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Part VII

Randomized Algorithms

This part of the book is devoted to randomized algorithms. A randomized algo-
rithm is simply an algorithm that uses a source of random bits, allowing it to
make random moves. Randomized algorithms are extremely popular in computer
science because (1) they are highly efficient (have low runtimes) on every input,
and (2) they are often quite simple.

As we’ll see, while randomized algorithms are very simple to state, analyzing
their correctness and runtime will utilize all the probability tools that we have
learned so far, plus some new tools.

Chapter 21 covers randomized algorithms of the Las Vegas variety. These al-
gorithms always produce the correct answer, but their runtime depends on the
random bits.

Next, in Chapters 22 and 23 we cover randomized algorithms of the Monte
Carlo variety. These algorithms are extremely fast, regardless of the random bits.
However, they return the correct answer only some fraction of the time, where
the fraction depends on the random bits.

We only provide the briefest introduction to randomized algorithms in the text.
The exercises offer many more examples and illustrate further directions. There
are also several textbooks that are devoted entirely to randomized algorithms;
see for example [21, 41, 53, 54].
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Algorithms

This chapter introduces randomized algorithms. We start with a discussion of
the differences between randomized algorithms and deterministic algorithms.
We then introduce the two primary types of randomized algorithms: Las Vegas
algorithms and Monte Carlo algorithms. This chapter and its exercises will
contain many examples of randomized algorithms, all of the Las Vegas variety.
In Chapter 22 we will turn to examples of the Monte Carlo variety.

21.1 Randomized versus Deterministic Algorithms

In deriving the runtime of an algorithm, we typically assume that there is an
adversary who provides the input, and we consider the runtime of the algorithm
on this input.

A deterministic algorithm always follows the same sequence of steps, and the
adversary knows what steps the algorithm takes. Thus, the adversary can feed
the algorithm a “worst-case input” on which it will take an exceptionally long
time. The runtime of the algorithm is specifically defined as the runtime on that
worst-case input.

By contrast, a randomized algorithm is an algorithm that makes use of a random
sequence of bits in deciding what to do next. The adversary still gets to choose
which input to feed the algorithm. However, because the randomized algorithm
makes random moves, it is very hard for an adversary to defeat – that is, there
often is no longer a worst-case input.

This brings us to the primary advantage of randomized algorithms: they are
likely to be very efficient (low runtime) on every input. The adversary is powerless
when the algorithm is randomized since the particular steps that the algorithm
will take depends on random numbers. This makes it hard for the adversary to
foil a randomized algorithm with a bad input that takes a long time.

When we say that randomized algorithms are “likely” to be efficient on every
input, we mean that the randomness is over the string of random bits; one could
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always have a very poor choice of random bits which results in inefficiency.
Randomized algorithms are often much faster than deterministic ones because
they don’t have a worst-case input. That said, because the algorithm uses random
bits, the execution time of the algorithm can vary even on the same fixed input;
that is, the execution time on a given input is a random variable (r.v.).

Algorithms

Deterministic Algorithms

• Algorithm runs fixed process on 

  each input.

• Runtime depends on the input.

• Adversary picks input. Chooses 

  “worst” input, causing the 

  algorithm to take a long time.

Randomized Algorithms

• Algorithm makes random moves

  (coin flips).

• Runtime depends on random bits.

• Adversary picks input. Hard for

  adversary to choose “worst” input,

  because doesn’t know algorithm’s

  moves.
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Figure 21.1 Deterministic versus randomized algorithms.

It is important not to confuse randomized algorithms with the average-case
analysis of deterministic algorithms. In average-case analysis, the input is
drawn from a distribution, and the goal is to show that the algorithm is efficient
in expectation over all the inputs. That is, while there may be some bad inputs on
which the deterministic algorithm takes a really long time, if those inputs occur
with low probability, then we can say that the deterministic algorithm performs
well in expectation, where expectation is taken over the space of all inputs. When
we talk about average-case analysis we are no longer talking about an adversary
providing the input, but rather we can think of having a random input.
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In the exercises we will see examples of both randomized algorithms and average-
case analysis, so that you can see the difference between the two.

A secondary advantage of randomized algorithms is that they are often much
simpler than deterministic algorithms. In fact, many randomized algorithms
sound impossibly stupid, but work well and are very easy to describe.

21.2 Las Vegas versus Monte Carlo

There are two types of randomized algorithms, which are actually quite different.

A Las Vegas algorithm will always produce the correct answer. However, its
running time on a given input is variable, depending on the sequence of random
bits. Although for some random bits its running time is high, its average running
time is hopefully low (where the average is taken over the sequence of random
bits).

A Monte Carlo algorithm typically runs in a fixed amount of time, which is
very short and is typically independent of the random choices made. However,
it only gives the correct answer some fraction of the time. For example, a Monte
Carlo algorithm may only produce the correct answer half the time. This may
seem really stupid. What’s the point of having an algorithm that gives the wrong
answer? However, it’s not as bad as it seems: The error probability depends on the
particular random bits. Hence, runs are independent of each other and one can
improve the correctness by running the algorithm multiple times (with freshly
drawn random bits).

An example of a Monte Carlo algorithm is the Stochastic Gradient Descent
(SGD) algorithm, used extensively in machine learning for finding the minimum
of a multi-dimensional function. SGD reduces computation time over traditional
Gradient Descent by only doing the needed minimization computations at a
few randomly selected points. While the result may not always be correct, it’s
extremely fast.

