
Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

16 Classical Statistical
Inference

In Chapter 15, we focused on estimating the mean and variance of a distribution
given observed samples. In this chapter and the next, we look at the more
general question of statistical inference, where this time we are estimating the
parameter(s) of a distribution or some other quantity. We will continue to use
the notation for estimators given in Definition 15.1.

16.1 Towards More General Estimators

We start the chapter with another example of point estimation.

Example 16.1 (Estimating the number of pink jelly beans)

Consider the jar of jelly beans shown in Figure 16.1. Suppose that we know that
the jar has 1000 jelly beans. Our goal is to estimate the number of pink jelly
beans. Let

𝜃 = Number of pink jelly beans in the jar.

To estimate 𝜃, we randomly sample 𝑛 = 20 jelly beans with replacement.

Figure 16.1 This jar has 1000 jelly beans. How many of them are pink?

Let 𝑋 be the number of pink jelly beans that we observe in our sample of 𝑛 = 20.
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Observe that 𝑋 is a random variable (r.v.) since the experiment is random. 𝑋 can
take on values from 0 to 𝑛. We use r.v. 𝜃 (𝑋) to denote our estimator of 𝜃.

Question: What is a reasonable guess for what 𝜃 (𝑋) might look like?

Hint: It is easier to think about a specific instantiation of 𝑋 . For example, suppose
we observe 𝑋 = 𝑥 pink jelly beans.

Answer: If we observe 𝑥 jelly beans in our sample, then a reasonable estimate
for the fraction of pink jelly beans is 𝑥

𝑛
. Hence we estimate the number of pink

jelly beans is

𝜃 (𝑋 = 𝑥) =
( 𝑥
𝑛

)
· 1000, 0 ≤ 𝑥 ≤ 𝑛. (16.1)

Now, since (16.1) holds for every value of 𝑥, it follows that we can define

𝜃 (𝑋) =
(
𝑋

𝑛

)
· 1000. (16.2)

Question: Is 𝜃 (𝑋), as defined in (16.2), an unbiased estimator of 𝜃?

Hint: It helps to start by considering the distribution of 𝑋 .

Answer: Let us define

𝑝 =
𝜃

1000

to be the true fraction of pink jelly beans. Then,

𝑋 ∼ Binomial(𝑛, 𝑝),

and hence

E [𝑋] = 𝑛𝑝 = 𝑛 · 𝜃

1000
.

From this it follows that

E
[
𝜃 (𝑋)

]
= E

[
𝑋

𝑛
· 1000

]
= E [𝑋] · 1000

𝑛

= 𝑛 · 𝜃

1000
· 1000

𝑛

= 𝜃. ✓

Thus, 𝜃 (𝑋) is an unbiased estimator of 𝜃.

Question: Is 𝜃 (𝑥) a consistent estimator of 𝜃?
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Answer: Yes! To see this, we will show that MSE
(
𝜃
)
→ 0, as 𝑛→∞. Note that

𝑛 can be arbitrarily high because we’re sampling with replacement.

We start by observing that MSE
(
𝜃
)
= Var

(
𝜃
)
, by Lemma 15.5. Hence,

MSE
(
𝜃
)
= Var

(
𝜃
)
=

(
1000
𝑛

)2
· 𝑛𝑝(1 − 𝑝)

=

(
1000
𝑛

)2
· 𝑛 · 𝜃

1000

(
1 − 𝜃

1000

)
=
𝜃 (1000 − 𝜃)

𝑛
.

Clearly, MSE
(
𝜃
)
→ 0 as 𝑛→∞, so 𝜃 is a consistent estimator, by Lemma 15.7.

16.2 Maximum Likelihood Estimation

In the previous section, we came up with what seemed like a reasonable estima-
tor. However, there was no specific method for coming up with this estimator,
nor the estimators in the prior chapter. In this section we describe a specific
methodology for deriving an estimator. The methodology is called maximum
likelihood estimation (MLE). It is the classical inference methodology adopted
by statisticians who consider themselves to be frequentists. In the next chapter
we will investigate a different methodology for coming up with estimators which
is preferred by the Bayesian statisticians.

In explaining the MLE method, to simplify notation we will assume that the
sample data is just a single r.v., 𝑋 , but in general it can be 𝑋1, 𝑋2, . . . , 𝑋𝑛. For
now we will assume that we have a single unknown, 𝜃, that we are trying to
estimate; we will later consider multiple unknowns. The goal is to derive 𝜃 (𝑋),
which is a maximum likelihood estimator of 𝜃 based on the sample data 𝑋; we
refer to this as an ML estimator. To create an ML estimator, we first consider
an arbitrary specific value of the sample data, 𝑋 = 𝑥, and ask,

“What is the value of 𝜃 which maximizes the likelihood of seeing 𝑋 = 𝑥?”

The expression that we derive will be a function of 𝑥. Since 𝑥 is chosen arbitrarily,
this allow us to define 𝜃 as a function of the r.v. 𝑋 .
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Algorithm 16.2 (Creating an ML estimator) Our goal is to estimate an un-
known value, 𝜃, given sample data represented by r.v. 𝑋 .

1. Define
𝜃ML(𝑋 = 𝑥) = argmax

𝜃

P {𝑋 = 𝑥 | 𝜃} .

P {𝑋 = 𝑥 | 𝜃} is called the likelihood function and represents the proba-
bility that 𝑋 = 𝑥, given a particular 𝜃. The value of 𝜃 which maximizes the
likelihood function is denoted by 𝜃ML(𝑋 = 𝑥).

2. Convert 𝜃ML(𝑋 = 𝑥), which is a function of 𝑥, for any arbitrary 𝑥, into r.v.
𝜃ML(𝑋), which is a function of a r.v., by replacing 𝑥 with 𝑋 .

