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19 Applications of Tail Bounds:
Confidence Intervals and
Balls and Bins

In Chapter 18 we saw several powerful tail bounds, including the Chebyshev
bound and the Chernoff bound. These are particularly useful when bounding the
tail of a sum of independent random variables. We also reviewed the application
of the Central Limit Theorem (CLT) to approximating the tail of a sum of
independent and identically distributed (i.i.d.) random variables.

These tail bounds and approximations have immediate application to the problem
of interval estimation, also known as creating “confidence intervals” around an
estimation. They also are very useful in solving an important class of problems in
theoretical computer science, called “balls and bins” problems, where balls are
thrown at random into bins. Balls-and-bins problems are in turn directly related
to hashing algorithms and load-balancing algorithms. In this chapter, and the
next, we will study these immediate applications of our existing tail bounds and
approximations. In Chapters 21–23, we will move on to the topic of randomized
algorithms, where we will see many more applications of our tail bounds.

19.1 Interval Estimation

In Chapter 15, we discussed estimating the mean, E [𝑋], of a random variable
(r.v.) 𝑋 . We assume that we’re given 𝑛 i.i.d. samples of 𝑋 , which we denote by
𝑋1, 𝑋2, . . . , 𝑋𝑛. We then define our estimator of E [𝑋] to be

𝑋 ≡ 𝑋1 + 𝑋2 + · · · + 𝑋𝑛

𝑛
.

We call 𝑋 the sample mean. Importantly, 𝑋 is a function of random samples
and thus is itself a random variable, not a constant.

What we have not discussed, though, is: How good is 𝑋 at estimating E [𝑋]?

Clearly, the estimator 𝑋 gets closer and closer to E [𝑋] as we increase the number
of samples 𝑛. But it’s hard to say how good 𝑋 is because it’s just a single value:
a point estimator. What we really want is an interval around 𝑋 where we can
say that the true mean, E [𝑋], lies within that interval with high confidence, say
95% probability. That is, we want an “interval estimator.”
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Definition 19.1 Let 𝜃 be some parameter of r.v. 𝑋 that we’re trying to estimate,
e.g., E [𝑋]. Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be i.i.d. samples of 𝑋 . Then we say that an
interval estimator of 𝜃 with confidence level 1− 𝛼 is a pair of estimators, 𝜃low
and 𝜃high, where

P
{
𝜃low ≤ 𝜃 ≤ 𝜃high

}
≥ 1 − 𝛼.

Importantly, the randomness here is due to 𝜃low and 𝜃high, not 𝜃. Here 𝜃 is a
constant that we’re trying to estimate, while 𝜃low and 𝜃high are both functions
of the random data samples 𝑋1, . . . , 𝑋𝑛 and hence are random variables.
Equivalently, we say that [

𝜃low, 𝜃high
]

is a (1 − 𝛼) · 100% confidence interval for 𝜃, with width 𝜃high − 𝜃low.

For the purpose of our discussion we will be looking at creating 95% confidence
intervals on E [𝑋], which will take the form of

[𝑋 − 𝛿, 𝑋 + 𝛿],

where 2𝛿 represents the width of our confidence interval and 𝑋 is the sample
mean. It is generally desirable that the confidence interval has both a high
confidence level (say 95%) and also a low width.

In Section 19.2 we’ll see how to develop confidence intervals with guarantees.
To do this, we will use Chernoff and Chebyshev bounds. Unfortunately, it is not
always possible to develop these “exact” (guaranteed) confidence intervals. In
Section 19.3 we show how to develop approximate confidence intervals. These
rely on the CLT approximation.

19.2 Exact Confidence Intervals

In developing confidence intervals we start with the classical example of polling
to determine the outcome of an election. Our goal here is to develop 95%
confidence intervals, but this can easily be generalized to any confidence level.

19.2.1 Using Chernoff Bounds to Get Exact Confidence
Intervals

Example 19.2 (Polling for election)

Imagine that we are trying to estimate the fraction of people who will vote for
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Biden in the presidential election. Let 𝑝 be the true fraction. Our goal is to figure
out 𝑝.

To estimate 𝑝, we use the following algorithm:

1. Sample 𝑛 = 1000 people independently at random. Let 𝑋𝑖 be an indicator r.v.,
which is 1 if the 𝑖th person sampled says they’ll vote for Biden.

2. Let 𝑆𝑛 = 𝑋1 + 𝑋2 + · · · + 𝑋𝑛.
3. Return the r.v.

𝑋 =
𝑆𝑛

𝑛

as our estimate of 𝑝.

Question: Why is 𝑋𝑖 a r.v.? How is it distributed?

Answer: Each individual either votes for Biden or doesn’t, so there’s no random-
ness in a particular individual. The randomness comes from the fact that we’re
picking random individuals. If we let 𝑋𝑖 be our 𝑖th sample, then,

𝑋𝑖 =

{
1 if person 𝑖 said yes
0 otherwise .

Here 𝑋𝑖 ∼ Bernoulli(𝑝), because the probability that a randomly chosen person
says “yes” is 𝑝.

