
Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

20 Hashing Algorithms

In the last two chapters we studied many tail bounds, including those from
Markov, Chebyshev, Chernoff and Hoeffding. We also studied a tail approx-
imation based on the Central Limit Theorem (CLT). In this chapter we will
apply these bounds and approximations to an important problem in computer
science: the design of hashing algorithms. In fact, hashing is closely related to
the balls-and-bins problem that we recently studied in Chapter 19.

20.1 What is Hashing?

What exactly is hashing? Let’s start with a simple example. Suppose you are
the CMU student dean, in charge of maintaining a system that stores academic
information on each student, such as the student’s name, major, and GPA. You
use social security numbers (SSNs) to identify students, so that not anybody can
access the information. A student’s SSN is called a key. When the student’s SSN
is entered, the system returns the student’s academic information.

SSN Academic Info

123456789 Mark Stein, Senior, GPA: 4.0
658372934 Tom Chen, Junior, GPA: 3.5
529842934 David Kosh, Freshman, GPA: 2.7
623498008 Divia Kana, Sophomore, GPA: 3.7

... ...

The main feature of the system is that search needs to be fast. Additionally, when
new freshmen arrive, you need to insert their information into the system, and
when seniors graduate, you need to delete their information from the system.

Suppose there are 𝑚 = 20,000 students. How would you store this collection of
student info? One solution is to use a linked list or unsorted array. Then insert
is fast, but search and delete need to linearly scan the whole list, which takes
𝑂 (𝑚) time. A better solution is to use a sorted data structure, such as a binary

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

20.1 What is Hashing? 347

search tree that sorts student info by SSN. Then search, insert, and delete all take
𝑂 (log𝑚) time on average. None of these solutions is ideal.

Question: If space were not a consideration at all, is there a solution with 𝑂 (1)
worst-case time for search, insert, and delete?

Answer: If space is not a consideration, one could use a huge array, 𝐴, where the
SSN is the index in the array. For example, if Mark’s SSN is 123456789, then
his information will be stored in 𝐴[123456789]. The time for search, insert, and
delete is 𝑂 (1). However, since there are 109 possible SSNs, the size of 𝐴 needs
to be 109. This is a waste of space for storing the info of only 20,000 students.

Question: Suppose that we’re willing to give up on worst-case guarantees. Is
there a solution with 𝑂 (1) average time for search, insert, and delete that uses
just 𝑂 (𝑚) space?

Hint: Here’s an idea: Suppose we divide the students into 𝑛 = 10 buckets
according to the last digit of their SSN. Thus all students with SSN ending with
0 go into bucket 0, all students with SSN ending with 1 go into bucket 1, and
so on. Then, if we want to search for Mark, we know that his SSN belongs to
bucket 9, so we need only look within bucket 9. Assuming all bucket sizes are
approximately equal, each bucket has about 2000 students, and our search time
is 10 times faster than the single linked list. Can we take this idea further?

Answer: We can increase the number of buckets, 𝑛, to further improve the search
time. For example, we can use the last four digits of the SSN. Then we will have
10,000 buckets, with ending digits 0000 to 9999. So, to search for Mark, we need
only look within bucket 6789, which, assuming all bucket sizes are approximately
equal, has only 20,000

10,000 = 2 students in expectation.

The solution is to use 𝑛 = 𝑂 (𝑚) buckets, which allows us to achieve𝑂 (1) search
time with 𝑂 (𝑚) space!

This method is called bucket hashing. It makes searching, insertion, and deletion
fast in expectation, because we need only search within a single small bucket.

Definition 20.1 A bucket hash function ℎ : 𝑈 → 𝐵 maps keys to buckets.
For a key 𝑘 , we call ℎ(𝑘) the hash of 𝑘 . The domain of ℎ is 𝑈, the universe
of all possible keys. The range of ℎ is 𝐵, which is a subset of the non-negative
integers, denoting the buckets. 𝐾 ⊆ 𝑈 is the actual set of keys that we are
hashing, where typically |𝐾 | ≪ |𝑈 |. Let |𝐾 | = 𝑚 and |𝐵 | = 𝑛. We use r.v. 𝐵𝑖 to
denote the number of keys that hash to bucket 𝑖, also called the “size” of bucket
𝑖. The data structure which maps the 𝑚 keys into 𝑛 buckets using such a hash
function is called a hash table.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

348 20 Hashing Algorithms

In the above example,𝑈 is all possible nine-digit SSNs (|𝑈 | = 109), 𝐾 is the set
of the SSNs of the 20,000 students, and 𝐵 is the 10,000 buckets. As is typical,
𝑚 = |𝐾 | ≪ |𝑈 |, which allows us to get away with a small hash table.

When we adjusted the number of buckets above, we were trading off between
space and search time. The ratio of keys to buckets is called the load factor, 𝛼.

Definition 20.2 A hash table that stores𝑚 keys within 𝑛 buckets is said to have
a load factor of

𝛼 =
Number keys

Number buckets
=
𝑚

𝑛
.

