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2 Probability on Events

In this chapter we introduce probability on events. We follow an axiomatic

approach that uses elementary set theory.

2.1 Sample Space and Events

Probability is typically defined in terms of some experiment. The sample space,

Ω, of the experiment is the set of all possible outcomes of the experiment.

Definition 2.1 An event, � , is any subset of the sample space, Ω.

For example, in an experiment where a die is rolled twice, each outcome (a.k.a.

sample point) is denoted by the pair (8, 9 ), where 8 is the first roll and 9 is the

second roll. There are 36 sample points. The event

� = { (1, 3) or (2, 2) or (3, 1) }

denotes that the sum of the die rolls is 4.

In general, the sample space may be discrete, meaning that the number of out-

comes is finite, or at least countably infinite, or continuous, meaning that the

number of outcomes is uncountable.

One can talk of unions and intersections of events, because they are also sets.

For example, we can talk of � ∪ �, � ∩ �, and � . Here, � and � are events and

� , the complement of � , denotes the set of points in Ω but not in � , also written

Ω \ � .

Question: For the die-rolling experiment, consider events �1 and �2 defined on

Ω in Figure 2.1. Do you think that �1 and �2 are independent?

Answer: No, they are not independent. We get to this later when we define

independence. We say instead that �1 and �2 are mutually exclusive.
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(1,1)      (1,2)      (1,3)      (1,4)      (1,5)      (1,6)   

(2,1)      (2,2)      (2,3)      (2,4)      (2,5)      (2,6)   

(3,1)      (3,2)      (3,3)      (3,4)      (3,5)      (3,6)   

(4,1)      (4,2)      (4,3)      (4,4)      (4,5)      (4,6)   

(5,1)      (5,2)      (5,3)      (5,4)      (5,5)      (5,6)   

(6,1)      (6,2)      (6,3)      (6,4)      (6,5)      (6,6)   

Ω =

E2E1

Figure 2.1 Illustration of two mutually exclusive events in sample space Ω.

Definition 2.2 If �1 ∩ �2 = ∅, then �1 and �2 are mutually exclusive.

Definition 2.3 If �1, �2, . . ., �= are events such that �8 ∩ � 9 = ∅, ∀8 ≠ 9 , and

such that
⋃=

8=1 �8 = �, then we say that events �1, �2, . . ., �= partition set �.

2.2 Probability Defined on Events

Given a sample space Ω, we can talk about the probability of event � , written

P {�}. The probability of event � is the probability that the outcome of the

experiment lies in the set � .

Probability on events is defined via the Probability Axioms:

Axiom 2.4 (The Three Probability Axioms)

Non-negativity: P {�} ≥ 0, for any event � .

Additivity: If�1, �2, �3, . . . is a countable sequence of events, with�8∩� 9 = ∅,

∀8 ≠ 9 , then

P {�1 ∪ �2 ∪ �3 ∪ · · · } = P {�1} + P {�2} + P {�3} + · · · .

Normalization: P {Ω} = 1.

From the three Probability Axioms, it is easy to reason that if we roll a die,

where each side is equally likely, then, by symmetry, P {roll is 3} = 1
6
. Likewise,

P {roll is ≤ 3} = P {roll is 1 or 2 or 3} = 3
6
.

Question: Is something missing from these Axioms? What if � ∩ � ≠ ∅?
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Answer: The case where events � and � overlap can be derived from the

Additivity Axiom, as shown in Lemma 2.5.

Lemma 2.5

P {� ∪ �} = P {�} + P {�} − P {� ∩ �} .

Lemma 2.5 is illustrated in Figure 2.2, where events � and � are depicted as

sets. The subtraction of P {� ∩ �} term is necessary so that those sample points

in the intersection are not counted twice.

= Sample point

E F

Figure 2.2 Venn diagram.

Proof: We can express the set � ∪ � as a union of two mutually exclusive sets:

� ∪ � = � ∪ (� \ (� ∩ �)) ,

where � \ (� ∩ �) denotes the points that are in � but are not in � ∩ �. Then,

by the Additivity Axiom, we have:

P {� ∪ �} = P {�} + P {� \ (� ∩ �)} . (2.1)

Also by the Additivity Axiom we have:

P {�} = P {� \ (� ∩ �)} + P {� ∩ �} . (2.2)

We can rewrite (2.2) as:

P {� \ (� ∩ �)} = P {�} − P {� ∩ �} . (2.3)

Substituting (2.3) into (2.1), we get:

P {� ∪ �} = P {�} + P {�} − P {� ∩ �} . �

Lemma 2.6 (Union bound) P {� ∪ �} ≤ P {�} + P {�}.