Question: What do 𝑆𝑛 and 𝑋 represent? How are they distributed?

Answer: 𝑆𝑛 represents the total number of people sampled who say they’ll vote
for Biden and 𝑋 represents the fraction of people sampled who say they’ll vote
for Biden. Both are functions of random variables, so both are random variables.

𝑆𝑛 ∼ Binomial(𝑛, 𝑝) 𝑋 ∼ 1
𝑛
· Binomial(𝑛, 𝑝).

Our goal is to define a 95% confidence interval on 𝑝 where:

P
{
𝑝 ∈ [𝑋 − 𝛿, 𝑋 + 𝛿]

}
≥ 95%.

Question: Given that 𝑛 people are sampled, and we want a 95% confidence
interval on 𝑝, how can we frame this as a Chernoff bound problem?

Hint: To use a Chernoff bound, we want to phrase the question as the probability
that a Binomial deviates from its mean by some amount.
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Answer: We need to find a 𝛿 such that

P
{���𝑋 − 𝑝��� > 𝛿} < 5%, (19.1)

or equivalently, such that

P {|𝑆𝑛 − 𝑛𝑝 | > 𝑛𝛿} < 5%. (19.2)

We’re thus considering the probability that 𝑆𝑛 deviates from its mean, 𝑛𝑝, by 𝑛𝛿.
By using both parts of the Chernoff bound in Theorem 18.4, we have

P {|𝑆𝑛 − E [𝑆𝑛] | > 𝑛𝛿} ≤ 2𝑒−
2(𝑛𝛿)2

𝑛 .

Hence, we need to find a 𝛿 such that

2𝑒−2𝑛𝛿2
< 0.05,

Equivalently,

𝛿 >

√︂
− ln 0.025

2𝑛
=

√︂
1.84
𝑛

. (19.3)

Question: How does the width of our confidence interval scale with the number
of sampled people?

Answer: Observe that 𝛿 scales as 1√
𝑛

. The bigger 𝑛 is, the smaller 𝛿 can be.

Question: If we sample 𝑛 = 1000 people, what is our confidence interval?

Answer: For 𝑛 = 1000, we have 𝛿 ≈ 0.043. Hence [𝑋 −0.043, 𝑋 +0.043] forms
a 95% confidence interval on the true 𝑝.

Question: Suppose that we need the width of our confidence interval to be no
more than 1%, while still maintaining a 95% confidence level? How can we
change 𝑛 to achieve this?

Answer: We now have two constraints:

𝛿 >

√︂
1.84
𝑛

and 𝛿 ≤ 0.005.

So, √︂
1.84
𝑛
≤ 0.005,
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or equivalently,

𝑛 ≥ 1.84
(0.005)2

= 73,600.

Of course, there are many more issues that come up in polling estimation. For
example, it is not obvious how to get “independent,” equally weighted samples.

19.2.2 Using Chebyshev Bounds to Get Exact Confidence
Intervals

Question: Let’s return to the problem of obtaining a 95% confidence interval on
𝑝 given 𝑛 sampled people, but this time we want to use Chebyshev’s bound. Can
we do it?

Answer: As in (19.2), we again need to find a 𝛿 such that

P {|𝑆𝑛 − 𝑛𝑝 | > 𝑛𝛿} < 5%.

By Chebyshev’s Inequality (Theorem 18.2),

P {|𝑆𝑛 − 𝑛𝑝 | > 𝑛𝛿} ≤
Var(𝑆𝑛)
(𝑛𝛿)2

=
𝑛𝑝(1 − 𝑝)
𝑛2𝛿2 .

So we need to find a 𝛿 such that
𝑝(1 − 𝑝)
𝑛𝛿2 < 0.05. (19.4)

But now we’re stuck, because 𝑝 is the parameter that we want to estimate, so
how can we do this?

Question: What are some ideas for evaluating (19.4), given we don’t know 𝑝?

Answer: One idea is to substitute 𝑋 in for 𝑝, given that 𝑋 is the estimator for
𝑝. However, this only gives us an approximate solution for 𝛿, and we want a
guaranteed bound. The idea we use instead is to bound 𝑝(1 − 𝑝).

Question: What is an upper bound on 𝑝(1 − 𝑝)?

Answer: 1
2 ·

1
2 = 1

4 .

Thus, from (19.4), we are looking for 𝛿 such that
𝑝(1 − 𝑝)
𝑛𝛿2 <

1
4𝑛𝛿2 < 0.05,
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or equivalently,

𝛿 >

√︂
5
𝑛

.

Notice that this is slightly larger than the value we got in (19.3) via the Chernoff
bound, which is to be expected since the Chebyshev bound is weaker than
the Chernoff bound and we also upper-bounded the variance. However, like the
result in (19.3), we still have the property that the width of the confidence interval
shrinks as 1√

𝑛
as 𝑛 grows.

