Part IV

Computer Systems
Modeling and Simulation

The goal of this part of the book is to learn how to run simulations of computer
systems. Simulations are an important part of evaluating computer system perfor-
mance. For example, we might have a new load-balancing algorithm, and we’re
trying to understand whether it reduces the mean job response time or improves
utilization. Or we might have a queueing network, where we want to understand
the fraction of packet drops when we double the arrival rate of packets. Being
able to simulate the computer system is an easy way to get answers to such
questions.

Before we can dive into the art of simulation, we first have to understand a few
things about modeling. In Chapter 12 we study the Poisson process, which is the
most common model used for the arrival process into a computer system. The
Poisson process is not only easy to simulate, it also has many other beneficial
properties when it comes to simulation and modeling.

In Chapter 13 we study the art of generating random variables for simulation.
This is an extremely important part of simulation, since we often have to generate
the interarrival times of jobs and the service requirements of jobs. Each of these
is typically modeled by some random variable that is a good estimate of the
empirical (true) workload. In our simulation, we need to generate instances of
these random variables.

Finally, in Chapter 14 we are ready to understand how to program an event-driven
simulation. We discuss several examples of event-driven simulation, focusing on
the state that needs to be tracked and also on how to measure the quantities that
we need from our simulation.

When simulating a computer system, we’re often simulating a queueing network.
We cover the basics of queueing networks in Chapter 14. However, we defer a
more detailed discussion of queueing networks to Chapter 27, after we’ve covered
Markov chains, which allow us to understand more about the analysis of queueing
networks.
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12 The Poisson Process

This chapter deals with one of the most important aspects of systems modeling,
namely the arrival process. When we say “arrival process” we are referring to the
sequence of arrivals into the system. The most widely used arrival process model
is the Poisson process. This chapter defines the Poisson process and highlights its
properties. Before we dive into the Poisson process, it will be helpful to review
the Exponential distribution, which is closely related to the Poisson process.

12.1 Review of the Exponential Distribution

Recall we say that a random variable (r.v.) X is distributed Exponentially with
rate A, written X ~ Exp(1), if its probability density function (p.d.f.) is

Ae™™ x>0
fX(x)_{O x<0"

The cumulative distribution function (c.d.f.), Fx(x) = P{X < x}, is given by

P = [ pear={ o7

X x>0
x <0

Fx(x)=1-Fx(x)=e ™, x>0.

Observe that both fx(x) and Fx(x) drop off by a constant factor, e, with each
unit increase of x.

Recall also that for X ~ Exp(1), we have:

1 1 vV
E[X]=~ Var(X)=; Cy= Ea[")(;]? —1

In particular, the rate of the Exponential distribution, A, is the reciprocal of its
mean. Also recall that an Exponentially distributed r.v. X exhibits the memory-
less property, which says that:

P{X>s+t|X>s}=P{X>1t}, Vs, t>0.
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12.2 Relating the Exponential Distribution to the Geometric 211

Finally, recall that the Exponential distribution has constant failure rate equal
to A (Exercise 10.2).

Question: Suppose that the lifetime of a job is Exponentially distributed with
rate A. Suppose that the job has already run for # seconds (its age is t). Consider
a very small 6. What does the constant failure rate say about the probability that
the job will complete in the next ¢ seconds?

Answer: The probability that a job of age ¢ will complete in the next § seconds
is A6, independent of ¢. See Chapter 10 for a review of the notion of failure rate.

12.2 Relating the Exponential Distribution to the Geometric

It can be proven that the Exponential distribution is the only continuous-time
memoryless distribution.

Question: What is the only discrete-time memoryless distribution?
Answer: The Geometric distribution.

When reasoning about Exponential random variables, we find it very helpful
to instead think about Geometric random variables, for which we have more
intuition. We can think of the Exponential distribution as the “continuous coun-
terpart” of the Geometric distribution by making the following analogy:

o The Geometric distribution can be viewed as the number of flips needed to get
a “success.” The distribution of the remaining number of flips is independent
of how many times we have flipped so far.

e The Exponential distribution is the time until “success.” The distribution of
the remaining time is independent of how long we have waited so far.

To unify the Geometric and Exponential distributions, we introduce the notion
of a “d-step proof.” Throughout the chapter, we will use this way of thinking to
come up with quick intuitions and arguments. The idea is to imagine each unit
of time as divided into n pieces, each of duration ¢ = %, and suppose that a trial
(coin flip) occurs every ¢ time period, rather than at unit times.

