
Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

14 Event-Driven Simulation

Having covered how to generate random variables in the previous chapter, we are
now in good shape to move on to the topic of creating an event-driven simulation.
The goal of simulation is to predict the performance of a computer system under
various workloads. A big part of simulation is modeling the computer system as
a queueing network. Queueing networks will be revisited in much more detail in
Chapter 27, where we analytically address questions of performance and stability
(analysis is easier to do after covering Markov chains and hence is deferred until
later).

For now, we only explain as much as we need to about queueing networks to
enable simulation. We will start by discussing how to simulate a single queue.

14.1 Some Queueing Definitions

Figure 14.1 depicts a queue. The circle represents the server (you can think
of this as a CPU). The red rectangles represent jobs. You can see that one of
the jobs is currently being served (it is in the circle) and three other jobs are
queueing, waiting to be served, while three more jobs have yet to arrive to the
system. The red rectangles have different heights. The height of the rectangle
is meant to represent the size of a job, where size indicates the job’s service
requirement (number of seconds needed to process the job). You can see that
some jobs are large, while others are small. Once the job finishes serving (being
processed) at the server, it leaves the system, and the next job starts serving. We
assume that new jobs arrive over time. The time between arrivals is called the
interarrival time. Unless otherwise stated, we assume that jobs are served in
first-come-first-served (FCFS) order.

Question: If the arrival process to a queue is a Poisson process, what can we say
about the interarrival times?

Answer: The interarrival times are independent and identically-distributed (i.i.d.)
∼ Exp(𝜆) where 1

𝜆
represents the mean interarrival time and 𝜆 can be viewed as

the rate of arrivals in jobs/s.



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

14.1 Some Queueing Definitions 241

FCFSFuture arrival times

Figure 14.1 Single queue with arrivals.

We will generally assume a stochastic setting where all quantities are i.i.d.
random variables. We will denote a job’s size by the random variable (r.v.) 𝑆.
For example, if 𝑆 ∼ Uniform(0, 10), then jobs each require independent service
times ranging between 0 and 10 seconds. The interval times between jobs is
denoted by the r.v. 𝐼, where again we assume that these are independent. For
example, if 𝐼 ∼ Exp(𝜆), where 𝜆 = 0.1, then the average time between arrivals
is 10 seconds. When running a simulation based on distributions for interarrival
times and job sizes, we are assuming that these distributions are reasonable
approximations of the observed workloads in the actual computer system being
simulated.

However, it is also possible to assume that job sizes and interarrival times are
taken from a trace. In that case, the simulation is often referred to as a trace-
driven simulation. The trace typically includes information collected about the
system over a long period of time, say a few months or a year.

Question: What are some advantages of using a trace to drive the simulation as
opposed to generating inputs from distributions?

Answer: The trace captures correlations between successive interarrival times
and/or successive job sizes. For example, it might be the case that a small job is
more likely to be followed by another small job, or that arrivals tend to occur in
bursts. This is harder to capture with independent random variables, although one
can certainly try to create more complex probabilistic models of the workload
[33].

We define the response time of job, typically denoted by r.v. 𝑇 , to be the time
from when the job first arrives until it completes service. We can also talk about
the waiting time (a.k.a. delay) of a job, denoted by r.v.𝑇𝑄, which is the time from
when the job first arrives until it first receives service. We define the number of
jobs in system, denoted by r.v. 𝑁 , to be the total number of jobs in the system.
We define the server utilization, denoted by 𝜌, as the long-run fraction of time
that the server is busy.

The goal of a simulation is typically to understand some aspect of the system
performance. As an example, suppose that we are interested in the mean response
time, E [𝑇]. We can think of this as follows. Let 𝑇1 denote the response time of



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

242 14 Event-Driven Simulation

the first job, 𝑇2 the response time of the second job, etc. Then,

E [𝑇] = 1
𝑛

𝑛∑︁
𝑖=1
𝑇𝑖 ,

where it is assumed that 𝑛 is sufficiently large that the mean response time is
not changing very much. Thus, to get the mean response time, we can imagine
having each of the first 𝑛 jobs record its response time, where we then average
over all of these.

