
Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

10 Heavy Tails: The
Distributions of Computing

We have studied several common continuous distributions: the Uniform, the

Exponential, and the Normal. However, if we turn to computer science quantities,

such as file sizes, job CPU requirements, IP flow times, and so on, we find that

none of these are well represented by the continuous distributions that we’ve

studied so far. To understand the type of distributions that come up in computer

science, it’s useful to start with a story. This chapter is a story of my own

experience in studying UNIX jobs in the mid-1990s, as a PhD student at U.C.

Berkeley. Results of this research are detailed in [37, 38]. The story serves as both

an introduction to empirical measurements of computer workloads and as a case

study of how a deeper understanding of computer workloads can inform computer

system design. We end with results from 2020 measurements of workloads at

Google from [72].

10.1 Tales of Tails

Back in the early 1990s, I was a PhD student happily studying computer science

theory. Like many others in the theory area, I had avoided taking my graduate

operating systems requirement for as long as possible. When I finally got up

the guts to walk into the graduate operating systems class, I looked up at the

blackboard (Figure 10.1) and thought, “Hmm ... maybe this isn’t going to be so

bad.”

Figure 10.1 The blackboard in my operating systems class.

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

182 10 Heavy Tails: The Distributions of Computing

Sadly the professor wasn’t referring to complexity theory. Instead, he was re-

ferring to migration for the purpose of CPU load balancing in a Network of

Workstations – at U.C. Berkeley this project was coined the “N.O.W. project”

[4]. The idea in CPU load balancing is that CPU-bound jobs (processes) might

benefit from being migrated from a heavily loaded workstation to a more lightly

loaded workstation (Figure 10.2).

Switch

Heavily

loaded

Heavily

loaded

Lightly

loaded

Lightly

loaded

Lightly

loaded

Figure 10.2 “Network of Workstations.” CPU load balancing migrates jobs from heavily

loaded workstations to lightly loaded ones.

CPU load balancing is still important in today’s networks of servers. It is not

free, however: Migration can be expensive if the job has a lot of “state” that

has to be migrated with it (e.g., lots of open files associated with the job), as is

common for jobs that have been running for a while. A job that has accrued a lot

of state might not be worth migrating.

There are two types of migration used in load balancing techniques:

NP – non-preemptive migration This is migration of newborn jobs only – also

called initial placement or remote execution, where you don’t migrate a

job once it has started running.

P – preemptive migration This is migration of jobs that are already active

(running) – also referred to as active process migration.

In the mid-1990s it was generally accepted that migrating active processes was a

bad idea, because of their high migration cost. Except for one or two experimental

operating systems, like MOSIX [6], people only migrated newborn jobs.

First, some important terminology used in CPU load balancing:

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

10.2 Increasing versus Decreasing Failure Rate 183

Definition 10.1 A job’s size (a.k.a. lifetime) refers to the job’s total CPU

requirement (measured in seconds or CPU cycles). A job’s age refers to its

total CPU usage thus far (also measured in seconds or CPU cycles). A job’s

remaining size (a.k.a. remaining lifetime) refers to its remaining CPU re-

quirement.

What we really want to know is a job’s remaining lifetime. If the job has a high

remaining CPU requirement, then it may pay to migrate the job, even if it has

accumulated a lot of state, because the job will get to spend its long remaining

lifetime on a lightly loaded machine. Sadly, we do not know a job’s remaining

lifetime, just its current CPU age.

What we’re interested in is the tail of the job size, that is, P {Size > G}. More

specifically, we want to understand the conditional remaining lifetime given an

age 0:

P
{

Size > G + 0
�

� Size > 0
}

.

Question: Suppose we have two jobs, one with age 2 seconds and the other with

age 100 seconds, as in Figure 10.3. Which job is likely to have greater remaining

lifetime?

Age 2 seconds Age 100 seconds

Figure 10.3 Which job has greater remaining lifetime?

Answer: We’ll find out soon ...

10.2 Increasing versus Decreasing Failure Rate

The obvious question is, then, “How are UNIX job CPU lifetimes distributed?”

