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Part V

Statistical Inference

The focus until now in the book has been on probability. We can think of
probability as defined by a probabilistic model, or distribution, which governs
an “experiment,” through which one generates samples, or events, from this
distribution. One might ask questions about the probability of a certain event
occurring, under the known probabilistic model.

We now turn our attention to statistics. In statistics, we go the other direction. We
are given some data, and our goal is to infer the underlying probabilistic model
that generated this data.

PROBABILITY

STATISTICS

Probabilistic 

Model
Data

generate

infer

The figure above illustrates the difference in direction. While statistics and prob-
ability may sound different, they are actually closely linked. In particular, when a
statistician is trying to “infer” (estimate) the underlying probabilistic model that
generated some data, they might start by computing the probability that certain
candidate models produced that data.

Because the data that we see is limited, either in quantity (there may only be
a few samples) or in accuracy (the data may be somewhat noisy or corrupted),
there is often some subjectivity involved in determining the best estimator for
the underlying probabilistic model. In this sense, statistics is sometimes viewed
as more of an art, where statisticians might argue with each other over which
estimator is more “correct.” We will see several examples of this in our study of
statistical inference.
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We start in Chapter 15 by discussing the most commonly used estimators, namely
those for mean and variance. In Chapter 16 we move on to parameter estimation
following the classical inference approach of maximum likelihood estimation.
In Chapter 17 we continue looking at parameter estimation, but this time via the
Bayesian inference approach, where we discuss maximum a posteriori estimators
and minimum mean square error estimators. Along the way, we also touch on a
few related topics like linear regression (see Section 16.7).

Although this is the main statistics part of the book, statistical topics come up
throughout the book. In particular, the important topic of confidence intervals
on estimators is deferred to Chapter 19, since it is better treated after a more
in-depth discussion of tail probabilities.
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15 Estimators for Mean and
Variance

The general setting in statistics is that we observe some data and then try to infer
some property of the underlying distribution behind this data. The underlying
distribution behind the data is unknown and represented by random variable (r.v.)
𝑋 . This chapter will briefly introduce the general concept of estimators, focusing
on estimators for the mean and variance.

15.1 Point Estimation

Point estimation is an estimation method which outputs a single value. As an
example of a point estimation, suppose we are trying to estimate the number of
books that the average person reads each year. We sample 𝑛 people at random
from the pool of all people and ask them how many books they read annually.
Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 represent the responses of the 𝑛 people. We can assume that
the pool of people is sufficiently large that it’s reasonable to think of the 𝑋𝑖’s as
being independent and identically distributed (i.i.d.), where 𝑋𝑖 ∼ 𝑋 for all 𝑖. We
would like to estimate 𝜃 = E [𝑋]. A reasonable point estimator for 𝜃 is simply
the average of the 𝑋𝑖’s sampled.

Definition 15.1 We write

𝜃 (𝑋1, 𝑋2, . . . , 𝑋𝑛)

to indicate an estimator of the unknown value 𝜃. Here 𝑋1, . . . , 𝑋𝑛 represent
the sampled data and our estimator is a function of this data. Importantly,
𝜃 (𝑋1, 𝑋2, . . . , 𝑋𝑛) is a random variable, since it is a function of random
variables. We sometimes write 𝜃 for short when the sample data is understood.
We write

𝜃 (𝑋1 = 𝑘1, 𝑋2 = 𝑘2, . . . , 𝑋𝑛 = 𝑘𝑛)

to indicate the constant which represents our estimation of 𝜃 based on a specific
instantiation of the data where 𝑋1 = 𝑘1, 𝑋2 = 𝑘2, . . . , 𝑋𝑛 = 𝑘𝑛.



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

256 15 Estimators for Mean and Variance

15.2 Sample Mean

While 𝜃 is the notation most commonly used for an estimator of 𝜃, there are
certain estimators, like the “sample mean,” that come up so frequently that they
have their own name.