14.2 How to Run a Simulation

Imagine that we want to simulate the queue shown in Figure 14.1, where the
interarrival times are i.i.d. instances of r.v. 𝐼 and the job sizes (service require-
ments) are i.i.d. instances of some r.v. 𝑆. Assume that we know how to generate
instances of 𝐼 and 𝑆 using the techniques described in Chapter 13.

Question: Do we run this system in real time?

Answer: No, that would take forever.

The whole point is to be able to process millions of arrivals in just a few hours. To
do this, we use an event-driven simulation. The idea is to maintain the system
state at all times and also maintain a global clock. Then we ask,

“What is the next event that will cause a change in the system state?”

We then increase the time on the global clock by the time until this next event,
and we update the system state to reflect the next event. We also update the times
until the next events. We then repeat this process, stepping through events in
near-zero time.

For example, let’s consider an event-driven simulation of the queue in Figure 14.1.

Question: What is the system state?

Answer: The state is the current number of jobs in the system.

Question: What are events that change the state?

Hint: There are only two such events.

Answer: A new arrival or a job completion.



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

14.2 How to Run a Simulation 243

The interarrival times will need to be generated according to r.v. 𝐼. The job sizes
(service requirements) will need to be generated according to r.v. 𝑆.

Question: Do we generate all the arrival times and all the job sizes for the whole
simulation in advance and store these in a large array?

Answer: No, it’s much simpler to generate these as we need them.

Let’s run through how this works. We are going to maintain four variables:

1. Clock: represents the time;
2. State: represents the current number of jobs in the system;
3. Time-to-next-completion;
4. Time-to-next-arrival.

The simulation starts here: State is 0 jobs. Clock = 0. There’s no job serving,
so Time-to-next-completion = ∞. To determine the time to the next arrival, we
generate an instance of 𝐼, let’s say 𝐼 = 5.3, and set Time-to-next-arrival = 5.3.

We ask which event will happen first. Since min(∞, 5.3) = 5.3, we know the
next event is an arrival.

We now update everything as follows: State is 1 job. Note that this job starts
serving immediately. Clock = 5.3. To determine the time to the next completion,
we generate an instance of 𝑆 representing the service time of the job in service,
say 𝑆 = 10, and set Time-to-next completion = 10. To determine the next arrival
we generate an instance of 𝐼, say 𝐼 = 2, and set Time-to-next-arrival = 2.

We again ask which event will happen first. Since min(10, 2) = 2, we know the
next event is an arrival.

We now update everything as follows: State is 2 jobs. Clock = 5.3 + 2 = 7.3.
Time-to-next-completion = 10 − 2 = 8, because the job that was serving has
completed 2 seconds out of its 10 second requirement. To determine the next
arrival we generate an instance of 𝐼, say 𝐼 = 9.5, and set Time-to-next-arrival
= 9.5.

We again ask which event will happen first. Since min(8, 9.5) = 8, we know the
next event is a completion.

We now update everything as follows: State is 1 job. Clock = 7.3 + 8 = 15.3.
To determine the time to the next completion, we generate an instance of 𝑆, say
𝑆 = 1, and set Time-to-next-completion = 1. Time-to-next-arrival = 9.5−8 = 1.5
because 8 seconds have already passed since the last arrival, decreasing the
previous time from 9.5 down to 1.5.



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

244 14 Event-Driven Simulation

We continue in this manner, with updates to the state happening only at job
arrival times or completions. Note that we only generate new instances of 𝐼 or 𝑆
as needed.

Question: When exactly do we generate a new instance of 𝐼?

Answer: There are two times: The main time we generate a new instance of 𝐼 is
immediately after a new job arrives. However, we also generate a new instance
of 𝐼 at the very start of the simulation when there are 0 jobs.

Question: When exactly do we generate a new instance of 𝑆?

Answer: The main time we generate a new instance of 𝑆 is immediately after a
job completes service. However, there is an exception to this rule, which occurs
when the system moves from State 1 (one job) to State 0 (zero jobs). At that
time, the Time-to-next-completion is set to ∞. Additionally, we generate a new
instance of 𝑆 at the time when the system moves from State 0 to State 1.

Question: What changes if a trace is used to provide interarrival times and/or
job sizes – that is, we run a trace-driven simulation?

Answer: Nothing, really. The same approach is used, except that rather than
generating a new instance of 𝐼 or 𝑆 when we need it, we just read the next value
from the trace.