The common wisdom at the time, backed up by many research papers, suggested

that UNIX job CPU lifetimes were Exponentially distributed.

Question: If UNIX job lifetimes are Exponentially distributed, what does that

tell us about the question in Figure 10.3?

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

184 10 Heavy Tails: The Distributions of Computing

Answer: Recall from Section 7.1 that if Size is Exponentially distributed, then,

by the memoryless property,

P
{

Size > G + 0
�

� Size > 0
}

= P {Size > G} .

Thus the conditional remaining lifetime is independent of the current age. This

says that newborn jobs and older (active) jobs have the same expected remaining

lifetime. Hence, since newborn jobs are much cheaper to migrate, it makes sense

to favor migrating the newborn jobs and ignore the older jobs (NP beats P!).

One can imagine, however, that P
{

Size > G + 0
�

� Size > 0
}

might not be inde-

pendent of 0 but rather might either decrease with 0 or might increase with

0.

If P
{

Size > G + 0
�

� Size > 0
}

decreases with 0, we call that increasing failure

rate or increasing hazard rate. This is not a typo! The term “failure rate” refers

to the probability that the job terminates. So we’re saying that the older a job

is, the sooner it will terminate, that is, the lower its probability of running an

additional G seconds. Likewise, if P
{

Size > G + 0
�

� Size > 0
}

increases with 0,

we say that the Size has decreasing failure rate or decreasing hazard rate.

Colloquially, increasing failure rate says, “the older you are, the sooner you’ll

die,” while decreasing failure rate says “the older you are, the longer you’ll live.”

Question: What are some real-world examples of random variables with increas-

ing failure rate?

Answer: Here are a few:

• the lifetime of a car;

• the lifetime of a washing machine;

• the lifetime of a person.

Actually, almost anything you think of will have increasing failure rate. Aging

leads to failing (ending) sooner.

Question: What are some real-world examples of random variables with de-

creasing failure rate?

Answer: This is a lot harder to think about because we’re looking for an example

where older is better in the sense of lasting longer. Here are some examples:

• The lifetime of a friendship. Generally, the longer you’ve been friends with

someone, the longer you’re likely to continue to be friends.

• The time you’ve lived in your home. If you’ve lived in your home for many

years, you’re more likely to continue to stay there.

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

10.2 Increasing versus Decreasing Failure Rate 185

To make the concept of failure rate more precise, we define the failure rate

function.

Definition 10.2 Given a continuous random variable (r.v.) - with probability

density function (p.d.f.) 5- (C) and tail �- (C) = P {- > C}, the failure rate

function, A- (C), for - is:

A- (C) ≡
5- (C)
�- (C)

.

Question: A- (C) looks like a conditional density function. What is that density?

Answer: If we write �- (C) = P {- > C} = P {- ≥ C}, then we can see that:

A- (C) =
5- (C)
�- (C)

= 5- |-≥C (C).

This is the density that - = C given that - ≥ C.

To further interpret A- (C), consider the probability that a C-year-old item will fail

during the next 3C seconds:

P {- ∈ (C, C + 3C) | - > C} = P {- ∈ (C, C + 3C)}
P {- > C}

≈ 5- (C) · 3C
�- (C)

= A-(C) · 3C.

Thus, A- (C) represents the instantaneous failure rate of a C-year-old item, whose

lifetime distribution is - .

Definition 10.3 If A- (C) is strictly decreasing in C, we say that - has decreasing

failure rate; if A- (C) is strictly increasing in C, we say that - has increasing

failure rate.

In general, A-(C) is not necessarily going to always decrease with C or increase

with C; it’s common that A- (C) is decreasing for some C and increasing for others.

Question: Suppose A- (C) is constant. What do you know about -?

Answer: In Exercise 10.2, we prove that - must be Exponentially distributed.

