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11 Laplace Transforms

In Chapter 6, we covered a type of generating function known as the z-transform,
which is particularly well suited to discrete, integer-valued, random variables.
In this chapter, we will introduce a new type of generating function, called
the Laplace transform, which is particularly well suited to common continuous
random variables.

11.1 Motivating Example

We start with a motivating example.

Question: Let 𝑋 ∼ Exp(𝜆). How can we derive E
[
𝑋3]?

Answer: By definition,

E
[
𝑋3] = ∫ ∞

0
𝑡3𝜆𝑒−𝜆𝑡𝑑𝑡.

While this is doable, it requires applying integration by parts many times –
enough to guarantee that our answer will be wrong. In this chapter, we will
see how Laplace transforms can be used to quickly yield the 𝑘th moment of
𝑋 ∼ Exp(𝜆), for any 𝑘 .

11.2 The Transform as an Onion

As in the case of the z-transform, we can think of the Laplace transform of a
random variable (r.v.) as an onion, where the onion is an expression that contains
all the moments of the r.v. The Laplace onion (Figure 11.1) looks different
than the z-transform onion (Figure 6.1), but the basic point is the same: higher
moments are stored deeper inside the onion and thus more peeling (tears) are
required to get to them.
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Figure 11.1 The Laplace transform onion.

Definition 11.1 The Laplace transform, 𝐿 𝑓 (𝑠), of a continuous function,
𝑓 (𝑡), 𝑡 ≥ 0, is defined as

𝐿 𝑓 (𝑠) =
∫ ∞

0
𝑒−𝑠𝑡 𝑓 (𝑡)𝑑𝑡.

Observe that the Laplace transform is a function of 𝑠. Here 𝑠 should be thought
of as a placeholder that keeps the layers of the onion separate, similar to the
function of 𝑧 in the z-transform.

When we speak of the Laplace transform of a continuous r.v. 𝑋 , we are refer-
ring to the Laplace transform of the probability density function (p.d.f.), 𝑓𝑋 (𝑡),
associated with 𝑋 .

Definition 11.2 Let 𝑋 be a non-negative continuous r.v. with p.d.f. 𝑓𝑋 (𝑡). Then
the Laplace transform of 𝑋 is denoted by 𝑋 (𝑠), where

𝑋 (𝑠) = 𝐿 𝑓𝑋 (𝑠) =
∫ ∞

0
𝑒−𝑠𝑡 𝑓𝑋 (𝑡)𝑑𝑡 = E

[
𝑒−𝑠𝑋

]
.

Throughout, we will imagine that 𝑠 is a constant where 𝑠 ≥ 0.

Question: What is 𝑋 (0)?

Theorem 11.3 For all continuous random variables, 𝑋 ,

𝑋 (0) = 1.

Proof:
𝑋 (0) = E

[
𝑒−0·𝑋]

= 1. ■
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11.3 Creating the Transform: Onion Building

The Laplace transform is defined so as to be really easy to compute for all the
commonly used continuous random variables. Below are some examples.

Example 11.4 Derive the Laplace transform of 𝑋 ∼ Exp(𝜆):

𝑋 (𝑠) =
∫ ∞

0
𝑒−𝑠𝑡𝜆𝑒−𝜆𝑡𝑑𝑡 = 𝜆

∫ ∞

0
𝑒−(𝜆+𝑠)𝑡𝑑𝑡 =

𝜆

𝜆 + 𝑠 .

Example 11.5 Derive the Laplace transform of 𝑋 = 𝑎, where 𝑎 is some constant:

𝑋 (𝑠) = 𝑒−𝑠𝑎.

Example 11.6 Derive the Laplace transform of 𝑋 ∼ Uniform(𝑎, 𝑏), 𝑎, 𝑏 ≥ 0:

𝑋 (𝑠) =
∫ ∞

0
𝑒−𝑠𝑡 𝑓𝑋 (𝑡)𝑑𝑡

=

∫ 𝑏

𝑎

𝑒−𝑠𝑡
1

𝑏 − 𝑎 𝑑𝑡

=

(
−𝑒−𝑠𝑏
𝑠
+ 𝑒
−𝑠𝑎

𝑠

)
1

𝑏 − 𝑎

=
𝑒−𝑠𝑎 − 𝑒−𝑠𝑏
𝑠(𝑏 − 𝑎) .