We now present some examples of Las Vegas algorithms, which always produce
the correct answer. In the chapter we will concentrate on expected runtime;
however, the exercises will also consider the tail of the runtime distribution.

Our first randomized algorithm is Randomized Quicksort. Before we describe it,
it helps to review Deterministic Quicksort.
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21.3 Review of Deterministic Quicksort

Quicksort is an efficient algorithm for sorting a list of 𝑛 numbers: 𝑎1, 𝑎2, . . . , 𝑎𝑛.
Throughout our discussion we will assume for convenience that these numbers
are distinct. The size of the problem is the number of elements in the list being
sorted, namely 𝑛. The runtime of the algorithm is the number of comparisons
needed to sort the list. Throughout, we will use

𝐶 (𝑛) = number of comparisons needed when the problem size is 𝑛.

In Deterministic Quicksort, the first element in the list (𝑎1) is designated as the
pivot. All elements in the list are then compared with the pivot. Those elements
less than the pivot are put into list 𝐿1, and those greater than the pivot are put
into list 𝐿2, creating the list:

𝐿1, 𝑎1, 𝐿2.

Quicksort is then recursively applied to list 𝐿1 to obtain 𝐿1𝑠 (sorted version of
𝐿1) and is recursively applied to list 𝐿2 to obtain 𝐿2𝑠. The list returned is then

𝐿1𝑠, 𝑎1, 𝐿2𝑠.

Question: What is an example of a bad input list for Deterministic Quicksort?

Answer: In a sorted list, the pivot is always the smallest element in the list. Now
all the elements end up in just one of the sublists, which is bad, because the size
of the problem shrinks too slowly, resulting in high runtime.

Question: How many comparisons are needed in the case of a bad input list?

Answer: In the first step we compare the pivot with 𝑛− 1 elements. We then end
up with a sublist of length 𝑛 − 1, which requires 𝐶 (𝑛 − 1) comparisons to sort.
Hence:

𝐶 (𝑛) = (𝑛 − 1) + 𝐶 (𝑛 − 1),

where 𝐶 (1) = 0. Consequently 𝐶 (𝑛) = 𝑂 (𝑛2) on this bad input list.

Question: What is an example of a good input list for Deterministic Quicksort?

Answer: Ideally, we would like the pivot element to always be the median of the
list. For example, consider the list:

{5, 3, 2, 4, 7, 6, 8},

which splits into:
{3, 2, 4}, 5, {7, 6, 8}
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which further divides into:

{2}, 3, {4}, 5, {6}, 7, {8}.

Question: What is the number of comparisons needed by Deterministic Quick-
sort on a good input list?

Answer: Since the good input splits the list into two even lists at each step, we
have approximately (ignoring rounding up or down):

𝐶 (𝑛) = 𝑛 − 1 + 2𝐶 (𝑛/2)
= (𝑛 − 1) + 2 (𝑛/2 − 1 + 2𝐶 (𝑛/4))
= (𝑛 − 1) + (𝑛 − 2) + 4𝐶 (𝑛/4)
= (𝑛 − 1) + (𝑛 − 2) + 4 (𝑛/4 − 1 + 2𝐶 (𝑛/8))
= (𝑛 − 1) + (𝑛 − 2) + (𝑛 − 4) + 8𝐶 (𝑛/8).

Continuing in this fashion, we have that:

𝐶 (𝑛) = (𝑛 − 1) + (𝑛 − 2) + (𝑛 − 4) + (𝑛 − 8) + · · ·
= 𝑛 lg 𝑛 −

(
1 + 2 + 4 + · · · + 𝑛

2
+ 𝑛

)
= 𝑛 lg 𝑛 − 2𝑛 + 1
= 𝑂 (𝑛 lg 𝑛).

21.4 Randomized Quicksort

We’d like the running time of Quicksort to be 𝑂 (𝑛 lg 𝑛) on every input list. But
how can we achieve this? The adversary can always choose to give us a bad input
list that forces the running time to 𝑂 (𝑛2).

The solution is to use a randomized algorithm. Our Randomized Quicksort
algorithm is identical to Deterministic Quicksort, except that the pivot position
is chosen at random in each step. This makes it impossible for the adversary to
give us a bad input list, which is the point of using randomness!

We will now prove that the expected running time of Randomized Quicksort is
𝑂 (𝑛 lg 𝑛) on every input. Here, “expectation” is over all sequences of random
pivot positions. In Exercise 21.13 you will invoke the Chernoff bound to show
that with high probability (w.h.p.) the running time of Randomized Quicksort is
𝑂 (𝑛 ln 𝑛) on every input.
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Theorem 21.1 (Randomized Quicksort runtime) Given any input list of 𝑛
distinct elements, Randomized Quicksort will make 𝑂 (𝑛 lg 𝑛) comparisons in
expectation.

Proof: Let 𝑎1, 𝑎2, 𝑎3, . . . , 𝑎𝑛 be an input. Let 𝑠1 < 𝑠2 < 𝑠3 < . . . < 𝑠𝑛 be the
sorted version of this input. For 𝑖 < 𝑗 , let 𝑋𝑖 𝑗 be an indicator random variable
that takes on the value 1 if 𝑠𝑖 and 𝑠 𝑗 are ever compared during the running of
the algorithm and 0 otherwise. Note that 𝑠𝑖 and 𝑠 𝑗 are compared at most once.
Then, invoking Linearity of Expectation, we have:

𝐶 (𝑛) =
𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

𝑋𝑖 𝑗

E [𝐶 (𝑛)] =
𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

E
[
𝑋𝑖 𝑗

]
.