We now define a r.v. Y, where Y is Geometrically distributed with probability
p = A6 of getting a head, for some small 6 — 0. However, rather than flipping
every unit time step, we flip every d-step. That is,

Y ~ Geometric(p = A6 | Flip every d-step).
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212 12 The Poisson Process

Observe that Y denotes the number of flips until success. Now define Y* to be
the time until success under Y:

Y* = Time associated with Y.

Observe that as 6 — 0 (or n — o0), Y* becomes a positive, real-valued r.v.,
because success can occur at any time.

Question: What is E [Y*]? How is Y* distributed?

Answer:

E [Y*] = (avg. # trials until success) - (time per trial)
1 1

“oa T
To understand the distribution of Y*, we express P {Y* > ¢} as the probability

that all the trials up to at least time ¢ have been failures (i.e., we have had at least
t/6 failures).

(1-062)%

Bt
()
oA

= [1-

| o1

—s [e7 'Y, as 6 — 0, by (1.9)
e,

t
P{Y*">t}=P {at least 3 failures}

-~
=
&‘_
S
~
5

But P {Y* > t} = e~ implies that Y* ~ Exp(2).
We have thus proven the following theorem, which is depicted in Figure 12.1.
Theorem 12.1 Let X ~ Exp(A). Then X represents the time to a successful

event, given that an event occurs every 0-step and is successful with probability
A0, where 6 — 0.
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12.3 More Properties of the Exponential 213

v

Figure 12.1 Geometric depiction of the Exp(Q) distribution. Time is divided into steps of
duration 6, and a coin (with probability A5 of “heads”) is flipped only at each §-step.

12.3 More Properties of the Exponential

Before we continue, here is a useful definition.

Definition 12.2
A

f=o0@) if lim:x<=0.

For example, f = 62 is 0(8) because %2 — 0as 6 — 0. Likewise f = V6 is not
0(0). Basically, a function is 0(6) if it goes to zero faster than 6, as § — 0.

This definition may seem a little odd, because in general asymptotic notation (as
in Section 1.6) “big-O” and “little-0” are defined in terms of some n — oo, not
as § — 0. When we use § — 0, everything is flipped.

We now illustrate how to combine the o () notation with the discretized view of
an Exponential to prove a few properties of the Exponential distribution.

Theorem 12.3 Given X| ~ Exp(Ad;), X ~ Exp(43), X1 L X,
A
A1+ A ’

P{X1 < Xz} =

Proof: (Traditional algebraic proof)
P{X] <X2}:/ P{X] <X2|X2 :x}-fz(x)dx
0
= / P{X, <x|X>=x} dre ¥dx
0

:/ P{X, <x} - Aae %y, since X; L X,
0
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214 12 The Poisson Process

Continuing,

P{X| < X>} :/ (1 — e M%) (e %) dx
0

:/ /lze_’lzxdx—/lzf e~ ()X gy
0 0

Now for a more intuitive proof, by analogy with the Geometric distribution:

Proof: (Intuitive Geometric proof) Success of type 1 occurs with probability
416 on each ¢-step. Independently, success of type 2 occurs with probability 4,6
on each d-step. P{X| < X;} is really asking, given that a success of type 1 or
type 2 has occurred, what is the probability that it is a success of type 1?

P {type 1}

P {type 1 or type 2}
i 16
L6+ 6 — (116)(1206)
B 1,6
T 216+ 426 — 0(9)

/7.1 +/12 - L{?)

A
/11 +/12

P {type 1 | type 1 or type 2} =

— asd — 0. [ ]

Example 12.4 (Which fails first?)

There are two potential failure points for our server: the power supply and the
disk. The lifetime of the power supply is Exponentially distributed with mean
500, and the lifetime of the disk is independently Exponentially distributed with
mean 1,000.

Question: What is the probability that the system failure, when it occurs, is
caused by the power supply?

€
Answer: —%—.

500 T 7000
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12.3 More Properties of the Exponential 215

Theorem 12.5 Given X; ~ Exp(11), Xo ~ Exp(d2), X1 L X5. Let
X = min(Xy, X3).

Then
X ~ Exp(A1 + Ap).