14.3 How to Get Performance Metrics from Your Simulation

So now you have your simulation running. How do you figure out the mean
response time? We propose two methods, the first of which we already discussed
briefly.

Method 1: Every job records the clock time when it arrives and then records the
clock time when it completes. Taking the difference of these gives us the job’s
response time. We now just need to average the response time over all the jobs.

Question: Should we write each job’s response time into a file and then take the
average at the end of our simulation?

Answer: No, the writing wastes time in our simulation. You should be able to
maintain a running average. Let 𝑇𝑛 denote the average over the first 𝑛 jobs:

𝑇𝑛 =
1
𝑛

𝑛∑︁
𝑖=1
𝑇𝑖 .



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

14.3 How to Get Performance Metrics from Your Simulation 245

Then 𝑇𝑛+1 can easily be determined from 𝑇𝑛 as follows:

𝑇𝑛+1 =
1

𝑛 + 1
·
(
𝑇𝑛 · 𝑛 + 𝑇𝑛+1

)
.

Method 2: We perform several runs of the simulation. A single run involves
running the simulation, without bothering to have jobs record their response
time, until we get to the 10,000th job (we’ve picked this number arbitrarily). We
then record the response time of that 10,000th job. We now start the simulation
from scratch, repeating this process for, say, 1000 runs. Each run provides us
with just a single number. We now take the average of all 1000 numbers to obtain
the mean response time.

Question: What are some benefits to Method 1?

Answer: Method 1 is simpler because we don’t have to keep restarting the
simulation from scratch.

Question: What are some benefits to Method 2?

Answer: Method 2 provides independent measurements of response time. Notice
that Method 1 does not provide independent measurements, because if a job has
high response time then it is likely that the subsequent job also has high response
time (the queue is currently long). Having independent measurements has the
advantage that we can create a confidence interval around our measured mean
response time. We defer discussion of how to obtain confidence intervals to
Chapter 19.

If one runs a simulation for long enough, it really doesn’t matter whether one
uses Method 1 or Method 2, assuming that your system is well behaved.1 This
brings us to another question.

Question: How long is “long enough” to run a simulation?

Answer: We want to run the simulation until the metric of interest, in this case
mean response time, appears to have stabilized (it’s not going up or down sub-
stantially). There are many factors that increase the time it takes for a simulation
to converge. These include load, number of servers, and any type of variability,
either in the arrival process or the job service times. It is not uncommon to need
to run a simulation with a billion arrivals before results stabilize.

Now suppose the goal is not the mean response time, but rather the mean number
of jobs in the system, E [𝑁]. Specifically, we define the mean number as a time-

1 Technically, by well behaved we mean that the system is “ergodic.” It suffices that the system
empties infinitely often. For a more detailed discussion of ergodicity, see Chapter 25 and
Section 27.7.



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

246 14 Event-Driven Simulation

average, as follows: Let 𝑀 (𝑠) denote the number of jobs in the system at time 𝑠.
Then,

E [𝑁] = lim
𝑡→∞

∫ 𝑠=𝑡

𝑠=0 𝑀 (𝑠)𝑑𝑠
𝑡

. (14.1)

Think of this as summing the number of jobs in the system over every moment of
time 𝑠 from 𝑠 = 0 to 𝑠 = 𝑡 and then dividing by 𝑡 to create an average. Obviously
we’re not really going to take 𝑡 to infinity in our simulation, but rather just some
high enough number that the mean number of jobs stabilizes.

Question: But how do we get E [𝑁] from our simulation? We’re not going to
look at the number at every single time 𝑠. Which times do we use? Can we simply
measure the number of jobs in the system as seen by each arrival and average all
of those?

Answer: This is an interesting question. It turns out that if the arrival process
is a Poisson process, then we can simply record the number of jobs as seen by
each arrival. This is due to a property called PASTA (Poisson arrivals see time
averages), explained in [35, section 13.3]. Basically this works because of the
memoryless property of a Poisson process, which says that the next arrival can
come at any time, which can’t in any way be predicted. Thus the arrival times of
a Poisson process are good “random” points for sampling the current number of
jobs.

Unfortunately, if the arrival process is not a Poisson process, then having each
arrival track the number of jobs that it sees can lead to very wrong results.