Before we leave our discussion of the Exponential distribution, let’s recall the

notion of the squared coefficient of variation of a r.v. - . By Definition 5.6, this

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

186 10 Heavy Tails: The Distributions of Computing

is

�2
- =

Var(-)
E [-]2

and represents the normalized variance. It is the metric of choice for systems

measurements because it is scale invariant.

Question: What is �2
-

, when - ∼ Exp(_)?

Answer: 1.

10.3 UNIX Process Lifetime Measurements

If UNIX process lifetimes (sizes) are Exponentially distributed, then there is

no benefit to active process migration: all jobs have the remaining lifetime

distribution, regardless of their age.

Refusing to believe that there were no benefits to active process migration, I

decided to measure the distributionof job lifetimes. I collected the CPU lifetimes

of millions of UNIX jobs on a wide range of different machines, including

instructional, research, and administrative machines, over the course of many

months, including only jobs whose size exceeded 1 second. Figure 10.4 shows

the tail of my measured distribution.

At first glance Figure 10.4 looks like an Exponential distribution,

�Size(G) = 4−_G.

But on closer examination you can see that it’s not Exponential.

Question: How can you tell that job sizes are not Exponentially distributed?

32168421
x seconds

P{Job size > x}

½

¼
¹⁄8

¹⁄16

1

Figure 10.4 Plot of measured distribution, �- (G) = P {Job size > G}, where G ≥ 1.

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

10.4 Properties of the Pareto Distribution 187

Answer: For an Exponential distribution, the fraction of jobs remaining should

drop by a constant factor with each unit increase in G (constant failure rate). In

Figure 10.4, we see that the fraction of jobs remaining decreases by a slower

and slower rate as we increase G (decreasing failure rate). In fact, looking at the

graph, we see that if we start with jobs of CPU age 1 second, half of them make

it to 2 seconds. Of those that make it to 2 seconds, half of those make it to 4

seconds. Of those that make it to 4 seconds, half of those make it to 8 seconds,

and so on.

To see the distribution more easily it helps to view it on a log-log plot, as shown

in Figure 10.5. The bumpy line shows the data, and the straight line is the best

curve-fit. From Figure 10.5 it is apparent that the tail of the distribution of job

lifetimes decays like 1
G
. That is, the distribution is well approximated by

P {Size > G} = 1

G
, G ≥ 1.

x seconds

1

1 2 4 8 16 32 64

P{Job size > x}

½

¼

¹⁄8

¹⁄16

¹⁄32

¹⁄64

Figure 10.5 Log-log plot of measured distribution, �- (G) = P {Job size > G},
G ≥ 1.

10.4 Properties of the Pareto Distribution

It turns out that the distribution that I had measured has a name in economic

theory. It is called the Pareto distribution, or “power-law distribution,” and is

named after Vilfredo Pareto, who was an economist in the early 1900s.

Definition 10.4 We say that - follows a Pareto distribution with parameter

U, written - ∼ Pareto(U), if

�- (G) = P {- > G} = G−U , for G ≥ 1,

where 0 < U < 2.

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

188 10 Heavy Tails: The Distributions of Computing

Question: So job sizes are distributed as Pareto(U = 1). What does this say

about E [Size]? Also, does the job size distribution exhibit increasing failure

rate, or decreasing failure rate, or neither?

Answer:

It’s easy to see that E [Size] = ∞ and that the failure rate is decreasing. We

derive this below for general 0 < U < 2.

Let - ∼ Pareto(U). Then:

�- (G) = P {- > G} = G−U , G ≥ 1

⇒ �- (G) = P {- < G} = 1 − G−U , G ≥ 1

⇒ 5- (G) =
3�- (G)
3G

= UG−U−1 , G ≥ 1

⇒ A-(G) =
5- (G)
�- (G)

=
UG−U−1

G−U
=
U

G
, G ≥ 1.

Because A-(G) =
U
G

decreases with G, the Pareto distribution has decreasing

failure rate (DFR). Thus the older a job is (the more CPU it has used up so far),

the greater its probability of using another second of CPU.

The Pareto(U = 1) distribution has an interesting doubling property.