Proof: This follows immediately from Lemma 2.5. �

Question: When is Lemma 2.6 an equality?
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Answer: When � and � are mutually exclusive.

Question: Suppose your experiment involves throwing a dart, which is equally

likely to land anywhere in the interval [0, 1]. What is the probability that the dart

lands at exactly 0.3?

Answer: The probability of landing at exactly 0.3 is defined to be 0. To see why,

suppose that the probability were some n > 0. Then the probability of landing

at 0.5 would also be n , as would the probability of landing at any rational point.

But these different outcomes are mutually exclusive events, so their probabilities

add. Thus, the probability of landing in [0, 1] would be greater than 1, which

contradicts P {Ω} = 1. While the probability of landing at exactly 0.3 is 0, the

probability of landing in the interval [0, 0.3] is defined to be 0.3.

2.3 Conditional Probabilities on Events

Definition 2.7 The conditional probability of event � given event � is written

as P {� | �} and is given by the following, where we assume P {�} > 0:

P {� | �} =
P {� ∩ �}

P {�}
. (2.4)

P {� | �} should be thought of as the probability that event � occurs, given that

we have narrowed our sample space to points in �.

Ω

E F

Figure 2.3 Sample space with 42 sample points, all equally likely.

To visualize P {� | �}, consider Figure 2.3, where P {�} = 8
42

and P {�} = 10
42

.

If we imagine that we narrow our space to the 10 points in �, then the probability

that the outcome of the experiment is in set � , given that the outcome is in set
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�, should be 2 out of 10. Indeed,

P {� | �} =
2

10
=

2
42

10
42

=
P {� ∩ �}

P {�}
.

Example 2.8 (Sandwich choices)

Table 2.1 shows my sandwich choices each day. We define the “first half of the

week” to be Monday through Wednesday (inclusive), and the “second half of the

week” to be Thursday through Sunday (inclusive).

Mon Tue Wed Thu Fri Sat Sun

Jelly Cheese Turkey Cheese Turkey Cheese None

Table 2.1 My sandwich choices.

Question: What is P {Cheese | Second half of week}?

Answer: We want the fraction of days in the second half of the week when I eat

a cheese sandwich. The answer is clearly 2 out of 4. Alternatively, via (2.4):

P {Cheese | Second half of week} =
P {Cheese & Second half}

P {Second half}
=

2
7

4
7

=
2

4
.

Example 2.9 (Two offspring)

The offspring of a horse is called a foal. A horse couple has at most one foal at a

time. Each foal is equally likely to be a “colt” or a “filly.” We are told that a horse

couple has two foals, and at least one of these is a colt. Given this information,

what’s the probability that both foals are colts?

Question: What is P {both are colts | at least one is a colt}?

Answer:

P {both are colts | at least one is a colt}

=
P {both are colts and at least one is a colt}

P {at least one is a colt}

=
P {both are colts}

P {at least one is a colt}

=

1
4

3
4

=
1

3
.
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Colt

Colt

Filly

Filly

Figure 2.4 In Example 2.9, we’ve conditioned on being in the shaded region.

Question: How might the question read if you wanted the answer to be 1
2
?

Answer: The question would ask what is P {both are colts | first born is a colt}.

Question: Consider again the example of the couple with two colts, but

where we’re given the additional information that 10% of horse couples

only produce colts, 10% of horse couples only produce fillies, and 80% are

equally likely to produce either gender. Does this change your answer to

P {both are colts | at least one is a colt}?

Answer: Yes! See Exercise 2.11(b).

We now look at generalizing the notion of conditioning. By Definition 2.7, if �1

and �2 are events, where P {�1 ∩ �2} > 0, then

P {�1 ∩ �2} = P {�1} · P {�2 | �1} = P {�2} · P {�1 | �2} .

That is, the probability that the outcome is both in �1 and in �2 can be com-

puted by multiplying two quantities: (1) first restrict the outcome to being in �1

(probability P {�1}); (2) then further restrict the outcome to being in �2, given

that we’ve already restricted it to being in �1 (probability P {�2 | �1}). The next

theorem presents a useful “chain rule” for conditioning. This chain rule will be

proved in Exercise 2.9.