Question: How do we know that the Laplace transform converges?

Theorem 11.7 (Convergence of Laplace transform) 𝑋 (𝑠) is bounded for
any non-negative continuous r.v. 𝑋 , assuming 𝑠 ≥ 0.

Proof: Observe that
𝑒−𝑡 ≤ 1,

for all non-negative values of 𝑡. Since 𝑠 ≥ 0, it follows that

𝑒−𝑠𝑡 =
(
𝑒−𝑡

)𝑠 ≤ 1.

Thus:

𝑋 (𝑠) =
∫ ∞

0
𝑒−𝑠𝑡 𝑓𝑋 (𝑡)𝑑𝑡 ≤

∫ ∞

0
1 · 𝑓𝑋 (𝑡)𝑑𝑡 = 1. ■
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Question: Why don’t we use the z-transform for continuous random variables?

Answer: We could, in theory. It just looks uglier. Consider, for example, the
z-transform of 𝑋 ∼ Exp(𝜆):

𝑋 (𝑧) = E
[
𝑧𝑋

]
=

∫ ∞

𝑡=0
𝑧𝑡 · 𝜆𝑒−𝜆𝑡𝑑𝑡.

This doesn’t look fun to integrate! However, it can be done, if we first express 𝑧𝑡
as 𝑒𝑡 ln 𝑧 . Try it!

11.4 Getting Moments: Onion Peeling

Once we have created the onion corresponding to r.v., 𝑋 , we can “peel its layers”
to extract the moments of 𝑋 .

Theorem 11.8 (Onion peeling) Let 𝑋 be a non-negative, continuous r.v. with
p.d.f. 𝑓𝑋 (𝑡), 𝑡 ≥ 0. Then:

𝑋 ′ (𝑠)
���
𝑠=0

= −E [𝑋]

𝑋 ′′ (𝑠)
���
𝑠=0

= E
[
𝑋2]

𝑋 ′′′ (𝑠)
���
𝑠=0

= −E
[
𝑋3]

𝑋 ′′′′ (𝑠)
���
𝑠=0

= E
[
𝑋4]

...

Note: If the above moments are not defined at 𝑠 = 0, one can instead consider
the limit as 𝑠→ 0.

Example 11.9 (Higher moments of Exponential) Derive the 𝑘th moment of
𝑋 ∼ Exp(𝜆):

𝑋 (𝑠) = 𝜆

𝜆 + 𝑠 = 𝜆(𝜆 + 𝑠)−1

𝑋 ′ (𝑠) = −𝜆(𝜆 + 𝑠)−2 =⇒ E [𝑋] = 1
𝜆

𝑋 ′′ (𝑠) = 2𝜆(𝜆 + 𝑠)−3 =⇒ E
[
𝑋2] = 2

𝜆2

𝑋 ′′′ (𝑠) = −3!𝜆(𝜆 + 𝑠)−4 =⇒ E
[
𝑋3] = 3!

𝜆3



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

202 11 Laplace Transforms

We can show via induction that:

E
[
𝑋 𝑘

]
=
𝑘!
𝜆𝑘

.

Proof: [Theorem 11.8] Below we provide a sketch of the proof argument. A
more compact version of this proof is given in Exercise 11.3. However, for now
we choose to write it out this way so that you can visualize exactly how the
moments “pop” out of the transform when it’s differentiated.

We start with the Taylor series expansion of 𝑒−𝑠𝑡 :

𝑒−𝑠𝑡 = 1 − (𝑠𝑡) + (𝑠𝑡)
2

2!
− (𝑠𝑡)

3

3!
+ (𝑠𝑡)

4

4!
− · · ·

𝑒−𝑠𝑡 𝑓 (𝑡) = 𝑓 (𝑡) − (𝑠𝑡) 𝑓 (𝑡) + (𝑠𝑡)
2

2!
𝑓 (𝑡) − (𝑠𝑡)

3

3!
𝑓 (𝑡) + (𝑠𝑡)

4

4!
𝑓 (𝑡) − · · ·∫ ∞

0
𝑒−𝑠𝑡 𝑓 (𝑡)𝑑𝑡 =

∫ ∞

0
𝑓 (𝑡)𝑑𝑡 −

∫ ∞

0
(𝑠𝑡) 𝑓 (𝑡)𝑑𝑡 +

∫ ∞

0

(𝑠𝑡)2
2!