Question: Given that Job size ∼ Pareto(U = 1), what is the probability that a

job of age C > 1 survives to age ≥ 2C?

Answer:

P {Size > 2C | Size ≥ C} =
1
2C

1
C

=
1

2
.

Question: For - ∼ Pareto(U), with 0 < U ≤ 1, what are the moments of -?

Answer: The calculations are straightforward, by integration over the density

function. It is easy to see that all moments are infinite.

Question: For - ∼ Pareto(U), with 1 < U < 2, what are the moments of -?

Answer: The mean of - is now finite. Higher moments are still infinite.

But something doesn’t seem right here. How can our distribution of job sizes

have infinite mean? Although the data fits a Pareto(U = 1) distribution very

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

10.6 Heavy Tails 189

well, the moments of job size are still finite. To see this we need to introduce the

Bounded-Pareto distribution.

10.5 The Bounded-Pareto Distribution

When fitting a curve to measured (empirical) data, the data has a minimum job

lifetime, : , and a maximum job lifetime, ?. In particular, the measured data has

finite moments, not infinite ones. To model the empirical data, we therefore want

a distribution with a Pareto shape, but that has been truncated between : and ?.

We refer to such a distribution as a Bounded-Pareto distribution.

Definition 10.5 The Bounded-Pareto(: , ?,U) distribution has density func-

tion

5 (G) = UG−U−1 · : U

1 −
(

:
?

) U ,

for : ≤ G ≤ ? and 0 < U < 2.

The factor :U

1−(:/?)U in Definition 10.5 is a normalization factor needed to make

the integral of the density function between : and ? come out to 1. For the

Bounded-Pareto distribution, obviously all of the moments are finite.

For the UNIX job sizes that I measured, the squared coefficient of variation,

�2, was finite, ranging between �2
= 25 and �2

= 49, which was considered

extremely high in the 1990s.

10.6 Heavy Tails

The following are three properties of the Pareto distribution:

1. Decreasing failure rate (DFR) – The more CPU you have used so far, the

more you will continue to use.

2. Infinite variance

3. “Heavy-tail property” – A minuscule fraction of the very largest jobs com-

prise 50% of the total system load. (Note that this is much more biased than

the often quoted 80–20 rule.)

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

190 10 Heavy Tails: The Distributions of Computing

The “heavy-tail property” comes up in many other settings. For example, in

economics, when studying people’s wealth, it turns out that the richest 1% of

all people have more money between them than all the remaining 99% of us

combined. The heavy-tailed property is often referred to as “a few big elephants

(big jobs) and many, many mice (little jobs),” as illustrated in Figure 10.6. For

comparison, in an Exponential distribution, the largest 1% of the jobs comprise

only about 5% of the total demand.

Figure 10.6 Heavy-tailed property: “Elephants and mice.”

The parameter U can be interpreted as a measure of the variability of the dis-

tribution and the heavy-tailedness: U → 0 yields the most variable and most

heavy-tailed distribution, whereas U → 2 yields the least variable, and least

heavy-tailed distribution. These properties are explored in more depth in the

exercises.

These properties largely hold for the Bounded-Pareto distribution as well as

the Pareto, although clearly the Bounded-Pareto has finite moments. Also the

Bounded-Pareto cannot have strict DFR because there is an upper bound on job

size.

10.7 The Benefits of Active Process Migration

Let’s return to the original question of CPU load balancing.

Question: What does the DFR property of the Pareto distribution tell us about

whether it pays to migrate older jobs?

Answer: DFR says that the older jobs have higher expected remaining lifetimes.

This leads us to think that it may pay to migrate older jobs. Although an old

job may have a high migration cost because it has accumulated a lot of state

(memory), if the job is really old then it has a high probability of using a lot more

CPU in the future. This means that the cost of migration can be amortized over

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

10.8 From the 1990s to the 2020s 191

a very long lifetime, as the job gets to spend its long remaining lifetime running

on a lightly loaded machine.

Question: What does the heavy-tail property of the Pareto distribution tell us?

