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10 Heavy Tails: The
Distributions of Computing

We have studied several common continuous distributions: the Uniform, the
Exponential, and the Normal. However, if we turn to computer science quantities,
such as file sizes, job CPU requirements, IP flow times, and so on, we find that
none of these are well represented by the continuous distributions that we’ve
studied so far. To understand the type of distributions that come up in computer
science, it’s useful to start with a story. This chapter is a story of my own
experience in studying UNIX jobs in the mid-1990s, as a PhD student at U.C.
Berkeley. Results of this research are detailed in [37, 38]. The story serves as both
an introduction to empirical measurements of computer workloads and as a case
study of how a deeper understanding of computer workloads can inform computer
system design. We end with results from 2020 measurements of workloads at
Google from [72].

10.1 Tales of Tails

Back in the early 1990s, I was a PhD student happily studying computer science
theory. Like many others in the theory area, I had avoided taking my graduate
operating systems requirement for as long as possible. When I finally got up
the guts to walk into the graduate operating systems class, I looked up at the
blackboard (Figure 10.1) and thought, “Hmm ... maybe this isn’t going to be so
bad.”

Figure 10.1 The blackboard in my operating systems class.
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Sadly the professor wasn’t referring to complexity theory. Instead, he was re-
ferring to migration for the purpose of CPU load balancing in a Network of
Workstations – at U.C. Berkeley this project was coined the “N.O.W. project”
[4]. The idea in CPU load balancing is that CPU-bound jobs (processes) might
benefit from being migrated from a heavily loaded workstation to a more lightly
loaded workstation (Figure 10.2).
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Figure 10.2 “Network of Workstations.” CPU load balancing migrates jobs from heavily
loaded workstations to lightly loaded ones.

CPU load balancing is still important in today’s networks of servers. It is not
free, however: Migration can be expensive if the job has a lot of “state” that
has to be migrated with it (e.g., lots of open files associated with the job), as is
common for jobs that have been running for a while. A job that has accrued a lot
of state might not be worth migrating.

There are two types of migration used in load balancing techniques:

NP – non-preemptive migration This is migration of newborn jobs only – also
called initial placement or remote execution, where you don’t migrate a
job once it has started running.

P – preemptive migration This is migration of jobs that are already active
(running) – also referred to as active process migration.

In the mid-1990s it was generally accepted that migrating active processes was a
bad idea, because of their high migration cost. Except for one or two experimental
operating systems, like MOSIX [6], people only migrated newborn jobs.

First, some important terminology used in CPU load balancing:
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Definition 10.1 A job’s size (a.k.a. lifetime) refers to the job’s total CPU
requirement (measured in seconds or CPU cycles). A job’s age refers to its
total CPU usage thus far (also measured in seconds or CPU cycles). A job’s
remaining size (a.k.a. remaining lifetime) refers to its remaining CPU re-
quirement.

What we really want to know is a job’s remaining lifetime. If the job has a high
remaining CPU requirement, then it may pay to migrate the job, even if it has
accumulated a lot of state, because the job will get to spend its long remaining
lifetime on a lightly loaded machine. Sadly, we do not know a job’s remaining
lifetime, just its current CPU age.

What we’re interested in is the tail of the job size, that is, P {Size > 𝑥}. More
specifically, we want to understand the conditional remaining lifetime given an
age 𝑎:

P
{
Size > 𝑥 + 𝑎

�� Size > 𝑎
}

.

Question: Suppose we have two jobs, one with age 2 seconds and the other with
age 100 seconds, as in Figure 10.3. Which job is likely to have greater remaining
lifetime?

Age 2 seconds Age 100 seconds

Figure 10.3 Which job has greater remaining lifetime?

Answer: We’ll find out soon ...

10.2 Increasing versus Decreasing Failure Rate

The obvious question is, then, “How are UNIX job CPU lifetimes distributed?”

The common wisdom at the time, backed up by many research papers, suggested
that UNIX job CPU lifetimes were Exponentially distributed.

Question: If UNIX job lifetimes are Exponentially distributed, what does that
tell us about the question in Figure 10.3?
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Answer: Recall from Section 7.1 that if Size is Exponentially distributed, then,
by the memoryless property,

P
{
Size > 𝑥 + 𝑎

�� Size > 𝑎
}
= P {Size > 𝑥} .

Thus the conditional remaining lifetime is independent of the current age. This
says that newborn jobs and older (active) jobs have the same expected remaining
lifetime. Hence, since newborn jobs are much cheaper to migrate, it makes sense
to favor migrating the newborn jobs and ignore the older jobs (NP beats P!).

One can imagine, however, that P
{
Size > 𝑥 + 𝑎

�� Size > 𝑎
}

might not be inde-
pendent of 𝑎 but rather might either decrease with 𝑎 or might increase with
𝑎.