𝑓 (𝑡)𝑑𝑡 − · · ·

𝑋 (𝑠) = 1 − 𝑠E [𝑋] + 𝑠
2

2!
E

[
𝑋2

]
− 𝑠

3

3!
E

[
𝑋3

]
+ 𝑠

4

4!
E

[
𝑋4

]
− 𝑠

5

5!
E

[
𝑋5

]
+ · · ·

𝑋′ (𝑠) = −E [𝑋] + 𝑠E
[
𝑋2

]
− 1

2!
𝑠2E

[
𝑋3

]
+ 1

3!
𝑠3E

[
𝑋4

]
− 1

4!
𝑠4E

[
𝑋5

]
+ · · ·

𝑋′ (0) = −E [𝑋] ✓

𝑋′′ (𝑠) = E
[
𝑋2

]
− 𝑠E

[
𝑋3

]
+ 1

2!
𝑠2E

[
𝑋4

]
− 1

3!
𝑠3E

[
𝑋5

]
+ · · ·

𝑋′′ (0) = E
[
𝑋2

]
✓

𝑋′′′ (𝑠) = −E
[
𝑋3

]
+ 𝑠E

[
𝑋4

]
− 1

2!
𝑠2E

[
𝑋5

]
+ · · ·

𝑋′′′ (0) = −E
[
𝑋3

]
✓

And so on ... ■

Question: At this point, you might be wondering why we don’t define the Laplace
transform of 𝑋 to be E

[
𝑒𝑠𝑋

]
, rather than E

[
𝑒−𝑠𝑋

]
. What would be the pros and

cons of using E
[
𝑒𝑠𝑋

]
?
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Answer: On the plus side, using E
[
𝑒𝑠𝑋

]
would obviate the need for the alter-

nating negative signs. On the minus side, we would not have the convergence
guarantee from Theorem 11.7.

As in the case of z-transforms, we will assume that the Laplace transform (when
it converges) uniquely determines the distribution.

11.5 Linearity of Transforms

Just as we had a linearity theory for z-transforms, we have a similar result for
Laplace transforms. Again, the random variables need to be independent!

Theorem 11.10 (Linearity) Let 𝑋 and 𝑌 be continuous, non-negative, inde-
pendent random variables. Let 𝑍 = 𝑋 + 𝑌 . Then,

𝑍 (𝑠) = 𝑋 (𝑠) · 𝑌 (𝑠).

Proof:

𝑍 (𝑠) = E
[
𝑒−𝑠𝑍

]
= E

[
𝑒−𝑠 (𝑋+𝑌 )

]
= E

[
𝑒−𝑠𝑋 · 𝑒−𝑠𝑌

]
= E

[
𝑒−𝑠𝑋

]
· E

[
𝑒−𝑠𝑌

]
(because 𝑋 ⊥ 𝑌 )

= 𝑋 (𝑠) · 𝑌 (𝑠). ■

11.6 Conditioning

Conditioning also holds for Laplace transforms, just as it held for z-transforms:

Theorem 11.11 Let 𝑋 , 𝐴, and 𝐵 be continuous random variables where

𝑋 =

{
𝐴 w/prob 𝑝
𝐵 w/prob 1 − 𝑝 .

Then,
𝑋 (𝑠) = 𝑝 · 𝐴(𝑠) + (1 − 𝑝) · 𝐵(𝑠).
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Proof:

𝑋 (𝑠) = E
[
𝑒−𝑠𝑋

]
= E

[
𝑒−𝑠𝑋

�� 𝑋 = 𝐴
]
· 𝑝 + E

[
𝑒−𝑠𝑋

�� 𝑋 = 𝐵
]
· (1 − 𝑝)

= 𝑝E
[
𝑒−𝑠𝐴

]
+ (1 − 𝑝)E

[
𝑒−𝑠𝐵

]
= 𝑝𝐴(𝑠) + (1 − 𝑝)𝐵(𝑠). ■

Theorem 11.12 is a generalization of Theorem 11.11, where we condition not
just on two options, but a continuum of options. Theorem 11.12 is useful when
you have a r.v. that depends on the value of another r.v.