It is typical to aim for a load factor that is a small constant above 1.

In general, we assume that hash functions have two desirable properties: (1) they
are efficient to compute, and (2) they are balanced in that the keys are uniformly
distributed between the buckets. If we’re lucky and the keys are themselves
uniformly distributed numbers, then a simple hash function like ℎ(𝑘) = 𝑘 mod 𝑛
can work well. However, if the keys come from a more skewed distribution, it
can be much harder to find a “balanced” hash function. Finding balanced and
efficient hash functions is usually scenario-specific, so we won’t dwell on this.
For the purposes of analysis we will simply assume that our hash function is
efficient and has a “balanced” property known as the simple uniform hashing
assumption, defined next.

20.2 Simple Uniform Hashing Assumption

Definition 20.3 A bucket hash function ℎ satisfies the simple uniform hashing
assumption (SUHA) if each key 𝑘 has probability 1

𝑛
of mapping to any bucket

𝑏 ∈ 𝐵, where |𝐵| = 𝑛. Moreover, the hash values of different keys are indepen-
dent, so for any subset of keys 𝑘1, 𝑘2, . . . , 𝑘𝑖 ∈ 𝐾 , where 𝑘1 ≠ 𝑘2 ≠ · · · ≠ 𝑘𝑖
and 𝑏1, 𝑏2, . . . , 𝑏𝑖 ∈ 𝐵,

P {ℎ(𝑘1) = 𝑏1 & ℎ(𝑘2) = 𝑏2 & · · · & ℎ(𝑘𝑖) = 𝑏𝑖} =
1
𝑛𝑖

.

SUHA is a lovely analytical convenience, but it may seem unattainable. Given
that ℎ(𝑘), the hash value of key 𝑘 , is deterministic, how can we say that ℎ(𝑘) = 𝑏
with probability 1

𝑛
? This is achieved by using a universal family of hash functions

ℎ1, ℎ2, . . . , ℎ𝑛. The hash function to be used for a particular hash table is drawn,
uniformly at random, from this universal family. Once a hash function, ℎ𝑖 , is

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

20.3 Bucket Hashing with Separate Chaining 349

picked, then that same hash function is used for all the keys of the table. In this
way, the hash function is deterministic, but has appropriate random properties.
We ignore questions on how to create universal families1 and instead show how
SUHA is used.

Question: Let 𝐵𝑖 denote the number of keys which map to bucket 𝑖. Assuming
SUHA, and assuming a load factor of 𝛼, what is E [𝐵𝑖]?

Answer: Assume that there are 𝑛 buckets and 𝑚 keys, and let 𝛼 = 𝑚
𝑛

. Let 𝐼𝑘 be
the indicator random variable that key 𝑘 maps to bucket 𝑖. Then, by Linearity of
Expectation,

E [𝐵𝑖] =
𝑚∑︁
𝑘=1

E [𝐼𝑘] =
𝑚∑︁
𝑘=1

1
𝑛
=
𝑚

𝑛
= 𝛼.

So all buckets have the same size, 𝛼, in expectation.

Searching for a student involves hashing their SSN to some bucket 𝑖, and then
searching through all the keys that mapped to that bucket. Traditionally, the keys
that map to a single bucket are stored in a linked list at that bucket. This is called
“bucket hashing with separate chaining,” and will be the topic of Section 20.3.
In Section 20.4, we will analyze a different way of storing keys that hash to the
same bucket, called “bucket hashing with linear probing.”

In both Sections 20.3 and 20.4, the goal is to use hashing to store information
in a way that allows for fast search, insert, and delete, both on average and with
high probability (w.h.p.). In Section 20.5 we will look at an entirely different
use of hashing: how to verify the identity of a key without exposing the key
(think here of the “key” as being a password that you want to ensure is correct
without exposing it to an adversary). This will involve “cryptographic signature
hash functions,” where our goal will be to prove that, w.h.p., the hashing will not
expose the identity of the key.

20.3 Bucket Hashing with Separate Chaining

In bucket hashing with separate chaining, the hash table is an array of buckets,
where each bucket maintains a linked list of keys. Figure 20.1 shows our previous
example, where the hash function maps an SSN to the last four digits of the SSN.
To search for a key within a bucket, we traverse the linked list. To insert a key to
a bucket, we first search within the linked list, and if the key does not exist, we
append it to the linked list. To delete a key from a bucket, we first search for it
1 See [16, p. 267] for a discussion of how number theory can be used to create a universal family

of hash functions.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

350 20 Hashing Algorithms

within the linked list, and delete it from the linked list if we find it. Thus the time
complexity for all operations is dominated by the time complexity for search.

658372934: Tom C, Junior 3.5 529842934: David K, Frosh 2.7

123456789: Mark S, Senior 4.0

623498008: Divia K, Sophomore 3.7

2934

6789

8008

0000

0001

Figure 20.1 Example of bucket hashing with separate chaining.