The MLE method is best illustrated via an example. Returning to Example 16.1,
suppose that in our sample of 𝑛 = 20 jelly beans we observe 𝑋 = 3 jelly beans.

Question: What is P {𝑋 = 3 | 𝜃}?

Answer: If we’re given that there are 𝜃 pink jelly beans, then the fraction of
pink jelly beans is 𝑝 = 𝜃

1000 . Hence, given 𝑛 = 20, we have

P {𝑋 = 3 | 𝜃} =
(
20
3

) (
𝜃

1000

)3
·
(
1 − 𝜃

1000

)17
.

Figure 16.2 shows the probability that 𝑋 = 3 under all possible values of 𝜃 from
0 to 1000, assuming 𝑛 = 20.
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Figure 16.2 P {𝑋 = 3 | 𝜃} as a function of 𝜃, assuming 𝑛 = 20.

Question: Based on Figure 16.2, what value of 𝜃 maximizes P {𝑋 = 3 | 𝜃}?

Answer: 𝜃 = 150. So

𝜃ML(𝑋 = 3) = argmax
𝜃

P {𝑋 = 3 | 𝜃} = 150.
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Question: What is the likelihood function, P {𝑋 = 𝑥 | 𝜃}?

Answer:

P {𝑋 = 𝑥 | 𝜃} =
(
𝑛

𝑥

) (
𝜃

1000

) 𝑥
·
(
1 − 𝜃

1000

)𝑛−𝑥
.

Question: What is 𝜃ML(𝑋 = 𝑥) = argmax
𝜃

P {𝑋 = 𝑥 | 𝜃}?

Answer: To answer this, we’ll need to solve for the value of 𝜃 which maximizes
the likelihood function:

0 =
𝑑

𝑑𝜃
P {𝑋 = 𝑥 | 𝜃}

=
𝑑

𝑑𝜃

(
𝑛

𝑥

) (
𝜃

1000

) 𝑥
·
(
1 − 𝜃

1000

)𝑛−𝑥
=

(
𝑛

𝑥

)
·
(
𝜃

1000

) 𝑥
· (𝑛 − 𝑥) ·

(
1 − 𝜃

1000

)𝑛−𝑥−1
· −1

1000

+
(
𝑛

𝑥

)
· 𝑥

(
𝜃

1000

) 𝑥−1
· 1

1000

(
1 − 𝜃

1000

)𝑛−𝑥
.

If we divide both sides by
(𝑛
𝑥

)
·
(

𝜃
1000

) 𝑥−1 ·
(
1 − 𝜃

1000
)𝑛−1−𝑥 , we are left with:

0 = −𝑛 − 𝑥
1000

· 𝜃

1000
+ 𝑥

1000
·
(
1 − 𝜃

1000

)
0 = −(𝑛 − 𝑥)𝜃 + 𝑥(1000 − 𝜃)

𝜃 =
1000𝑥
𝑛

.

It is easily shown that the second derivative of the likelihood function is negative,
and thus

𝜃 =
1000𝑥
𝑛

is in fact the value of 𝜃 that maximizes the likelihood function. Hence,

𝜃ML(𝑋 = 𝑥) = 1000𝑥
𝑛

. (16.3)

Question: Given that

𝜃ML(𝑋 = 𝑥) = 1000𝑥
𝑛

, for all 0 ≤ 𝑥 ≤ 𝑛,

what does this say about 𝜃ML(𝑋)?
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Answer:

𝜃ML(𝑋) =
1000𝑋
𝑛

.

Notice that this is the same estimator that we arrived at in (16.2); however, this
time we followed a specific method (MLE) for coming up with the estimator.

16.3 More Examples of ML Estimators

Example 16.3 (Submissions to the Pittsburgh Supercomputing Center)

The number of jobs submitted daily to the Pittsburgh Supercomputing Center
(PSC) follows a Poisson distribution with unknown parameter 𝜆. Suppose that
the numbers of job submissions on different days are independent. We observe
the number of job submissions each day for a month, and denote these by
𝑋1, 𝑋2, . . . , 𝑋30. Our goal is to derive 𝜆̂ML(𝑋1, 𝑋2, . . . , 𝑋30), the ML estimator
for 𝜆.

Question: Before we do the computation, ask yourself: What do you expect the
answer to be?

Hint: Recall that the parameter 𝜆 represents the mean of the Poisson distribution.

Answer: We are being asked to estimate the unknown parameter 𝜆, which is
the mean number of arrivals. It would make sense if this was simply the sample
mean. That is:

𝜆̂ML(𝑋1, 𝑋2, . . . , 𝑋30) =
𝑋1 + 𝑋2 + · · · + 𝑋30

30
.

We now proceed to follow the MLE method, which will lead us to find that our
intuition is in fact correct.

We write

𝜆̂ML(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋30 = 𝑥30)
= argmax

𝜆

P {𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋30 = 𝑥30 | 𝜆}

= argmax
𝜆

𝜆𝑥1𝑒−𝜆

𝑥1!
· 𝜆

𝑥2𝑒−𝜆

𝑥2!
· · · 𝜆

𝑥30𝑒−𝜆

𝑥30!

= argmax
𝜆

𝜆𝑥1+𝑥2+···+𝑥30𝑒−30𝜆

𝑥1!𝑥2! · · · 𝑥30!
.
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To find the maximizing 𝜆, we set the derivative of the likelihood function to 0:

0 =
𝑑

𝑑𝜆

(
𝜆𝑥1+···+𝑥30𝑒−30𝜆

𝑥1!𝑥2! · · · 𝑥30!