Theorem 11.12 Let 𝑌 be a non-negative continuous r.v., and let 𝑋𝑌 be a
continuous r.v. that depends on 𝑌 . Then, if 𝑓𝑌 (𝑦) denotes the p.d.f. of 𝑌 , we
have that

𝑋𝑌 (𝑠) =
∫ ∞

𝑦=0
𝑋𝑦 (𝑠) 𝑓𝑌 (𝑦)𝑑𝑦.

Proof: Observe that it is the fact that a transform is just an expectation that allows
us to do the conditioning below:

𝑋𝑌 (𝑠) = E
[
𝑒−𝑠𝑋𝑌

]
=

∫ ∞

𝑦=0
E

[
𝑒−𝑠𝑋𝑌

��𝑌 = 𝑦
]
· 𝑓𝑌 (𝑦)𝑑𝑦

=

∫ ∞

𝑦=0
E

[
𝑒−𝑠𝑋𝑦

]
· 𝑓𝑌 (𝑦)𝑑𝑦

=

∫ ∞

𝑦=0
𝑋𝑦 (𝑠) · 𝑓𝑌 (𝑦)𝑑𝑦. ■

An example of where Theorem 11.12 is used is given in Exercise 11.13. We will
see many more examples when we get to later chapters on stochastic processes.

11.7 Combining Laplace and z-Transforms

Consider again the sum of a random number of random variables, similarly
to what we did in Chapter 6, but this time where the random variables being
summed are continuous.
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Theorem 11.13 (Summing a random number of i.i.d. random variables)
Let 𝑋1, 𝑋2, 𝑋3, . . . be i.i.d. continuous random variables, where 𝑋𝑖 ∼ 𝑋 . Let 𝑁
be a positive discrete r.v., where 𝑁 ⊥ 𝑋𝑖 for all 𝑖. Let

𝑆 =

𝑁∑︁
𝑖=1

𝑋𝑖 .

Then,

𝑆(𝑠) = 𝑁
(
𝑋 (𝑠)

)
,

that is, the 𝑧 parameter of 𝑁 (𝑧) has been replaced by 𝑋 (𝑠).

Example 11.14 (Transform of a Poisson number of i.i.d. Exponentials)
Derive the Laplace transform of a Poisson(𝜆) number of i.i.d. Exp(𝜇) random
variables.

Recall that for 𝑁 ∼ Poisson(𝜆) we have that 𝑁 (𝑧) = 𝑒−𝜆(1−𝑧) . Recall likewise
that for 𝑋 ∼ Exp(𝜇) we have that

𝑋 (𝑠) = 𝜇

𝑠 + 𝜇 .

From this it follows that

𝑆(𝑠) = 𝑁 (𝑋 (𝑠)) = 𝑒−𝜆(1−𝑧)
���
𝑧=

𝜇

𝑠+𝜇
= 𝑒
−𝜆

(
1− 𝜇

𝑠+𝜇

)
= 𝑒
− 𝜆𝑠

𝑠+𝜇 .

Proof: (Theorem 11.13) Let 𝑆(𝑠 | 𝑁 = 𝑛) denote the Laplace transform of 𝑆
given 𝑁 = 𝑛. By Theorem 11.10, 𝑆(𝑠 | 𝑁 = 𝑛) =

(
𝑋 (𝑠)

)𝑛
. By conditioning,

𝑆(𝑠) =
∞∑︁
𝑛=0

P {𝑁 = 𝑛} 𝑆(𝑠 | 𝑁 = 𝑛) =
∞∑︁
𝑛=0

P {𝑁 = 𝑛}
(
𝑋 (𝑠)

)𝑛
= 𝑁

(
𝑋 (𝑠)

)
. ■

11.8 One Final Result on Transforms

Normally we look at the Laplace transform of the p.d.f., but we could also ask
about the Laplace transform of an arbitrary function. Theorem 11.15 considers
the Laplace transform of the cumulative distribution function (c.d.f.) and relates
that to the Laplace transform of the p.d.f.
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Theorem 11.15 Let 𝐵(𝑥) be the c.d.f. corresponding to p.d.f. 𝑏(𝑡), where 𝑡 ≥ 0.
That is,

𝐵(𝑥) =
∫ 𝑥

0
𝑏(𝑡)𝑑𝑡.