Definition 15.2 (Mean estimator) Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be i.i.d. samples of r.v.
𝑋 with unknown mean. The sample mean is a point estimator of 𝜃 = E [𝑋]. It
is denoted by 𝑋 or by 𝑀𝑛, and defined by:

𝜃 (𝑋1, 𝑋2, . . . , 𝑋𝑛) = 𝑀𝑛 = 𝑋 ≡ 𝑋1 + 𝑋2 + · · · + 𝑋𝑛

𝑛
. (15.1)

The notation 𝑀𝑛 is attractive because it specifies the number of samples, while
the notation 𝑋 is attractive because it specifies the underlying distribution
whose mean we are estimating.

15.3 Desirable Properties of a Point Estimator

For any unknown parameter 𝜃 that we wish to estimate, there are often many
possible estimators.

As a running example, throughout this section, let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be i.i.d. random
samples from a distribution represented by r.v. 𝑋 , with finite mean E [𝑋] and
finite variance 𝜎2.

In estimating 𝜃 = E [𝑋], consider two possible estimators:

𝜃𝐴 = 𝑋 =
𝑋1 + 𝑋2 + · · · + 𝑋𝑛

𝑛

𝜃𝐵 = 𝑋2.

What makes one estimator better than another? In this section we define some
desirable properties of a point estimator.

Definition 15.3 Let 𝜃 (𝑋1, 𝑋2, . . . 𝑋𝑛) be a point estimator for 𝜃. Then we define
the bias of 𝜃 by

B
(
𝜃
)
= E

[
𝜃
]
− 𝜃.

If B
(
𝜃
)
= 0, we say that 𝜃 is an unbiased estimator of 𝜃.

Clearly we would like our estimator to have zero bias.
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Question: How do 𝜃𝐴 and 𝜃𝐵 compare with respect to bias?

Answer: They are both unbiased estimators.

Question: Nevertheless, why do you favor 𝜃𝐴 over 𝜃𝐵?

Answer: 𝜃𝐴 feels less variable. This brings us to the second desirable property
of an estimator, which is low mean squared error.

Definition 15.4 The mean squared error (MSE) of an estimator
𝜃 (𝑋1, 𝑋2, . . . , 𝑋𝑛) is defined as:

MSE
(
𝜃
)
= E

[ (
𝜃 − 𝜃

)2
]

.

Lemma 15.5 If 𝜃 (𝑋1, 𝑋2, . . . , 𝑋𝑛) is an unbiased estimator, then

MSE
(
𝜃
)
= Var

(
𝜃
)
.

Proof:
MSE

(
𝜃
)
= E

[ (
𝜃 − 𝜃

)2
]
= E

[ (
𝜃 − E

[
𝜃
] )2

]
= Var

(
𝜃
)
. ■

Question: How do 𝜃𝐴 and 𝜃𝐵 compare with respect to their MSE?

Answer: Using Lemma 15.5,

MSE
(
𝜃𝐴

)
= Var

(
𝜃𝐴

)
=

1
𝑛2 · 𝑛Var(𝑋) = Var(𝑋)

𝑛
.

By contrast,
MSE

(
𝜃𝐵

)
= Var

(
𝜃𝐵

)
= Var(𝑋2) = Var(𝑋).

Thus 𝜃𝐴 has much lower MSE.

Finally, it is desirable that our estimator has the property that it becomes more
accurate (closer to 𝜃) as the sample size increases. We refer to this property as
consistency.

Definition 15.6 Let 𝜃1(𝑋1), 𝜃2(𝑋1, 𝑋2), 𝜃3(𝑋1, 𝑋2, 𝑋3), . . . be a sequence of
point estimators of 𝜃, where 𝜃𝑛 (𝑋1, 𝑋2, . . . , 𝑋𝑛) is a function of 𝑛 i.i.d. samples.
We say that r.v. 𝜃𝑛 is a consistent estimator of 𝜃 if, ∀𝜖 > 0,

lim
𝑛→∞

P
{��𝜃𝑛 − 𝜃�� ≥ 𝜖} = 0.
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Lemma 15.7 Let 𝜃1(𝑋1), 𝜃2(𝑋1, 𝑋2), 𝜃3(𝑋1, 𝑋2, 𝑋3), . . . be a sequence of
point estimators of 𝜃, where 𝜃𝑛 (𝑋1, 𝑋2, . . . , 𝑋𝑛) is a function of 𝑛 i.i.d. samples.
Assume that all the estimators have finite mean and variance. If

lim
𝑛→∞

MSE
(
𝜃𝑛

)
= 0,

then 𝜃𝑛 is a consistent estimator.