)
=
(𝑥1 + · · · + 𝑥30) 𝜆𝑥1+···+𝑥30−1 · 𝑒−30𝜆 + 𝜆𝑥1+···+𝑥30 · 𝑒−30𝜆 · (−30)

𝑥1! · · · 𝑥30!
Dividing both sides by the appropriate constants leaves us with

0 = (𝑥1 + · · · + 𝑥30) + 𝜆 · (−30). (16.4)

Solving (16.4), and verifying that the second derivative is negative, yields

𝜆 =
𝑥1 + · · · + 𝑥30

30

as the value of 𝜆 which maximizes the likelihood function.

Hence,

𝜆̂ML(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋30 = 𝑥30) =
𝑥1 + · · · + 𝑥30

30
, ∀𝑥1, . . . , 𝑥30 ≥ 0.

So

𝜆̂ML(𝑋1, 𝑋2, . . . , 𝑋30) =
𝑋1 + 𝑋2 + . . . 𝑋30

30
,

as predicted.

16.4 Log Likelihood

Sometimes, rather than finding the value of 𝜃 that maximizes some probability,
it is more convenient to maximize the log of that probability. Lemma 16.4 makes
this clear.

Lemma 16.4 (Maximizing the log likelihood) Given an unknown value, 𝜃,
that we are trying to estimate, suppose that we have sample data represented
by r.v. 𝑋 . Then,

𝜃ML(𝑋 = 𝑥) ≡ argmax
𝜃

P {𝑋 = 𝑥 | 𝜃} = argmax
𝜃

log P {𝑋 = 𝑥 | 𝜃} .

Here, log P {𝑋 = 𝑥 | 𝜃} is referred to as the log likelihood function.
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Proof: Maximizing the log likelihood is equivalent to maximizing the likelihood
since log is a strictly increasing function. ■

Example 16.5 (Submissions to the PSC, revisited!)

Let’s revisit Example 16.3, where the goal is to estimate 𝜆. This time, however,
we derive the estimator that maximizes the log likelihood:

𝜆̂ML(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋30 = 𝑥30)
= argmax

𝜆

ln (P {𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋30 = 𝑥30 | 𝜆})

= argmax
𝜆

ln (P {𝑋1 = 𝑥1 | 𝜆} · P {𝑋2 = 𝑥2 | 𝜆} · · ·P {𝑋30 = 𝑥30 | 𝜆}) .

Hence,

𝜆̂ML(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋30 = 𝑥30)

= argmax
𝜆

30∑︁
𝑖=1

ln P {𝑋𝑖 = 𝑥𝑖 | 𝜆}

= argmax
𝜆

30∑︁
𝑖=1

ln
(
𝑒−𝜆𝜆𝑥𝑖

𝑥𝑖!

)
= argmax

𝜆

(
−30𝜆 +

30∑︁
𝑖=1

𝑥𝑖 ln(𝜆) −
30∑︁
𝑖=1

ln(𝑥𝑖!)
)

= argmax
𝜆

(
−30𝜆 +

30∑︁
𝑖=1

𝑥𝑖 ln(𝜆)
)

.

To find the maximizing 𝜆, we set the derivative of the log likelihood function to
0:

0 =
𝑑

𝑑𝜆

(
−30𝜆 +

30∑︁
𝑖=1

𝑥𝑖 ln(𝜆)
)
= −30 +

( 30∑︁
𝑖=1

𝑥𝑖

)
· 1
𝜆

.

Hence,

𝜆 =
𝑥1 + 𝑥2 + · · · + 𝑥30

30
.

Thus again,

𝜆̂ML(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋30 = 𝑥30) =
𝑥1 + 𝑥2 + · · · + 𝑥30

30
.
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16.5 MLE with Data Modeled by Continuous Random
Variables

When data is modeled by continuous random variables, we replace the probability
mass function (p.m.f.) with the probability density function (p.d.f.) in expressing
the likelihood. Definitions 16.6 and 16.7 provide a summary.

Definition 16.6 (MLE summary: single variable) Given an unknown value,
𝜃, that we wish to estimate:
If the sample data is represented by discrete r.v. 𝑋 , then we define

𝜃ML(𝑋 = 𝑥) ≡ argmax
𝜃

P {𝑋 = 𝑥 | 𝜃} .

If the sample data is represented by continuous r.v. 𝑋 , we instead define

𝜃ML(𝑋 = 𝑥) ≡ argmax
𝜃

𝑓𝑋 | 𝜃 (𝑥).

Definition 16.7 (MLE summary: multiple variables) Given an unknown
value, 𝜃, that we wish to estimate:
If the sample data is represented by discrete random variables 𝑋1, 𝑋2, . . . , 𝑋𝑛,
we define

𝜃ML(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋𝑛 = 𝑥𝑛) ≡ argmax
𝜃

P {𝑋1 = 𝑥1, . . . , 𝑋𝑛 = 𝑥𝑛 | 𝜃} .

If the sample data is represented by continuous random variables
𝑋1, 𝑋2, . . . , 𝑋𝑛, we define

𝜃ML(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋𝑛 = 𝑥𝑛) ≡ argmax
𝜃

𝑓𝑋1,𝑋2,...,𝑋𝑛 | 𝜃 (𝑥1, 𝑥2, . . . , 𝑥𝑛).

Example 16.8 (Time students spend on their probability homework)

Students often ask, “How long can I expect to spend on homework if I take the PnC
probability class?” It turns out that the distribution of the time that students spend
on homework is approximately distributed as Uniform(0, 𝑏), where students can
be viewed as independent in the time that they spend doing the homework. To
get a feel for what 𝑏 is, we survey three students. Let 𝑋1, 𝑋2, 𝑋3 denote the times
reported by the three students.