Let

𝑏̃(𝑠) = 𝐿𝑏 (𝑡 ) (𝑠) =
∫ ∞

0
𝑒−𝑠𝑡𝑏(𝑡)𝑑𝑡.

Let

𝐵(𝑠) = 𝐿𝐵(𝑥 ) (𝑠) =
∫ ∞

0
𝑒−𝑠𝑥𝐵(𝑥)𝑑𝑥 =

∫ ∞

0
𝑒−𝑠𝑥

∫ 𝑥

0
𝑏(𝑡)𝑑𝑡𝑑𝑥.

Then,

𝐵(𝑠) = 𝑏̃(𝑠)
𝑠

.

Proof: The proof is just a few lines. See Exercise 11.4. ■

11.9 Exercises

11.1 Conditioning practice
Let 𝑋1 ∼ Exp(𝜇1). Let 𝑋2 ∼ Exp(𝜇2). Assume 𝑋1 ⊥ 𝑋2. Let

𝑋 =


𝑋1 w/prob 1

2
𝑋1 + 𝑋2 w/prob 1

3
1 w/prob 1

6

.

What is 𝑋 (𝑠)?

11.2 Effect of doubling
Let 𝑋 ∼ Exp(𝜆). Let 𝑌 = 2𝑋 . What is 𝑌 (𝑠)?

11.3 Compact proof of onion peeling
In this problem we provide a more compact proof of Theorem 11.8. Let
𝑋 be a non-negative, continuous r.v. with p.d.f. 𝑓𝑋 (𝑡), 𝑡 ≥ 0. Prove that:

𝑑𝑘

𝑑𝑠𝑘
𝑋 (𝑠)

����
𝑠=0

= (−1)𝑘E
[
𝑋 𝑘

]
.

[Hint: Bring the derivative into the integral of 𝑋 (𝑠) and simplify.]

11.4 Relating the transform of the c.d.f. to the transform of the p.d.f.
Prove Theorem 11.15.
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11.5 Inverting the transform
You are given that the Laplace transform of r.v. 𝑋 is:

𝑋 (𝑠) = 3𝑒−3𝑠

3 + 4𝑠 + 𝑠2 .

How is 𝑋 distributed? You can express 𝑋 in terms of other random
variables.

11.6 Two species of onions
We have defined two types of onions: the z-transform and the Laplace
transform. Show that these are actually the same. Let 𝑋 be a r.v.
(a) Show that 𝑋 (𝑠) becomes 𝑋 (𝑧) when 𝑠 is a particular function of 𝑧.
(b) Show that 𝑋 (𝑧) becomes 𝑋 (𝑠) when 𝑧 is a particular function of 𝑠.

11.7 Sum of Geometric number of Exponentials
Let 𝑁 ∼ Geometric(𝑝). Let 𝑋𝑖 ∼ Exp(𝜇), where the 𝑋𝑖’s are independent.
Let 𝑆𝑁 =

∑𝑁
𝑖=1 𝑋𝑖 . Use transforms to prove that 𝑆𝑁 is Exponentially

distributed and derive the rate of 𝑆𝑁 .

11.8 Downloading files
You need to download two files: file 1 and file 2. File 1 is available via
source A or source B. File 2 is available only via source C. The time to
download file 1 from source A is Exponentially distributed with rate 1.
The time to download file 1 from source B is Exponentially distributed
with rate 2. The time to download file 2 from source C is Exponentially
distributed with rate 3. All of these download times are independent. You
decide to download from all three sources simultaneously, in the hope
that you get both file 1 and file 2 as soon as possible. Let 𝑇 denote the
time until you get both files. What is 𝑇 (𝑠)?

