want one of them.

The Min-Cut problem has many applications, mostly dealing with reliability. For

example, what is the minimum number of links that can fail before the network

becomes disconnected?

We will now present a randomized algorithm for finding a min-cut that is both

faster and simpler than any deterministic algorithm. Our algorithm is based on

the idea of “contracting edges” until a cut-set results.

Definition 22.8 The contraction of an edge (E1, E2) involves merging vertices

E1 and E2 into a single vertex, E. Any edge (E1, E2) is removed. All edges that

had an endpoint at either E1 or E2 (but not both) will now have an endpoint at

the contracted vertex, E. Observe that the new graph may have parallel edges,

but no self-loops.

Algorithm 22.9 (Randomized Min-Cut algorithm)

1. Given a graph, �, repeat until only two vertices, D and E, remain:

i. Pick a random edge from all existing edges in the graph.

ii. Contract that edge.

2. Output the set of edges connecting D and E.

Question: How many iterations are needed by the Randomized Min-Cut algo-

rithm?

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

390 22 Monte Carlo Randomized Algorithms

Answer: = − 2.

Figure 22.1 shows one example of Randomized Min-Cut that results in a min-

cut and another that doesn’t. In the example that works, the cut that is output

should be interpreted as the two edges between vertex 5 and other vertices in the

graph (looking at the original graph, we see that vertex 5 is only connected to

vertices 3 and 4). In the example that doesn’t work, the cut that is output should

be interpreted as the three edges between vertex 2 and the other vertices in the

graph (note that vertex 2 is only connected to vertices 1, 3, and 4 in the original

graph).

(a) Successful run of Randomized Min-Cut

(b) Unsuccessful run of Randomized Min-Cut

1 3

2 4

51,2 3,4

3,5

4,5

1,4

2,3

2,4

1,3

5

2,4

1,31

2

1,2
1,4

3,5

3,4
2,3

4,5

2

1,2

2,4

1,3,4

2,3

4,5

3,5

5 5
1,2,3,4 4,5

3,5

1 3

2 4

51,2 3,4

3,5

4,5

1,4

2,3

2,4

1,3

5

2,4

1,31

2

1,2
1,4

3,5

3,4
2,3

4,5

2

1,2

2,4

1,3,4

2,3 5

2

1,2

2,4

1,3,4,5

2,3

Figure 22.1 Example of two runs of Randomized Min-Cut. The bold edge is the one

about to be contracted.

Question: Let � = (+ , �) refer to the original graph. Which, if any, of the

following statements is true?

(a) Any cut-set of an intermediate graph is also a cut-set of �.

(b) Any cut-set of � is also a cut-set of every intermediate graph.

Answer: The first statement is true. Let � be a cut-set in an intermediate graph

that separates vertices in (from those in + − (. All edges in � are edges from

the original graph, � = (+ , �). Now suppose that there were additional edges

between (and + − (in the original graph, � = (+ , �). This couldn’t happen

because as soon as one of those was contracted away, then (and + − (couldn’t

be separated. So � still forms a cut-set in �. The second statement is clearly

false, as seen in Figure 22.1. The issue is that some edges of the cut-set of the

original graph may have been contracted away.

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

22.3 Randomized Min-Cut 391

So the output of Randomized Min-Cut is always a true cut-set of the original

graph, but not necessarily a minimally sized cut-set.

We now state one more property of Randomized Min-Cut that will be useful in

its analysis.

Lemma 22.10 Let� be a cut-set of graph� = (+ , �). Let : be the cardinality

of �. Suppose we run Randomized Min-Cut for the full = − 2 iterations. Then,

� is output by Min-Cut ⇐⇒ None of the : edges of � are contracted.

Proof:

(=⇒) This direction is obvious in that � cannot be output if any of its edges are

contracted.

(⇐=) This direction is much less clear. For one thing, could it be that the cut that

is output includes � plus some additional edge? For another thing, could it be

that the cut that is output is missing some edge, ®4, of �, because ®4 got removed

when a parallel edge to ®4 got contracted?