If P
{
Size > 𝑥 + 𝑎

�� Size > 𝑎
}

decreases with 𝑎, we call that increasing failure
rate or increasing hazard rate. This is not a typo! The term “failure rate” refers
to the probability that the job terminates. So we’re saying that the older a job
is, the sooner it will terminate, that is, the lower its probability of running an
additional 𝑥 seconds. Likewise, if P

{
Size > 𝑥 + 𝑎

�� Size > 𝑎
}

increases with 𝑎,
we say that the Size has decreasing failure rate or decreasing hazard rate.

Colloquially, increasing failure rate says, “the older you are, the sooner you’ll
die,” while decreasing failure rate says “the older you are, the longer you’ll live.”

Question: What are some real-world examples of random variables with increas-
ing failure rate?

Answer: Here are a few:

• the lifetime of a car;
• the lifetime of a washing machine;
• the lifetime of a person.

Actually, almost anything you think of will have increasing failure rate. Aging
leads to failing (ending) sooner.

Question: What are some real-world examples of random variables with de-
creasing failure rate?

Answer: This is a lot harder to think about because we’re looking for an example
where older is better in the sense of lasting longer. Here are some examples:

• The lifetime of a friendship. Generally, the longer you’ve been friends with
someone, the longer you’re likely to continue to be friends.
• The time you’ve lived in your home. If you’ve lived in your home for many

years, you’re more likely to continue to stay there.
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To make the concept of failure rate more precise, we define the failure rate
function.

Definition 10.2 Given a continuous random variable (r.v.) 𝑋 with probability
density function (p.d.f.) 𝑓𝑋 (𝑡) and tail 𝐹𝑋 (𝑡) = P {𝑋 > 𝑡}, the failure rate
function, 𝑟𝑋 (𝑡), for 𝑋 is:

𝑟𝑋 (𝑡) ≡
𝑓𝑋 (𝑡)
𝐹𝑋 (𝑡)

.

Question: 𝑟𝑋 (𝑡) looks like a conditional density function. What is that density?

Answer: If we write 𝐹𝑋 (𝑡) = P {𝑋 > 𝑡} = P {𝑋 ≥ 𝑡}, then we can see that:

𝑟𝑋 (𝑡) =
𝑓𝑋 (𝑡)
𝐹𝑋 (𝑡)

= 𝑓𝑋 |𝑋≥𝑡 (𝑡).

This is the density that 𝑋 = 𝑡 given that 𝑋 ≥ 𝑡.

To further interpret 𝑟𝑋 (𝑡), consider the probability that a 𝑡-year-old item will fail
during the next 𝑑𝑡 seconds:

P {𝑋 ∈ (𝑡, 𝑡 + 𝑑𝑡) | 𝑋 > 𝑡} = P {𝑋 ∈ (𝑡, 𝑡 + 𝑑𝑡)}
P {𝑋 > 𝑡}

≈ 𝑓𝑋 (𝑡) · 𝑑𝑡
𝐹𝑋 (𝑡)

= 𝑟𝑋 (𝑡) · 𝑑𝑡.

Thus, 𝑟𝑋 (𝑡) represents the instantaneous failure rate of a 𝑡-year-old item, whose
lifetime distribution is 𝑋 .

Definition 10.3 If 𝑟𝑋 (𝑡) is strictly decreasing in 𝑡, we say that 𝑋 has decreasing
failure rate; if 𝑟𝑋 (𝑡) is strictly increasing in 𝑡, we say that 𝑋 has increasing
failure rate.

In general, 𝑟𝑋 (𝑡) is not necessarily going to always decrease with 𝑡 or increase
with 𝑡; it’s common that 𝑟𝑋 (𝑡) is decreasing for some 𝑡 and increasing for others.

Question: Suppose 𝑟𝑋 (𝑡) is constant. What do you know about 𝑋?

Answer: In Exercise 10.2, we prove that 𝑋 must be Exponentially distributed.

Before we leave our discussion of the Exponential distribution, let’s recall the
notion of the squared coefficient of variation of a r.v. 𝑋 . By Definition 5.6, this
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is

𝐶2
𝑋 =

Var(𝑋)
E [𝑋]2

and represents the normalized variance. It is the metric of choice for systems
measurements because it is scale invariant.

Question: What is 𝐶2
𝑋

, when 𝑋 ∼ Exp(𝜆)?

Answer: 1.

10.3 UNIX Process Lifetime Measurements

If UNIX process lifetimes (sizes) are Exponentially distributed, then there is
no benefit to active process migration: all jobs have the remaining lifetime
distribution, regardless of their age.

Refusing to believe that there were no benefits to active process migration, I
decided to measure the distribution of job lifetimes. I collected the CPU lifetimes
of millions of UNIX jobs on a wide range of different machines, including
instructional, research, and administrative machines, over the course of many
months, including only jobs whose size exceeded 1 second. Figure 10.4 shows
the tail of my measured distribution.