19.2.3 Using Tail Bounds to Get Exact Confidence Intervals in
General Settings

We now leave polling and return to the general setting of Section 19.1. We have
a r.v. 𝑋 whose mean, E [𝑋], we are trying to estimate. We are given random
i.i.d. samples of 𝑋 , denoted by 𝑋1, 𝑋2, . . . , 𝑋𝑛. This time we don’t know that the
𝑋𝑖’s are Bernoulli distributed. In fact, we assume that we know nothing about
the distribution of the 𝑋𝑖’s, but we do know Var(𝑋𝑖) = 𝜎2.

Question: How can we derive a 95% confidence interval on E [𝑋]?

Answer: Given that we don’t know the distribution of the 𝑋𝑖’s, it’s hard to
imagine how we can use a Chernoff bound. However, we can definitely use
the Chebyshev bound. The process is almost identical to that in Section 19.2.2,
except that we don’t need to bound Var(𝑆𝑛). Specifically, we again define

𝑆𝑛 = 𝑋1 + 𝑋2 + · · · + 𝑋𝑛 and 𝑋 =
𝑆𝑛

𝑛
.

Our confidence interval on E [𝑋] again takes the form[
𝑋 − 𝛿, 𝑋 + 𝛿

]
,

where we’re seeking 𝛿 such that

P
{���𝑋 − E [𝑋]

��� > 𝛿} < 5%,

or equivalently, such that

P {|𝑆𝑛 − 𝑛E [𝑋] | > 𝑛𝛿} < 5%.

We now use the fact that we know that

Var(𝑆𝑛) = 𝑛𝜎2
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to invoke the Chebyshev bound. So we’re seeking 𝛿 such that

P {|𝑆𝑛 − 𝑛E [𝑋] | > 𝑛𝛿} ≤ Var(𝑆𝑛)
𝑛2𝛿2 =

𝑛𝜎2

𝑛2𝛿2 < 0.05.

Solving this, we have that

𝛿 >

√
20𝜎
√
𝑛

,

yielding the confidence interval

[
𝑋 −
√

20𝜎
√
𝑛

, 𝑋 +
√

20𝜎
√
𝑛

]
, (19.5)

where 𝜎 refers to 𝜎𝑋𝑖
.

As a final example, we consider how to generate confidence intervals around a
signal in a noisy environment.

Example 19.3 (Interval estimation of signal with noise)

Suppose that we’re trying to estimate a signal 𝜃 (this is a constant), but the signal
is sent in a noisy environment where a noise, 𝑊 , is added to it. The noise, 𝑊 ,
has zero mean and variance 𝜎2

𝑊
. We obtain 𝑛 samples, 𝑋1, . . . , 𝑋𝑛, where

𝑋𝑖 = 𝜃 +𝑊𝑖 ,

and where the𝑊𝑖’s are i.i.d. and𝑊𝑖 ∼ 𝑊 .

Again,

𝑋 =
𝑋1 + 𝑋2 + · · · + 𝑋𝑛

𝑛

serves as a point estimator for 𝜃.

Question: How can we produce a 95% confidence interval around 𝜃?

Hint: Can we say that the 𝑋𝑖’s are i.i.d.?

Answer: The 𝑋𝑖’s are in fact i.i.d. Furthermore, Var(𝑋𝑖) = Var(𝑊), which is
known. Hence we can directly apply our result from (19.5) to get the following
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95% confidence interval for 𝜃:[
𝑋 −
√

20𝜎𝑊√
𝑛

, 𝑋 +
√

20𝜎𝑊√
𝑛

]
. (19.6)

19.3 Approximate Confidence Intervals

In the previous section, we were able to use the Chernoff or Chebyshev bounds
to derive guaranteed (exact) confidence intervals in many situations, subject to
any desired confidence level. However there are also situations where this is not
possible. Furthermore, there are situations where we might choose to derive an
approximate confidence interval, despite being able to derive an exact confidence
interval.

Question: Why would we ever want an approximate confidence interval when
we can get an exact one?

Answer: Recall from Chapter 18 that, when the number of samples is high, CLT
can offer a much better tail approximation than all existing tail bounds. Thus,
even though CLT is just an approximation, we might prefer it to absolute bounds.

As an example of a situation where we might prefer an approximate confidence
interval, let’s return to the setup in Section 19.2.3. Here, we have a r.v. 𝑋 whose
mean, E [𝑋], we are trying to estimate. We are given random i.i.d. samples of
𝑋 , denoted by 𝑋1, 𝑋2, . . . , 𝑋𝑛. All we know about the 𝑋𝑖’s is their variance:
Var(𝑋𝑖) = 𝜎2. Our point estimate for E [𝑋] is

𝑋 =
𝑋1 + 𝑋2 + · · · + 𝑋𝑛

𝑛
,

which is approximately Normally distributed. Our goal is to derive an interval
of the form

[𝑋 − 𝛿, 𝑋 + 𝛿],

where
P

{���𝑋 − E [𝑋]
��� > 𝛿} < 5%.