What is the ML estimator 𝑏̂ML(𝑋1, 𝑋2, 𝑋3) for 𝑏?

𝑏̂ML(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, 𝑋3 = 𝑥3) = argmax
𝑏

𝑓𝑋1,𝑋2,𝑋3 |𝑏 (𝑥1, 𝑥2, 𝑥3).
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𝑓𝑋1,𝑋2,𝑋3 |𝑏 (𝑥1, 𝑥2, 𝑥3) =
{ 1

𝑏3 if 0 < 𝑥1, 𝑥2, 𝑥3 ≤ 𝑏
0 otherwise

=

{ 1
𝑏3 if 𝑏 ≥ max{𝑥1, 𝑥2, 𝑥3}
0 otherwise .

To maximize 𝑓𝑋1,𝑋2,𝑋3 |𝑏 (𝑥1, 𝑥2, 𝑥3), we want to make 𝑏 as small as possible,
while still ensuring that 𝑥1, 𝑥2, 𝑥3 ≤ 𝑏, so that the density doesn’t become 0.
Hence we want 𝑏 = max{𝑥1, 𝑥2, 𝑥3}. Therefore,

𝑏̂ML(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, 𝑋3 = 𝑥3) = max{𝑥1, 𝑥2, 𝑥3}

and

𝑏̂ML(𝑋1, 𝑋2, 𝑋3) = max{𝑋1, 𝑋2, 𝑋3}.

Question: Does 𝑏̂ML feel like a good estimator of 𝑏? Is it what you would have
expected?

Answer: Clearly, our estimate for 𝑏 must be at least equal to the maximum of
the samples. But it’s not clear that our estimate shouldn’t be higher than the
maximum observed. In fact, if we’ve only made a few observations, one would
expect 𝑏 to be higher than the highest observation so far.

Question: Is 𝑏̂ML an unbiased estimator?

Answer: This will be explored in Exercise 16.5, where you will show that 𝑏̂ML is
not an unbiased estimator, but can be made into one pretty easily.

We now turn to one more example involving continuous random variables.

Example 16.9 (Estimating the standard deviation of temperature)

The high temperature in Pittsburgh in June is (approximately) Normally dis-
tributed with a mean of 𝜇 = 79 F. Suppose we would like to estimate the
standard deviation, 𝜎, of temperature. To do this, we observe the temperature on
𝑛 randomly sampled independent June days, denoted by 𝑋1, 𝑋2, . . . , 𝑋𝑛. Derive
𝜃ML(𝑋1, 𝑋2, . . . , 𝑋𝑛), the ML estimator of 𝜎.

We will use the log likelihood formulation:

𝜎̂ML(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋𝑛 = 𝑥𝑛) = argmax
𝜎

ln
(
𝑓𝑋1,𝑋2,...,𝑋𝑛 |𝜎 (𝑥1, 𝑥2, . . . , 𝑥𝑛)

)
,
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where

ln
(
𝑓𝑋1,...,𝑋𝑛 |𝜎 (𝑥1, . . . , 𝑥𝑛)

)
= ln

(
𝑛∏
𝑖=1

𝑓𝑋𝑖 |𝜎 (𝑥𝑖)
)

=

𝑛∑︁
𝑖=1

ln
(
𝑓𝑋𝑖 |𝜎 (𝑥𝑖)

)
=

𝑛∑︁
𝑖=1

ln
(

1
√

2𝜋𝜎
𝑒
− (𝑥𝑖−𝜇)

2

2𝜎2

)
=

𝑛∑︁
𝑖=1

(
− (𝑥𝑖 − 𝜇)

2

2𝜎2 − ln𝜎 − ln
√

2𝜋
)

= − 1
2𝜎2

𝑛∑︁
𝑖=1
(𝑥𝑖 − 𝜇)2 − 𝑛 ln𝜎 − 𝑛 ln

√
2𝜋. (16.5)

To find the maximizing 𝜎, we set the derivative of (16.5) to 0:

0 =
𝑑

𝑑𝜎

(
− 1

2𝜎2

𝑛∑︁
𝑖=1
(𝑥𝑖 − 𝜇)2 − 𝑛 ln𝜎 − 𝑛 ln

√
2𝜋

)
=

1
𝜎3

𝑛∑︁
𝑖=1
(𝑥𝑖 − 𝜇)2 −

𝑛

𝜎

=
1
𝜎2

𝑛∑︁
𝑖=1
(𝑥𝑖 − 𝜇)2 − 𝑛 (multiplying both sides by 𝜎).

This yields

𝜎 =

√︄∑𝑛
𝑖=1 (𝑥𝑖 − 𝜇)

2

𝑛
.

Hence,

𝜎̂ML(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, . . . , 𝑋𝑛 = 𝑥𝑛) =

√︄∑𝑛
𝑖=1 (𝑥𝑖 − 𝜇)

2

𝑛
,

and thus it follows that

𝜎̂ML(𝑋1, 𝑋2, . . . , 𝑋𝑛) =

√︄∑𝑛
𝑖=1 (𝑋𝑖 − 𝜇)

2

𝑛
. (16.6)
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Question: How does 𝜎̂ML(𝑋1, 𝑋2, . . . , 𝑋𝑛) in (16.6) compare with
√︁
𝑆2 from

(15.2)?

Answer: These are the same.

16.6 When Estimating More than One Parameter

Sometimes we want to estimate more than one parameter of a distribution. This
is done by defining an MLE that jointly optimizes over multiple parameters.