Theorem 2.10 (Chain rule for conditioning) Let �1, �2, . . . , �= be events,

where P

{

=
∩
8=1

�8

}

> 0. Then

P

{

=
∩
8=1

�8

}

= P {�1} · P {�2 | �1} · P {�3 | �1 ∩ �2} · · ·P

{

�=

�

�

�

=−1
∩
8=1

�8

}

.
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2.4 Independent Events

Definition 2.11 Events E and F are independent, written � ⊥ �, if

P {� ∩ �} = P {�} · P {�} .

The above definition might seem less-than-intuitive to you. You might prefer to

think of independence using the following definition:

Definition 2.12 (Alternative) Assuming that P {�} ≠ 0, we say that events E

and F are independent if

P {� | �} = P {�} .

Definition 2.12 says that P {�} is not affected by whether � is true or not.

Lemma 2.13 Definitions 2.11 and 2.12 are equivalent.

Proof:

Definition 2.11 ⇒ Definition 2.12: Assuming that P {�} > 0, we have:

P {� | �} =
P {� ∩ �}

P {�}

by 2.11
=

P {�} · P {�}

P {�}
= P {�} .

Definition 2.12 ⇒ Definition 2.11:

P {� ∩ �} = P {�} · P {� | �}
by 2.12
= P {�} · P {�} . �

Generally people prefer Definition 2.11 because it doesn’t require that P {�} > 0

and because it shows clearly that a null event is independent of every event.

Question: Can two mutually exclusive (non-null) events ever be independent?

Answer: No. If � and � are mutually exclusive, then P {� | �} = 0 ≠ P {�}.

Question: Suppose one is rolling a die twice. Which of these pairs of events are

independent?

(a) �1 = “First roll is 6” and �2 = “Second roll is 6”

(b) �1 = “Sum of the rolls is 7” and �2 = “Second roll is 4”

Answer: They are both independent!
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Question: Suppose we had defined: �1 = “Sum of the rolls is 8” and �2 =

“Second roll is 4.” Are they independent now?

Answer: No.

Example 2.14 (The unreliable network)

Suppose you are routing a packet from the source node to the destination node,

as shown in Figure 2.5. On the plus side, there are 8 possible paths on which the

packet can be routed. On the minus side, each of the 16 edges in the network

independently only works with probability ?. What is the probability that you

are able to route the packet from the source to the destination?

87654321

Source

Destination

Figure 2.5 Unreliable network. Each edge only works with probability ?.

We want to figure out the probability that at least one path is working. We will

first demonstrate an intuitive, but wrong, solution.

Solution 1 (WRONG!):

There are eight possible two-hop paths to get from source to destination.

Let �1 denote the event that the first two-hop path works, �2 denote the event

that the second two-hop path works, and �8 denote the event that the 8th two-hop

path works:

P {�8} = ?2, ∀8.

Now the probability that at least one path works is the union of these eight events,

namely:

P {At least one path works} = P {�1 ∪ �2 ∪ · · · ∪ �8}

= P {�1} + P {�2} + · · · + P {�8}

= 8?2.

Question: What is wrong with Solution 1?

Answer: We cannot say that the probability of the union of the events equals the
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sum of their probabilities, unless the events are mutually exclusive. However, we

know that the �8’s are independent, and hence they cannot be mutually exclusive.

Question: How does the answer given in Solution 1 compare to the correct

answer? Higher? Lower?

Answer: The answer given in Solution 1 is an upper bound on the correct answer,

via the Union Bound in Lemma 2.6.

There’s a lesson to be learned from Solution 1. When dealing with the probability

of a union of independent events, it helps to turn the problem into an intersection

of independent events. We will illustrate this idea in Solution 2.

Solution 2 (CORRECT!):

P {At least one path works} = P {�1 ∪ �2 ∪ · · · ∪ �8}

= 1 − P {All paths are broken}

= 1 − P
{

�1 ∩ �2 ∩ · · · ∩ �8

}

= 1 − P
{

�1

}

· P
{

�2

}

· · ·P
{

�8

}

.

P
{

�1

}

= P {path 1 is broken} = 1 − P {path 1 works} = 1 − ?2.