We now address both issues. Suppose that� splits the graph into two components,

called � and �, as shown in Figure 22.2. Let � denote all edges in�. Let ��, and

�
�

denote the set of edges in �, and �, respectively. Hence � = � ∪ �� ∪ �
�
.

A A

cut C

Figure 22.2 By definition of � being a cut, we must have � = �� ∪ �� ∪ �
�

.

Since cut � already splits graph � into � and �, by definition there cannot be

any “additional edges” beyond � that have one endpoint in � and one in �.

Thus it can’t be the case that the final cut that is output includes � plus some

additional edges. Likewise, since all edges outside of � must be in either � or �,

then contracting an edge outside of set � cannot result in some edge of� getting

removed. �

Theorem 22.11 The Randomized Min-Cut algorithm produces a min-cut with

probability ≥ 2
=(=−1) .

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

392 22 Monte Carlo Randomized Algorithms

Proof: Let � be one of the min-cuts in the original graph, � = (+ , �). Let the

cardinality of � be : . We will show that with probability ≥ 2
=(=−1) , � will be

output by our algorithm.

By Lemma 22.10, the probability that � is output at the end of our algorithm

is the probability that none of the : edges of � is contracted during the = − 2

iterations of the Randomized Min-Cut algorithm. To figure out this probability,

it helps to first derive the number of edges in �.

Question: What is the minimum degree of vertices in �?

Answer: The minimum degree is : , because if some vertex had degree < : then

those edges would form a smaller cut-set.

Question: What is a lower bound on the number of edges in �?

Answer: � has at least =:
2

edges, from which edges are selected uniformly at

random for contraction.

P {no edge of � is selected in the 1st round} ≥
=:
2
− :

=:
2

=
=: − 2:

=:
=
= − 2

=
.

Question: Why did we need a ≥ sign above?

Answer: Recall that =:
2

is a lower bound on the number of edges.

Suppose that after the first round, we did not eliminate an edge of �. We are left

with a graph on = − 1 vertices. The graph still has a min-cut of �.

Question: Why does the graph still have a min-cut of �?

Answer: Any cut-set of the contracted graph is also a cut-set of the original

graph. So if the graph has a min-cut smaller than |� |, then the original graph

must have a cut-set smaller than |� |, which is a contradiction.

Since the contracted graph still has a cut-set of �, the graph must have ≥ : (=−1)
2

edges. Given this lower bound on the number of edges, we have:

P {no edge of � is selected in the 2nd round | no edge selected in 1st round}

≥
(=−1):

2
− :

(=−1):
2

=
(= − 1): − 2:

(= − 1): =
= − 3

= − 1
.

Generalizing, let �8 be the event that no edge of� is selected in the 8th round. We

want the probability that all of the first = − 2 events happen. By Theorem 2.10,

P {�1 ∩ �2 ∩ · · · ∩ �=−2} = P {�1} · P {�2 | �1} · · ·P
{
�=−2 | ∩=−1

8=1 �8

}
.

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

22.3 Randomized Min-Cut 393

We have already shown that:

P {�1} ≥ = − 2

=
and P {�2 | �1} ≥ = − 3

= − 1
.

Via the same argument, we can see that:

P {�3 | �1 ∩ �2} ≥ = − 4

= − 2
,

and so on. Hence we have:

P {No edge of � is ever contracted}
= P {�1 ∩ �2 ∩ · · · ∩ �=−2}
= P {�1} · P {�2 | �1} · P {�3 | �1 ∩ �2} · · ·P

{
�=−2 | ∩=−3

8=1 �8

}

≥ = − 2

=
· = − 3

= − 1
· = − 4

= − 2
· = − 5

= − 3
· · · 3

5
· 2

4
· 1

3

=
✘✘✘= − 2

=
· ✘

✘✘= − 3

= − 1
· ✘

✘✘= − 4

✘✘✘= − 2
· ✘

✘✘= − 5

✘✘✘= − 3
· · · ✁3

✁5
· 2

✁4
· 1

✁3

=
2

=(= − 1) . �

Observe that our algorithm has a high probability, 1 − 2
=(=−1) , of returning a

cut-set that is not a min-cut.