At first glance Figure 10.4 looks like an Exponential distribution,

𝐹Size(𝑥) = 𝑒−𝜆𝑥 .

But on closer examination you can see that it’s not Exponential.

Question: How can you tell that job sizes are not Exponentially distributed?

32168421
x seconds

P{Job size > x}

½

¼
¹⁄8

¹⁄16

1

Figure 10.4 Plot of measured distribution, 𝐹𝑋 (𝑥) = P {Job size > 𝑥}, where 𝑥 ≥ 1.
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Answer: For an Exponential distribution, the fraction of jobs remaining should
drop by a constant factor with each unit increase in 𝑥 (constant failure rate). In
Figure 10.4, we see that the fraction of jobs remaining decreases by a slower
and slower rate as we increase 𝑥 (decreasing failure rate). In fact, looking at the
graph, we see that if we start with jobs of CPU age 1 second, half of them make
it to 2 seconds. Of those that make it to 2 seconds, half of those make it to 4
seconds. Of those that make it to 4 seconds, half of those make it to 8 seconds,
and so on.

To see the distribution more easily it helps to view it on a log-log plot, as shown
in Figure 10.5. The bumpy line shows the data, and the straight line is the best
curve-fit. From Figure 10.5 it is apparent that the tail of the distribution of job
lifetimes decays like 1

𝑥
. That is, the distribution is well approximated by

P {Size > 𝑥} = 1
𝑥

, 𝑥 ≥ 1.

x seconds

1
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Figure 10.5 Log-log plot of measured distribution, 𝐹𝑋 (𝑥) = P {Job size > 𝑥},
𝑥 ≥ 1.

10.4 Properties of the Pareto Distribution

It turns out that the distribution that I had measured has a name in economic
theory. It is called the Pareto distribution, or “power-law distribution,” and is
named after Vilfredo Pareto, who was an economist in the early 1900s.

Definition 10.4 We say that 𝑋 follows a Pareto distribution with parameter
𝛼, written 𝑋 ∼ Pareto(𝛼), if

𝐹𝑋 (𝑥) = P {𝑋 > 𝑥} = 𝑥−𝛼 , for 𝑥 ≥ 1,

where 0 < 𝛼 < 2.
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Question: So job sizes are distributed as Pareto(𝛼 = 1). What does this say
about E [Size]? Also, does the job size distribution exhibit increasing failure
rate, or decreasing failure rate, or neither?

Answer:

It’s easy to see that E [Size] = ∞ and that the failure rate is decreasing. We
derive this below for general 0 < 𝛼 < 2.

Let 𝑋 ∼ Pareto(𝛼). Then:

𝐹𝑋 (𝑥) = P {𝑋 > 𝑥} = 𝑥−𝛼 , 𝑥 ≥ 1

⇒ 𝐹𝑋 (𝑥) = P {𝑋 < 𝑥} = 1 − 𝑥−𝛼 , 𝑥 ≥ 1

⇒ 𝑓𝑋 (𝑥) =
𝑑𝐹𝑋 (𝑥)
𝑑𝑥

= 𝛼𝑥−𝛼−1 , 𝑥 ≥ 1

⇒ 𝑟𝑋 (𝑥) =
𝑓𝑋 (𝑥)
𝐹𝑋 (𝑥)

=
𝛼𝑥−𝛼−1

𝑥−𝛼
=
𝛼

𝑥
, 𝑥 ≥ 1.

Because 𝑟𝑋 (𝑥) = 𝛼
𝑥

decreases with 𝑥, the Pareto distribution has decreasing
failure rate (DFR). Thus the older a job is (the more CPU it has used up so far),
the greater its probability of using another second of CPU.

The Pareto(𝛼 = 1) distribution has an interesting doubling property.

Question: Given that Job size ∼ Pareto(𝛼 = 1), what is the probability that a
job of age 𝑡 > 1 survives to age ≥ 2𝑡?

Answer:

P {Size > 2𝑡 | Size ≥ 𝑡} =
1
2𝑡
1
𝑡

=
1
2

.

Question: For 𝑋 ∼ Pareto(𝛼), with 0 < 𝛼 ≤ 1, what are the moments of 𝑋?

Answer: The calculations are straightforward, by integration over the density
function. It is easy to see that all moments are infinite.

Question: For 𝑋 ∼ Pareto(𝛼), with 1 < 𝛼 < 2, what are the moments of 𝑋?

Answer: The mean of 𝑋 is now finite. Higher moments are still infinite.

But something doesn’t seem right here. How can our distribution of job sizes
have infinite mean? Although the data fits a Pareto(𝛼 = 1) distribution very
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well, the moments of job size are still finite. To see this we need to introduce the
Bounded-Pareto distribution.