We already saw that, under SUHA, and assuming a load factor of 𝛼, each bucket
has 𝛼 keys in expectation. Thus, the expected search time under bucket hashing
with separate chaining is 𝑂 (𝛼). This is great because we typically imagine that
𝛼 is a small constant. However, an individual bucket might have way more than
𝛼 keys.

Question: What is the distribution on 𝐵𝑖 , the number of keys in the 𝑖th bucket?

Hint: Remember that we’re distributing 𝑚 keys into 𝑛 buckets, uniformly at
random.

Answer:

𝐵𝑖 ∼ Binomial
(
𝑚,

1
𝑛

)
.

Question: Assume that 𝑚 and 𝑛 are both high, while 𝛼 is still a constant. What
do we know about Var(𝐵𝑖)?

Answer:

Var(𝐵𝑖) = 𝑚 ·
1
𝑛
·
(
1 − 1

𝑛

)
= 𝛼 ·

(
1 − 1

𝑛

)
→ 𝛼.

In the setting when 𝑚 and 𝑛 are high, CLT tells us that the distribution of 𝐵𝑖

approaches that of a Normal.

Question: So, when 𝑚 and 𝑛 are high, what, approximately, can we say is
P

{
𝐵𝑖 > 𝛼 + 2

√
𝛼
}
?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

20.3 Bucket Hashing with Separate Chaining 351

Answer: This is the probability that 𝐵𝑖 exceeds its mean by more than 2 standard
deviations. As the distribution of 𝐵𝑖 approaches a Normal, this is approximately
2%.

So the number of keys in any individual bucket is likely to be small. The mean
is 𝛼 and the distribution approaches Normal(𝛼,𝛼) when 𝑚 and 𝑛 are high. But
what about the worst bucket? How many keys does it have?

Question: In the case of 𝛼 = 1, what can we say with high probability (w.h.p.)
about the fullest bin?

Answer: When 𝛼 = 1, we have 𝑚 = 𝑛. In Section 19.4 we showed that if you
throw 𝑛 balls into 𝑛 bins, uniformly at random, then w.h.p. the fullest bin will
have 𝑂

(
ln 𝑛

ln ln 𝑛

)
balls. This is a w.h.p. bound on the cost of search when 𝛼 = 1.

We can imagine proving similar w.h.p. bounds on the cost of search for the case
when 𝛼 = 2 or 𝛼 = 3. But what happens if 𝛼 is high, say ln 𝑛? One could
imagine that the number of keys in the fullest bucket could be quite high now.
Theorem 20.4 shows that this is not the case. Both the mean search cost and the
w.h.p. search cost are 𝑂 (𝛼), for high 𝛼. Thus for the case where 𝛼 = ln 𝑛, our
w.h.p. bound on the cost of search is 𝑂 (ln 𝑛), which is not that different than the
case where 𝛼 = 1.

Theorem 20.4 Under SUHA, for bucket hashing with separate chaining, as-
suming 𝑚 ≥ 2𝑛 ln 𝑛 keys, and 𝑛 buckets, then with probability ≥ 1 − 1

𝑛
the

largest bucket has size < 𝑒𝛼, where 𝛼 = 𝑚
𝑛

.

Proof: Our proof follows along the same lines as that in Section 19.4. The idea
will be to first prove that for any 𝐵𝑖 ,

P {𝐵𝑖 ≥ 𝑒𝛼} ≤
1
𝑛2 .

(We will show below how to do this).

Once we have that result, then by the union bound,

P {Some bucket has ≥ 𝑒𝛼 balls} ≤
𝑛∑︁
𝑖=1

1
𝑛2 =

1
𝑛

.

Thus, P {largest bucket has size < 𝑒𝛼} > 1 − 1
𝑛

as desired.

All that remains is to prove that

P {𝐵𝑖 ≥ 𝑒𝛼} ≤
1
𝑛2 .

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

352 20 Hashing Algorithms

We start by observing that since 𝑚 ≥ 2𝑛 ln 𝑛, we know that

𝛼 =
𝑚

𝑛
≥ 2 ln 𝑛.

Applying The Chernoff bound from Theorem 18.6, with

• 1 + 𝜖 = 𝑒 (so 𝜖 = 𝑒 − 1 > 0), and
• 𝜇 = 𝛼 ≥ 2 ln 𝑛,

we have:

P {𝐵𝑖 ≥ 𝑒𝛼} = P {𝐵𝑖 ≥ (1 + 𝜖)𝜇}

<

(
𝑒𝜖

(1 + 𝜖)1+𝜖

)𝜇
=

(
𝑒𝑒−1

𝑒𝑒

)𝛼
= (𝑒−1)𝛼

≤ (𝑒−1)2 ln 𝑛

= (𝑒ln 𝑛)−2

=
1
𝑛2 . ■

20.4 Linear Probing and Open Addressing

In the previous section we studied bucket hashing with separate chaining, where
each of the 𝑛 buckets has a linked list (“chain”) of keys that have mapped to that
bucket. While chaining is easy to explain, it has some practical disadvantages.
First, storing all those pointers is memory-intensive. More importantly, chaining
is not cache friendly; the items in a given bucket list are typically scattered over the
memory space. This section presents a more practical bucket hashing solution,
called “bucket hashing with linear probing,” that doesn’t require pointers and is
more cache friendly.