Question: Can you provide an example for what goes wrong when we average
over what arrivals see?

Answer: Suppose that 𝐼 ∼ Uniform(1, 2). Suppose that 𝑆 = 1. Then every arrival
finds an empty system and thus we would conclude that the mean number of jobs
is 0, when in reality the mean number of jobs is: 2

3 · 1 +
1
3 · 0 = 2

3 .

Question: So how do we measure the mean number of jobs in the system if the
arrival process is not a Poisson process?

Answer: The easiest solution is to simulate a Poisson process (independent of
the arrival process) and sample the number of jobs at the times of that simulated
Poisson process. This adds more events since we now have arrivals, completions,
and Poisson events.



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

14.4 More Complex Examples 247

14.4 More Complex Examples

We now turn to some more complex examples of queueing networks.

Example 14.1 (Router with finite buffer)

Figure 14.2 shows a router with finite (bounded) buffer space. There is room for
𝑛 = 6 packets, one in service (being transmitted) and the others waiting to be
transmitted. Note that all the packets are purposely depicted as having the same
size, as is typical for packets. When a packet arrives and doesn’t find space, it is
dropped.

FCFS

Arrivals that don’t

fit are dropped

Figure 14.2 Queue with finite buffer space.

In terms of running the simulation, nothing changes. The system state is still
the number of packets in the system. As before we generate packet sizes and
interarrival times as needed. One of the common reasons to simulate a router
with finite buffer space is to understand how the buffer space affects the fraction
of packets that are dropped. We will investigate this in Exercise 14.4.

Question: Suppose we are trying to understand mean response time in the case
of the router with finite buffer space. What do we do with the dropped packets?

Answer: Only the response times of packets that enter the system are counted.

Example 14.2 (Packet-routing network)

Figure 14.3 shows a network of three queues, where all queues are unbounded
(infinite buffer space). A packet may enter either from queue 1 or from queue
2. If the packet enters at queue 2, it will serve at queue 2 and leave without
joining any other queues. A packet entering at queue 1 will serve at queue 1 and
then move to either queue 2 or queue 3, each with probability 0.5. We might
be interested here in the response time of a packet entering at queue 1, where
response time is the time from when the packet arrives at queue 1 until it leaves
the network (either at server 2 or at server 3).

Question: What is the state space for Figure 14.3?

Answer: The system state is the number of packets at each of the three queues.



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

248 14 Event-Driven Simulation

External 
arrivals

Queue 1

External 
arrivals

Queue 2

Queue 3

0.5

0.5

Figure 14.3 Network of queues.

Question: How many possible events do we need to watch for now?

Answer: We need to track five possible events. For queue 1, we need to track
Time-to-next-arrival and Time-to-next-completion. For queue 3, we only need
to track Time-to-next-completion. The arrival times at queue 3 are determined
by flipping a fair coin after each completion at queue 1. Likewise, for queue
2, the internal arrival times at queue 2 are determined by flipping a fair coin
after each completion at queue 1. However, queue 2 also has external arrivals.
These external arrivals need to be tracked. Thus, for queue 2 we need to track
the Time-to-next-external-arrival and Time-to-next-completion.

Example 14.3 (Call center)

Figure 14.4 shows an example of a call center, as might be operated by a company
like Verizon. There is an arrival stream of incoming calls. There are 𝑘 servers
(operators) ready to accept calls. When a call comes in, it goes to any operator
who is free (we imagine that all operators are homogeneous). If no operators are
free, the call has to queue. Whenever an operator frees up, it takes the call at
the head of the queue (i.e., calls are served in FCFS order). We assume that the
service times of calls are i.i.d., represented by r.v. 𝑆. Here we might be interested
in the average or variance of the queueing time experienced by calls.

Question: Do calls leave in the order that they arrived?

Answer: No. Calls enter service in the order that they arrived, but some calls
might be shorter than others, and hence may leave sooner, even though they
entered later.

Question: What is the state space for Figure 14.4?

Answer: The system state is the total number of jobs in the system (we do
not need to differentiate between those in service and those queued), plus the
remaining service time for each of the jobs in service.



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

14.5 Exercises 249

FCFS

External
arrivals

Figure 14.4 Call center with 𝑘 = 4 servers.

Question: What are the events that we need to track?