Proof: (Traditional algebraic proof)

P{X >t} = P{min(X, Xp) > ¢t}
=P{X; >trand X, > 1}

=P{X; >t} - P{Xp >1}
e—/llt‘e—/lzt

= o~ (li+2)t

Here is an alternative argument by analogy with the Geometric distribution:

Proof: (Intuitive Geometric proof)

A trial occurs every o-step.

The trial is “successful of type 1" with probability 4,4.

The trial is “successful of type 2”” independently with probability 1;6.
We are looking for the time until there is a success of either type.

A trial is “successful” (either type) with probability

116+ 26 — (,6) - (1a6) = 6 (/11 Ny 0(66)).
[ —

rate
e Thus the time until we get a “success” is Exponentially distributed with rate

0
/11+/12—¥,

and as ¢ — 0 this gives the desired result. ]

Question: In the server from Example 12.4, what is the time until there is a
failure of either the power supply or the disk?

Answer: Exponential with rate ( 500 + 1000).
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216 12 The Poisson Process

12.4 The Celebrated Poisson Process

The Poisson process is the most widely used model for arrivals into a system.
Part of the reason for this is that it is analytically tractable. However, the Poisson
process is also a good model for any process of arrivals which is the aggregation
of many independently behaving users. For example, the Poisson process is a
good representation of the arrivals of requests into a web server, or the arrivals
of jobs into a supercomputing center, or the arrivals of emails into a mail server.
The “Limiting Theorem,” see [45, pp. 221-228] explains how an aggregate of
independent arrival processes leads to a Poisson process. The point is this: If you
look at the request stream from an individual user, it will not look like a Poisson
process. However, if you aggregate the requests from a very large number of
users, that aggregate stream starts to look like a Poisson process.

Before we define a Poisson process, it helps to recall the Poisson distribution.
Question: If X ~ Poisson(1), what is px (i), E [X], and Var(X)?

Answer:
—A3i

px(i)=——, i=012,...
L

E[X] = Var(X) = A.
A Poisson process is a particular type of arrival sequence. We will need a little

terminology. Figure 12.2 shows a sequence of arrivals. Each arrival is associated
with a time. The arrival times are called “events.”

Events

| } » Time

Figure 12.2 Sequence of events.

Definition 12.6 For any sequence of events, we define N(t), t > 0 to be the
number of events that occurred by time ¢ (including time t).
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12.4 The Celebrated Poisson Process 217

Definition 12.7 An event sequence has independent increments if the num-
bers of events that occur in disjoint time intervals are independent. Specifically,
forallty <t) <ty <...<ty then quantities below are independent:

N(t1) —N(1) L N(2) -N(t1) L ... L N(tn) = N(tn-1).
Example 12.8 (Examples of sequences of events)

Consider three sequences of events:

(a) births of children
(b) people entering a store
(c) goals scored by a particular soccer player.

Question: Do these event processes have independent increments?

Answer:

(a) No. The number of births depends on the population size, which increases
with prior births.

(b) Yes.

(c) Maybe. Depends on whether we believe in slumps!

Definition 12.9 The event sequence has stationary increments if the number
of events during a time period depends only on the length of the time period
and not on its starting point. That is, N(t +s) — N(s) has the same distribution
for all s.

Definition 12.10 (First definition of the Poisson process) A Poisson process
with rate A is a sequence of events such that

1. N(0) =0.

2. The process has independent increments.

3. The number of events in any interval of length t is Poisson distributed with
mean At. That is, Vs,t > 0,

e—/lt ( /lt)"

P{N(t+s)—N(s)=n} = .

n=0,1,...

Question: Why is A called the “rate” of the process?

Answer: Observe that E [N ()] = At, so the rate of events is w =A
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218 12 The Poisson Process

Question: Why only “independent increments”?

Answer: The third item in the definition already implies stationary increments,
because the number of events within an interval of length 7 depends only on 7.

Observe that the assumption of stationary and independent increments is equiv-
alent to asserting that, at any point in time, the process probabilistically restarts
itself. That is, the process from any point on is independent of all that occurred
previously (by independent increments) and also has the same distribution as
the original process (by stationary increments). Simply put, the process has no
memory. This leads us to the second definition of the Poisson process.

Definition 12.11 (Second definition of the Poisson process) A Poisson pro-
cess with rate A is a sequence of events such that the inter-event times are i.i.d.
Exponential random variables with rate A and N (0) = 0.

Question: Which definition of a Poisson process would you use when trying to
simulate a Poisson process, the first or the second?