Answer: By the heavy-tail property, it is only necessary to migrate the 1%

biggest jobs, because they contain most of the work [38].

10.8 From the 1990s to the 2020s

At this point you might be wondering whether these Pareto distributions still

apply to jobs today. To answer this, we look at the jobs scheduled by the Borg

scheduler [73], which serves jobs in Google data centers.

Question: How do you imagine that jobs look different today than they did in

the 1990s?

Answer: There are many differences, but an important one is that back in the

1990s a job ran on a single CPU. The job’s size was the time it needed on a single

CPU. By contrast, the Google jobs today are all parallel jobs. We can think of a

job as holding onto a certain number of processors (CPUs) for an amount of time.

The size of a job is then measured in CPU-hours (number of CPUs occupied

times the number of hours).

Jobs today also often utilize a lot of memory (think about machine learning jobs).

We can also view the size of a job as measured in memory-unit-hours (number

of memory units times hours held).

Question: If you had to guess, would you guess that the distribution of compute

usage today is more variable or less variable than in the 1990s? Would you guess

that the distribution is more heavy-tailed or less heavy-tailed than in the 1990s?

Answer: The answer to both is “more,” but the degree to which the answer is

“more” is quite shocking.

Figure 10.7(a) shows the distributionof compute usage, and Figure 10.7(b) shows

the distribution of memory usage [72]. Because Google doesn’t like to reveal ex-

act numbers, it uses normalized units in expressing compute and memory usage.

Thus, per-job compute usage is expressed in units of NCU-hours (normalized

CPU times hours) and per-job memory usage is expressed in units of NMU-hours

(normalized memory units times hours). Note that a 100 NCU-hour job might

have consumed 100 machines for 1 hour, or 5 machines for 20 hours, or various

other combinations.

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

192 10 Heavy Tails: The Distributions of Computing

-3
10

-2
10

-1
10

0
10

-2
10

0
10

2
10

4
10

P{NCU-Hours > x}

x
-3

10

-2
10

-1
10

0
10

-2
10

0
10

2
10

4
10

P{NMU-Hours > x}

x

(a) Per-job NCU-hours (b) Per-job NMU-hours

Figure 10.7 Tail of resource usage based on a trace of millions of jobs run at Google in

May 2019 [72, 77]. NCU-hours denotes normalized CPU-hours used. NMU-hours

denotes normalized memory-unit-hours used.

The distribution for compute usage at Google’s data centers fits a Pareto(U =

0.69) distribution, which is much more heavy-tailed than what we saw in the

1990s measurements. We find that, while the mean NCU-hours used per job is

about 1.2, the variance is 33,300, which means that the squared coefficient of

variation is

�2
=

variance

mean2
= 23,000,

which is huge! The heavy-tailed property is also much more extreme than what

we saw in the 1990s: The largest (most compute-intensive) 1% of jobs comprise

about 99% of the compute load.

Memory usage follows much the same patterns as compute usage, obeying a

Pareto(U = 0.72) distribution with astronomical variability:�2 ≈ 43,000. Again

we see an extremely strong heavy-tailed property, with the top 1% of jobs

comprising 99% of the total memory usage. Memory and compute usage are

also correlated.

10.9 Pareto Distributions Are Everywhere

It is not just computing jobs that fit a heavy-tailed Pareto distribution. Pareto job

size distributions are everywhere in computer science and in nature! Here are

some more practical and interesting stories:

Web file size: Around 1996–1998, Mark Crovella, Azer Bestavros, and Paul

Barford at Boston University were measuring the sizes of files on websites. They

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

10.9 Pareto Distributions Are Everywhere 193

found that these file sizes obeyed a Pareto distribution with U ≈ 1.1. They also

found similar results for the sizes of files requested from websites. Their SURGE

web workload generator is based on these findings [7, 18, 19].

Internet node degrees: Around the same time, the three Faloutsos brothers

were observing a similar distribution when looking at the Internet topology.