Thus,

P {At least one path works} = 1 −
(

1 − ?2
)8

.

Question: Suppose we have three events: �, �, and �. Given that

P {� ∩ � ∩ �} = P {�} · P {�} · P {�} , (2.5)

can we conclude that �, �, and � are independent?

Answer: No. The problem is that (2.5) does not ensure that any pair of events

are independent, as required by Definition 2.15.

Definition 2.15 Events �1, �2, . . . , �= are independent if, for every subset (

of {1, 2, . . . , =},

P

{

⋂

8∈(

�8

}

=

∏

8∈(

P {�8} .

A weaker version of independence is called pairwise independenceand is defined

in Definition 2.16.
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Definition 2.16 Events �1, �2, . . . , �= are pairwise independent if every pair

of events is independent, i.e.,

∀8 ≠ 9 , P
{

�8 ∩ � 9

}

= P {�8} · P
{

� 9

}

.

Although pairwise independence is weaker than full independence, it still admits

some nice properties, as we’ll see in Exercise 5.38.

A different notion of independence that comes up frequently in problems (see

for example, Exercise 2.14) is that of conditional independence.

Definition 2.17 Two events � and � are said to be conditionally independent

given event �, where P {�} > 0, if

P {� ∩ � | �} = P {� | �} · P {� | �} .

Independence does not imply conditional independence and vice-versa, see Ex-

ercise 2.19.

2.5 Law of Total Probability

Observe that the set � can be expressed as

� = (� ∩ �) ∪
(

� ∩ �

)

.

That is, � is the union of the set � ∩ � and the set � ∩ �, because any point in

� is also either in � or not in �.

Now observe that � ∩ � and � ∩ � are mutually exclusive. Thus,

P {�} = P {� ∩ �} + P
{

� ∩ �

}

= P {� | �}P {�} + P
{

� | �
}

P
{

�

}

,

where P
{

�

}

= 1 − P {�} .

Theorem 2.18 is a generalization of this idea:
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Theorem 2.18 (Law of Total Probability) Let �1, �2, . . . , �= partition the

state space Ω. Then,

P {�} =

=
∑

8=1

P {� ∩ �8}

=

=
∑

8=1

P {� | �8} · P {�8} .

Remark: This also holds if �1, �2, . . . , �= partition � .

This also extends to the case where there are countably infinite partitions.

Proof:

� =

=
⋃

8=1

(� ∩ �8) .

Now, because the events � ∩ �8, 8 = 1, . . . , = are mutually exclusive, we have

that

P {�} =

=
∑

8=1

P {� ∩ �8} =

=
∑

8=1

P {� |�8} · P {�8} . �

Question: Suppose we are interested in the probability of a transaction failure.

We know that if there is a caching failure, that will lead to transaction failures

with probability 5/6. We also know that if there is a network failure then that will

lead to a transaction failure with probability 1/4. Suppose that a caching failure

occurs with probability 1/100 and a network failure occurs with probability

1/100. What is the probability of a transaction failure?

Answer: It is tempting to write (WRONGLY):

P {transaction fails} = P {transaction fails | caching failure} ·
1

100

+ P {transaction fails | network failure} ·
1

100

=
5

6
·

1

100
+

1

4
·

1

100
.

Question: What is wrong with that solution?

Answer: The two events that we conditioned on – a network failure and a caching

failure – do not partition the space. The sum of the probabilities of these events

is clearly < 1. Furthermore, there may be a non-zero probability that both a

network failure and a caching failure occur.
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One needs to be very careful that the events that we condition on are (1) mutually

exclusive and (2) sum to the whole space under consideration.

We can generalize the Law of Total Probability to apply to a conditional proba-

bility, as in Theorem 2.19.

Theorem 2.19 (Law of Total Probability for conditional probability) Let

�1, �2, . . . , �= partition the sample space Ω. Then:

P {� | �} =

=
∑

8=1

P {� | � ∩ �8} · P {�8 | �} .

Proof:

P {� | �} =
P {� ∩ �}

P {�}

=

∑

8 P {� ∩ � ∩ �8}

P {�}

=

∑

8 P {�} · P {�8 | �} · P {� | � ∩ �8}

P {�}
(chain rule)

=

∑

8

P {�8 | �} · P {� | � ∩ �8} . �

2.6 Bayes’ Law

Sometimes, one needs to know P {� | �}, but all one knows is the reverse

direction: P {� | �}. Is it possible to get P {� | �} from P {� | �}? It turns out

that it is possible, assuming that we also know P {�} and P {�}.