Answer: The Second Definition seems much easier to work with. The times
between arrivals are just instances of Exp(1). We will learn how to generate
instances of Exp() in Chapter 13.

First Definition = Second Definition

Let 71,75, T3, . .. be the inter-event times of a sequence of events. We need to
show that 7; ~ Exp(1), Vi. By the first definition,

—At 0
At
e (A1) o

P{T > 1} =P{N(1) =0} = —

Next,

n n
P{Tn+1 >t’ Z]}:s}:P{Oeventsin (s,s+t)| ZT":S}
i=1 i=1

=P{0eventsin (s,s +¢)}, by indpt. increments

=e¢ Y, Dy stationary increments.

Second Definition = First Definition

Feller [27, p. 11] has a rigorous algebraic proof that the Second Definition
implies the First Definition. The idea is to show that the sum of n i.i.d. Exp(2)
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12.5 Number of Poisson Arrivals during a Random Time 219

random variables has a Gamma, I'(n, A) distribution. Feller then uses the I'(n, 1)
distribution to show that N (¢) follows a Poisson distribution.

Rather than going through this tedious algebraic proof, we instead provide an
argument by analogy with the Geometric distribution: N (z) refers to the number
of arrivals by time . Our goal is to prove that N(¢) ~ Poisson(Af). Think of
an arrival/event as being a “success.” The fact that the interarrival times are
distributed as Exp(1) corresponds to flipping a coin every d-step, where a flip is
a success (arrival) with probability A46:

N(t) = Number of successes (arrivals) by time ¢

~ Binomial (# flips, probability of success of each flip)
~ Binomial (L,/lé) .
0
Observe that as § — 0, L becomes very large and 16 becomes very small.
Question: Now what do you know about Binomial(n, p) for large n and tiny p?

Answer: Recall from Exercise 3.8 that
Binomial(n, p) — Poisson(np), asn — oo and p — 0.

So,as 6 — 0,

t
N(t) ~ Poisson (5 . /16) = Poisson(Af).

12.5 Number of Poisson Arrivals during a Random Time

Imagine that jobs arrive to a system according to a Poisson process with rate
A. We wish to understand how many arrivals occur during time S, where S is a
r.v. Here, S might represent the time that a job is being processed. Assume that
S is independent of the Poisson process. Let Ag denote the number of Poisson
arrivals during S. It is useful to first talk about A;, the number of arrivals during
a constant time ¢. Notice that A; is what we normally refer to as N(t).

Definition 12.12 Assume that arrivals occur according to a Poisson process
with rate 1. We define

A; = N(t) = Number of arrivals during time t

and

As = Number of arrivals during time r.v. S.
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220 12 The Poisson Process

Question: What is E [A;]?

Answer: E [A;,] = E[N(?)] = 1t

Question: What is Var(A;)?

Answer: Recall that A, = N(t) ~ Poisson(At). Thus Var(A;) = At.
Question: If we want to know the moments of Ag, what should we do?

Answer: Condition on the value of S. For example, to get the first moment of
As we write:

E [As] =/°°E[AS|S=r] fs(tydr

=0

/ E[A,]- fs()dt

=0

/oo At - fs(t)dt

=0
- IE[S]. (12.1)

12.6 Merging Independent Poisson Processes

In networks, it is common that two Poisson processes are merged, meaning that
they’re interleaved into a single process as shown in Figure 12.3.

v

PP. (L)) x X X

v

PP. (1)

X
.
X

Merge M - - M M M

Figure 12.3 A Poisson process with rate A is merged with a Poisson process with rate
Ar.

Theorem 12.13 (Poisson merging) Given two independent Poisson pro-
cesses, where process 1 has rate A1 and process 2 has rate A, the merge
of process I and process 2 is a single Poisson process with rate A1 + A,.

Proof: Process 1 has Exp(A;) interarrival times. Process 2 has Exp(A1,) inter-
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12.7 Poisson Splitting 221

arrival times. The time until the first event from either process 1 or process 2
is the minimum of Exp(4;) and Exp(A,), which is distributed Exp(1; + 1)
(Theorem 12.5). Likewise, the time until the second event is also distributed
Exp(Ad; +A2), etc. Thus, using the Second Definition, we have a Poisson process
with rate A; + A». []

Proof: (Alternative) Let N;(¢) denote the number of events in process i by time
t:

Ni(t) ~ Poisson(A;t)

N;(t) ~ Poisson(A,t).