Question: You may recall from Chapter 9 that with probability ≈ 95% the
Normal distribution is within 2 standard deviations of its mean.1 Can we therefore

1 While it is more precise to write 1.96 standard deviations, we’re going with 2 for easy readability.
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conclude that an approximate confidence interval for E [𝑋] is[
𝑋 − 2𝜎 , 𝑋 + 2𝜎

]
?

Answer: No, this is wrong. We need to be using 𝜎
𝑋

rather than 𝜎, where

𝜎
𝑋
=
𝜎
√
𝑛

.

The derivation of the approximate confidence interval proceeds as usual. Since
𝑋 is a sum of i.i.d. random variables, we can write

𝑄 =
𝑋 − E [𝑋]

𝜎
𝑋

∼ Normal(0, 1), when 𝑛→∞.

Hence,

P {−2 ≤ 𝑄 ≤ 2} ≈ 95%

P

{
−2 ≤ 𝑋 − E [𝑋]

𝜎√
𝑛

≤ 2

}
≈ 95%

P
{
−2

𝜎
√
𝑛
≤ 𝑋 − E [𝑋] ≤ 2

𝜎
√
𝑛

}
≈ 95%

P
{
𝑋 − 2

𝜎
√
𝑛
≤ E [𝑋] ≤ 𝑋 + 2

𝜎
√
𝑛

}
≈ 95%.

Thus, our confidence interval for E [𝑋] is[
𝑋 − 2

𝜎
√
𝑛

, 𝑋 + 2
𝜎
√
𝑛

]
. (19.7)

Question: How does the confidence interval in (19.7) compare with what we
derived earlier in (19.5)?

Answer: Clearly the confidence interval in (19.7) is way tighter, even though it’s
only an approximation.

Because CLT is so often used for confidence intervals, we summarize our results
in Theorem 19.4.
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Theorem 19.4 (CLT-based approximate confidence interval) Let 𝑋 be a
r.v. whose mean, E [𝑋], we are trying to estimate. We are given 𝑛 random
i.i.d. samples of 𝑋 , denoted by 𝑋1, 𝑋2, . . . , 𝑋𝑛. All we know about the 𝑋𝑖’s is
their variance: Var(𝑋𝑖) = 𝜎2.
Let

𝑋 =
𝑋1 + 𝑋2 + · · · + 𝑋𝑛

𝑛
.

Let Φ(·) be the cumulative distribution function (c.d.f.) of the standard Normal,
and let

Φ

(
𝑧 𝛼

2

)
= 1 − 𝛼

2
, i.e., 𝑧 𝛼

2
≡ Φ−1

(
1 − 𝛼

2

)
.

Then, [
𝑋 − 𝑧 𝛼

2
· 𝜎√
𝑛

, 𝑋 + 𝑧 𝛼
2
· 𝜎√
𝑛

]
(19.8)

is a (1 − 𝛼) · 100% approximate confidence interval for E [𝑋].

We now very briefly turn to the hardest case. Again 𝑋 is a r.v. whose mean,
E [𝑋], we are trying to estimate. Again we are given 𝑛 random i.i.d. samples of
𝑋 , denoted by 𝑋1, 𝑋2, . . . , 𝑋𝑛. However, this time we know absolutely nothing
about the 𝑋𝑖’s. We again wish to determine a (1− 𝛼) · 100% confidence interval
around E [𝑋], but we do not know Var(𝑋𝑖) = 𝜎2, so we cannot directly use
(19.8).

If we have an upper bound on Var(𝑋𝑖), call it 𝜎2
𝑚𝑎𝑥 , then we can of course

substitute 𝜎𝑚𝑎𝑥 in for 𝜎 in (19.8). However, if we don’t even have a bound on 𝜎,
then our best bet is to use the sample standard deviation from (15.5):

𝑆 =
√︁
𝑆2 =

√√
1

𝑛 − 1

𝑛∑︁
𝑖=1

(
𝑋𝑖 − 𝑋

)2
,

yielding the following (1 − 𝛼) · 100% confidence interval for E [𝑋]:[
𝑋 − 𝑧 𝛼

2
· 𝑆√
𝑛

, 𝑋 + 𝑧 𝛼
2
· 𝑆√
𝑛

]
. (19.9)

Observe that (19.9) is now an approximation on two fronts. First, we’re using
CLT, which is an approximation, and second we’re approximating Var(𝑋𝑖) by
the sample variance, 𝑆2. Thus, in using (19.9) it is even more important that 𝑛 is
high.
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19.4 Balls and Bins

We now turn to a very different application of tail bounds, illustrated in Fig-
ure 19.1, where balls are thrown uniformly at random into bins.

Figure 19.1 Throwing balls into bins uniformly at random.

Let’s consider the simplest case where we have exactly 𝑛 balls, each of which is
thrown uniformly at random into one of 𝑛 bins.

Question: On average, how many balls should each bin have?

Answer: Each bin should have one ball in expectation.

Question: What’s the highest number of balls that a bin can have?

Answer: 𝑛.