They observed, for example, that most nodes have low out-degree, but a very few

nodes have very high out-degree, and the distribution of the degrees follows a

Pareto distribution. Their beautiful 1999 paper won the Sigcomm Test of Time

award [25].

IP flow durations: In 1999, Jennifer Rexford, Anees Shaikh, and Kang Shin at

AT&T were working on routing IP flows to create better load balancing. Their

goal was to reroute only 1% of the IP flows. Would that be enough? Fortunately,

their measurements showed that the number of packets in IP flows follows a

heavy-tailed Pareto distribution. Consequently, the 1% largest IP flows (those

with the most packets) contain about 50% of the bytes in all flows. By rerouting

only 1% of the flows, they were able to redistribute half the load. Their paper

appeared in Sigcomm 99 [69] and generated a large group of follow-up papers

dealing with sampling methods for how to detect which flows are large, based

on using the DFR property and the knowledge of how many packets the flow has

sent so far.

Implications for designing scheduling policies: Around this same time, my

students and I, in collaboration with Mark Crovella at Boston University, started

a project called SYNC (Scheduling Your Network Connections). The goal was

to improve the performance of web servers by changing the order in which they

scheduled their jobs to favor requests for small files over requests for large files.

Clearly favoring requests for small files over large ones would decrease mean

response time. However, people had not tried this in the past because they were

afraid that the requests for large files would “starve” or at least be treated unfairly

compared to requests for small files. Using the heavy-tailed property of web

file sizes, we were able to prove analytically and in implementation that this

fear is unfounded for the distribution of web files. The crux of the argument

is that, although short requests do go ahead of long requests, all those short

requests together make up very little load (more than half the load is in the

top 1% of long requests) and hence do not interfere noticeably with the long

requests [5, 17, 39]. In 2004, Ernst Biersack, Idris Rai, and Guillaume Urvoy-

Keller extended the SYNC results to TCP flow scheduling by exploiting the DFR

property of the Pareto distribution to discern which flows have short remaining

duration [58, 59].

Wireless session times, phone call durations, wealth, natural disasters:

There are many, many more examples of the Pareto distribution in measured

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

194 10 Heavy Tails: The Distributions of Computing

distributions involving jobs created by humans. Wireless session times have

been shown to follow a Pareto distribution [8]. Phone call durations have been

shown to follow a distribution similar to a Pareto. Human wealth follows a Pareto

distribution. Natural phenomena too follow Pareto distributions. For example,

John Doyle at Caltech has shown that the damage caused by forest fires follows

a Pareto distribution, with most forest fires causing little damage, but the largest

few forest fires causing the majority of the damage. The same property holds for

earthquakes and other natural disasters.

Given the prevalence of the Pareto distribution, there has been a great deal of

research interest in why the Pareto distribution comes up everywhere. Ideally,

we would like to prove something similar in nature to the Central Limit Theorem

(CLT), which explains the ubiquity of the Normal distribution, but this time for

the Pareto distribution. If you recall, CLT assumed that we are taking the average

of many i.i.d. random variables, each with finite variance. Suppose that we’re

taking the average of i.i.d. random variables, where these have infinite variance.

Does that lead to a different distribution than a Normal? Does it lead to a Pareto?

If you are interested in this question, and, more generally in the question of why

the Pareto distribution comes up, I recommend a book, The Fundamentals of

Heavy Tails [55].

10.10 Summary Table for Continuous Distributions

At this point, we have seen several continuous distributions. Just as we sum-

marized the mean and variance of our discrete distributions in Table 5.1, it is

worth taking the time to do the same for the continuous distributions. Table 10.1

summarizes the common continuous distributions.

10.11 Exercises

10.1 How variable is a Uniform distribution really?

The Uniform distribution feels highly variable, particularly when its end-

points are far apart. Consider - ∼ Uniform(0, 1), and assume that 1 is

large. What is �2
-

as a function of 1? Do you still think the Uniform is

highly variable?

10.2 Failure rate

Let - be a continuous random variable with p.d.f. 5- (C), C ≥ 0 and c.d.f.