Yet the sum of two independent Poisson random variables is still Poisson with
the sum of the means, so

Ni() + N»(t) ~ Poisson(A;t + Aot).
E/_/ .
merged process

12.7 Poisson Splitting

It is also common that a stream of arrivals is split into two streams, where each
arrival is sent to the A stream with probability p and to the B stream with
probability 1 — p. Figure 12.4 illustrates the splitting of a Poisson stream.

LV w w LV
n LY LY n

P.P. (1) >
A’s only 25 % >
A A
B’s only X X% >

B B

Figure 12.4 Splitting a Poisson process with rate A into an A stream and a B stream,
based on coin flips.
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222 12 The Poisson Process

Theorem 12.14 (Poisson splitting) Given a Poisson process with rate A, sup-
pose that each event is classified “type A” with probability p and “type B” with
probability 1 — p. Then type A events form a Poisson process with rate pA, type
B events form a Poisson process with rate (1 — p)A, and these two processes
are independent. Specifically, if Na(t) denotes the number of type A events by
time t, and N (t) denotes the number of type B events by time t, then

P{Na(1) =n,Ng(t) = m} =P {Na(t) = n} - P{Np(1) = m}
_ e—/ltp (/ltp)n . e—/lt(l—p) (/U(l _p))m
a n! m! ’

This is one of those theorems that initially seems very counter-intuitive. It is really
not clear why the times between the type A events end up being Exponentially
distributed with rate Ap as opposed to something else. Consider the sequence
of events comprising the original Poisson process, where a coin with bias p is
flipped at each event. When the coin flip comes up “head,” the event is classified
as “type A.” If we look at just the type A events, we might imagine that some
pairs of consecutive type A events are separated by Exp(1) (where we had two
heads in a row) while other pairs of consecutive type A events are separated by
multiple Exp(2) periods (where we didn’t have a head for a while). It is not at
all clear why the times between type A events are actually Exp(4p).

Before proving Theorem 12.14, we provide intuition for what’s going on, by again
making use of d-step arguments. The original process has Exp(A) interarrival
times, which is equivalent to tossing a coin every 6§ — O steps, where the coin
comes up “success’ with probability 16. We refer to this A coin as the first coin.
Now we can imagine a second coin being flipped, where the second coin has
probability p of success. Only if both the first and second coins are successes at
the same time do we have a type A success. But this is equivalent to flipping just a
single coin, with probability A6 p of success. The time between successes for the
single coin is then distributed Exp(Ap). This proof is illustrated in Figure 12.5
and can be repeated for type B events.

Proof: [Theorem 12.14] This proof is taken from [64, p. 258]. What makes this
proof precise is that (1) it uses no approximations and (2) it explicitly proves
independence. Let
N(t) = Number of events by time ¢ in the original process
N4 () = Number of type A events by time ¢
Np(t) = Number of type B events by time 7.

We start by computing the joint probability that there are n events of type A and
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Second coin o o XX
First coin @ @ e0e

0 0 20
SUCCess
IR
| 1 1 1 ; 1 e
0 0 20 :

time = Exp(4p)

Figure 12.5 A “type A success” only occurs if both the A0-coin and the p-coin are heads.

m events of type B by time 7.
P{Na(t) = n,Ng(1) = m}

=ZP{NA(I) =n,Ng(t) =m | N(1) = k} - P{N(1) = k}
k=0
=P{Nas(t) =n,Ng(t) =m | N(@t) =n+m} -P{N() =n+m}

(because this is the only non-zero term in the above sum)

“ar (/U)n+m
=P{Na(t) =n,Ng(t)=m | N(t) =n+m} -e ' ———
(n+m)!
n+m\ , _ (Ap)mm
= 1= p)™ St A
( u )p (I-p)™e CETT
where the last line comes from the Binomial.
Simplifying, we have:
! /‘lt n+m
PNA() = Np(t) = my = L g pymgmar A
nlm! (n+m)!
= e_’ltp—(/up)n . e"lt(l_p)—(/u(l _ p))m. (12.2)
n! m!

To illustrate that the type A process and type B process are independent, we
now compute the marginal probability P{N(z) = n} by summing the joint
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224 12 The Poisson Process

probability, (12.2), over all values of m:
P {Na(t) =n} = Z P {NA(t) = n, N (1) = m}

o—Atp AP) (/UP) Z —Ar(1-p) (At(1 = p))™
m!
— e—/ltp (/ltp) .
n!
In a similar fashion we compute the marginal probability P {Ng(z) = m}, ob-
taining:
~a1-p) (AL = p))™

P{Ng(t)=m}=e
m!