Proof: For any constant 𝜖 > 0,

P
{��𝜃𝑛 − 𝜃�� ≥ 𝜖} = P

{��𝜃𝑛 − 𝜃��2 ≥ 𝜖2
}

≤
E

[��𝜃𝑛 − 𝜃��2]
𝜖2 by Markov’s inequality (Theorem 5.16)

=

E
[ (
𝜃𝑛 − 𝜃

)2
]

𝜖2

=
MSE

(
𝜃𝑛

)
𝜖2 .

Taking limits of both sides as 𝑛→∞, we have:

lim
𝑛→∞

P
{��𝜃𝑛 − 𝜃�� ≥ 𝜖} = lim

𝑛→∞

MSE
(
𝜃𝑛

)
𝜖2 = 0. ■

Question: In the proof of Lemma 15.7, why didn’t we apply Chebyshev’s in-
equality (Theorem 5.17)?

Answer: We don’t know that 𝜃 = E
[
𝜃𝑛

]
, so we can’t say that MSE

(
𝜃𝑛

)
=

Var
(
𝜃𝑛

)
.

Question: Is 𝜃𝐴 = 𝑋 = 𝑀𝑛 a consistent estimator of E [𝑋]?

Answer: Yes. By Lemma 15.7, it suffices to show that

lim
𝑛→∞

MSE(𝑀𝑛) = 0.

Given that we know that 𝑀𝑛 is an unbiased estimator of E [𝑋], Lemma 15.5 tells
us that it suffices to show that

lim
𝑛→∞

Var(𝑀𝑛) = 0.

But this latter fact is obviously true because Var(𝑋) is finite and thus

Var(𝑀𝑛) =
Var(𝑋)
𝑛

→ 0 as 𝑛→∞.

Hence, 𝑀𝑛 is a consistent estimator.
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15.4 An Estimator for Variance

Again let 𝑋1, 𝑋2, . . . , 𝑋𝑛 denote 𝑛 i.i.d. samples of an unknown distribution
denoted by r.v. 𝑋 , where 𝑋𝑖 ∼ 𝑋 , and where E [𝑋] = 𝜇 and Var(𝑋) = 𝜎2

𝑋

are finite. We have seen that 𝑋 =
𝑋1+𝑋2+···+𝑋𝑛

𝑛
is a good estimator for E [𝑋],

satisfying all three desirable properties. We now turn to the question of a good
estimator for Var(𝑋).

There are two distinct cases to consider:

1. The case where we already know the mean and want to estimate 𝜃 = Var(𝑋).
2. The case where we do not know the mean and want to estimate 𝜃 = Var(𝑋).

It turns out that the best estimator is different for these two cases.

15.4.1 Estimating the Variance when the Mean is Known

Starting with the first case, suppose that 𝜇 is known. We can then define an
estimator which computes the squared distance of each sample from 𝜇 and takes
the average of these squared distances:

𝜃 (𝑋1, 𝑋2, . . . , 𝑋𝑛) = 𝑆2 ≡ 1
𝑛

𝑛∑︁
𝑖=1
(𝑋𝑖 − 𝜇)2 . (15.2)

Question: Is 𝑆2 as defined in (15.2) an unbiased estimator for 𝜃 = Var(𝑋)?

Answer: Yes!

E
[
𝑆2

]
=

1
𝑛

𝑛∑︁
𝑖=1

E
[
(𝑋𝑖 − 𝜇)2

]
=

1
𝑛

𝑛∑︁
𝑖=1

Var(𝑋𝑖) = Var(𝑋).