Answer: We need to track 𝑘 + 1 events. These are the Time-to-next-completion
at each of the 𝑘 servers and the Time-to-next-arrival for the system.

We will explore additional examples in the exercises.

14.5 Exercises

14.1 Mean response time in an M/M/1 queue
In this problem you will simulate a queue, as shown in Figure 14.1, and
measure its mean job response time, E [𝑇]. Job sizes are i.i.d. instances of
𝑆 ∼ Exp(𝜇), where 𝜇 = 1. The arrival process is a Poisson process with rate
𝜆. The queue is called an M/M/1 to indicate that both interarrival times and
job sizes are memoryless (M). For each value of 𝜆 = 0.5, 0.6, 0.7, 0.8, 0.9,
record both E [𝑇] and E [𝑁]. Draw curves showing what happens to E [𝑇]
and E [𝑁] as you increase 𝜆. To check that your simulation is correct, it
helps to verify that Little’s Law (E [𝑁] = 𝜆 ·E [𝑇]) holds. Little’s Law will
be covered in Chapter 27.

14.2 Server utilization of an M/M/1 queue
Repeat Exercise 14.1, but this time measure the server utilization, 𝜌, which
is the long-run fraction of time that the server is busy. To get 𝜌, you will
sample the server at the times of job arrivals to determine the average
fraction of arrivals that see a busy server.

14.3 Doubling the arrival rate and the service rate
Repeat Exercises 14.1 and 14.2, but this time double each of the original



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

250 14 Event-Driven Simulation

arrival rates and simultaneously double the service rate. Specifically, in
these “new” runs, our arrival rates will be: 𝜆 = 1.0, 1.2, 1.4, 1.6, 1.8, and
our job sizes will be i.i.d. instances of 𝑆 ∼ Exp(𝜇), where 𝜇 = 2.
(a) How does 𝜌new compare with 𝜌orig?
(b) How does E [𝑁new] compare with E

[
𝑁orig

]
?

(c) How does E [𝑇new] compare with E
[
𝑇orig

]
?

Try to provide intuition for your findings. [Hint: Think about how doubling
the arrival rate and service rate affects time scales.]

14.4 Effect on loss probability of various improvements
As in Exercise 14.1, we have a queue whose arrivals are a Poisson process
with rate 𝜆, and whose job sizes are i.i.d. instances of r.v. 𝑆 ∼ Exp(𝜇). Let
𝜇 = 1 and 𝜆 = 0.9. Now suppose that the queue is bounded so that at most
𝑛 = 5 jobs can be in the system (one serving and the other four queueing).
(a) Simulate the system to determine the loss probability, namely the frac-

tion of arriving jobs that are dropped because they don’t fit.
(b) That loss probability is deemed too high, and you are told that you must

lower it. You are considering two possible improvements:
(i) Double the capacity of your system by setting 𝑛 = 10.

(ii) Double the speed of your server (double 𝜇) to 𝜇 = 2.
Which is more effective at reducing loss probability? Simulate and find
out.

(c) Conjecture on why you got the answer that you got for part (b). Do you
think that your answer to part (b) is always true? If you can’t decide,
run some more simulations with different values of 𝜆.

14.5 Effect of variability of job size on response time
In this problem, we will study the effect of variability of job sizes on
response time by using a DegenerateHyperexponential(𝜇, 𝑝) distribution,
which will allow us to increase the variability in job size, 𝑆, by playing with
𝜇 and 𝑝 parameters. The Degenerate Hyperexponential with parameters
𝜇 and 𝑝 is defined as follows:

𝑆 ∼
{

Exp(𝑝𝜇) w/prob 𝑝
0 w/prob 1 − 𝑝 .

(a) What is E [𝑆]? Is this affected by 𝑝?
(b) What is the squared coefficient of variation of 𝑆, namely 𝐶2

𝑆
?

(c) What is the range of possible values for 𝐶2
𝑆
, over 0 < 𝑝 < 1?