The high-level idea behind linear probing is that we store only one key in each
cell of array 𝐵. If multiple keys have the same hash value, they are stored in the
first available cell of array 𝐵. In this way, when searching for a key, one is always
reading consecutive cells of an array, which are typically in the same cache line.

Here are the specifics: First, linear probing relies on using an array, 𝐵, with size
𝑛 > 𝑚, where 𝑚 is the number of objects stored. Typically when running linear

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

20.4 Linear Probing and Open Addressing 353

probing, 𝑛 > 2𝑚, meaning that 𝛼 < 0.5, where 𝛼 represents the load factor;
this is in contrast with bucket hashing with separate chaining, where in general
𝛼 > 1. When we hash key 𝑘 , if cell ℎ(𝑘) of 𝐵 is empty, then we place the record
for key 𝑘 into 𝐵[ℎ(𝑘)]. Later, if another key, 𝑘 ′, has the same hash value as 𝑘 ,
that is, ℎ(𝑘 ′) = ℎ(𝑘), then we cannot place 𝑘 ′’s record into 𝐵[ℎ(𝑘)]. We instead
search cell by cell, starting with cell ℎ(𝑘) + 1, then cell ℎ(𝑘) + 2, and so on, until
we find the first available empty cell. We then insert 𝑘 ′’s record into this first
available cell. The process of probing consecutive cells to check if they’re empty
is called linear probing.

Question: What do you think happens if we get to the last cell of 𝐵 and it is
occupied?

Answer: The linear probing wraps around to the first cell. So when we talk about
looking at cells ℎ(𝑘), ℎ(𝑘) + 1, etc., we’re really looking at cells ℎ(𝑘) mod 𝑛,
ℎ(𝑘) +1 mod 𝑛, etc. We will leave off the “mod 𝑛” in our discussion to minimize
notation.

Question: When searching for a key, 𝑘 , how do we know 𝑘 is not in the table?

Answer: We start by looking at cell ℎ(𝑘), then ℎ(𝑘) + 1, and so on, until we
come to an empty cell. The empty cell is our signal that 𝑘 is not in the table.

Question: But what if the empty cell was created by a deletion?

Answer: When a key is deleted, we mark its cell with a special character, called
a tombstone. The tombstone lets us know that the cell used to be full, so that
we don’t stop our search early. Thus, cells are never cleared in linear probing.
When the number of tombstones gets too high, we simply recreate the table from
scratch.

For the remainder of this section, we’ll be interested in analyzing the expected
cost of search. The cost of insert and delete can be bounded by the cost of
search. Note that when we say “cost of search” we are referring to the cost of an
unsuccessful search – that is, searching for a key that is not in the array. The cost
of a successful search is upper-bounded by the cost of an unsuccessful search.

Unfortunately, bucket hashing with linear probing can often lead to clustering
(long chains of full cells). Clustering is an artifact of using a linear probe sequence
for inserting key 𝑘 . When inserting key 𝑘 , if cell ℎ(𝑘) is already full, we next try
for ℎ(𝑘) + 1, and then ℎ(𝑘) + 2. Thus, full cells are likely to be followed by more
full cells.

Question: Any idea for how to get around this clustering problem, so that the
full cells can be more uniformly spread out?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

354 20 Hashing Algorithms

Answer: We can instead make the probe sequence for key 𝑘 be a uniformly
selected sequence of cells (a particular randomly-chosen permutation of cells in
the table). Specifically, we denote the probe sequence for inserting key 𝑘 by:

⟨ℎ(𝑘 , 1), ℎ(𝑘 , 2), ℎ(𝑘 , 3), . . . , ℎ(𝑘 , 𝑛)⟩.

If key 𝑘 finds a cell full, instead of trying the next consecutive cell in the array,
it now tries the next cell in its probe sequence (its permutation).

In an ideal world, the probe sequence for each key is equally likely to be assigned
any one of the 𝑛! permutations of ⟨1, 2, . . . , 𝑛⟩. (Obviously the probe sequence
corresponding to any particular key 𝑘 is fixed.) This idea is called open address-
ing with uniform probe sequences. It leads to lower search times than linear
probing. While open addressing does require skipping to different locations, at
least all of these locations are within the same array, which keeps the pointer
cost more reasonable.

Theorem 20.5 Assume that 𝑚 keys have been inserted into a table with 𝑛

cells via open addressing with uniform probe sequences. The load factor is
𝛼 = 𝑚

𝑛
< 1. Then the expected cost of an (unsuccessful) search is at most 1

1−𝛼 .