To see how this works, let’s return to Example 16.9. Suppose this time we
need to estimate both the mean, 𝜇, and the standard deviation, 𝜎, of the Nor-
mal distribution of temperature. Again we have 𝑛 randomly sampled temper-
atures: 𝑋1, 𝑋2, . . . , 𝑋𝑛. This time, we wish to derive a pair of ML estimators:
𝜇̂ML(𝑋1, 𝑋2, . . . , 𝑋𝑛) and 𝜎̂ML(𝑋1, 𝑋2, . . . , 𝑋𝑛), where(

𝜇̂ (𝑋1 = 𝑥1, . . . , 𝑋𝑛 = 𝑥𝑛)
𝜎̂ (𝑋1 = 𝑥1, . . . , 𝑋𝑛 = 𝑥𝑛)

)
= argmax

𝜇,𝜎
ln

(
𝑓𝑋1,...,𝑋𝑛 |𝜇,𝜎 (𝑥1, . . . , 𝑥𝑛)

)
.

Our likelihood function, 𝑔(𝜇,𝜎), now depends on two parameters:

𝑔(𝜇,𝜎) = 𝑓𝑋1,𝑋2,...,𝑋𝑛 |𝜇,𝜎 (𝑥1, 𝑥2, . . . , 𝑥𝑛).

To find the pair (𝜇,𝜎) that maximizes 𝑔(𝜇,𝜎), we set both of the partial deriva-
tives below to 0:

𝜕 ln 𝑔(𝜇,𝜎)
𝜕𝜇

= 0 and
𝜕 ln 𝑔(𝜇,𝜎)

𝜕𝜎
= 0.

From (16.5), we know that

ln (𝑔(𝜇,𝜎)) = − 1
2𝜎2

𝑛∑︁
𝑖=1
(𝑥𝑖 − 𝜇)2 − 𝑛 ln𝜎 − 𝑛 ln

√
2𝜋.

Taking partial derivatives, we have that:

𝜕 ln 𝑔(𝜇,𝜎)
𝜕𝜇

=
1
𝜎2

𝑛∑︁
𝑖=1
(𝑥𝑖 − 𝜇) , (16.7)

𝜕 ln 𝑔(𝜇,𝜎)
𝜕𝜎

=
1
𝜎3

𝑛∑︁
𝑖=1
(𝑥𝑖 − 𝜇)2 −

𝑛

𝜎
. (16.8)
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Setting 𝜕 ln 𝑔 (𝜇,𝜎)
𝜕𝜇

= 0 in (16.7) and 𝜕 ln 𝑔 (𝜇,𝜎)
𝜕𝜎

= 0 in (16.8) yields

𝜇 =
𝑥1 + 𝑥2 + · · · + 𝑥𝑛

𝑛
and 𝜎 =

√√
1
𝑛

𝑛∑︁
𝑖=1
(𝑥𝑖 − 𝜇)2.

Substituting the expression 𝜇 =
𝑥1+𝑥2+···+𝑥𝑛

𝑛
into the expression for 𝜎, we get

𝜎 =

√√
1
𝑛

𝑛∑︁
𝑖=1

(
𝑥𝑖 −

𝑥1 + 𝑥2 + · · · + 𝑥𝑛
𝑛

)2
.

Hence we have that

𝜇̂(𝑋1 = 𝑥1, . . . , 𝑋𝑛 = 𝑥𝑛) =
𝑥1 + 𝑥2 + · · · + 𝑥𝑛

𝑛

and

𝜎̂(𝑋1 = 𝑥1, . . . , 𝑋𝑛 = 𝑥𝑛) =

√√
1
𝑛

𝑛∑︁
𝑖=1

(
𝑥𝑖 −

𝑥1 + 𝑥2 + · · · + 𝑥𝑛
𝑛

)2
.

Since these hold for all values of 𝑥1, . . . , 𝑥𝑛, we have that:

𝜇̂(𝑋1, . . . , 𝑋𝑛) =
𝑋1 + 𝑋2 + · · · + 𝑋𝑛

𝑛

and

𝜎̂(𝑋1, . . . , 𝑋𝑛) =

√√
1
𝑛

𝑛∑︁
𝑖=1

(
𝑋𝑖 −

𝑋1 + 𝑋2 + · · · + 𝑋𝑛

𝑛

)2
.

16.7 Linear Regression

We now turn to a different kind of estimation optimization problem, which is very
common in data analysis. We are given 𝑛 data points generated through some
experiment. We can think of the 𝑖th data point as a pair of random variables,
(𝑋𝑖 ,𝑌𝑖) with value (𝑋𝑖 = 𝑥𝑖 ,𝑌𝑖 = 𝑦𝑖). We want to find the line that best fits the
specific values: (𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑛, 𝑦𝑛), as shown in Figure 16.3. This is
called linear regression.

As a concrete example, a company might be trying to understand how advertising
is related to revenue. The company has data showing different periods where
advertising was lower or higher, and the corresponding revenue during those
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periods. The company would like to use this data to create a linear approximation
of the relationship between advertising (𝑥 value) and revenue (𝑦 value).

x

y
Best fit

line

Err1

Err2

Figure 16.3 An example of linear regression.

Recall that a line in the 𝑥–𝑦 plane is determined by two parameters 𝑎 and 𝑏,
where

𝑦 = 𝑎𝑥 + 𝑏.

Our goal is to determine the values of 𝑎 and 𝑏 which define a line that best fits
our data, where “best” is defined in Definition 16.10.