Question: What is E
[
𝑋𝑖 𝑗

]
, namely the probability that 𝑠𝑖 and 𝑠 𝑗 are compared?

Hint: Think about the following sorted sublist: 𝑆 =
[
𝑠𝑖 , 𝑠𝑖+1, 𝑠𝑖+2, . . . , 𝑠 𝑗

]
and

condition on which element in 𝑆 is the first to be chosen to be a pivot.

Answer: At any moment of time before one of the elements of 𝑆 has been chosen
as a pivot, all the elements of 𝑆 must be in the same sublist. Now consider that
moment when one of the elements of 𝑆 is first chosen as a pivot. If the pivot
element chosen is 𝑠𝑖 , then 𝑠𝑖 will get compared with all the elements in 𝑆, and
hence 𝑠𝑖 and 𝑠 𝑗 will get compared. The argument is the same if the pivot element
chosen is 𝑠 𝑗 . On the other hand, if any element of 𝑆 other than 𝑠𝑖 or 𝑠 𝑗 is chosen
as the pivot, then after the pivot operation, 𝑠𝑖 and 𝑠 𝑗 will end up in different
sublists and will never get compared. Hence,

P
{
𝑠𝑖 and 𝑠 𝑗 get compared

}
=

2
𝑗 − 𝑖 + 1

.

We thus have:

E [𝐶 (𝑛)] =
𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

E
[
𝑋𝑖 𝑗

]
=

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑗=𝑖+1

2
𝑗 − 𝑖 + 1

= 2
𝑛−1∑︁
𝑖=1

𝑛−𝑖+1∑︁
𝑘=2

1
𝑘

where 𝑘 = 𝑗 − 𝑖 + 1

≤ 2
𝑛∑︁
𝑖=1

𝑛∑︁
𝑘=2

1
𝑘

.
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Now, recalling the fact from (1.16) that
𝑛∑︁
𝑖=1

1
𝑖
< 1 + ln 𝑛,

we have:

E [𝐶 (𝑛)] ≤ 2
𝑛∑︁
𝑖=1

𝑛∑︁
𝑘=2

1
𝑘
< 2

𝑛∑︁
𝑖=1
(1 + ln 𝑛 − 1) = 2𝑛 ln 𝑛.

We have thus shown that E [𝐶 (𝑛)] = 𝑂 (𝑛 ln 𝑛) = 𝑂 (𝑛 lg 𝑛) as desired. ■

Summary: At this point, we have seen that Deterministic Quicksort, where the
pivot is always chosen to be the first element of the list, has a worst-case input
which forces𝑂 (𝑛2) comparisons. By contrast, Randomized Quicksort, where the
pivot is chosen randomly, has no worst-case input, and has an average runtime
of 𝑂 (𝑛 lg 𝑛), where this average is taken over the random choice of the pivot.

Question: Our analyses of both Deterministic Quicksort and Randomized Quick-
sort were worst-case analyses because the adversary was allowed to pick the worst
possible input. What is meant by average-case analysis of Quicksort?

Answer: In average-case analysis, we are once again running Deterministic
Quicksort, with our pivot always chosen to be the first element in the list, for
example. However, rather than the input being chosen by an adversary, we assume
that we have a random input – that is, a randomly ordered list. We derive the
expected runtime, where the expectation is over the random ordering of the list.

Question: What is the runtime of Deterministic Quicksort under average-case
analysis?

Answer: Because the input is randomly chosen, the adversary has no control over
the first element in each sublist. So in each round, our pivot is effectively a random
element in the list. Thus the computation of expected runtime is identical to what
we saw for Randomized Quicksort, where we pick the pivot at random. Hence
the expected runtime of the average-case analysis of Deterministic Quicksort is
also 𝑂 (𝑛 lg 𝑛).

21.5 Randomized Selection and Median-Finding

In the k-Select problem, we are given an unsorted list and asked to find the
𝑘th smallest element in the list. We’ll assume that the list has 𝑛 elements:
𝑎1, 𝑎2, . . . , 𝑎𝑛. Again, for convenience, we assume that these numbers are distinct.
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We will also ignore floors and ceilings in our discussion, so as to keep the notation
from getting out of hand.

Question: What’s an obvious way to solve 𝑘-Select in 𝑂 (𝑛 lg 𝑛) time?

Answer: Sort the list, using Randomized Quicksort, and then return the 𝑘th
element in the sorted list.

Our goal is to solve 𝑘-Select in 𝑂 (𝑛) time.

Question: For certain values of 𝑘 , it should be obvious how to achieve 𝑂 (𝑛)
time. What are these values?

Answer: If 𝑘 = 1, then we can solve the problem just by walking through the list
and keeping track of the smallest element so far. Similarly for 𝑘 = 𝑛.

When 𝑘 = 𝑛
2 (also known as the Median-Select problem), it is not at all obvious

how to achieve 𝑂 (𝑛) time.

We will present a very simple Las Vegas randomized algorithm for achieving
𝑂 (𝑛) time on every input in expectation. The idea is to use random pivots as
we did in the Randomized Quicksort algorithm. However, unlike the case of
Quicksort, the pivot will allow us to throw away a part of the list.