Question: What can we do to reduce the probability that our algorithm is wrong?

Answer: We should run our algorithm many times and return the smallest cut-set

produced by all those runs.

Claim 22.12 If we run Randomized Min-Cut Θ(=2 ln =) times, and report the

smallest cardinality cut-set returned, then with probability> 1− 1
=2 our reported

cut-set is a min-cut.

Proof: The probability that our output is not a min-cut is upper-bounded by

(
1 − 2

=(= − 1)

)=2 ln =

≤
(
1 − 2

=(= − 1)

)=(=−1) ln =

=

[(
1 − 2

=(= − 1)

)=(=−1)] ln =

<
[
4−2

] ln =

=
1

=2
,

where we’ve used the fact that 1 − G < 4−G , for 0 < G < 1, by (1.14). �

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

394 22 Monte Carlo Randomized Algorithms

Thus the total runtime of Randomized Min-Cut involvesΘ(=3 ln =) contractions,

which is still a very good runtime. Randomized Min-Cut also excels in its

simplicity. There is of course some (tiny) possibility of error. However, here this

error is not fatal in that the algorithm always gives a cut-set.

22.4 Related Readings

The Randomized Min-Cut algorithm is due to David Karger [42] and is famous

for its simplicity. Since then many algorithms have been proposed with improved

runtimes; see, for example, the Karger–Stein algorithm [43], which improves the

runtime to $(=2(log =)3) time.

22.5 Exercises

22.1 From Las Vegas to Monte Carlo and back

In this problem, you will show how to take a Las Vegas randomized

algorithm and make it into a Monte Carlo algorithm, and vice-versa.

(a) Given a Las Vegas algorithm, �LV, that solves a problem % in expected

time C, describe a Monte Carlo algorithm for problem % that runs in

time at most 50C and outputs the correct answer with probability at

least 98%.

(b) Can you do the reverse? Suppose you have a Monte Carlo algorithm,

�MC, that runs in time at most CMC and gives the correct answer with

probability ?. Suppose that there’s a verification routine, + , that tells

us with perfect accuracy whether �MC is correct in time C+ . Can you

use this to design a Las Vegas algorithm, �LV? If so, what is the

expected runtime of �LV?

22.2 Freivalds error

In the proof of Theorem 22.3, we defined a matrix D ≠ O, and stated

without loss of generality that 311 ≠ 0. Suppose that instead 322 ≠ 0.

Rewrite the proof of Theorem 22.3 to show that it holds here as well.

22.3 Multiplication of monomials

Let a “monomial in G” be an expression of the form (G−2), where 2 is some

constant. Prove that the number of multiplications needed to multiply 3

monomials in G is $(32). Note that the problem is not saying that 32

multiplications suffice. You might need 1032 multiplications. You’ll need

to figure out the appropriate multiplier for 32. [Hint: Use induction.]

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

22.5 Exercises 395

22.4 Randomized polynomial checking with knowledge

Let � (G) ≡ (G − 21) (G − 22) (G − 23) · · · (G − 23) be the true product of 3

monomials. Let � (G) be a degree 3 polynomial which is claimed to equal

� (G). Recall the Simple Randomized Checker from Algorithm 22.4. Now

suppose you know a priori that the coefficients in � (G) for G3, G3−1, G3−2,

. . ., G3/2+1 are all correct (say, someone else has checked those for you).

Assume that 3 is even. Provide an upper bound on the probability of error

of the Simple Randomized Checker.

22.5 Randomized Max-3SAT

You have a bunch of variables:, , - ,. , / , . . . Each variable is allowed to

be either 0 or 1. The term - denotes the negation of - . A clause is the

OR of three distinct variables. For example: (- or . or /). A clause is

satisfied if it evaluates to 1. For example, under the assignment: - = 1,

. = 0, / = 0, (- or . or /) evaluates to 1, and hence is satisfied.