11.9 Two-sided Laplace transform: Normal distribution
In the case where a distribution can take on negative values, we define the
Laplace transform as follows: Let 𝑋 be a r.v. with p.d.f. 𝑓 (𝑡),−∞ < 𝑡 < ∞:

𝑋 (𝑠) = 𝐿 𝑓 (𝑠) =
∫ ∞

−∞
𝑒−𝑠𝑡 𝑓 (𝑡)𝑑𝑡.

Let 𝑋 ∼ Normal(0, 1) be the standard Normal. Prove that

𝑋 (𝑠) = 𝑒 𝑠2
2 . (11.1)

Note: More generally, if 𝑋 ∼ Normal(𝜇,𝜎2), then

𝑋 (𝑠) = 𝑒−𝑠𝜇+ 1
2 𝑠

2𝜎2
. (11.2)

You only need to prove (11.1).



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

208 11 Laplace Transforms

11.10 Sum of two Normals
Let 𝑋 ∼ Normal(𝜇𝑥 ,𝜎2

𝑥). Let 𝑌 ∼ Normal(𝜇𝑦 ,𝜎2
𝑦). Assume 𝑋 ⊥ 𝑌 .

Derive the distribution of 𝑋 + 𝑌 . First try doing this without Laplace
transforms. After you give up, use Laplace transforms, specifically (11.2).

11.11 Those tricky interview questions
Let 𝑋 ,𝑌 ∼ Normal(0, 1) be i.i.d. random variables. Derive P {𝑋 < 3𝑌 }.

11.12 Heuristic proof of Central Limit Theorem (CLT) via transforms
You will derive a heuristic proof of the CLT. Let 𝑋1, 𝑋2, . . . be a sequence
of i.i.d. non-negative random variables, each with distribution 𝑋 and mean
𝜇 and variance 𝜎2. CLT says that the distribution of

𝑋1 + 𝑋2 + · · · + 𝑋𝑛 − 𝑛𝜇
𝜎
√
𝑛

(11.3)

tends to the standard Normal as 𝑛→∞. Specifically,

P
{
𝑋1 + 𝑋2 + · · · + 𝑋𝑛 − 𝑛𝜇

𝜎
√
𝑛

≤ 𝑎
}
→ 1
√

2𝜋

∫ 𝑎

−∞
𝑒−𝑥

2/2𝑑𝑥, as 𝑛→∞.

We’ll show that the Laplace transform of (11.3) (roughly) converges to
that of the standard Normal (11.1), hence the underlying distributions are
the same. Let

𝑆 =
𝑋1 + 𝑋2 + · · · + 𝑋𝑛√

𝑛
.

(a) Start with the case where 𝜇 = 0 and 𝜎2 = 1.
(i) Show that

𝑆(𝑠) ≈
(
1 − 𝑠E [𝑋]√

𝑛
+
𝑠2E

[
𝑋2]

2𝑛

)𝑛
.

(ii) Using what you know about 𝜇 and 𝜎2, show that

𝑆(𝑠) → �𝑁 (0,1) (𝑠), as 𝑛→∞.

(b) Now go back to the case where 𝜇 ≠ 0 and 𝜎2 ≠ 1.
(i) Define 𝑌𝑖 = 𝑋𝑖−𝜇

𝜎
. What are the mean and variance of 𝑌𝑖?

(ii) Based on (a), what can you say about P
{
𝑌1+···+𝑌𝑛√

𝑛
≤ 𝑎

}
?

(iii) What does (ii) tell us about P
{
𝑋1+𝑋2+···+𝑋𝑛−𝑛𝜇

𝜎
√
𝑛

≤ 𝑎
}
?

11.13 Random variable with random parameters
The time until a light bulb burns out is Exponentially distributed with
mean somewhere between 1

2 year and 1 year. We model the lifetime using
r.v. 𝑋𝑌 where 𝑋𝑌 ∼ Exp(𝑌 ) and 𝑌 ∼ Uniform(1, 2). Derive 𝑋𝑌 (𝑠).