Imagine that we start with a list of 𝑛 elements, and our goal is to find the 𝑘th
smallest element. We now pick a pivot at random. Suppose that our pivot happens
to be the 𝑖th smallest element in the list, 𝑠𝑖 . In 𝑂 (𝑛) time, we can subdivide the
list into 𝐿1, those 𝑖 − 1 elements smaller than our pivot, and 𝐿2, those 𝑛 − 𝑖
elements bigger than our pivot. Our 𝑘th smallest element is either in 𝐿1 or 𝐿2,
or it is equal to the pivot (if 𝑘 = 𝑖).

Question: If 𝑘 < 𝑖, then our problem reduces to ...

Answer: Finding the 𝑘th element in 𝐿1, a list of size 𝑖 − 1.

Question: If 𝑘 > 𝑖, then our problem reduces to ...

Answer: Finding the (𝑘 − 𝑖)th element in 𝐿2, a list of size 𝑛 − 𝑖.

We refer to the above algorithm as Randomized k-Select.

Before we write up the formal analysis, let’s do a quick thought-experiment.

Question: Suppose that the pivot element always exactly splits the list in half.
How many comparisons, 𝐶 (𝑛), will be needed by our algorithm?

Answer: We need 𝑛−1 comparisons to split the list. After splitting the list, we’ll
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have reduced the problem to selection in a list of length 𝑛/2. Ignoring floors and
ceilings, we have:

𝐶 (𝑛) = (𝑛 − 1) + 𝐶 (𝑛/2)
= (𝑛 − 1) + (𝑛/2 − 1) + 𝐶 (𝑛/4)
< 𝑛 + 𝑛/2 + 𝑛/4 + 𝑛/8 + · · · + 1
≤ 2𝑛.

So 𝐶 (𝑛) = 𝑂 (𝑛) if the pivot is always picked optimally.

We will now show that, if we pick a random pivot, we can still achieve 𝑂 (𝑛)
comparisons. Here, expectation is over the choice of the random pivot. Our
derivation is an upper bound because we will assume that we are always reduced
to looking at the longest sublist of the two randomly created sublists. This time we
won’t ignore floors and ceilings, so that you can see how to argue this precisely.

Theorem 21.2 (Randomized k-Select runtime) For any list of 𝑛 distinct el-
ements, Randomized 𝑘-Select makes ≤ 𝑐𝑛 comparisons in expectation, where
𝑐 = 4. This holds for any 𝑘 .

Proof: In general when writing a proof, one does not know exactly what the
constant 𝑐 will be. Thus, we will write our proof as if we are not given the value
of 𝑐, and we will show how we can derive 𝑐 as part of the proof, to get that 𝑐 = 4.

Since the pivot is chosen randomly, it is equal to the 𝑖th smallest element with
probability 1

𝑛
. Hence we have:

E [𝐶 (𝑛)] ≤ (𝑛 − 1) +
𝑛∑︁
𝑖=1

P {pivot is 𝑠𝑖} · E [𝐶 (max{𝑖 − 1, 𝑛 − 𝑖})]

= (𝑛 − 1) +
𝑛∑︁
𝑖=1

1
𝑛
· E [𝐶 (max{𝑖 − 1, 𝑛 − 𝑖})]

≤ (𝑛 − 1) + 2
𝑛

𝑛−1∑︁
𝑖=⌊ 𝑛2 ⌋

E [𝐶 (𝑖)] .

We will show that this results in E [𝐶 (𝑛)] = 𝑂 (𝑛). We use induction. We claim
that E [𝐶 (𝑖)] ≤ 𝑐 · 𝑖 for some small integer 𝑐 ≥ 1 to be named later, and where
𝑖 < 𝑛.

Since E [𝐶 (1)] = 0 ≤ 𝑐 · 1, the base case holds. Assuming that the inductive
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hypothesis holds for 𝑖 ≤ 𝑛 − 1, we have:

E [𝐶 (𝑛)] ≤ (𝑛 − 1) + 2
𝑛

𝑛−1∑︁
𝑖=⌊ 𝑛2 ⌋

𝑐 · 𝑖

= (𝑛 − 1) + 2𝑐
𝑛
·
(𝑛 − 1) +

⌊
𝑛
2
⌋

2
·
(
𝑛 − 1 −

⌊𝑛
2

⌋
+ 1

)
≤ (𝑛 − 1) + 2𝑐

𝑛
·
(𝑛 − 1) + 𝑛

2
2

·
(
𝑛 − 𝑛 − 1

2

)
= (𝑛 − 1) + 𝑐

𝑛
·
(

3𝑛
2
− 1

)
· 𝑛 + 1

2

= (𝑛 − 1) + 𝑐

4𝑛
· (3𝑛 − 2) · (𝑛 + 1)

= (𝑛 − 1) + 3𝑐𝑛
4
+ 𝑐

4
− 2𝑐

4𝑛
. (21.1)

Our goal is to show that E [𝐶 (𝑛)] ≤ 𝑐𝑛. From (21.1), we can see that, if we set
𝑐 = 4, then we have that:

E [𝐶 (𝑛)] ≤ (𝑛 − 1) + 3 · 4 · 𝑛
4

+ 4
4
− 2 · 4

4𝑛

= (𝑛 − 1) + 3𝑛 + 1 − 2
𝑛

≤ 4𝑛.

So
E [𝐶 (𝑛)] ≤ 4𝑛

is a solution to the original equation. We have thus proven the inductive case. ■

Question: Suppose we want to determine the median of a list of length 𝑛. How
many comparisons are needed?

Answer: Still𝑂 (𝑛). If 𝑛 is odd, we use Randomized 𝑘-Select with 𝑘 = (𝑛+1)/2.
We refer to the median-finding algorithm as Randomized Median-Select.