A 3SAT expression is the AND of a bunch of clauses: For example:

(- or . or /) AND (, or - or /) AND (. or - or /).
The goal of Max-3SAT is to find an assignment of the variables that

maximizes the number of satisfied clauses. For example, if we set , =

- = . = / = 1 in the above 3SAT expression, then all three clauses will

be satisfied. Max-3SAT is known to be NP-Hard.

(a) Propose a very simple Monte Carlo randomized algorithm for Max-

3SAT. Let # denote the number of clauses satisfied by your algorithm.

Show that E [#] = 7
8
<, where < is the number of clauses.

(b) Prove that P
{
≤ 3<

4

}
≤ 1

2
. [Hint: The Markov, Chebyshev, and

Chernoff bounds won’t work here. Look for a different inequality

from Chapter 18 that goes in the right direction.]

(c) Let X be an arbitrary small constant, 0 < X ≪ 1. How can we revise

our algorithm to ensure that P
{
≤ 3<

4

}
≤ X? [Hint: Your runtime

will be a function of X.]

22.6 From Monte Carlo to Las Vegas

[Proposed by David Wajc] Let P be a decision problem. Imagine that

one has two Monte Carlo algorithms for deciding P: Algorithm A is

true-biased in that it always returns “true” when the answer is “true,” but

returns “true” with probability ? > 0 when the answer is false (that is, it

has false positives). Algorithm B is false-biased in that it always returns

“false” when the answer is “false,” but returns “false” with probability ?

when the answer is true (that is, it has false negatives). Suppose that the

two Monte Carlo algorithms terminate in time =2 on inputs of size = (here

2 is a constant). Your goal is to create a Las Vegas algorithm, L, whose

expected runtime is polynomial. What is your Las Vegas algorithm, L,

and what is its expected runtime?

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

396 22 Monte Carlo Randomized Algorithms

22.7 Approximating c

In this exercise, you will devise and analyze a Monte Carlo randomized

algorithm to approximate c.

r

r

Figure 22.3 For Exercise 22.7. A circle of radius A embedded within a square.

(a) Suppose that you throw = darts uniformly at random within the square

of Figure 22.3. Let - denote the number of darts which land within

the circle. How is - distributed?

(b) Define a random variable / (related to -) where / is your “estimator

of c.” Prove that E [/] = c.

(c) We want to say that, with probability 1 − n , / is within X of c. How

high should = be to ensure this? Assume 0 < X ≪ 1 and 0 < n ≪ 1.

22.8 Number of min-cuts

For any graph �, with = vertices and < edges, let (1, (2, . . . , (: denote

the min-cuts of �. We want to prove an upper bound on the value of : .

(a) Let �8 denote the event that (8 is output by the Randomized Min-Cut

algorithm. We proved a lower bound on P {�8}. What was that?

(b) Now consider the event: [�1 ∪ �2 ∪ · · · ∪ �:]. By definition

P {�1 ∪ �2 ∪ · · · ∪ �:} ≤ 1. Use what you learned in part (a) to

prove an upper bound on : .

22.9 Randomized Max-Cut

You are given a graph � = (+ , �) with = vertices and < edges. You want

to divide the vertices into two disjoint sets, - and -, where -∪- = + , so

as to maximize the number of edges between - and - . Rather than trying

all ways of splitting + into two sets, you use this algorithm:

Algorithm 22.13 (Randomized Max-Cut algorithm)

Input: � = (+ , �).
Output: Disjoint sets, - and -, where - ∪ - = + .

For each vertex G ∈ + , flip a fair coin:

If heads, put G into set - .

If tails, put G into set -.

(a) What is the probability that a given edge 4 = (G, H) ∈ � is in the

cut-set? What is the expected size of the cut-set produced?