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

10.11 Exercises 195

Distribution p.d.f. 5- (G) Mean Variance

Exp(_) 5- (G) = _4−_G , G ≥ 0 1
_

1
_2

Uniform(0, 1) 5- (G) = 1
1−0 , if 0 ≤ G ≤ 1 1+0

2
(1−0)2

12

Pareto(U), 0 < U < 2 5- (G) = UG−U−1, if G > 1

{

∞ if U ≤ 1
U

U−1
if U > 1

∞

Normal(`, f2) 5- (G) = 1√
2cf

4−
1
2 (G−`

f
)2

, ` f2

−∞ < G < ∞

Table 10.1 Common continuous distributions.

�- (C) = P {- < C}. We define the failure rate of - to be A- (C), where

A- (C) ≡
5- (C)
�- (C)

.

Thus, A- (C)3C represents the probability that a C-year-old item will fail in

the next 3C seconds.

(a) Prove that for the Exponential distribution the failure rate is a constant.

(b) Prove that the Exponential distribution is the only non-negative distri-

bution with constant failure rate.

10.3 Modeling distributions with low variability: the Erlang-k

The Erlang-: distribution is often used to model distributions,- , where 0 <

�2
-
< 1. An Erlang-: distribution is a sum of : Exponentially distributed

“stages.” Formally, we say that - ∼ Erlang-: (`) if

- = -1 + -2 + · · · + -:,

where the -8’s are i.i.d., with -8 ∼ Exp(:`).
(a) What is E [-]?
(b) What is Var(-)?
(c) What is �2

-
?

(d) What happens to - as : → ∞?

10.4 Hyperexponential distribution and DFR

We say that - follows a two-phase Hyperexponential distribution (written

�2) if:

- ∼
{

Exp(`1) w/prob ?

Exp(`2) w/prob 1 − ?
,

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

196 10 Heavy Tails: The Distributions of Computing

where `1 ≠ `2.

(a) Prove that the Hyperexponential distribution has DFR. [Hint: Take the

derivative of the failure rate.]

(b) Explain intuitively why the Hyperexponential has DFR.

10.5 Squared coefficient of variation for the Hyperexponential

Consider three different distributions:

(i.) - ∼ Exp(` = 1)
(ii.) - ∼ Exp(` = .01)
(iii.)

- ∼
{

Exp (1) w/prob. 0.99

Exp(` = 0.01) w/prob. 0.01
.

For each distribution:

(a) What is E [-]?
(b) What is Var(-)?
(c) What is �2

-
?

10.6 Why the Hyperexponential is good for modeling high variability

The Hyperexponential is good at modeling high-variability distributions.

To gain some intuition for why this is true, let us analyze the simple case

of a Degenerate Hyperexponential distribution, where one of the phases is

identically zero:

- ∼
{

Exp (?`) w/prob ?

0 w/prob 1 − ?
.

(a) What is E [-]?
(b) What is �2

-
?

(c) What values of �2
-

are possible?

10.7 Bounded-Pareto with negative parameter

A Pareto(U) distribution is defined with 0 < U < 2. But what happens if

you set U = −1? Let - ∼ BoundedPareto(: , ?,U), where U = −1. What is

the density function 5- (G)? What does this tell you about the distribution

of -?

10.8 The heavy-tail property

We explore three distributions for job size, all with mean 3, 000:

(a) Exponential distribution with rate 1
3,000

.

(b) BoundedPareto(: = 0.0009, ? = 1010,U = 0.5).
(c) BoundedPareto(: = 332.067, ? = 1010,U = 1.1).

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024.

10.11 Exercises 197

In each case, compute the fraction of load, @, made up by just the top

(largest) 1% of all jobs. For a non-negative job size distribution, - , with

density 5- (·),

@ =

∫

[C in top 1%] C 5- (C)3C
∫ ∞
0

C 5- (C)3C
.

Also report the size cutoff, G, defining the top 1% of jobs. It may help to

use a symbolic math package to do this calculation.