21.6 Exercises

21.1 Creating a fair coin
You are given a biased coin that returns heads with probability 0.6 and
tails otherwise. Let Biased-Flip be a routine that flips the biased coin
once and returns the output. Design a Las Vegas algorithm, Fair, which
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outputs heads with probability 0.5 and tails otherwise. Your algorithm,
Fair, should only make calls to Biased-Flip and nothing else.
(a) State your Fair algorithm clearly.
(b) Prove that Fair outputs heads with probability 0.5 and Tails otherwise.
(c) Derive the expected number of calls to Biased-Flip required for Fair

to produce an output.

21.2 Creating a three-way fair coin
Given a function 2WayFair that returns 0 or 1 with equal probability,
implement a Las Vegas function, 3WayFair, that returns 0, 1, or 2 with
equal probability. Aim to use a minimum number of calls to 2WayFair.
(a) What is the expected number of calls to 2WayFair made by 3WayFair?
(b) Explain why 3WayFair is a Las Vegas algorithm.
(Note: The solution is simple. Do not use any floating point arithmetic.)

21.3 Nuts-and-bolts problem
[Proposed by David Wajc] Imagine that you have 𝑛 nuts, 𝑁1, 𝑁2, . . . , 𝑁𝑛

with distinct sizes: 1, 2, 3, . . . , 𝑛. You also have 𝑛 bolts, 𝐵1, 𝐵2, . . . , 𝐵𝑛

with distinct sizes: 1, 2, 3, . . . , 𝑛, such that there is exactly one bolt that
fits each nut. You can’t see the nuts or the bolts, but you can perform a
“trial” which consists of comparing one nut with one bolt. The result of
a single trial is that either (a) they’re a perfect fit, or (b) the bolt was too
small, or (c) the bolt was too large. You are not allowed to compare nuts
with nuts or bolts with bolts.
(a) Describe an efficient randomized algorithm for matching all 𝑛 nuts

to the 𝑛 bolts in as few trials as you can. (Using Θ(𝑛2) trials is too
many!)

(b) Derive the expected asymptotic running time of your algorithm.

21.4 Ropes problem
You have 𝑛 ropes. Each rope has two ends. Consider the following ran-
domized algorithm: At each step of your algorithm, you pick two random
ends (these may be two ends from the same rope, or one end from one
rope and one end from another rope), and tie these ends together. Keep
going until there are no ends left. What is the expected number of cycles
formed? Express your answer using Θ(·).

21.5 Uniform sampling from a stream
[Proposed by David Wajc] Suppose you are walking down a long road,
whose length you don’t know in advance. Along the road are houses,
which you would like to photograph with your very old camera. This
old camera allows you to take as many pictures as you want, but only
has enough memory to store one picture at a time. The street contains
𝑛 houses, but you don’t know 𝑛 before you reach the end of the street.
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Your goal is to end up with one photo in your camera, where that photo is
equally likely to show any of the 𝑛 houses.
One algorithm for achieving this goal is to walk all the way down the
street, counting houses, so that we can determine 𝑛. Then we roll an 𝑛-
sided die, where 𝑋 denotes the roll outcome. Then we walk to the house
numbered 𝑋 and take its picture. However, you’re a busy person and you
don’t want to walk down the street again. Can you achieve your goal by
walking up the street only once? This problem is referred to as uniform
sampling from a stream with unknown length.
(a) Propose a randomized algorithm for uniform sampling from a stream

with unknown length. Your algorithm will involve replacing the item
stored in memory with some probability as you walk (only once) down
the street.

(b) Prove that, for all 𝑖, P {𝑖th item is output} = 1
𝑛

.

21.6 Pruning a path graph
[Proposed by Vanshika Chowdhary] Figure 21.2 shows a path graph of 𝑛
edges. At each round, you select a random edge of those remaining and
cut it. Whenever an edge is cut, that edge and everything below that edge
falls off. Let 𝑋 be the number of edges that you cut until the entire path
disappears (all edges are gone). What is E [𝑋]?

e1

e2

e3

e1

e2

e3

e4

en-1

en

Original path graph

After cutting

    edge e4

Figure 21.2 For Exercise 21.6. Path graph with 𝑛 edges, before and after pruning edge
𝑒4.

21.7 Uniform sampling from a stream – generalized
As in Exercise 21.5, you are walking down a long road with 𝑛 houses,
where you don’t know 𝑛 in advance. This time you have a new camera
for photographing houses. This new camera has enough memory to store
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𝑠 photos at a time. You walk all the way down the street just once taking
photos. By the end of your walk, you want to have stored a random subset
of 𝑠 homes. (Assume 𝑛 ≥ 𝑠.)
(a) Provide a randomized algorithm for achieving your goal.
(b) Let 𝑆 denote the set of houses stored in your camera. Prove that, at

the end of your walk, each of the 𝑛 houses has an equal probability of
being in 𝑆.

21.8 Finding the max – average-case analysis
Given an array 𝐴 of length 𝑛 containing distinct integers 𝑎1, 𝑎2, . . . , 𝑎𝑛,
the FindMax algorithm determines the maximum number in 𝐴. Assuming
the inputs are given in a uniformly random order, what is the expected
number of times that currentMax is updated? Provide upper and lower
bounds for this expression.