Hence, by (12.2) we have that
P{Na(1) =n,Ng(t) =m} =P {Na(t) =m} - P{Np(t) =m}, (12.3)

showing that the processes are independent. Now because the other conditions in
the First Definition such as independent increments are also obviously satisfied,
we have that {N(t),t > 0} forms a Poisson process with rate 1p and that
{Npg(t),t = 0} forms an independent Poisson process with rate (1 — p). [

12.8 Uniformity

Theorem 12.15 Given that one event of a Poisson process has occurred by
time t, that event is equally likely to have occurred anywhere in [0, t].

Proof: Let 71 denote the time of that one event:

P <s|N(t)=1) = LA <sand N(D) = 1}

P{N(t) =1}
_ P{leventin [0,s] and O events in [s, 7]}

e—/lt(/lt)l
1!

P {1 eventin [0,s]}-P{0eventsin [s,7]}
e~ . At
e A5 e ) L (A(r - 5))°
e~ . At

~lu
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Generalization: If k events of a Poisson process occur by time ¢, then the k
events are distributed independently and uniformly in [0, 7] [62, pp. 36-38].

12.9

12.1

12.2

12.3

12.4

12.5

12.6

Exercises

Doubling Exponentials
Suppose that job sizes are distributed Exp(u). If job sizes all double, what
can we say about the distribution of job sizes now? Prove it.

Conditional Exponential
Let X ~ Exp(1). Whatis E [X2 | X < 1] ? [Hint: No integrals, just think!]

Stationary and independent increments

For a Poisson process with arrival rate A, let N(¢) denote the number of
arrivals by time ¢. Simplify the following, pointing out explicitly where you
used stationary increments and where you used independent increments:

P{N(t) =10 | N(3) =2} (assume t > 3).

Poisson process definition

Suppose requests arrive to a website according to a Poisson process with
rate A = 1 request per ms. What is the probability that there are 5 arrivals
in the first 5 ms and 10 arrivals in the first 10 ms?

Packets of different colors

(a) A stream of packets arrives according to a Poisson process with rate
A = 50 packets/s. Suppose each packet is of type “green” with prob-
ability 5% and of type “yellow” with probability 95%. Given that
100 green packets arrived during the previous second, (i) what is
the expected number of yellow packets that arrived during the previ-
ous second? And (ii) what is the probability that 200 yellow packets
arrived during the previous second?

(b) Red packets arrive according to a Poisson process with rate 1; = 30
packets/s. Black packets arrive according to a Poisson process with
rate 1o = 10 packets/s. Assume the streams are merged into one
stream. Suppose we are told that 60 packets arrived during one second.
What is the probability that exactly 40 of those were red?

Uniformity
Packets arrive according to a Poisson process with rate A. You are told
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226 12 The Poisson Process

that by time 30 seconds, 100 packets have arrived. What is the probability
that 20 packets arrived during the first 10 seconds?

12.7 Poisson process products
Suppose customers arrive to a store according to a Poisson process with
rate A customers per second. Let N(¢) denote the number of arrivals by
time . What is E [N(s)N(¢)], where s < ¢?

12.8 Number of Poisson arrivals during S
Let As denote the number of arrivals of a Poisson process with rate
A during S, where S is a continuous non-negative r.v., and the Poisson
process is independent of S. You will derive Var(Ags) in two different
ways:
(a) Do it without transforms.
(b) Derive the z-transform of Ag and differentiate it appropriately.

12.9 Malware and honeypots

A new malware is out in the Internet! We want to estimate its spread

by time ¢. Internet hosts get infected by this malware according to a

Poisson process with parameter A, where A is not known. Thrasyvoulos

installs a honeypot security system to detect whether hosts are infected.

Unfortunately there is a lag time between when a computer is infected and

the honeypot detects the damage. Assume that this lag time is distributed

Exp(u). Suppose that the honeypot system has detected N(¢) infected

hosts by time ¢. Thrasyvoulos worries that, because of the lag, the number

of infected hosts is actually much higher than N{(¢). We ask: How many

additional hosts, N;(t), are expected to also be infected at time 7.

(a) Suppose that an infection happens at time s, where 0 < s < t. What
is the probability that the infection is detected by time ¢?