Theorem 2.20 (Bayes’ Law) Assuming P {�} > 0,

P {� | �} =
P {� | �} · P {�}

P {�}
.

Proof:

P {� | �} =
P {� ∩ �}

P {�}
=

P {� | �} · P {�}

P {�}
. �

The Law of Total Probability can be combined with Bayes’ Law as follows: Let
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�1, �2, . . . , �= partitionΩ. Then we can write: P {�} =
∑=

9=1 P
{

� | � 9

}

·P
{

� 9

}

.

This yields:

Theorem 2.21 (Extended Bayes’ Law) Let �1, �2, . . . , �= partition Ω. As-

suming P {�} > 0,

P {� | �} =
P {� | �} · P {�}

P {�}
=

P {� | �} · P {�}
∑=

9=1 P
{

� | � 9

}

P
{

� 9

} .

Example 2.22 (Cancer screening)

Suppose that there is a rare child cancer that occurs in one out of one million

kids. There’s a test for this cancer, which is 99.9% effective (see Figure 2.6).

If CANCER Test Postive w.p. 99.9%

High Accuracy Cancer Screening

If CANCER Test Negative w.p. 99.9%

Figure 2.6 High accuracy cancer screening.

Question: Suppose that my child’s test result is positive. How worried should I

be?

Answer:

P {Cancer | Test pos.}

=
P {Test pos. | Cancer } · P {Cancer}

P {Test pos. | Cancer} · P {Cancer} + P {Test pos. | No Cancer} · P { No Cancer}

=
0.999 · 10−6

0.999 · 10−6 + 10−3 ·
(

1 − 10−6
)

≈
10−6

10−6 + 10−3

=
1

1001
.

Thus, the probability that the child has the cancer is less than 1 in 1000.

Question: What was the key factor in obtaining the result?
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Answer: There are two things going on here. First, the cancer is very rare: 10−6

likelihood. Second, there is a very low probability of error in the test: 10−3 chance

of error. The key determining factor in the chance that the child has cancer is

the ratio of these two. Consider the ratio of the rareness of the cancer, 10−6,

to the low error probability of the test, 10−3. This ratio yields 10−3, which is

(roughly) the probability that the child has the cancer. If the cancer were even

rarer, say 10−7 likelihood, then the probability that the child has cancer would

be approximately the ratio 10−7

10−3 = 10−4.

2.7 Exercises

2.1 Bombs and alarms

A bomb detector alarm lights up with probability 0.99 if a bomb is present.

If no bomb is present, the bomb alarm still (incorrectly) lights up with

probability 0.05. Suppose that a bomb is present with probability 0.1.

What is the probability that there is no bomb and the alarm lights up?

2.2 More on independent events

Suppose that we roll a die twice. Consider the following three events:

�1 = Second roll is 4

�2 = Difference between the two rolls is 4

�3 = Difference between the two rolls is 3

(a) Are �1 and �2 independent?

(b) Are �1 and �3 independent?

2.3 How much do vaccines help?

The US Surgeon General recently declared that 99.5% of COVID deaths

are among the unvaccinated [40]. Given that I’m vaccinated, what are my

chances of dying from COVID? You may use any of the facts below:

• The fraction of people who are currently vaccinated in the United States

is 50%.

• The fraction of people who die from COVID in the United States is 0.2%.

2.4 Bayesian reasoning for weather prediction

In the hope of having a dry outdoor wedding, John and Mary decide to get

married in the desert, where the average number of rainy days per year is

10. Unfortunately, the weather forecaster is predicting rain for tomorrow,

the day of John and Mary’s wedding. Suppose that the weather forecaster is

not perfectly accurate: If it rains the next day, 90% of the time the forecaster

predicts rain. If it is dry the next day, 10% of the time the forecaster still
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(incorrectly) predicts rain. Given this information, what is the probability

that it will rain during John and Mary’s wedding?

2.5 Assessing risk

Airlines know that on average 5% of the people making flight reservations

do not show up. They model this by assuming that each person indepen-

dently does not show up with probability of 5%. Consequently, their policy

is to sell 52 tickets for a flight that can only hold 50 passengers. What is

the probability that there will be a seat available for every passenger who

shows up?