Algorithm 21.3 (FindMax(𝑎1, 𝑎2, . . . , 𝑎𝑛))
1. currentMax = −∞
2. for 𝑖 = 1, . . . , 𝑛 do

if 𝑎𝑖 > currentMax then currentMax = 𝑎𝑖 .
3. return currentMax

21.9 Average-case analysis of Move-to-Front
Suppose you use a linked list to store 𝑛 items: 𝑎1, 𝑎2, . . . , 𝑎𝑛. Then the time
to access the 𝑖th stored item in the list is 𝑖. If you know that certain items
are accessed more frequently, you would like to store them at the front of
the list, so that their access time is shorter. Unfortunately, you don’t know
the access probabilities of items, so you use the (deterministic) Move-
To-Front (MTF) algorithm: Each time an item is accessed, you append
it to the front of the list, so that its access time is 1 (for now). Assume
that MTF has been running for a long time. Our goal is to understand the
expected time to look up an item in the list, call it E [𝑇], given that item
𝑎𝑖 is accessed with probability 𝑝𝑖 .
(a) Prove that

E [𝑇] = 1 +
𝑛∑︁
𝑖=1

𝑝𝑖

∑︁
𝑗≠𝑖

𝑝 𝑗

𝑝 𝑗 + 𝑝𝑖
. (21.2)

[Hint: Start by conditioning on the item, 𝑎𝑖 , being accessed. The posi-
tion of 𝑎𝑖 can be expressed in terms of a sum of 𝑋𝑖 𝑗 indicator random
variables, where E

[
𝑋𝑖 𝑗

]
is the probability that item 𝑎 𝑗 precedes 𝑎𝑖 . ]

(b) Verify your expression for E [𝑇] in the case 𝑝𝑖 = 1
𝑛

, ∀𝑖.
(c) Suppose that 𝑝𝑖 = 𝐶 · 2−𝑖 , 𝑖 = 1, 2, . . . , 𝑛, where 𝐶 is the appropriate

normalizing constant. Compute E [𝑇]MTF from (21.2), where 𝑛 = 5
(you can write a small program). Now consider the case where we
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know the 𝑝𝑖’s and we arrange the items according to the best arrange-
ment (BA), namely in order of decreasing 𝑝𝑖 . How does E [𝑇]BA

compare with E [𝑇]MTF?

21.10 How to find a mate – average-case analysis
[This is a repeat of Exercise 3.14, which is a nice example of average-case
analysis.] Imagine that there are 𝑛 people in the world. You want to find
the best spouse. You date one person at a time. After dating the person,
you need to decide if you want to marry them. If you decide to marry,
then you’re done. If you decide not to marry, then that person will never
again agree to marry you (they’re on the “burn list”), and you move on to
the next person.
Suppose that after dating a person you can accurately rank them in com-
parison with all the other people whom you’ve dated so far. You do not,
however, know their rank relative to people whom you haven’t dated. So,
for example, you might early on date the person who is the best of the 𝑛,
but you don’t know that.
Assume that the candidates are randomly ordered. Specifically, assume
that each candidate has a unique score, uniformly distributed between 0
and 1. Our goal is to find the candidate with the highest score.

Algorithm 21.4 (Marriage algorithm)
1. Date 𝑟 ≪ 𝑛 people. Rank those 𝑟 to determine the “best of r.”
2. Now keep dating people until you find a person who is better than

that “best of r” person.
3. As soon as you find such a person, marry them. If you never find such

a person, you’ll stay unwed.

What 𝑟 maximizes P {end up marrying the best of 𝑛}? When using that
𝑟, what is the probability that you end up marrying the best person? (In
your analysis, feel free to assume that 𝑛 is large and 𝐻𝑛 ≈ ln(𝑛).)

21.11 Finding the k largest elements
Given an array 𝐴 of 𝑛 distinct elements in random order, we will consider
two algorithms which each output the 𝑘 largest elements in sorted order.
(a) Randomized Algorithm 1 uses Randomized 𝑘-Select to find the 𝑘th

largest element, 𝑥. We then walk through the array, keeping only
those elements ≥ 𝑥. Finally, we sort these 𝑘 largest elements via
Randomized Quicksort. Derive an asymptotic expression for the ex-
pected number of comparisons. Since Algorithm 1 is randomized, the
expectation is over the random bits.

(b) Deterministic Algorithm 2 maintains a sorted list at all times, 𝑆 =

[𝑠1 > 𝑠2 > · · · > 𝑠𝑘], of the top-𝑘-so-far. We start by sorting the first
𝑘 elements of 𝐴 via Deterministic Quicksort and calling that 𝑆. We
now take each element, 𝑥, of 𝐴, starting with the (𝑘 + 1)th element,
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𝑥 = 𝑎𝑘+1, and insert it into its place in 𝑆. To do this, we compare 𝑥
with each element of 𝑆 starting with 𝑠𝑘 and then 𝑠𝑘−1 (if needed), and
then 𝑠𝑘−2 (if needed) and so on until 𝑥 finds its place in 𝑆. This is the
first run. In the second run, we insert the (𝑘 + 2)th element of 𝐴 into
its proper place in 𝑆. There will be 𝑛− 𝑘 runs, many of which will not
change 𝑆 at all. Prove that the expected number of comparisons made
is𝑂 (𝑛+ 𝑘2 log 𝑛). Since Algorithm 2 is deterministic, the expectation
is over the randomly ordered input.