Definition 16.10 (Linear regression) Let {(𝑋1,𝑌1), (𝑋2,𝑌2), . . . , (𝑋𝑛,𝑌𝑛)}
be a set of data sample points. Suppose that 𝑎̂ and 𝑏̂ are estimators for the
𝑎 and 𝑏 parameters of a line fitting the sample points. For the purpose of
estimation, 𝑌𝑖 is viewed as the dependent r.v. and 𝑋𝑖 as the independent r.v.
The estimated dependent r.v. is 𝑌𝑖 , where

𝑌𝑖 ≡ 𝑎̂𝑋𝑖 + 𝑏̂.

The point-wise error is defined as the difference between the value of the
estimated dependent r.v. and the true value for the 𝑖th point:

Err𝑖 = 𝑌𝑖 − 𝑌𝑖 .

The sample average squared error (SASE) is then:

SASE
(
𝑌1, . . . ,𝑌𝑛

)
=

1
𝑛

𝑛∑︁
𝑖=1
(Err𝑖)2 =

1
𝑛

𝑛∑︁
𝑖=1

(
𝑌𝑖 − 𝑌𝑖

)2 . (16.9)

The goal of linear regression is to find estimates 𝑎̂ and 𝑏̂ that minimize
SASE

(
𝑌1, . . . ,𝑌𝑛

)
.
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Our plan is to derive estimators

𝑎̂ ((𝑋1,𝑌1), . . . (𝑋𝑛,𝑌𝑛)) and 𝑏̂ ((𝑋1,𝑌1), . . . (𝑋𝑛,𝑌𝑛)) ,
which are functions of the data and which minimize SASE

(
𝑌1, . . . ,𝑌𝑛

)
in (16.9).1

Question: What goes wrong if we try to set up 𝑎̂ and 𝑏̂ as ML estimators?

Answer: Observe that the likelihood function doesn’t make sense here. There is
no probability:

P {(𝑋1 = 𝑥1,𝑌1 = 𝑦1), . . . , (𝑋𝑛 = 𝑥𝑛,𝑌𝑛 = 𝑦𝑛) | 𝑎, 𝑏}

because once the 𝑋𝑖’s are specified and 𝑎 and 𝑏 are specified, then the 𝑌𝑖’s are
immediately specified.

The point is that we are not trying to maximize a likelihood function, but rather
we’re finding the 𝑎̂ and 𝑏̂ estimators that minimize the SASE. Other than that
change in objective, however, the optimization setup is very similar to what we
do under MLE, which is why we’ve included the topic in this chapter.

Question: How do we set up the optimization problem, replacing the likelihood
function by the SASE?

Answer: For a given set of specific points, (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛), and a given
choice of 𝑎 and 𝑏, we define

𝑔(𝑎, 𝑏) = SASE =
1
𝑛

𝑛∑︁
𝑖=1
(𝑦𝑖 − (𝑎𝑥𝑖 + 𝑏))2 .

Then,

(
𝑎̂ ((𝑋1 = 𝑥1,𝑌1 = 𝑦1) , . . . , (𝑋𝑛 = 𝑥𝑛,𝑌𝑛 = 𝑦𝑛))
𝑏̂ ((𝑋1 = 𝑥1,𝑌1 = 𝑦1) , . . . , (𝑋𝑛 = 𝑥𝑛,𝑌𝑛 = 𝑦𝑛))

)
= argmin

𝑎,𝑏
𝑔(𝑎, 𝑏)

= argmin
𝑎,𝑏

(
1
𝑛

𝑛∑︁
𝑖=1
(𝑦𝑖 − (𝑎𝑥𝑖 + 𝑏))2

)
= argmin

𝑎,𝑏

(
𝑛∑︁
𝑖=1
(𝑦𝑖 − (𝑎𝑥𝑖 + 𝑏))2

)
. (16.10)

Question: How do we find the minimizing (𝑎, 𝑏)?
1 The SASE is reminiscent of the MSE that we define in Chapters 15 and 17, and in fact many

books write MSE here. The main difference is that SASE is a sample average of squares, while
MSE is an expectation of squares.
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Answer: To find the pair (𝑎, 𝑏) that minimizes 𝑔(𝑎, 𝑏), we set both of the partial
derivatives below to 0:

𝜕𝑔(𝑎, 𝑏)
𝜕𝑎

= 0 and
𝜕𝑔(𝑎, 𝑏)
𝜕𝑏

= 0.

We start with finding the minimizing 𝑏. By (16.10),

0 =

𝑛∑︁
𝑖=1

𝜕

𝜕𝑏
(𝑦𝑖 − (𝑎𝑥𝑖 + 𝑏))2

= −2
𝑛∑︁
𝑖=1
(𝑦𝑖 − (𝑎𝑥𝑖 + 𝑏))

=

𝑛∑︁
𝑖=1
(𝑦𝑖 − (𝑎𝑥𝑖 + 𝑏)) (divide both sides by −2)

=

𝑛∑︁
𝑖=1

𝑦𝑖 − 𝑎
𝑛∑︁
𝑖=1

𝑥𝑖 − 𝑛𝑏.

Solving for 𝑏, we get:

𝑏 =

∑𝑛
𝑖=1 𝑦𝑖

𝑛
− 𝑎

∑𝑛
𝑖=1 𝑥𝑖

𝑛

= 𝑦 − 𝑎𝑥, (16.11)

where we define

𝑥 =
𝑥1 + 𝑥2 + · · · + 𝑥𝑛

𝑛
and 𝑦 =

𝑦1 + 𝑦2 + · · · + 𝑦𝑛
𝑛

.