15.4.2 Estimating the Variance when the Mean is Unknown

Now consider the second case, where 𝜇 is not known. This case is way more
common but also trickier.

Question: Given that we don’t know 𝜇 = E [𝑋], how can we replace 𝜇 in our
definition of the estimator?
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Answer: We can replace 𝜇 by 𝑋 =
𝑋1+𝑋2+···+𝑋𝑛

𝑛
, which we already saw was a

good estimator for E [𝑋].

This leads us to an updated definition of our estimator, which now computes the
squared distance of each sample from 𝑋 and takes the average of these squared
distances:

𝜃 (𝑋1, 𝑋2, . . . , 𝑋𝑛) = 𝑆2 ≡ 1
𝑛

𝑛∑︁
𝑖=1

(
𝑋𝑖 − 𝑋

)2
(15.3)

Question: Is 𝑆2 as defined in (15.3) an unbiased estimator for 𝜃 = Var(𝑋)?

Answer: Unfortunately, and surprisingly, the answer is no. In Exercise 15.4, you
will prove that

E
[
𝑆2

]
=
𝑛 − 1
𝑛
· Var(𝑋). (15.4)

Question: Given (15.4), what is an unbiased estimator for 𝜃 = Var(𝑋) in the
case where we don’t know E [𝑋]?

Answer: We need to multiply 𝑆2 by 𝑛
𝑛−1 . The sample variance, defined next,

does this.

Definition 15.8 (Variance Estimator) Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be i.i.d. samples of
r.v. 𝑋 with unknown mean and variance. The sample variance is a point
estimator of 𝜃 = Var(𝑋). It is denoted by 𝑆2 and defined by:

𝜃 (𝑋1, 𝑋2, . . . , 𝑋𝑛) = 𝑆2 ≡ 1
𝑛 − 1

𝑛∑︁
𝑖=1

(
𝑋𝑖 − 𝑋

)2
(15.5)

Lemma 15.9 The sample variance, 𝑆2, from Definition 15.8 is an unbiased
estimator of Var(𝑋).

Proof:

E
[
𝑆2] (15.3)

=
𝑛

𝑛 − 1
E

[
𝑆2

]
(15.4)
=

𝑛

𝑛 − 1
· 𝑛 − 1

𝑛
· Var(𝑋) = Var(𝑋) ■

Question: The difference between the estimators 𝑆2 in (15.3) and 𝑆2 in (15.5) is
very slight. Does it really matter which we use?

Answer: Assuming that the number of samples, 𝑛, is large, in practice it shouldn’t
matter which of these two estimators we use.
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15.5 Estimators Based on the Sample Mean

Simple estimators, like the sample mean, can sometimes be useful in estimating
other, more complex quantities. We provide one example here and another in
Exercise 15.6.

Example 15.10 (Estimating the number of tanks)

In World War II, the Allies were trying to estimate the number of German tanks.
Each tank was assigned a serial number when it was created. When the Allies
captured a tank, they would record its serial number.

Question: If the Allies captured the tanks with serial numbers shown in Fig-
ure 15.1, what is a good estimate for the total number of German tanks?

104 39 115 83

Figure 15.1 Captured tanks with serial numbers shown.

We are trying to estimate a maximum, call it 𝜃, based on seeing 𝑛 samples,
𝑋1, 𝑋2, . . . , 𝑋𝑛, each of which are randomly picked without replacement from
the integers 1, 2, . . . , 𝜃. Our goal is to determine 𝜃 (𝑋1, 𝑋2, . . . , 𝑋𝑛).

Question: Are the 𝑛 samples independent?

Answer: No. Once serial number 𝑘 is seen, it will never be seen again.

There are many ways to estimate the max, 𝜃. We will use the sample mean to
estimate 𝜃, by expressing the expectation of the sample mean as a function of 𝜃.