This kind of problem comes up in many computer science applications. One
example is load balancing of jobs among servers. Each job is routed to a random
server, in the hope that all servers end up with an equal number of jobs. The
reality, however, is that some servers will end up being sent a lot more jobs than
others.

In Exercise 19.8 you will argue that, with high probability, some bin receives
Ω

(
ln 𝑛

ln ln 𝑛

)
balls. In fact, Exercise 19.7 points out that we expect to have several

such “overly full” bins. This says that our attempt at random load balancing is
not as “balanced” as we might think.
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In Theorem 19.6, we will argue the other side, namely that with high probability
no bin will have more than 𝑂

(
ln 𝑛

ln ln 𝑛

)
balls.

Definition 19.5 The term “with high probability” (w.h.p.) generally refers to
something on the order of 1− 1

𝑛
, where 𝑛 is the size of the problem. Sometimes

the term is used a little more loosely to refer to something on the order of 1− 1
𝑛𝑐

,
where 𝑐 > 0 is some constant. When making w.h.p. probabilistic guarantees,
it is common to require that 𝑛 is “sufficiently large.”

Question: How should we think about ln 𝑛
ln ln 𝑛?

Answer: If we imagine that 𝑛 is very large, then

1 ≪ ln 𝑛
ln ln 𝑛

≪ ln 𝑛
109 ≪ ln 𝑛.

Theorem 19.6 If 𝑛 balls are thrown uniformly at random into 𝑛 bins, then,
with probability ≥ 1 − 1

𝑛
, every bin has ≤ 𝑘 balls, where

𝑘 =
3 ln 𝑛
ln ln 𝑛

− 1 ,

assuming sufficiently high 𝑛.

Proof: Our approach will use Chernoff bounds. An alternative approach, not
involving Chernoff bounds, is given in Exercise 19.6.

Consider only the 𝑗 th bin. Let

𝐵 𝑗 =

𝑛∑︁
𝑖=1

𝑋𝑖 = # balls in bin 𝑗 ,

where

𝑋𝑖 =

{
1 if ball 𝑖 goes in bin 𝑗
0 if ball 𝑖 doesn’t go in bin 𝑗 .

Question: What is the distribution of 𝐵 𝑗?

Answer: 𝐵 𝑗 ∼ Binomial(𝑛, 1
𝑛
), where E

[
𝐵 𝑗

]
= 1.

Question: We want to show that w.h.p. every bin has ≤ 𝑘 balls. How can we do
this? We’d like to reduce the problem to looking at an individual bin.

Hint: At first this seems complex, because the bins are clearly not independent.
But independence is not necessary ...
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Hint: We will invoke the union bound (Lemma 2.6), which says that for any
events 𝐸 and 𝐹,

P {𝐸 or 𝐹} ≤ P {𝐸} + P {𝐹} .

Answer: We want to show that w.h.p. every bin has ≤ 𝑘 balls. Equivalently, we
want to show:

P {There exists a bin with > 𝑘 balls} < 1
𝑛

.

Equivalently, we want to show:

P {𝐵1 > 𝑘 or 𝐵2 > 𝑘 or · · · or 𝐵𝑛 > 𝑘} <
1
𝑛

.

But, invoking the union bound, it suffices to show

P {𝐵1 > 𝑘} + P {𝐵2 > 𝑘} + · · · + P {𝐵𝑛 > 𝑘} <
1
𝑛

.

Thus it suffices to show that:

P
{
𝐵 𝑗 > 𝑘

}
<

1
𝑛2

for every 𝑗 .

We will now show that:

P
{
𝐵 𝑗 ≥ 𝑘 + 1

}
<

1
𝑛2 .

Question: Which Chernoff bound on the Binomial should we use: the pretty
bound (Theorem 18.4) or the sometimes stronger bound (Theorem 18.6)?

Answer: We observe that 𝑘 here (which represents 𝛿 in Theorem 18.4) grows as
ln 𝑛, but not as Θ(𝑛). Hence it’s not likely that Theorem 18.4 will give a great
bound. If we look at the Chernoff bound given in Theorem 18.6, we see that the
𝜖 term there is high compared to E

[
𝐵 𝑗

]
= 1. Thus, it is likely that Theorem 18.6

will produce a good bound.

Observing that 𝜖 = 𝑘 and 𝜇 = 1 in Theorem 18.6, we have:

P
{
𝐵 𝑗 ≥ 1 + 𝑘

}
<

𝑒𝑘

(1 + 𝑘) (1+𝑘 )
.

Hence, to prove that

P
{
𝐵 𝑗 ≥ 1 + 𝑘

}
<

1
𝑛2 ,
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it suffices to prove that:
𝑒𝑘

(1 + 𝑘) (1+𝑘 )
≤ 1
𝑛2 .