21.12 Randomized dominating set
A dominating set, 𝐷, in a connected undirected graph 𝐺 = (𝑉 , 𝐸), is a
set of vertices such that, for each 𝑣 ∈ 𝑉 , either 𝑣 ∈ 𝐷 or 𝑣 is adjacent to
some 𝑣′ ∈ 𝐷 (in both cases we say that 𝑣 is covered by 𝐷). Assume that
|𝑉 | = 𝑛 and that 𝐺 is d-regular, with 𝑑 ≥ 2, meaning that each vertex has
exactly 𝑑 neighbors. Our goal is to find the minimum sized 𝐷.
(a) Sheng proposes the following randomized algorithm to find a valid

𝐷: Each vertex picks a random number in the range (0, 1). For each
edge, (𝑖, 𝑗), we pick the endpoint with the larger number to be in 𝐷.
In this way, for every edge (𝑖, 𝑗), we are guaranteed that at least one
of 𝑖 and 𝑗 are in 𝐷. What is E [|𝐷 |] found by Sheng’s algorithm?

(b) A better randomized algorithm is Algorithm 21.5. Derive E [|𝐷 |] for
Algorithm 21.5. Here are some steps:

(i) Express E [|𝐷 |] as a function of the 𝑝 value in Algorithm 21.5.
(ii) Find the 𝑝 that minimizes E [|𝐷 |]. Express E [|𝐷 |] for this 𝑝.

(iii) Prove that 0 < E [|𝐷 |] < 𝑛. What happens to E [|𝐷 |] as 𝑑 grows
large?

Algorithm 21.5 (Dominating Set)
1. Given 𝐺 = (𝑉 , 𝐸), pick a random subset 𝐷0 ⊆ 𝑉 where 𝐷0

includes each 𝑣 ∈ 𝑉 with probability 𝑝.
2. Let 𝐷1 be all vertices in 𝑉 that are not covered by 𝐷0.
3. Return 𝐷 = 𝐷0 ∪ 𝐷1.

21.13 Bounding the tail of Randomized Quicksort
Use Chernoff bounds to show that, w.h.p. (1− 1

𝑛
), Randomized Quicksort

requires only 𝑂 (𝑛 lg 𝑛) comparisons to sort a list of length 𝑛. Here are
some steps to help you:
(a) Consider a particular run of Randomized Quicksort as shown in Fig-

ure 21.3. The tree shows the list 𝐿 at each stage and then shows the
sublists 𝐿1 and 𝐿2 under that, separated by the pivot, 𝑝. You can imag-
ine drawing such a tree for any instance of Randomized Quicksort.
Let 𝑇 denote the total number of comparisons made by Randomized
Quicksort. Explain why 𝑇 is upper-bounded by the sum of the lengths
of all root-to-leaf paths in the ternary tree. Note that pivots count as
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leaves as well, so every element is eventually a leaf. [Hint: For each
leaf, think about the number of comparisons that it’s involved in.]

5    4    1    3    7    6    2

1    3    2 5    7    64

2 31 6 75

Figure 21.3 Randomized Quicksort tree. The randomly selected pivot is in pink.

(b) Now we’ll argue that w.h.p. each root-to-leaf path is of length
𝑂 (log 𝑛). Note: It’s fine that some quantities are not integers.

(i) Let’s say that a node of the tree is “good” if the randomly chosen
pivot separates the current list at the node into two sublists, each
of size at most 3

4 the size of the current list. Otherwise we say that
the node is “bad.” What is the probability that a node is “good”?

(ii) Let 𝑔 denote the maximum number of “good” nodes possible
along a single root-to-leaf path. What is 𝑔 as a function of 𝑛?

(iii) Consider an arbitrary leaf 𝑖. We want to prove that the root-to-leaf
path ending in 𝑖 is not very long. Specifically, show that

P {The root-to-leaf path ending in 𝑖 has length ≥ 6𝑔} ≤ 1
𝑛2 .

Here you’re using the 𝑔 from part (ii). Note that as soon as we
see the first 𝑔 “good” nodes, we’ll be down to a single leaf.

(c) We have seen that with probability at least 1 − 1
𝑛2 a given root-to-

leaf path is no longer than 6𝑔. What probabilistic statement about 𝑇
follows from this?

21.14 Randomized AND–OR tree evaluation
Min–max game trees are often represented by an AND–OR tree on binary
inputs, where AND is equivalent to “Min” and OR is equivalent to “Max.”
In an AND–OR tree, there are alternating levels of ANDs and ORs. The
leaves of the tree are all 0’s and 1’s. Recall that AND(𝑎, 𝑏) = 1 only if
𝑎 = 𝑏 = 1, while OR(𝑎, 𝑏) = 1 if either 𝑎 = 1 or 𝑏 = 1 or both. Each node
in the tree has a value (computed bottom-up) based on its subtrees; the
value of the entire tree is the value of the root node. 𝑇𝑘 denotes a tree with
𝑘 AND levels and 𝑘 OR levels, having height 2𝑘 and 22𝑘 = 4𝑘 leaves.
Figure 21.4 shows 𝑇2.
(a) How many leaves must be evaluated in determining the value of

𝑇𝑘 when a deterministic algorithm is used? What exactly will the
adversary do to force you to evaluate that many leaves? The adversary
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Figure 21.4 This figure shows 𝑇𝑘 , where 𝑘 = 2. This means that there are 𝑘 = 2 AND
levels and 𝑘 = 2 OR levels. The height of a 𝑇𝑘 tree is 2𝑘 . The values are computed
bottom-up and are shown in red at each node. The final value of this tree is 1.

knows the order in which your algorithm evaluates leaves and will
give you the worst-case input.