𝑋 =
1
𝑛
(𝑋1 + 𝑋2 + · · · + 𝑋𝑛)

E
[
𝑋

]
=

1
𝑛
(E [𝑋1] + E [𝑋2] + · · · + E [𝑋𝑛]) .

Although the 𝑋𝑖’s are not independent, they all have the same marginal distribu-
tion:

P {𝑋𝑖 = 𝑘} =
1
𝜃

, where 1 ≤ 𝑘 ≤ 𝜃.

Hence,

E [𝑋𝑖] =
1
𝜃
· 1 + 1

𝜃
· 2 + · · · + 1

𝜃
· 𝜃 = 𝜃 + 1

2
.
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But this implies

E
[
𝑋

]
=
𝜃 + 1

2
. (15.6)

Equivalently, we can write

𝜃 = 2E
[
𝑋

]
− 1.

Hence, a reasonable estimator for 𝜃 could be

𝜃 (𝑋1, 𝑋2, . . . , 𝑋𝑛) ≡ 2𝑋 − 1. (15.7)

Question: Is 𝜃 from (15.7) an unbiased estimator?

Answer: Yes, by (15.6), we see that E
[
𝜃
]
= 2E

[
𝑋

]
− 1 = 𝜃.

Question: Is 𝜃 from (15.7) a good estimator of 𝜃?

Answer: Not necessarily. If the number of samples, 𝑛, is small, we could end
up in the perverse situation where there is one very high sample, while most of
the samples are far below the mean. In this case, our sample mean, 𝑋 , would be
particularly low, so 𝜃 = 2𝑋 −1 might actually be smaller than the largest sample.

Now suppose we want to determine MSE
(
𝜃
)
. Since 𝜃 is an unbiased estimator,

by Lemma 15.5, MSE
(
𝜃
)
= Var

(
𝜃
)
. Thus,

MSE
(
𝜃
)
= Var

(
𝜃
)
= Var

(
2𝑋 − 1

)
=

4
𝑛2 Var(𝑋1 + 𝑋2 + · · · + 𝑋𝑛)

=
4
𝑛2 ·

©­«
𝑛∑︁
𝑖=1

Var(𝑋𝑖) + 2
∑︁

1≤𝑖< 𝑗≤𝑛
Cov

(
𝑋𝑖 , 𝑋 𝑗

)ª®¬ (by (5.11))

=
4
𝑛
· (Var(𝑋1) + (𝑛 − 1)Cov(𝑋1, 𝑋2)) ,

where the last line follows from the fact that all the 𝑋𝑖’s have the same distribution,
and all the pairs (𝑋𝑖 , 𝑋 𝑗) have the same distribution.

From (5.13) and (5.14), we know that:

Var(𝑋1) =
(𝜃 − 1) (𝜃 + 1)

12
and Cov(𝑋1, 𝑋2) = −

𝜃 + 1
12

.

Hence,

MSE
(
𝜃
)
=

4
𝑛
·
(
(𝜃 − 1) (𝜃 + 1)

12
− (𝑛 − 1) · 𝜃 + 1

12

)
=

1
3𝑛
(𝜃 + 1) (𝜃 − 𝑛).
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So we see that the MSE of our estimate increases with the square of the highest
value, 𝜃, and decreases linearly with the number of samples, 𝑛.

15.6 Exercises

15.1 Practice computing sample mean and sample variance
The following 10 job sizes are measured: 5, 2, 6, 9, 1.5, 2.3, 7, 15, 8, 8.3.
What is the sample mean, 𝑋? What is the sample variance, 𝑆2?

15.2 Accuracy of sample mean and sample variance
Generate 30 instances of each of the following distributions – recall (13.2):

(i) 𝑋 ∼ Exp(1)
(ii) 𝑋 ∼ Exp(.01)

(iii)

𝑋 ∼
{

Exp (1) w/prob 0.99
Exp(.01) w/prob 0.01 .

For each distribution, answer the following questions:
(a) What is the sample mean? Compare this with the true mean, E [𝑋].
(b) What is the sample variance? Compare this with Var(𝑋).
(c) For which distribution was the sample mean most (least) accurate?