This latter inequality can be shown to hold by the following argument, which
starts by taking logs of both sides:

𝑒𝑘

(1 + 𝑘) (1+𝑘 )
≤ 1
𝑛2

⇕
𝑘 − (1 + 𝑘) ln(1 + 𝑘) ≤ −2 ln 𝑛

⇕
3 ln 𝑛
ln ln 𝑛

− 1 − 3 ln 𝑛
ln ln 𝑛

· ln
(

3 ln 𝑛
ln ln 𝑛

)
≤ −2 ln 𝑛

⇕
3 ln 𝑛
ln ln 𝑛

− 1 − 3 ln 𝑛
ln ln 𝑛

· (ln 3 + ln ln 𝑛 − ln ln ln 𝑛) ≤ −2 ln 𝑛

⇕
3

ln ln 𝑛
− 1

ln 𝑛
− 3

ln ln 𝑛
· (ln 3 + ln ln 𝑛 − ln ln ln 𝑛) ≤ −2

⇕
3

ln ln 𝑛
− 1

ln 𝑛
− 3 ln 3

ln ln 𝑛
− 3 + 3 ln ln ln 𝑛

ln ln 𝑛
≤ −2

⇕
𝑜(1) + 𝑜(1) + 𝑜(1) − 3 + 𝑜(1) ≤ −2. ■

Question: Our proof above requires that 𝑛 is sufficiently large. Where is this
needed?

Answer: In the last line of the proof, we state that a bunch of terms are 𝑜(1).
As explained in Section 1.6, such a statement requires that 𝑛 is sufficiently
large. Specifically, when we say that each term is 𝑜(1), we mean that the term
approaches 0 for sufficiently high 𝑛.

Question: You’ll notice that we wrote each of the 𝑜(1) terms with a positive
sign. Does it matter if the 𝑜(1) terms are positive or negative?

Answer: The sign of the 𝑜(1) terms here doesn’t matter. For high enough 𝑛,
each 𝑜(1) term is arbitrarily close to 0 (see Corollary 1.18). That is, we can think
of each term as within 0.00001 of zero, so we don’t care whether the terms are
positive or negative.
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19.5 Remarks on Balls and Bins

There are many more variants of the balls and bins problem, as this paradigm
relates to many different computer science applications. For example, one might
have 𝑚 balls and 𝑛 bins, where 𝑚 ≠ 𝑛. We will see an example of this when we
discuss hashing in Chapter 20. One might have different “colors” of balls, say
red balls and blue balls. The “balls” might represent jobs that arrive over time
and are dispatched to random servers. One might also have reduced randomness
in throwing the balls. For example, in the “power of two choices” version of the
balls-and-bins problem, each ball chooses two random bins and then is thrown
in the lesser-loaded of these two bins; see [60].

19.6 Exercises

19.1 Confidence interval warm-up
You have collected independent samples 𝑋1, 𝑋2, . . . , 𝑋400 from some un-
known distribution represented by r.v. 𝑋 . From these samples, you have
derived the sample mean and sample variance:

𝑋 = 10 𝑆2 = 144.

Construct an approximate 99% confidence interval for E [𝑋].

19.2 Confidence interval on mean when variance is known
Suppose we have a r.v. 𝑋 ∼ Normal(𝜇,𝜎2). Assume that we know 𝜎2, but
we do not know 𝜇. We would like to produce 95% confidence intervals
for 𝜇 = E [𝑋]. We have a small number 𝑛 of i.i.d. random samples of 𝑋 ,
denoted by 𝑋1, 𝑋2, . . . , 𝑋𝑛. Unfortunately 𝑛 is small. What is the tightest
(least-width) 95% exact confidence interval that we can produce on E [𝑋]?

19.3 Confidence intervals on vaccine efficacy
[Proposed by Weina Wang] We are testing a new vaccine, and we want
to determine its effectiveness. To do this, we hold a vaccine trial, where
we administer the vaccine to all 𝑛 of the participants. Two weeks later, we
check to see the number of infected participants. We model infection as
follows:
• With independent known probability 𝑧, each person will be exposed to

the pathogen during the two-week post-vaccination period.
• If person 𝑖 is exposed, then independently with unknown probability 𝑝,

the vaccine worked and person 𝑖 will not get sick.
• On the other hand, if the vaccine didn’t work, then person 𝑖 gets measur-

ably sick upon exposure.
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• We call 𝑧 the exposure rate and 𝑝 the efficacy rate.
Our goal is to estimate the efficacy rate, 𝑝. After the two-week period, we
check to see whether each person got sick. Let 𝑌𝑖 be an indicator r.v. which
is 1 if person 𝑖 got sick. Let 𝑌 = 1

𝑛

∑𝑛
𝑖=1𝑌𝑖 .

(a) Define the following estimator of 𝑝:

𝑝(𝑌1, . . . ,𝑌𝑛) = 1 − 𝑌
𝑧

.

(i) Explain the logic behind this estimator.
(ii) Argue that 𝑝(𝑌1, . . . ,𝑌𝑛) is an unbiased estimator of 𝑝, meaning

that E [𝑝] = 𝑝.
(b) Consider the following interval estimate for 𝑝, with 𝜖 = 0.01:

[𝑝(𝑌1, . . . ,𝑌𝑛) − 𝜖 , 𝑝(𝑌1, . . . ,𝑌𝑛) + 𝜖] .