(b) Consider an arbitrary infection that happens before time f. What is
the (unconditional) probability, p, that the infection is detected by the
honeypot by time #?

(c) How can we use our knowledge of Nj(¢) to estimate A as a function
of Ny (1)?

(d) Use your estimate of A to determine the expected value of N»(7) as a
function of Ny (7).

12.10 Sum of Geometric number of Exponentials
Let N ~ Geometric(p). Let X; ~ Exp(u). Let Sy = Zf\il X;.
(a) What is the distribution of Sn ? Prove this using a -step argument.
(b) Based on what you learned in (a), whatis P {Sy > 1}?
(c) ForaPoisson process with rate A, where packets are colored “red” with
probability ¢, what is the variance of the time between red packets?
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12.11

12.12

12.13

12.14

Reliability theory: max of two Exponentials

Redundancy is often built into systems so that if a disk fails there is no

catastrophe. The idea is to have the data on two disks, so that a catastrophe

only occurs if both disks fail. The time until a catastrophe occurs can be

viewed as the “max” of two random variables.

(a) Let X; ~ Exp(41). Let X, ~ Exp(4). Suppose X; L X,. What is
E [max(X1, X2)]?

(b) Let X; ~ Exp(4;). Let X, ~ Exp(42). Suppose X; L Xp. What is
E [max(X1, X2)]?

Exponential downloads

You need to download two files: file 1 and file 2. File 1 is available via
source A or source B. File 2 is available only via source C. The time to
download file 1 from source A is Exp(1). The time to download file 1
from source B is Exp(2). The time to download file 2 from source C is
Exp(3). You decide to download from all three sources simultaneously,
in the hope that you get both file 1 and file 2 as soon as possible. Let T
denote the time until you get both files.

(a) Whatis E [T]?

(b) Whatis P{T < t}?

Reliability theory: max of many Exponentials
Let X1, X3, ..., X, be i.i.d. with distribution Exp(1). Let

Z =max(X;, Xo,...,X,).

(a) Whatis E [Z]?

(b) Roughly, what does E [Z] look like as a function of n and A when n
is reasonably high?

(c) Derive the distribution of Z.

Conditional distribution
Let X ~ Exp(4dx) and Y ~ Exp(dy), where X L Y. Let Z = min(X,Y).
Prove that

(X|X<Y)~Z.

That is, show that P{X >t | X <Y} =P{Z > t}.

Before you start, take a minute to think about what this problem is saying:
Suppose for simplicity that X and Y are both drawn from Exp(1). Say I
put X in one hand and Y in the other, without looking. If you ask to see a
random hand, the value you get is distributed Exp(1). However, if you ask
me to look inside my hands and hand over the smaller of the two values,
then the value that I give you will no longer be distributed Exp(1).
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12.15 Two two-stage jobs
We have two jobs, X and Y, where each has two stages, as shown in
Figure 12.6. Both stages of a job must be completed in order. That is, to
complete job X, we need to first run X; and then run X,. Similarly, to
complete job Y we must run Y; followed by Y,. Assume that X, Xp, Y1,
and Y, are i.i.d. with distribution Exp(u). Suppose that job X and job ¥
start running at the same time.

Job X JobY

Figure 12.6 Figure for Exercise 12.15.

(a) What is the expected time until the first of these jobs completes?
(b) What is the expected time until the last of these jobs completes?

12.16 Population modeling

Naveen is interested in modeling population growth over time. He figures

it is reasonable to model the birth process as a Poisson process with some

average rate A. He also assumes that a person’s lifespan follows some

distribution, T, with c.d.f. Fr(¢) and tail F7(r) = 1 — Fr(t), where he

assumes that lifespans of individuals are independent. Let N(¢) denote

the population (number of people who are alive) at time ¢.

(a) Prove that E[N(1)] = A [,_ Fr(r — k)dk.

(b) Naveen reads that approximately A = 4 million people are born in the
United States per year. He can’t find a good distribution for lifespan,
T, but he notes that the average life expectancy is E [T] = 75 years. He
decides to approximate lifespan by the Uniform(50, 100) distribution.
Given these numbers, what can Naveen say about E [N (¢)]? Provide
formulas for the three cases: t < 50; 50 < ¢t < 100; and ¢ > 100.

(c) What does Naveen’s model say about E [N(f)] as t — oo, meaning
we're in steady state.
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