Proof: Let 𝑋 denote the search cost. We will try to determine the tail of 𝑋 and
then sum that to get E [𝑋].

P {𝑋 > 0} = 1 (we always need to probe at least once)
P {𝑋 > 1} = P {First cell we look at is occupied} = 𝛼.

Let 𝐴𝑖 denote the event that the 𝑖th cell that we look at is occupied. Then,

P {𝑋 > 2} = P {First two cells we look at are occupied}
= P {𝐴1 ∩ 𝐴2}
= P {𝐴1} · P {𝐴2 | 𝐴1}

= 𝛼 · 𝑚 − 1
𝑛 − 1

(𝑚 − 1 keys and 𝑛 − 1 cells remain)

= 𝛼 · 𝛼𝑛 − 1
𝑛 − 1

< 𝛼 · 𝛼𝑛
𝑛

= 𝛼2.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

20.5 Cryptographic Signature Hashing 355

Using the chain rule from Theorem 2.10, we have:

P {𝑋 > 𝑖} = P {First 𝑖 cells we look at are occupied}
= P {𝐴1 ∩ 𝐴2 ∩ · · · ∩ 𝐴𝑖}
= P {𝐴1} · P {𝐴2 | 𝐴1} · · ·P {𝐴𝑖 | 𝐴1 ∩ 𝐴2 ∩ · · · ∩ 𝐴𝑖−1}

=
𝑚

𝑛
· 𝑚 − 1
𝑛 − 1

· 𝑚 − 2
𝑛 − 2

· · · 𝑚 − 𝑖 + 1
𝑛 − 𝑖 + 1

≤ 𝛼𝑖 .

Finally, applying Theorem 4.9, we have:

E [𝑋] =
∞∑︁
𝑖=0

P {𝑋 > 𝑖}

≤ 1 +
𝑛−1∑︁
𝑖=1

𝛼𝑖

≤
∞∑︁
𝑖=0

𝛼𝑖

=
1

1 − 𝛼 . ■

Theorem 20.5 provides only an upper bound on expected search cost. Exer-
cises 20.4 and 20.5 will provide exact analysis.

20.5 Cryptographic Signature Hashing

Up to now we have only talked about bucket hash functions, whose purpose is to
support fast search speed. In this section we will talk about cryptographic hash
functions. Their purpose has nothing to do with search speed, but rather they
are used to encrypt (hide) information, for example, passwords.

Suppose you are again the CMU student dean, but this time you are managing
services that only CMU students should be able to access. For example, a service
might be course evaluations at CMU. To access the service, the CMU student
enters her ID and password, and then the service becomes available. How do
you design a system that allows you to check if a student’s password is correct
for her ID? We could store the IDs and corresponding passwords in a database.
However, if the database is hacked, then all passwords will be compromised.

For example, let’s say that Mark Stein’s ID is mstein and his password is
ILoveToHelp.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

356 20 Hashing Algorithms

Question: Mark’s ID is public. How can we identify Mark via his ID and
password without ever storing his password?

Answer: The solution is to use a cryptographic hash function to hash passwords
to signatures, and store signatures in the database instead.

Using a cryptographic hash function, we hash ILoveToHelp to a 32-bit signature
0𝑥1𝑏3𝑎4 𝑓 52, and store the entry mstein: 0𝑥1𝑏3𝑎4 𝑓 52 into the database. Our
database might look like Table 20.1.

ID Signature of password

mstein 0𝑥1𝑏3𝑎4 𝑓 52
tchen 0𝑥51𝑐2𝑑𝑓 33
dkosh 0𝑥𝑏𝑏89𝑒27𝑎
dkana 0𝑥2 𝑓 85𝑎𝑑73

... ...

Table 20.1 Database storing signatures.

Note: Table 20.1 is not a hash table. This is our database. Importantly, by looking
at the database, you have no idea what passwords correspond to these IDs. Say
Mark is trying to log into the course evaluations service with his ID mstein and
password ILoveToHelp. To verify that Mark’s password is correct, we apply a
hash function to his entered password, obtaining:

ℎ(ILoveToHelp) = 0𝑥1𝑏3𝑎4 𝑓 52.

Then we compare 0𝑥1𝑏3𝑎4 𝑓 52 to the signature stored under mstein in the
database. Since they’re the same, we know that Mark (probably) entered the
correct password. In this way, we can verify passwords without storing the actual
passwords in the database.2

In general, when using cryptographic hash functions, we refer to the passwords
whose identity we’re trying to hide as the keys.