How about the sample variance? Provide some thoughts on why.
Now repeat the problem, generating 100 instances of each distribution.

15.3 Variance–bias decomposition
Given an estimator 𝜃 (𝑋1, . . . , 𝑋𝑛), prove that

MSE
(
𝜃
)
= Var

(
𝜃
)
+ (B

(
𝜃
)
)2, (15.8)

where B
(
𝜃
)
≡ E

[
𝜃
]
− 𝜃 is the bias of 𝜃.

15.4 Estimating variance is tricky
Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be i.i.d. samples of r.v. 𝑋 with unknown finite mean and
variance. Let 𝑋 denote the sample mean. Define

𝑆2 ≡ 1
𝑛

𝑛∑︁
𝑖=1

(
𝑋𝑖 − 𝑋

)2
.

Prove that 𝑆2 is not an unbiased estimator of Var(𝑋). Follow these steps:
(a) Prove that E

[
𝑆2

]
= 1

𝑛

∑𝑛
𝑖=1 Var

(
𝑋𝑖 − 𝑋

)
.

(b) Show that Var
(
𝑋𝑖 − 𝑋

)
= 𝑛−1

𝑛
Var(𝑋).

(c) Combine (a) and (b) to show that E
[
𝑆2

]
= 𝑛−1

𝑛
Var(𝑋).
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15.5 Sample standard deviation
Let 𝑋1, 𝑋2, . . . , 𝑋𝑛 be i.i.d. samples of r.v. 𝑋 with unknown finite mean and
variance. Define the sample standard deviation, 𝑆, as

𝑆 =
√︁
𝑆2,

where 𝑆2 is the sample variance, given by (15.5). Is 𝑆 an unbiased estimator
of std(𝑋)? Prove your answer. [Hint 1: 𝑆 is not a constant, so Var(𝑆) > 0.]
[Hint 2: Use the fact that E

[
𝑆2] = Var(𝑋).]

15.6 Arrivals at a web server: two estimators
The arrival process of requests to a web server is well-modeled by a Poisson
process with some average rate 𝜆 requests/minute. We’re interested in

𝑝0 = Fraction of minutes during which there are 0 requests.

If we know 𝜆, then we know from Chapter 12 that 𝑝0 = 𝑒−𝜆. But how can
we estimate 𝑝0 if we don’t know 𝜆? Let’s suppose that we have sampled 𝑛
minutes and let 𝑋1, 𝑋2, . . . , 𝑋𝑛 denote the number of arrivals during each
of the 𝑛 minutes.
(a) One idea is to first define an estimator for 𝜆, namely

𝜆̂(𝑋1, . . . , 𝑋𝑛) = 𝑋 =
1
𝑛
(𝑋1 + 𝑋2 + · · · + 𝑋𝑛),

and then define our estimator for 𝑝0 to be

𝑝0(𝑋1, . . . , 𝑋𝑛) = 𝑒−𝜆̂ = 𝑒−𝑋.

Prove that 𝑝0 is a biased estimator of 𝑝0. Follow these steps:
(i) What does Jensen’s inequality (Theorem 5.23) tell us about E [𝑝0]

as compared to 𝑝0?
(ii) Prove that E [𝑝0] = 𝑒−𝑛𝜆(1−𝑒

−1/𝑛 ) . [Hint: Recall 𝑋𝑖 ∼ Poisson(𝜆).
What does this say about the distribution of 𝑋1 + 𝑋2 + · · · + 𝑋𝑛?]

(iii) Show that E [𝑝0] converges to 𝑝0 from above as 𝑛→∞.
(b) An alternative idea is to look at the average fraction of minutes with 0

arrivals and use that as our estimator. That is,

𝑝0
alt(𝑋1, . . . , 𝑋𝑛) =

number of 𝑋𝑖 equal to 0
𝑛

.

Prove that 𝑝0
alt is an unbiased estimator of 𝑝0.
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