(d) Create a simulation to determine mean queueing time, E
[
𝑇𝑄

]
, in

a single queue. The arrival process to the queue is a Poisson
process with rate 𝜆 = 0.8. The job sizes are denoted by 𝑆 ∼
DegenerateHyperexponential(𝜇 = 1, 𝑝). You will run multiple sim-
ulations, each with the appropriate value of 𝑝 to create the cases of
𝐶2
𝑆
= 1, 3, 5, 7, 9. Draw a graph with E

[
𝑇𝑄

]
on the y-axis and 𝐶2

𝑆
on



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

14.5 Exercises 251

the x-axis. Note that a job of size 0 may still experience a queueing
time, even though its service time is 0.

(e) What happens when 𝐶2
𝑆

increases? Why do you think this is? Think
about it from the perspective of the time that the average job waits.

14.6 Favoring short jobs over long ones
Consider a queue with a Poisson arrival process and mean interarrival time
of 110. Job sizes are drawn i.i.d. from

𝑆 ∼
{

1 w/prob 0.5
200 w/prob 0.5 .

(a) Simulate the queue where the jobs are served in FCFS order. What is
the mean response time, E [𝑇]?

(b) Now consider a different scheduling policy, called Non-Preemptive
Shortest Job First (NP-SJF). Like FCFS, NP-SJF is non-preemptive,
meaning that once we start running a job, we always finish it. However,
in NP-SJF the jobs of size 1 always have priority over the jobs of size
200. Specifically, NP-SJF maintains two FCFS queues, one with jobs
of size 1 and the other with jobs of size 200, where, whenever the server
is free, it picks to run the job at the head of the queue of jobs of size 1.
Only if there is no job of size 1 does the server run a job of size 200.
Note that among jobs of a given size, the service order is still FCFS.
Simulate NP-SJF and report E [𝑇]. Try to use as little state as you can
get away with.

(c) You should find that E [𝑇] is much lower under NP-SJF scheduling
than under FCFS scheduling. Why do you think this is?

14.7 SRPT queue versus FCFS queue
The Shortest Remaining Processing Time (SRPT) scheduling policy min-
imizes mean response time, E [𝑇] [66, 67]. Under SRPT, at all times the
server is working on that job with the shortest remaining processing time.
The SRPT policy is preemptive, meaning that jobs can be stopped and
restarted with no overhead. Under SRPT, a new arrival will preempt the
current job serving if and only if the new arrival has size which is smaller
than the remaining time on the job in service.
(a) Suppose we have an SRPT queue and job 𝑗 is currently running. Can

job 𝑗 be preempted by any of the other jobs currently in the queue?
(b) In an SRPT queue, can there be multiple jobs which have each received

partial service so far?
(c) Simulate an SRPT queue, with Poisson arrival process with rate 𝜆 =

0.45. Assume that the job sizes are 𝑆 ∼ BoundedPareto(𝑘 = 0.004, 𝑝 =

1000,𝛼 = 0.5) (see Definition 10.5). What is E [𝑇]SRPT?
(d) Perform the same simulation but for a FCFS queue. What is E [𝑇]FCFS?



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

252 14 Event-Driven Simulation

Incoming
jobs

0.5

0.5

Random
FCFS

FCFS

Incoming
jobs SITA

FCFS

FCFS

Short
jobs

Long
jobs

(a) Random Task Assignment

(b) Size-Interval Task Assignment

Figure 14.5 Random dispatching versus SITA dispatching.

14.8 Size-Interval Task Assignment versus Random
Figure 14.5 illustrates a server farm with two identical FCFS queues. In
Figure 14.5(a), every incoming arrival is dispatched (assigned) with prob-
ability 0.5 to the first queue and probability 0.5 to the second queue. This
is called Random task assignment (Random). In Figure 14.5(b), if the in-
coming arrival is “small” then it is dispatched to the top queue, and if it
is “large” it is dispatched to the bottom queue. This is called Size-Interval
Task Assignment (SITA) [36, 34]. Suppose that arrivals occur according
to a Poisson process with rate 𝜆 = 0.5. Assume that job sizes are i.i.d. and
follow a BoundedPareto(𝑘 = 0.004, 𝑝 = 1000,𝛼 = 0.5) distribution (see
Definition 10.5) with mean E [𝑆] = 2.
(a) Simulate Random assignment and report the mean queueing time

E
[
𝑇𝑄

]
.

(b) Simulate SITA. Use a size cutoff of 58.3, where jobs smaller than this
cutoff are deemed “small.” Report E

[
𝑇𝑄

]
.

(c) Which was better? Why do you think this is?