2.6 When one event implies another

Suppose that we are told that event � implies event �. Which of the

following must be true:

(a) P {�} ≤ P {�}

(b) P {�} > P {�}

(c) Neither

2.7 Wearing masks and COVID

This problem analyzes mask wearing and COVID via Figure 2.7.

(a) Does consistently wearing masks reduce your chance of catching

COVID? Let� (respectively, ") denote the event that a randomly cho-

sen person catches COVID (respectively, consistently wears a mask).

Compare P {� | "} with P
{

� | "
}

.

(b) Your friend comes down with COVID. Based on your answer to part

(a), do you think it’s more likely that they didn’t consistently wear a

mask, or that they did? Do the computation to see if you’re right.

15%45% 15%

Consistently

wear

masks

All people

Catch

COVID

25%

Figure 2.7 Venn diagram showing fraction of people who wear masks consistently and

fraction of people who catch COVID, for Exercise 2.7.

2.8 Positive correlation

We say that events � and � are positively correlated if

P {� | �} > P {�} . (2.6)
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Prove or disprove that (2.6) implies

P {� | �} > P {�} . (2.7)

Assume that P {�} > 0 and P {�} > 0.

2.9 Chain rule for conditioning

Let �1, �2, . . . , �= be = events, where P

{

=
∩
8=1

�8

}

> 0. Prove via induction

that

P

{

=
∩
8=1

�8

}

= P {�1} · P {�2 | �1} · P {�3 | �1 ∩ �2} · · ·P

{

�=

�

�

�

=−1
∩
8=1

�8

}

.

2.10 Birthday paradox

The famous birthday paradox considers the situation of a room of < = 30

people, where we ask what is the probability that no two have the same

birthday. Let � be the event that no two people have the same birthday.

It would seem that P {�} is high, given that there are = = 365 possible

birthdays, but it turns out that P {�} < 4−1; hence with high likelihood at

least two people have the same birthday.

Assume that all = birthdays are equally likely. Prove the above claim via

the following conditioning approach: Imagine that the people in the room

are ordered, from 1 to <. Let �8 be the event that person 8 has a different

birthday from each of the first 8 − 1 people. Now observe that � =
<
∩
8=1

�8,

and use the chain rule from Exercise 2.9. [Hint: Leave everything in terms

of = and < until the final evaluation. You will need to use (1.14), which

says that 1 − 8
=
≤ 4−

8

= for high =.]

2.11 It’s a colt!

The offspring of a horse is called a foal. A horse couple has at most one

foal at a time. Each foal is equally likely to be a “colt” or a “filly.” We are

told that a horse couple has two foals, and at least one of these is a colt.

Given this information, what’s the probability that both foals are colts?

(a) Compute the answer to the above question, assuming only that each

foal is equally likely to be a colt or a filly.

(b) Now re-compute the answer given the latest discovery: Scientists have

discovered that 10% of horse couples only produce colts, 10% of cou-

ples only produce fillies, and 80% are equally likely to produce either

gender.

(c) Is your answer for (b) different from that for (a)? Why?

2.12 It’s a Sunday colt!

As in Exercise 2.11, we are told that a horse couple has two foals. Addi-

tionally, we are told that at least one of these foals is a colt that was born on
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a Sunday. Given this information, what’s the probability that both foals are

colts? Assume that a foal is equally like to be born on any day of the week,

and is equally likely to be a colt or a filly, and births are independent.

2.13 Happy or sad

Independently, on any given day, with probability 50% Mor is happy, and

with probability 50% she is sad. While it’s hard to know how Mor is feeling,

her clothes offer a clue. On her happy days, Mor is 90% likely to wear red

and 10% likely to wear black. On her sad days, Mor is 90% likely to wear

black and 10% likely to wear red. For the last two days, Mor has worn

black. What is the likelihood that Mor has been sad both of the last two

days?

2.14 Bayesian reasoning for healthcare testing

A pharmaceutical company has developed a potential vaccine against the

H1N1 flu virus. Before any testing of the vaccine, the developers assume

that with probability 0.5 their vaccine will be effective and with probability

0.5 it will be ineffective. The developers do an initial laboratory test on the

vaccine. This initial lab test is only partially indicative of the effectiveness of

the vaccine, with an accuracy of 0.6. Specifically, if the vaccine is effective,

then this laboratory test will return “success” with probability 0.6, whereas

if the vaccine is ineffective, then this laboratory test will return “failure”

with probability 0.6.