(i) Using the Chernoff bound, find a study size 𝑛which ensures that the
confidence level of the interval estimate exceeds 95%, regardless
of the value of 𝑝.

(ii) Without using the Chernoff bound, find a study size 𝑛which ensures
that the confidence level of the interval estimate exceeds 95%,
regardless of the value of 𝑝.

19.4 Interval estimation
[Proposed by Weina Wang] I have a number, 𝜃 ∈ (0, 1). You don’t
know 𝜃, but you’re allowed to make 𝑛 guesses 𝑋1, 𝑋2, . . . , 𝑋𝑛. You make
your guesses independently and uniformly at random from (0, 1), so
𝑋𝑖 ∼ Uniform(0, 1). Your goal is to get within 𝜖 of 𝜃 where 𝜖 is some
specific value in (0, 1). After you make your 𝑛 guesses, I label those that
are “below” 𝜃 in blue and those that are “above” in red, as shown in Fig-
ure 19.2. Let 𝑌 be the largest of the blue 𝑋1, . . . , 𝑋𝑛 (if there are no blue
𝑋𝑖 , then 𝑌 = 0). Let (𝑌 ,𝑌 + 𝜖) (yellow interval) be an interval estimate of
𝜃. You would like to be able to say that the interval (𝑌 ,𝑌 + 𝜖) contains 𝜃
with probability ≥ 1 − 𝛿.

= below

= above

Y

[ [

θ0 1

θ

θ

Figure 19.2 The yellow interval is an interval estimate for Exercise 19.4.

(a) Compute the c.d.f. of 𝑌 , denoted by 𝐹𝑌 (𝑦). Note the range of 𝑦.



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

19.6 Exercises 343

(b) How large should 𝑛 be to ensure that 𝜃 ∈ (𝑌 ,𝑌 + 𝜖) with probability
≥ 1 − 𝛿?

19.5 Expected size of fullest bin
In this chapter, we examined throwing 𝑛 balls uniformly at random at 𝑛
bins, and we looked at the fullest of the 𝑛 bins. We proved that with high
probability, the fullest bin has ≤ 𝑘 balls, where 𝑘 = 3 ln 𝑛

ln ln 𝑛 − 1, assuming
that 𝑛 is sufficiently high. Explain why it follows that the expected size of
the fullest bin is 𝑂

(
ln 𝑛

ln ln 𝑛

)
.

19.6 High-probability upper bound on number of balls in max bin
Consider throwing 𝑛 balls into 𝑛 bins, uniformly at random. As usual
assume that 𝑛 is sufficiently large. Let 𝑘 = 3 ln 𝑛

ln ln 𝑛 . In this problem we will
prove that the “max bin” (the one with the most balls) has < 𝑘 balls with
high probability. Unlike the chapter, the proof will not use Chernoff bounds.
Instead simpler bounds like the union bound will be useful. We will need
several helping steps.
(a) First prove the following lemma, which you will need for later steps: If

1 < 𝑖 < 𝑛, then (
𝑛

𝑖

)
≤

(𝑛𝑒
𝑖

) 𝑖
. (19.10)

[Hint: It helps to start by proving that
(𝑛
𝑖

)
< 𝑛𝑖

𝑖! .]
(b) Prove the following lemma, which you will need for later steps:

If 𝑘 =
3 ln 𝑛
ln ln 𝑛

, then 𝑘 𝑘 ≥ 𝑛2.99.

[Hint: The argument here resembles that used at the end of this chapter.]
(c) Given that 𝑘 = 3 ln 𝑛

ln ln 𝑛 , prove that

P {Bin 𝑗 has ≥ 𝑘 balls} ≤ 1
𝑛2 .

[Hint: Start by using a union bound over subsets to argue that

P {Bin 𝑗 has ≥ 𝑘 balls} ≤
(
𝑛

𝑘

)
· 1
𝑛𝑘

.

Then use part (a) and then part (b).]
(d) Prove that w.h.p. the maximum bin has < 𝑘 balls.

19.7 Lots of bins have lots of balls
Consider throwing 𝑛 balls into 𝑛 bins, uniformly at random. Let 𝑘 = 𝑐 ln 𝑛

ln ln 𝑛 ,
where 𝑐 = 1

3 . Prove that the expected number of bins with at least 𝑘 balls
is Ω(𝑛2/3), for 𝑛 sufficiently large. We recommend the following steps:
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(a) Prove that, for sufficiently high 𝑛,

P {Bin 𝑗 has ≥ 𝑘 balls} ≥ 1
2𝑒𝑘 𝑘

.

[Hint: It will suffice to lower bound the probability that bin 𝑗 has
exactly 𝑘 balls. You will also use the fact that the function

(
1 − 1

𝑛

)𝑛
is increasing with 𝑛, and thus exceeds half its limit for high 𝑛. It also
helps to recall from (1.19) that

(𝑛
𝑘

)
>

(
𝑛
𝑘

) 𝑘 .]
(b) Prove the following lemma, which you will need in the next part:

If 𝑘 =
𝑐 ln 𝑛
ln ln 𝑛

then 𝑘 𝑘 ≤ 𝑛𝑐.