(b) Consider the following Randomized AND–OR algorithm. This algo-
rithm computes the value of each node in the tree, bottom-up. How-
ever, it randomly considers whether to first look at the left node or the
right node, and then it doesn’t bother looking at the remaining node
unless necessary. Prove that the Randomized AND–OR algorithm re-
quires ≤ 3𝑘 leaf evaluations in expectation. Here, expectation is taken
over the random bits used by the algorithm. As always, the adversary
will try to give you the worst-case input; however, it will have a harder
time because your moves are random.

(i) Start with a tree of height 1, consisting of two leaves connected
by an OR. How many leaves on average must be evaluated if the
value of your tree is 1? How about if the value of your tree is 0?

(ii) Now consider the tree 𝑇𝑘 , where 𝑘 = 1. This tree will have
a single AND with two ORs underneath. How many leaves in
expectation must be evaluated if the value of your tree is 1? What
changes if the value of your tree is 0?

(iii) Prove via induction that you can determine the value of𝑇𝑘 in ≤ 3𝑘

leaf evaluations in expectation. Do this both when the value of
the tree is 1 and when it is 0.

21.15 Multi-armed chocolate machine
[Proposed by Weina Wang] A chocolate machine has two arms, as shown
in Figure 21.5. If you pull Arm 1, it gives you a chocolate with probability
𝑝1 = 3

4 . If you pull Arm 2, it gives you a chocolate with probability
𝑝2 = 1

4 . Unfortunately, you don’t know the values of 𝑝1 and 𝑝2, or which
one is bigger.
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p2 =¼

p1 =¾

Figure 21.5 Chocolate machine with two arms.

Suppose pulling an arm once costs 1 dollar, and you have 𝑛 dollars in
total. Your goal is always to spend your 𝑛 dollars to maximize the number
of chocolates you receive in expectation.
(a) If you knew 𝑝1 and 𝑝2, how would you want to spend your 𝑛 dollars?

Let 𝑅∗ denote the total number of chocolates you get. What is E [𝑅∗]?
(b) Since you do not know 𝑝1 and 𝑝2, you decide to pull each arm 𝑛

2
times (assume 𝑛 is an even number). Let 𝑅rand be the total number
of chocolates you get. What is E [𝑅rand]? Compare E [𝑅rand] with
E [𝑅∗].

(c) You figure that you can experiment with the arms a bit and decide
how to use the rest of the money based on what you see. Suppose you
pull each arm once to see which gives you chocolates.
• If one arm gives a chocolate and the other one does not, you use

the remaining 𝑛 − 2 dollars on the arm that gives a chocolate.
• Otherwise, you pick an arm uniformly at random and use the re-

maining 𝑛 − 2 dollars on that arm.
Let 𝑅informed be the total number of chocolates you get. What is
E [𝑅informed]? Compare E [𝑅informed] with E [𝑅∗].

(d) You decide to experiment further. Suppose you pull each arm 𝑚 =

8 ln 𝑛 times. Let 𝑋 and 𝑌 be the numbers of chocolates you get from
Arm 1 and Arm 2, respectively. Then you do the following:
• If 𝑋 ≥ 𝑌 , you use the remaining 𝑛 − 2𝑚 dollars on Arm 1.
• Otherwise, you use the remaining 𝑛 − 2𝑚 dollars on Arm 2.
Let 𝑅well-informed denote the total number of chocolates you get.
Derive a lower bound on E [𝑅well-informed]. Show that E [𝑅∗] −
E [𝑅well-informed] = 𝑂 (ln 𝑛).

For more general versions of this problem and more interesting algorithms,
check out the multi-armed bandits literature (e.g. [47]).

21.16 Infinite highway problem
Imagine an infinitely long one-lane highway, starting at location 0 and
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Figure 21.6 One example of the infinite highway problem from Exercise 21.16.

extending forever. There are 𝑛 distinct cars, which start out evenly
spaced. Each of the cars moves at some speed drawn independently from
Uniform(0, 100). The cars will drive forever on this one-lane highway,
unable to pass each other, and faster cars will eventually get stuck behind
slower cars that started in front of them. Over time, the cars will segregate
into clusters. Figure 21.6 shows one particular example. Let 𝑋 denote the
number of clusters formed for a general instance of this problem.
(a) What is E [𝑋]?
(b) What is Var(𝑋)?
(c) Prove that 𝑋 is less than 3E [𝑋] w.h.p. when 𝑛 is high.

21.17 Independent set
[Proposed by Misha Ivkov] Let 𝐺 = (𝑉 , 𝐸) be a graph with 𝑛 = |𝑉 |
vertices and 𝑚 = |𝐸 | edges. We say that 𝑆 ⊂ 𝑉 is an independent set if no
pair of vertices in 𝑆 are connected by an edge. You will prove that𝐺 has an
independent set 𝑆 of size ≥ 𝑛2

4𝑚 . To do this, you will use the probabilistic
method, which says: To prove that there is an independent set of size
≥ 𝑘 in 𝐺, find a randomized algorithm which gives you an independent
set of size 𝑆, where E [𝑆] ≥ 𝑘 . (Here 𝑆 is a r.v. which depends on the
random bits of the randomized algorithm.) Now you know there must be
an independent set of size ≥ 𝑘 in 𝐺.
Use the following Randomized Independent Set algorithm:
1. Pick each vertex of 𝑉 to be in 𝑆 with probability 𝑝.
2. If there exist two vertices in 𝑆 that share an edge, randomly delete one.
Show that E [𝑆] ≥ 𝑛2

4𝑚 . Note: You will have to specify 𝑝.