(a) What is the probability that the laboratory test returns “success”?

(b) What is the probability that the vaccine is effective, given that the

laboratory test returned “success”?

(c) The developers decide to add a second experiment (this one on human

beings) that is more indicative than the original lab test and has an

accuracy of 0.8. Specifically, if the vaccine is effective, then the human

being test will return “success” with probability 0.8. If the vaccine

is ineffective, then the human being test will return “failure” with

probability 0.8. What is the probability that the vaccine is effective,

given that both the lab test and the human being test came up “success”?

How useful was it to add this additional test? Assume that the two tests

(human test and lab test) are conditionally independent on the vaccine

being effective or ineffective.

2.15 Independence of three events

Natassa suggests the following definition for the independence of three

events: Events �, �, and � are independent if

P {� ∩ � ∩ �} = P {�} · P {�} · P {�} .

Is Natassa correct? Specifically, does the above definition also ensure that
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any pair of events are independent? Either provide a proof or a counter-

example. Assume that your events each have non-zero probability.

2.16 Does independence imply independence of the complement?

Haotian reasons that if event � is independent of event �, then � should

also be independent of �. He argues that if � is not affected by whether

� is true, then it should also not be affected by whether � is not true.

Either provide a formal proof via the definition of independence, or find a

counter-example where you define � , �, and �.

2.17 Corrupted packets

CMU has two campuses: one in Pittsburgh and one in Qatar. Suppose

all packets of a flow originate in either Pittsburgh or in Qatar. Packets

originating in Pittsburgh are (independently) corrupted with probability ?.

Packets originating in Qatar are (independently) corrupted with probability

@. We are watching a flow of packets (all from the same origin). At first,

we don’t know the origin, so we assume that each origin is equally likely.

So far, we’ve seen two packets in the flow, both of which were corrupted.

Given this information:

(a) What is the probability that the flow originated in Pittsburgh?

(b) What is the probability that the next packet will be corrupted?

2.18 Pairwise independence and the mystery novel principle

The mystery novel principle considers three events, �, �, and �, where:

• � tells us nothing about �;

• � tells us nothing about �;

• But � and � together tell us everything about �!

Another way of phrasing this is that �, �, and� are “pairwise independent,”

meaning that any pair of these is independent. However, the three events

together are not independent. Provide a simple example of three events with

this property. [Hint: You shouldn’t need more than two tosses of a coin.]

2.19 Independence does not imply conditional independence

Produce an example of two events, � and �, that are independent, but are

no longer independent once we condition on some event �. [Hint: Your

example can be very simple. Consider, for instance, the simple experiment

of flipping a coin two times, and define events based on that experiment.]

2.20 Does conditional independence imply conditional independence on the

complement?

Jelena reasons that if events � and � are conditionally independent of event

�, then they should also be conditionally independent of event �. Either

provide a formal proof, or find a counter-example.
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2.21 Another definition of conditional independence?

Recall that events � and � are conditionally independent on event � if

P {� ∩ � | �} = P {� | �} · P {� | �} .

Taegyun proposes an alternative definition: events � and � are condition-

ally independent on event � if

P {� | � ∩ �} = P {� | �} .

Taegyun argues that “knowing � gives no additional information about

� , given that we already know �.” Is Taegyun’s definition equivalent to

the original definition (i.e., each definition implies the other) or not? If so,

prove it. If not, find a counter-example. Assume that P {� ∩ �} > 0.

2.22 The famous Monty Hall problem

A game show host brings the contestant into a room with three closed

doors. Behind one of the doors is a car. Behind the other two doors is a

goat. The contestant is asked to pick a door and state which door she has

chosen (we’ll assume she picks the door at random, because she has no

insider knowledge).

Now the game show host, knowing what’s behind each door, picks a door

that was not chosen by the contestant and reveals that there is a goat behind

that door (the game show host will always choose to open a door with a

goat). The contestant is then asked, “Would you like to switch from your

chosen door?”