We next find the minimizing 𝑎. By (16.10),

0 =

𝑛∑︁
𝑖=1

𝜕

𝜕𝑎
(𝑦𝑖 − (𝑎𝑥𝑖 + 𝑏))2

= −2
𝑛∑︁
𝑖=1
(𝑦𝑖 − (𝑎𝑥𝑖 + 𝑏)) · 𝑥𝑖

=

𝑛∑︁
𝑖=1

𝑦𝑖𝑥𝑖 − 𝑏
𝑛∑︁
𝑖=1

𝑥𝑖 − 𝑎
𝑛∑︁
𝑖=1

𝑥2
𝑖 . (divide both sides by −2)



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

16.7 Linear Regression 281

To solve for 𝑎, it helps to first substitute in our optimizing 𝑏 from (16.11):

0 =

𝑛∑︁
𝑖=1

𝑦𝑖𝑥𝑖 − (𝑦 − 𝑎𝑥)
𝑛∑︁
𝑖=1

𝑥𝑖 − 𝑎
𝑛∑︁
𝑖=1

𝑥2
𝑖

0 =

𝑛∑︁
𝑖=1

𝑥𝑖 (𝑦𝑖 − 𝑦) +
𝑛∑︁
𝑖=1

𝑥𝑖𝑎𝑥 − 𝑎
𝑛∑︁
𝑖=1

𝑥2
𝑖

𝑛∑︁
𝑖=1

𝑥𝑖 (𝑦𝑖 − 𝑦) = 𝑎
(

𝑛∑︁
𝑖=1

𝑥2
𝑖 −

𝑛∑︁
𝑖=1

𝑥𝑖𝑥

)
.

Hence,

𝑎 =

∑𝑛
𝑖=1 𝑥𝑖 (𝑦𝑖 − 𝑦)∑𝑛
𝑖=1 𝑥𝑖 (𝑥𝑖 − 𝑥)

=

∑𝑛
𝑖=1 𝑥𝑖 (𝑦𝑖 − 𝑦) −

∑𝑛
𝑖=1 𝑥 (𝑦𝑖 − 𝑦)∑𝑛

𝑖=1 𝑥𝑖 (𝑥𝑖 − 𝑥) −
∑𝑛

𝑖=1 𝑥 (𝑥𝑖 − 𝑥)
since

𝑛∑︁
𝑖=1
(𝑦𝑖 − 𝑦) = 0 =

𝑛∑︁
𝑖=1
(𝑥𝑖 − 𝑥)

=

∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)∑𝑛

𝑖=1 (𝑥𝑖 − 𝑥)
2 . (16.12)

Hence, from (16.11) and (16.12), and substituting in 𝑎̂ for 𝑎 in (16.11), we have
that

𝑏̂ ((𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)) = 𝑦 − 𝑎̂𝑥

𝑎̂ ((𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛)) =
∑𝑛

𝑖=1 (𝑥𝑖 − 𝑥) (𝑦𝑖 − 𝑦)∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥)

2 .

As these estimators are defined for all values of (𝑥1, 𝑦1), . . . , (𝑥𝑛, 𝑦𝑛), it follows
that

𝑏̂ ((𝑋1,𝑌1), . . . , (𝑋𝑛,𝑌𝑛)) = 𝑌 − 𝑎̂𝑋 (16.13)

𝑎̂ ((𝑋1,𝑌1), . . . , (𝑋𝑛,𝑌𝑛)) =

∑𝑛
𝑖=1

(
𝑋𝑖 − 𝑋

) (
𝑌𝑖 − 𝑌

)
∑𝑛

𝑖=1

(
𝑋𝑖 − 𝑋

)2 . (16.14)

Using 𝑎̂ and 𝑏̂ from (16.13) and (16.14) guarantees our linear fit has minimal
SASE.

Question: There’s a natural interpretation for 𝑏̂ in (16.13). What is it?

Answer: We can rearrange (16.13) to say

𝑌 = 𝑎̂𝑋 + 𝑏̂,
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which makes perfect sense since we want𝑌𝑖 = 𝑎𝑋𝑖 + 𝑏, and𝑌 is the sample mean
of the 𝑌𝑖’s and 𝑋 is the sample mean of the 𝑋𝑖’s.

Question: There’s also a natural interpretation for 𝑎̂ in (16.14) if we multiply
the numerator and denominator by 1

𝑛−1 . What is it?

Answer:

𝑎̂ ((𝑋1,𝑌1), . . . , (𝑋𝑛,𝑌𝑛)) =
1

𝑛−1
∑𝑛

𝑖=1

(
𝑋𝑖 − 𝑋

) (
𝑌𝑖 − 𝑌

)
1

𝑛−1
∑𝑛

𝑖=1

(
𝑋𝑖 − 𝑋

)2 =
Cov(𝑋 ,𝑌 )

Var(𝑋) . (16.15)

Specifically, the denominator of (16.15) is the (unbiased) sample variance of the
𝑋𝑖’s, from Definition 15.8, and the numerator is the (unbiased) sample covariance
between the 𝑋𝑖’s and 𝑌𝑖’s.

Question: What can we say about the sign of 𝑎̂ based on (16.15)?

Answer: When the covariance is positive, 𝑎̂ will also be positive, meaning that
the slope of the line is positive. This makes sense because it says that 𝑋 and
𝑌 are positively correlated, meaning that when 𝑋 goes up, 𝑌 goes up as well.
Likewise, when the covariance is negative, the slope of the line is negative.

When doing regression, the goodness of fit of the line is denoted by a quantity
called 𝑅2, where higher 𝑅2 is better.