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

22.5 Exercises 397

(b) Let

.4 =

{
1 if edge 4 is in the cut-set

0 otherwise
.

Which of the following are true (may be more than one)?

(i) The .4’s are independent.

(ii) The .4’s pair-wise independent.

(iii) The .4’s are three-wise independent.

(iv) None of the above.

For anything you claimed to be true, provide a proof. For anything

you claimed to be false, provide a counter-example.

(c) Use Chebyshev’s inequality to show that with high probability,(
≥ 1 −$

(
1
<

))
, the size of the cut-set exceeds </4.

(d) Why couldn’t we use Chernoff bounds in part (c)?

22.10 Amplification of confidence (boosting)

We are given a Monte Carlo algorithm, M, which always runs in some

fixed time C. Given an input, M returns the correct answer for that input

with probability 2
3

(assume that there is a unique correct answer for each

input). With probability 1
3
, M makes up a value and returns that. Note

that the made-up value might be different each time. You do not know

whether the output of M is correct or not.

(a) Given n > 0, explain how to create a new randomized algorithm, N ,

which outputs the correct answer with probability at least 1 − n .

(b) What is the explicit runtime of N (in terms of C)?

22.11 BogoSort

I have an array � of length= containing distinct integers 01, 02, . . . , 0= in a

random order. I decide to sort these using a stupid randomized algorithm:

Algorithm 22.14 (BogoSort(01, 02, . . . , 0=))

1. Check if 01, 02, . . . , 0= are sorted. If so, return the sorted array.

2. Randomly permute 01, 02, . . . , 0=. Then return to step 1.

Determine the expected number of comparisons needed for BogoSort:

(a) Let � be the number of comparisons needed for line 1 (the check

step). What is E [�]? For large =, can you approximate this within 1?

(b) What is the expected number of iterations needed in BogoSort?

(c) What is the expected total number of comparisons needed for Bo-

goSort? (Note: Step 2 doesn’t need comparisons.)

22.12 Monte Carlo control groups

In running an experiment, it is often useful to have two “equal” sets of

people, where we run the experiment on one set, and the other set is used

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

398 22 Monte Carlo Randomized Algorithms

as a control group. However, dividing people into two “equal” sets is

non-trivial. Consider the example shown in the table below: We have <

men who are rated on a 0/1 scale in terms of = features. We would like

to divide the < men into two groups so that each group is approximately

equal with respect to each feature.

Looks Brains Personality

Mike 1 1 0

Alan 0 0 1

Richard 1 0 1

Bill 1 1 0

(a) Intuitively, which grouping is better in terms of creating balance be-

tween the groups across each feature:

(i) Group 1: Alan with Richard Group 2: Mike with Bill

(ii) Group 1: Mike with Alan Group 2: Richard with Bill

(b) Mathematically, we express the above table by an < × = matrix A,

where

A =

1 1 0

0 0 1

1 0 1

1 1 0

.

Consider an <-dimensional row vector ®1 = (11, 12, . . . , 1<), where

18 ∈ {1,−1}. Let

®1 · A = ®2.

Here, the 1’s in ®1 indicate the men in group 1 and the−1’s in ®1 indicate

the men in group 2. Observe that ®2 is an =-dimensional row vector,

where 28 indicates the total score for group1 on feature 8minus the total

score for group 2 on feature 8. Using the above notation, we rephrase

our problem as: How can we find a ®1 which minimizes max 9 |2 9 |?
Suppose we choose ®1 randomly: we set 18 = 1 with probability 1

2
and

set 18 = −1 with probability 1
2
. Prove

P

{
max

9
|2 9 | ≥

√
4< ln =

}
≤ 2

=
.

[Hint 1: Start by deriving P
{
|2 9 | ≥

√
4< ln =

}
.]

[Hint 2: You will want to use the result in Exercise 18.15.]

[Hint 3: Don’t worry about the fact that 2 9 might have fewer than <

summands. Your bound for the case of < summands will still work.]