2 In this section we will not be interested in the time to search our database, just in hiding the
identity of passwords. However, if we were interested in search time, we could apply a bucket
hash to the IDs in Table 20.1 to bring the search time down to 𝑂 (1) . It is thus very reasonable to
use bucket hashing and cryptographic signature hashing in conjunction.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

20.5 Cryptographic Signature Hashing 357

Definition 20.6 A cryptographic hash function ℎ : 𝑈 → 𝐵 maps keys to
signatures. For a key 𝑘 , we call ℎ(𝑘) the signature of 𝑘 . The domain of ℎ is𝑈,
the universe of all possible keys. The range of ℎ is 𝐵, denoting all the possible
signatures. 𝐾 ⊆ 𝑈 is the actual set of keys that we are hashing. Let |𝐾 | = 𝑚
and |𝐵| = 𝑛. Generally,

|𝑈 | ≫ 𝑛 ≫ 𝑚,

because𝑈 represents a potentially infinite number of strings of any length, and
we want 𝑛 ≫ 𝑚 to avoid collisions. Thus, 𝛼 = 𝑚

𝑛
≪ 1.

Question: Which of 𝑛 or 𝑚 represents the number of entries in the database in
Table 20.1?

Answer: The number of entries in the database is 𝑚, which is the number of
actual keys (passwords) that we’re hashing and also represents the number of
actual IDs. However, the database is not our hash table. There is no “hash table,”
but rather just a hash function that maps the𝑚 passwords to a space of 𝑛 possible
signatures.

For cryptographic hash functions we typically want 𝑛 ≫ 𝑚, so that there are few
“collisions.” Thus, 𝛼 ≪ 1.

Definition 20.7 A hash collision occurs when two different keys have the same
hash value. That is, ℎ(𝑘1) = ℎ(𝑘2), where 𝑘1 ≠ 𝑘2.

Hash collisions are undesirable. It can be dangerous when multiple passwords
map to the same signature because it increases the likelihood that an attacker can
guess a password by trying multiple passwords with the same ID.

We’d ideally like there to be a one-to-one mapping between keys and signatures.
Of course this is not possible, even with the best hash function, because |𝑈 | ≫ 𝑛,
and thus by the pigeon-hole principle, there exist keys with the same signature.
The rest of this section is devoted to analyzing how large 𝑛 needs to be to achieve
a “low” probability of collision, given that 𝑚 keys are being hashed.

Question: Suppose that an attacker tries 𝑚 different passwords (keys). Each of
the 𝑚 keys is hashed, using a cryptographic hash function ℎ, into a hash space
of size |𝐵| = 𝑛, where 𝑛 ≫ 𝑚. Assume SUHA so each key has probability 1

𝑛
of

landing in any given bucket. What is the probability 𝑝(𝑚, 𝑛) that no collisions
occur?

Hint: This should look a lot like the birthday problem from Exercise 2.10.

Answer: In the birthday problem, we had 𝑚 = 30 people and 𝑛 = 365 possible

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

358 20 Hashing Algorithms

birthdays, and we looked for the probability of no duplicate birthdays, a.k.a.,
“no collisions.” Repeating that analysis, let 𝐴 be the event that no collisions
occur, that is, no two keys have the same signature. We imagine that the keys are
ordered, from 1 to 𝑚. Let 𝐴𝑖 be the event that key 𝑖 has a different signature from
each of the first 𝑖 − 1 keys. Now observe that

𝐴 =

𝑚⋂
𝑖=1

𝐴𝑖 .

Thus,

P {𝐴} = P {𝐴1} ·
𝑚∏
𝑖=2

P
𝐴𝑖

������ 𝑖−1⋂
𝑗=1

𝐴 𝑗


= 1 ·

𝑚∏
𝑖=2

(
1 − 𝑖 − 1

𝑛

)
=

𝑚−1∏
𝑖=1

(
1 − 𝑖

𝑛

)
.

Now, by (1.14),

1 − 𝑥
𝑛
≤ 𝑒− 𝑥

𝑛 , (20.1)

where this upper bound is close to exact for high 𝑛.

This yields the upper bound:

P {𝐴} ≤
𝑚−1∏
𝑖=1

𝑒−
𝑖
𝑛 = exp

(
−1
𝑛

𝑚−1∑︁
𝑖=1

𝑖

)
= exp

(
−𝑚(𝑚 − 1)

2𝑛

)
.

This result is summarized in Theorem 20.8.

Theorem 20.8 (Probability no collisions) If we use a simple uniform hashing
function to hash𝑚 keys to a hash space of size 𝑛, then the probability that there
are no collisions is denoted by 𝑝(𝑚, 𝑛), where

𝑝(𝑚, 𝑛) =
𝑚−1∏
𝑖=1

(
1 − 𝑖

𝑛

)
.

This is upper-bounded by:

𝑝(𝑚, 𝑛) ≤ 𝑒
−𝑚(𝑚−1)

2𝑛 .

Assuming that 𝑛 ≫ 𝑚, the upper bound is very close to exact.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

20.5 Cryptographic Signature Hashing 359

Proof: The only part we have not proven yet is the tightness of the upper bound.
Observe that (20.1) is close to an equality when 𝑛 ≫ 𝑥. In particular, if 𝑛 ≫ 𝑚,
then the “upper bound” in Theorem 20.8 is a good approximation for each of the
𝑚 terms in the product of 𝑝(𝑚, 𝑛). ■

Corollary 20.9 Assuming 𝑛 ≫ 𝑚, P {no collisions} ≈ 𝑒−𝑚2
2𝑛 .