Definition 16.11 (R2 goodness of fit) Consider the set of data sample points
{(𝑋1 = 𝑥1,𝑌1 = 𝑦1), . . . , (𝑋𝑛 = 𝑥𝑛,𝑌𝑛 = 𝑦𝑛)} with estimated linear fit:

𝑦 = 𝑎̂𝑥 + 𝑏̂. (16.16)

Define
𝑦𝑖 ≡ 𝑎̂𝑥𝑖 + 𝑏̂

to be the estimated dependent value for the 𝑖th point. Let

𝑥 =
𝑥1 + 𝑥2 + · · · + 𝑥𝑛

𝑛
and 𝑦 =

𝑦1 + 𝑦2 + · · · + 𝑦𝑛
𝑛

.

Then we define the goodness of fit of the line (16.16) by

𝑅2 = 1 −
∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦𝑖)
2∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦)
2 , where 0 ≤ 𝑅2 ≤ 1.

The 𝑅2 metric is also called the coefficient of determination.

Question: How can we interpret 𝑅2?
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Answer: The subtracted term∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖)

2∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦)

2 =

1
𝑛

∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖)

2

1
𝑛

∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦)

2 =
sample avg. squared error

sample variance
(16.17)

can be viewed as the sample average squared error in the estimators normalized
by the sample variance of the data set. This term is thus sometimes referred to
as “the fraction of unexplained variance.” The hope is that (16.17) is a small
fraction, which means that 𝑅2 is close to 1.

Question: Why is (16.17) always less than 1?

Answer: Recall that 𝑦𝑖 = 𝑎̂𝑥𝑖 + 𝑏̂ is by definition the estimator that minimizes
the SASE. Hence the error in the numerator of (16.17) is by definition lower than
that in the denominator.

16.8 Exercises

16.1 Estimating the bias of a coin
A coin comes up heads with probability 𝑝 and tails with probability 1− 𝑝.
We do not know 𝑝. We flip the coin 100 times and observe 𝑋 heads. Derive
𝑝ML(𝑋), the ML estimator for 𝑝.

16.2 Battery lifetimes
We have a bunch of batteries whose lifetimes are i.i.d. ∼ Exp(𝜆). Our goal
is to determine 𝜆. To do this, we sample the lifetimes of 10 batteries, whose
lifetimes we represent by 𝑋1, 𝑋2, . . . , 𝑋10. Derive 𝜆̂ML(𝑋1, 𝑋2, . . . , 𝑋10), the
ML estimator for 𝜆.

16.3 How many balls are blue?
Suppose that you have a bin with four balls. Each ball is either yellow or
blue (you don’t know which). Your goal is to estimate the number of blue
balls in the bin, which we’ll refer to as 𝜃.
To obtain your estimate, you sample three balls with replacement from the
bin and note their colors. We let 𝑋𝑖 denote the color of the 𝑖th ball, where we
say that 𝑋𝑖 = 1 if the ball is blue and 𝑋𝑖 = 0 otherwise. Let 𝜃ML(𝑋1, 𝑋2, 𝑋3)
denote the ML estimator for 𝜃.
Suppose we observed the specific sequence of colors: 1, 1, 0. What is
𝜃ML(𝑋1 = 1, 𝑋2 = 1, 𝑋3 = 0)?

16.4 Job CPU requirements follow a Pareto distribution
After reading Chapter 10, you are well aware that job CPU requirements
follow a Pareto(𝛼) distribution. But for which value of 𝛼? To answer this
question, we sample the CPU requirements of 10 jobs picked independently
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at random. Let 𝑋1, 𝑋2, . . . , 𝑋10 represent the CPU requirements of these
jobs. Derive 𝛼̂ML(𝑋1, 𝑋2, . . . , 𝑋10), the ML estimator for 𝛼.

16.5 Estimating the max of a distribution
In Example 16.8, we saw that the time that students spend on their probabil-
ity homework is distributed as ∼ Uniform(0, 𝑏). To estimate the maximum
of this distribution, 𝑏, we surveyed three students independently at ran-
dom, whose times we represented by 𝑋1, 𝑋2, 𝑋3. We then derived the ML
estimator 𝑏̂ML(𝑋1, 𝑋2, 𝑋3) for 𝑏, showing that

𝑏̂ML(𝑋1, 𝑋2, 𝑋3) = max{𝑋1, 𝑋2, 𝑋3}.

(a) Is 𝑏̂ML(𝑋1, 𝑋2, 𝑋3) an unbiased estimator of 𝑏?
(b) To make the estimator more accurate, we decide to generate more data

samples. Suppose we sample 𝑛 students. What is the ML estimator
𝑏̂ML(𝑋1, 𝑋2, . . . , 𝑋𝑛)? Is it biased when 𝑛 is large?

(c) Can you think of an estimator 𝑏̂(𝑋1, . . . , 𝑋𝑛) that is not the ML estima-
tor, but is an unbiased estimator for all 𝑛? [Hint: You’re going to want
to scale up 𝑏̂ML(𝑋1, . . . , 𝑋𝑛).]

16.6 Estimating the winning probability
Team A has probability 𝑝 of beating team B. We do not know 𝑝, but we
can see that in the last 10 games played between A and B, team A won
seven games and team B won three games. Assume that every game has a
unique winner and that games are independent. Based on this information,
formulate and compute the ML estimator for 𝑝.

16.7 Disk failure probability estimation
Suppose that every disk has probability 𝑝 of failing each year. Assume that
disks fail independently of each other. We sample 𝑛 disks. Let 𝑋𝑖 denote
the number of years until disk 𝑖 fails. Our goal is to estimate 𝑝. Derive
𝑝ML(𝑋1, 𝑋2, . . . , 𝑋𝑛), the ML estimator for 𝑝.

16.8 Practice with linear regression
You are given five points: (0, 5), (1, 3), (2, 1.5), (3.5, 0), (5,−3). Determine
the best linear fit to these points and compute the 𝑅2 goodness of fit for
your estimate.
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