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

22.5 Exercises 399

22.13 Fixed-length path

Given a graph � with = vertices, you want to decide whether there exists

a path in � containing ℓ distinct vertices. The naive brute force algorithm

has runtime $(=ℓ). Consider instead this Monte Carlo algorithm:

1. Label each vertex independently and uniformly at random from

{1, . . . , ℓ}.
2. Using breadth-first search (or something similar), check if there is a

path (E1, . . . , Eℓ) such that for all 1 ≤ 8 ≤ ℓ, E8 has label 8. If yes, return

true. Otherwise return false.

You may assume that this Monte Carlo algorithm runs in time $(=2).
(a) Show that this algorithm has a one-sided error of at most 1 − 1

ℓℓ
.

(b) How can we lower the error probability to 1
=
? What is the runtime

of your new algorithm? [Hint: Recall from (1.12) that 1 + G ≤ 4G ,

∀G ≥ 0.]

22.14 Generating a random permutation

We are given an array � containing distinct integers 01, 02, . . . 0=. We want

to perfectly shuffle the array. That is, every one of the =! permutations

should be equally likely to be the result of our shuffle. Below are two

potential algorithms. For each algorithm either prove that it results in a

perfect shuffle, or provide a counter-example. [Hints: Induction is useful

in proofs. Counter-examples shouldn’t need more than three integers.]

Algorithm 22.15 (Shuffle attempt 1)

for 8 = =, = − 1, . . . , 2 do

9 = random integer with 1 ≤ 9 ≤ 8

exchange �[9] and �[8]
return �

Algorithm 22.16 (Shuffle attempt 2)

for 8 = =, = − 1, . . . , 2 do

9 = random integer with 1 ≤ 9 ≤ =

exchange �[9] and �[8]
return �

22.15 Approximate median

In Chapter 21 we saw how to find the exact median of an unsorted list,

! = {01, 02, . . . , 0=} of = elements in expected $(=) comparisons using

the Median-Select algorithm. Now we present an algorithm to find an

“n-approximation of the median” in only expected$
(

log =

n 2

)
comparisons.

Specifically, if !′
= {B1, B2, . . . , B=} denotes a sorted version of !, where

B (=+1)/2 is the exact median (assume = is odd), then our algorithm returns

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

400 22 Monte Carlo Randomized Algorithms

an element of !′ in the sublist (= {Blow, . . . , Bhigh}, where low = (1
2
− n)=

and high = (1
2
+ n)=. See Figure 22.4. For simplicity, assume that low,

high, and (= + 1)/2 are all integers.

2 n[[

s1 s2 s3

slow shigh

s n-2 s n-1 s
n

smed

Figure 22.4 For Exercise 22.15. The approximate median is anything in the box.

Our approximate-median algorithm works as follows: We select a random

element from ! C times (the same element might get picked more than

once). Let " denote the set of the chosen C elements. Now perform

Median-Select on " and return its median,<, as our approximate-median

(assume C is odd). You will need to find a C that is sufficiently high for

our approximate-median, <, to be within the sublist (= {Blow, . . . , Bhigh}
with high probability.

22.16 Knockout tournament

In a knockout tournament, the goal is to determine the “best” of = sports

teams. Teams are paired against each other according to the tree structure

shown in Figure 22.5. Each round starts with some number of “remaining

teams.” These remaining teams are paired up according to the tree struc-

ture. Each pair of teams (A,B) plays : games, where the team with the

majority of the wins (say, A), moves up to the next round, and the other

team (B) is dropped. Assume ties are impossible and : is odd. Assume

also that = = 2< for some positive integer <. In Figure 22.5, we see that

the number of teams starts at = = 8, but after one round we’re down to four

remaining teams, and after the second round, we’re down to two teams,

and so on.

W
in

n
er

 m
o
v
es

 u
p
 e

ac
h
 r

o
u
n
d

1 2 3 4 5 6 7 8

Figure 22.5 Illustration of knockout tournament with = = 8 teams and < = 3 rounds.