Corollary 20.9 is interesting because it tells us that we need𝑚 = Θ(
√
𝑛) to ensure

that the probability of no collisions is high. In fact, in Exercise 20.3, we’ll derive
formally that the expected number of keys that we can insert before we get a
collision is ≈ 1 +

√︁
𝜋𝑛
2 .

We now use Corollary 20.9 to evaluate the effectiveness of the SHA-256 cryp-
tographic hashing algorithm.3 All you’ll need to know for the evaluation is that
the hash space, 𝐵, of SHA-256 is all 256-bit numbers.

Question: Suppose we are hashing 10 billion keys using SHA-256. Approxi-
mately what is the probability that there are no collisions?

Answer: Here, 𝑚 = 1010, so 𝑚2 = 1020, and 𝑛 = |𝐵 | = 2256 = 1077. Since
𝑛 ≫ 𝑚, we can use Corollary 20.9. Thus,

P {no collisions} ≈ 𝑒 −𝑚
2

2𝑛 = 𝑒
−1020
2·1077 ≈ 𝑒−10−57

.

This is very close to 1, as desired.

Question: Approximately how many keys do we need to hash until the probability
that there is a collision exceeds 1%?

Answer: Let

𝑝 = P {no collisions} ≈ 𝑒 −𝑚
2

2𝑛 .

Then, ln 𝑝 ≈ −𝑚2

2𝑛 , so 𝑚 ≈
√︁
−2𝑛 ln 𝑝.

Thus, setting 𝑝 = 99%, we see that, after hashing

𝑚 =
√︁
−2 · 2256 ln 0.99 ≈ 5 · 1037

keys, we will have a 1% probability of collision.

Question: Suppose a supercomputer can calculate 1010 hashes a second, and
we have one billion such computers, and a year has about 107 seconds. How

3 SHA stands for Secure Hash Algorithm.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

360 20 Hashing Algorithms

many years will it take for us to hash enough keys to produce a 1% probability
of collision in SHA-256?

Answer: It will take
5 · 1037

1010 · 109 · 107 = 5 · 1011 = 500 billion years!

So it is virtually impossible to find a pair of keys that collides in SHA-256.

20.6 Remarks

This chapter was written in collaboration with Sheng Xu. The chapter presents
only the briefest discussion of hashing, and instead emphasizes the probabilistic
analysis. We have spent no time discussing data structures for implementing
hashing. Our discussion of bucket hashing with open addressing and uniformly
distributed probe sequences allows us to get away with some very simple analysis,
which will be made exact in Exercise 20.5. By contrast, the analysis of search
time under bucket hashing with linear probing is far harder, but is solved exactly
in Knuth’s book [46, section 6.4]. Finally, there are also many more advanced
hashing schemes, including Bloom filters (see Exercise 20.6), cuckoo hashing
[56], consistent hashing [44], and others which we didn’t have room to cover, or
whose analysis is beyond the scope of the book.

20.7 Exercises

20.1 Expected hashes until buckets are full
You are hashing keys, one at a time, into 𝑛 buckets, where each key has
probability 1

𝑛
of landing in each bucket. What is the expected number of

keys hashed until every bucket has at least one key?

20.2 Inspection paradox: the key’s perspective
You are hashing 100 keys into 100 buckets. One bucket ends up with 20
keys, another bucket ends up with 10 keys, and 70 buckets end up with 1
key each. The remaining 28 buckets end up with zero keys.
(a) From the perspective of the buckets, what is the average number of

keys per bucket?
(b) When I search for a random key, on average, how many total keys do I

find in the same bucket as my key (including my own key)?
The difference in your answers is the inspection paradox, see Section 5.11.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

20.7 Exercises 361

20.3 Expected hashes until collision
You are hashing keys, one at a time, into 𝑛 buckets, where each key has
probability 1

𝑛
of landing in each bucket. What is the expected number of

keys hashed until you get a collision? Use this asymptotic result, proved by
Ramanujan [28]:

𝑛∑︁
𝑘=1

𝑛!
𝑛𝑘 (𝑛 − 𝑘)!

∼
√︂
𝜋𝑛

2
,

to show that your answer grows as
√
𝑛. Notice that you can think of this

problem in terms of an 𝑛-sided die, where you ask how many times you
have to roll the die, in expectation, until you get a number you’ve seen
before. [Hint: You might want to get the mean by summing the tail. This
problem will resemble the birthday paradox.]

20.4 Largest insert cost for open addressing with uniform probe sequences
Under open addressing with a uniform probe sequence, assume that we
store 𝑚 keys in a size 𝑛 array with load factor 𝛼 = 0.5. We will prove
that for the 𝑚 keys that have been inserted, the expected largest insert cost
among the𝑚 keys was𝑂 (log2 𝑚). Note that the insert cost of a key is equal
to the number of cells probed by the key.
(a) For all 𝑖 = 1, 2, . . . ,𝑚, let

𝑝𝑖 = P {the 𝑖th insertion requires > 𝑘 probes} .