One would think that it shouldn’t matter whether the contestant switches

to the other unopened door, since the car is equally likely to be behind the

originally chosen door and the remaining unopened door. This intuition

is wrong. Derive the probability that the contestant gets the car, both in

the case that the contestant switches doors and the case that the contestant

sticks with her original door.

2.23 Weighty coins

Imagine that there are two coins of weight F1 and eight coins of weight F2,

where F1 ≠ F2. All the coins look identical. We pick two pairs of coins,

without replacement, from the pile of 10 coins. What is the probability that

all the chosen coins have weight F2, given that the weights of the two pairs

are equal?

2.24 Winning streak

Assume that the Pittsburgh Steelers win a game with probability ? irre-

spective of the opponent, and that the outcome of each game is independent

of the others.

(a) Suppose you are told that the Steelers won four out of the eight games

they played in a season. What is the probability that Steelers had a
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winning streak (i.e., continuous wins) of at least three matches in that

season?

(b) Suppose ? = 0.5. Suppose the Steelers play six games in a particular

season. What is the probability that the Steelers will have a winning

streak of at least three matches? (Is the hype that a winning streak

receives by the media worth it?)

2.25 Monty Hall with five doors

A game show host brings the contestant into a room with five closed doors.

Behind one of the doors is a car. Behind the other four doors is a goat.

The contestant is asked to pick a door and state which door she has chosen

(we’ll assume she picks the door at random, because she has no insider

knowledge).

Now the game show host, knowing what’s behind each door, picks a door

that was not chosen by the contestant and reveals that there is a goat behind

that door (the game show host will always choose to open a door with a

goat). The contestant is then asked, “Would you like to switch from your

chosen door?”

Derive the probability that the contestant gets the car, both in the case that

the contestant switches doors and the case that the contestant sticks with

her original door.

2.26 Another fun door problem

Imagine there are two doors. Both doors have money behind them, but one

contains twice as much money as the other. Suppose you choose one door

randomly, and before you look behind the door you are given the chance to

switch doors. Should you switch?

(a) Explain what is wrong with the following argument that favors switch-

ing:

Suppose " is the money behind the door I chose. Then with probability
1
2
, I chose the door with less money and the other door contains 2".

Also with probability 1
2
, I chose the door with more money and the

other door contains "
2

. Therefore the expected value of money in the

other door is
1

2
· 2" +

1

2
·
"

2
=

5

4
" > ".

So we should switch.

(b) Prove that there is no point to switching.

2.27 Prediction with an unknown source

You have two dice. Die A is a fair die (each of the six numbers are equally

likely) and die B is a biased die (the number six comes up with probability 2
3

and the remaining 1
3

probability is split evenly across all the other numbers).
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Kaige picks a die at random and rolls that die three times. Given that the

first two rolls are both sixes, what is the probability that the third roll will

also be a six?

2.28 Modeling packet corruption

Packet switched networks are the backbone of the Internet. Here, data is

transferred from a source to a destination by encapsulating and transferring

data as a series of packets. There are a number of reasons due to which

packets get lost in the network and never reach the destination. Consider

two models for packet losses in the network.

Model 1: Each packet is lost with probability ? independently.

Model 2: A packet is lost with probability ?1 if its previous packet was

transmitted successfully, and is lost with probability ?2 if its previous

packet was lost.

Suppose a source sends exactly three packets over the network to a destina-

tion. For this setup, under Model 2, assume that the probability of the first

packet getting lost is ?1. Further assume ? = ?1 = 0.01 and ?2 = 0.5.

(a) What is the probability that the second packet is lost under Model 1

and Model 2?

(b) Suppose you are told that the third packet is lost. Given this additional

information, what is the probability that the second packet is lost under

Model 1 and Model 2?

(c) Suppose we represent the loss pattern for the three packets using 0s

and 1s, where 0 represents the packet being lost and 1 represents the

packet being transferred successfully. For example, loss pattern 110

corresponds to the scenario when the first two packets are transferred

successfully and the third packet is lost. What is the probability of loss

patterns {010, 100, 001} under Model 1 and Model 2?

(d) What do you observe from your answer to the above question? Specif-

ically, what kind of loss patterns have higher probability in Model 2 as

compared to Model 1?

Aside: Extensive measurements over the Internet have shown that packet

losses in real-world networks are correlated. Models similar to Model 2

are used to model such correlated packet-loss scenarios. For example, one

such model is called the Gilbert–Elliot model [23, 32].