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

22.5 Exercises 401

Assume that there is a “best” team, 1, such that if 1 is paired against any

team 9 , 1 will beat 9 with probability ≥ 1
2
+n , where 0 < n ≤ 1

2
. Prove that

when : ≥ 4<
n 2 , team 1 wins the tournament with high probability (1− 1

=
).

[Hint 1: It will be convenient to use the result from Exercise 18.21(b).]

[Hint 2: The following fact will simplify the algebra: Let # be an integer

random variable and : be odd. Then P
{
≤ :−1

2

}
= P

{
≤ :

2

}
.]

[Hint 3: You will want to show that the probability that team 1 loses a

single round is upper-bounded by 4−2<.]

There is a rich literature on applying Chernoff bounds to tournament

design (e.g., [1, 2, 78]). This problem is based on [2].

22.17 Adding =-bit numbers – average-case analysis

Mor is implementing a bitwise adder to add two random =-bit binary

numbers 0102 . . . 0= and 1112 . . . 1= for her operating system. She notices

that the conventional adder needs to traverse all = bits of the two numbers

from the lowest bit to the highest bit, propagating carry-ins when necessary

(when we add a 1 to a 1, we need to carry-in a 1 to the next highest bit).

To add faster, Mor constructs the following Near Adder whose work

can be parallelized: instead of adding all =-bits sequentially, the Near

Adder divides them into =
3

segments of size 3-bits each. The Near Adder

then uses the conventional adder to add consecutive overlapping 23-bit

“blocks” in parallel, as shown in Figure 22.6, where the carry-in to each

block is assumed to be 0. Thus the runtime of the Near Adder is $(23)
rather than $(=).
Observe that every (blue) 23-bit block (other than the rightmost one) has

a shaded (pink) part for the least-significant 3 bits, and an unshaded part

for the most-significant 3 bits. The Near Adder returns only the most

significant 3 bits (the unshaded part) of each block as the sum of the two

=-bit numbers. Notice that the 23-bit blocks purposely overlap. Only the

most significant 3 bits of each 23-bit computation are returned, because

they are likely to be uncorrupted. The pink parts are likely wrong because

of the assumed 0 carry-in.

(a) Does the Near Adder always output the correct final sum? If not, when

does it fail?

(b) Define a propagate pair to be a pair of bits (08 , 18) such that either

08 = 1 and 18 = 0, or 08 = 0 and 18 = 1. Prove Claim 22.17:

Claim 22.17 The Near Adder is incorrect if and only if the true

carry-in to a 23-bit block is 1 and all the lower 3 pairs of bits in that

block are propagate pairs.

(c) Say we want the Near Adder to output the correct sum with probability

1−n . How large should we pick 3 to be? Does picking a large 3 increase

or decrease our accuracy? Here are some steps to follow:

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

402 22 Monte Carlo Randomized Algorithms

(i) First prove that the probability that the carry-in bit to a 23-bit

block is 1 is strictly less than 1
2
.

(ii) Now use step (i) to derive an upper bound on the probability that

an arbitrary 23-bit block causes an error. Use Claim 22.17.

(iii) Apply a union bound over all blocks to determine the probability

of error of the Near Adder as a function of 3 and =.

(iv) What value of 3 suffices to ensure that the Near Adder provides

the correct answer with probability > 1 − n?

(v) Does picking a larger 3 decrease or increase the error?

(d) (Optional!) Peter wants an Adder which is 100% accurate. Mor pro-

poses that Peter can build upon her Near Adder to achieve 100%

accuracy with low expected runtime. Propose an algorithm that could

achieve this. You do not have to provide details or analysis, just a

general idea.

This problem is based on a collaboration between Peter and Mor in [31].

INPUT+

n

2d

n

0

0d2d3d4d5d6d7d

OUTPUT

2d
0

2d
0

2d
0

2d
0

2d
0

2d
0

The 2d-width

blocks are created

 in parallel.

Figure 22.6 Picture of Near Adder from [31].