Show that 𝑝𝑖 < 2−𝑘 .
(b) Let 𝑋 denote the length of the longest probe sequence among all 𝑚

keys. Show that the P
{
𝑋 > 2 log2 𝑚

}
< 1

𝑚
.

(c) Show that E [𝑋] = 𝑂 (log2 𝑚). [Hint: Condition via (b).]

20.5 Open addressing with uniform probe sequences: exact analysis
In Theorem 20.5, we derived an upper bound on the expected cost of an (un-
successful) search under open addressing with a uniform probe sequence.
In this problem we will derive an exact expression for the expected cost,
which is not far from the upper bound in Theorem 20.5. Use the same setup
as in Theorem 20.5, again assuming that 𝑚 keys have been hashed into an
array of size 𝑛.
(a) First prove two useful lemmas (use counting arguments):

(i) Lemma 1:
(𝑛′
𝑘

) (𝑘
1
)
=

(𝑛′−1
𝑘−1

) (𝑛′
1
)
.

(ii) Lemma 2:
∑𝑛

𝑟=1
(𝑛+1−𝑟
𝑚−(𝑟−1)

)
=

(𝑛+1
𝑚

)
.

(b) Prove that the probability that an (unsuccessful) search requires exactly
𝑟 probes is 𝑝𝑟 =

(𝑛−𝑟
𝑚−𝑟+1)
(𝑛𝑚)

.
(c) Let 𝑈 denote the cost of an (unsuccessful) search in this array of 𝑚

keys. Prove E [𝑈] = 𝑛+1
𝑛−𝑚+1 .

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

362 20 Hashing Algorithms

20.6 Bloom filter hashing
[Proposed by Priyatham Bollimpalli] Priyatham is creating new software
to check music for copyright violations. For each candidate song, 𝑠, if 𝑠 is
the same as an already existing song, the software should output “copyright
violation” with 100% certainty (all violations need to be reported). On the
other hand, if 𝑠 is an arbitrary new song, the software should output “new
song” at least 99% of the time (it is okay to have a few false alarms).
(a) To maximize efficiency, Priyatham opts for a hash table implementa-

tion, with 𝑏 buckets, where every song, 𝑖, is mapped to ℎ(𝑖), which
corresponds to one of the 𝑏 buckets. (Assume that ℎ obeys SUHA,
mapping each key 𝑖 to a uniformly random bucket.) To fill his hash
table, Priyatham scrapes all one billion songs in the Internet and maps
each to a bucket. Given a candidate song, 𝑠, Priyatham’s software com-
putes ℎ(𝑠). If ℎ(𝑠) is an empty bucket, the software outputs “new song,”
otherwise it outputs “copyright violation.” Approximately how many
buckets 𝑏 are needed to achieve the desired correctness for an arbitrary
song 𝑠? Hint: It will help to recall from (1.9) that, for large 𝑏,(

1 − 1
𝑏

)𝑏
→ 𝑒−1.

(b) After determining that the above scheme uses too much space, Priy-
atham considers a new approach: He chooses 10 idealized, indepen-
dent hash functions ℎ1, . . . , ℎ10 that each map songs to the numbers
1 through 10 billion. He initializes an array 𝐴 of 10 billion bits,
initially set to 0. For each song 𝑠 that he encounters, he computes
ℎ1(𝑠), ℎ2(𝑠), . . . , ℎ10(𝑠), and sets the corresponding indices of 𝐴 to
be 1 (that is, he sets 𝐴[ℎ1(𝑠)] := 1, 𝐴[ℎ2(𝑠)] := 1, etc.). Argue that
after processing the one billion unique songs, we expect ≈ 𝑒−1 ≈ 0.37
fraction of the array elements to be 0. [Hint: Linearity of Expectation.]

(c) Now, given a song 𝑠, to check if 𝑠 already exists, Priyatham computes the
10 hashes of 𝑠 and checks if 𝐴[ℎ1(𝑠)] = 𝐴[ℎ2(𝑠)] = · · · = 𝐴[ℎ10(𝑠)] =
1. If so, he outputs “copyright violation,” otherwise he outputs “new
song.” Prove that, if 𝑠 is actually in your set of one billion songs,
you will output “copyright violation” with probability 1. Likewise, if
𝑠 is not in your set of one billion songs, you output “new song” with
probability ≈ 0.99. [Hint: Use part (b).]

(d) In the above, we’ve assumed that the number of buckets (array 𝐴’s
size) is 𝑏 = 10 billion and the number of independent hash functions
is 𝑘 = 10. Write a general equation that relates 𝑏 to 𝑘 , assuming that
the Internet has one billion songs and that we desire no more than 1%
false positives.

Note: This space-efficient probabilistic data structure is called a Bloom
filter. It was conceived by Burton Howard Bloom in 1970 [9].