(c) Using parts (a) and (b), show that

E [Number of bins with ≥ 𝑘 balls] ≥ Ω(𝑛1−𝑐).

Specifically, you will show that

E [Number of bins with ≥ 𝑘 balls] ≥ 1
2𝑒
𝑛1−𝑐 =

1
2𝑒
𝑛

2
3 .

(d) Does part (c) imply that, in expectation, (at least) some constant pro-
portion of the 𝑛 bins has ≥ 𝑘 balls? For instance, can we conclude that
1/4 of the bins have ≥ 𝑘 balls, or some other constant fraction?

19.8 High-probability lower bound on number of balls in max bin
Consider throwing 𝑛 balls into 𝑛 bins, uniformly at random. Let 𝑘 = 𝑐 ln 𝑛

ln ln 𝑛 ,
where 𝑐 = 1

3 . Our goal is to show that with reasonably high probability, at
least some bin has ≥ 𝑘 balls.
Let 𝑋 denote the number of bins with at least 𝑘 balls. Observe that 𝑋 =∑𝑛

𝑖=1 𝑋𝑖 , where 𝑋𝑖 is an indicator r.v. equal to 1 if bin 𝑖 has ≥ 𝑘 balls, and
0 otherwise. We want to prove that

P {𝑋 = 0} ≤ 4𝑒2𝑛−𝑐 =
4𝑒2

𝑛
1
3

.

(a) Use Chebyshev to upper bound P {𝑋 = 0} in terms of Var(𝑋) and
E [𝑋].

(b) Prove that
Var(𝑋) ≤ 𝑛.

In proving the above, you can assume the following fact (without proof):

Var(𝑋) =
∑︁
𝑖

Var(𝑋𝑖) +
∑︁
𝑖≠ 𝑗

Cov
(
𝑋𝑖 , 𝑋 𝑗

)
where

Cov
(
𝑋𝑖 , 𝑋 𝑗

)
= E

[
(𝑋𝑖 − E [𝑋𝑖]) (𝑋 𝑗 − E

[
𝑋 𝑗

]
)
]

.



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

19.6 Exercises 345

The term Cov
(
𝑋𝑖 , 𝑋 𝑗

)
stands for “covariance of 𝑋𝑖 and 𝑋 𝑗 ,” where

positive covariance indicates that the random variables are positively
correlated and negative covariance indicates that they are negatively
correlated. [Hint: As part of your proof, you will need to prove that
Cov

(
𝑋𝑖 , 𝑋 𝑗

)
≤ 0.]

(c) Now use the result from Exercise 19.7(c) and your results from (a) and
(b) to finish the proof.

19.9 Chernoff bound for real-valued random variables
[Proposed by Vanshika Chowdhary] Suppose that 𝑋1, 𝑋2, . . . , 𝑋𝑛 are inde-
pendent random variables with values in [0, 1]. Assume that E [𝑋𝑖] = 𝜇𝑖 .
Let

𝑋 = 𝑋1 + · · · + 𝑋𝑛.

You are given that 𝜇 = E [𝑋] ≤ 1 and that 𝑏 = 3 ln 𝑛
ln ln 𝑛 .

Show that

P {𝑋 ≥ 𝑏} ≤ 1
𝑛2.99

for sufficiently high 𝑛. Please follow these steps:
(a) Start with the usual Chernoff bound approach to evaluating P {𝑋 ≥ 𝑏}.

You will get an expression involving a product of E
[
𝑒𝑡𝑋𝑖

]
terms.

(b) Show that E
[
𝑒𝑡𝑋𝑖

]
≤ 𝑒𝜇𝑖 (𝑒𝑡−1) , ∀𝑡 > 0. Here are some helping steps:

(i) Recall from Definition 5.21 that a real-valued function, 𝑔(·), de-
fined on interval 𝑆 ⊆ R is convex if ∀𝜆 ∈ [0, 1], and ∀𝛼, 𝛽 ∈ 𝑆,

𝜆𝑔(𝛼) + (1 − 𝜆)𝑔(𝛽) ≥ 𝑔(𝜆𝛼 + (1 − 𝜆)𝛽).

Now use the fact that 𝑒𝑥 is a convex function and the fact that
𝑋𝑖 ∈ [0, 1] to show that: 𝑒𝑡𝑋𝑖 ≤ 𝑋𝑖𝑒𝑡 + (1 − 𝑋𝑖)𝑒0.

(ii) Show that E
[
𝑒𝑡𝑋𝑖

]
≤ 𝑒𝜇𝑖 (𝑒𝑡−1) .

(c) Substituting the result from (b) into (a), prove P {𝑋 ≥ 𝑏} ≤ 𝑒𝑏−𝑏 ln 𝑏.
(d) Now plug in 𝑏 = 3 ln 𝑛

ln ln 𝑛 to get the final result.