10.5 The Bounded-Pareto Distribution

When fitting a curve to measured (empirical) data, the data has a minimum job
lifetime, 𝑘 , and a maximum job lifetime, 𝑝. In particular, the measured data has
finite moments, not infinite ones. To model the empirical data, we therefore want
a distribution with a Pareto shape, but that has been truncated between 𝑘 and 𝑝.
We refer to such a distribution as a Bounded-Pareto distribution.

Definition 10.5 The Bounded-Pareto(𝑘 , 𝑝,𝛼) distribution has density func-
tion

𝑓 (𝑥) = 𝛼𝑥−𝛼−1 · 𝑘𝛼

1 −
(
𝑘
𝑝

)𝛼 ,

for 𝑘 ≤ 𝑥 ≤ 𝑝 and 0 < 𝛼 < 2.

The factor 𝑘𝛼

1−(𝑘/𝑝)𝛼 in Definition 10.5 is a normalization factor needed to make
the integral of the density function between 𝑘 and 𝑝 come out to 1. For the
Bounded-Pareto distribution, obviously all of the moments are finite.

For the UNIX job sizes that I measured, the squared coefficient of variation,
𝐶2, was finite, ranging between 𝐶2 = 25 and 𝐶2 = 49, which was considered
extremely high in the 1990s.

10.6 Heavy Tails

The following are three properties of the Pareto distribution:

1. Decreasing failure rate (DFR) – The more CPU you have used so far, the
more you will continue to use.

2. Infinite variance
3. “Heavy-tail property” – A minuscule fraction of the very largest jobs com-

prise 50% of the total system load. (Note that this is much more biased than
the often quoted 80–20 rule.)
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The “heavy-tail property” comes up in many other settings. For example, in
economics, when studying people’s wealth, it turns out that the richest 1% of
all people have more money between them than all the remaining 99% of us
combined. The heavy-tailed property is often referred to as “a few big elephants
(big jobs) and many, many mice (little jobs),” as illustrated in Figure 10.6. For
comparison, in an Exponential distribution, the largest 1% of the jobs comprise
only about 5% of the total demand.

Figure 10.6 Heavy-tailed property: “Elephants and mice.”

The parameter 𝛼 can be interpreted as a measure of the variability of the dis-
tribution and the heavy-tailedness: 𝛼 → 0 yields the most variable and most
heavy-tailed distribution, whereas 𝛼 → 2 yields the least variable, and least
heavy-tailed distribution. These properties are explored in more depth in the
exercises.

These properties largely hold for the Bounded-Pareto distribution as well as
the Pareto, although clearly the Bounded-Pareto has finite moments. Also the
Bounded-Pareto cannot have strict DFR because there is an upper bound on job
size.

10.7 The Benefits of Active Process Migration

Let’s return to the original question of CPU load balancing.

Question: What does the DFR property of the Pareto distribution tell us about
whether it pays to migrate older jobs?

Answer: DFR says that the older jobs have higher expected remaining lifetimes.
This leads us to think that it may pay to migrate older jobs. Although an old
job may have a high migration cost because it has accumulated a lot of state
(memory), if the job is really old then it has a high probability of using a lot more
CPU in the future. This means that the cost of migration can be amortized over
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a very long lifetime, as the job gets to spend its long remaining lifetime running
on a lightly loaded machine.

Question: What does the heavy-tail property of the Pareto distribution tell us?

Answer: By the heavy-tail property, it is only necessary to migrate the 1%
biggest jobs, because they contain most of the work [38].

10.8 From the 1990s to the 2020s

At this point you might be wondering whether these Pareto distributions still
apply to jobs today. To answer this, we look at the jobs scheduled by the Borg
scheduler [73], which serves jobs in Google data centers.

Question: How do you imagine that jobs look different today than they did in
the 1990s?

Answer: There are many differences, but an important one is that back in the
1990s a job ran on a single CPU. The job’s size was the time it needed on a single
CPU. By contrast, the Google jobs today are all parallel jobs. We can think of a
job as holding onto a certain number of processors (CPUs) for an amount of time.
The size of a job is then measured in CPU-hours (number of CPUs occupied
times the number of hours).

Jobs today also often utilize a lot of memory (think about machine learning jobs).
We can also view the size of a job as measured in memory-unit-hours (number
of memory units times hours held).

Question: If you had to guess, would you guess that the distribution of compute
usage today is more variable or less variable than in the 1990s? Would you guess
that the distribution is more heavy-tailed or less heavy-tailed than in the 1990s?

Answer: The answer to both is “more,” but the degree to which the answer is
“more” is quite shocking.

Figure 10.7(a) shows the distribution of compute usage, and Figure 10.7(b) shows
the distribution of memory usage [72]. Because Google doesn’t like to reveal ex-
act numbers, it uses normalized units in expressing compute and memory usage.
Thus, per-job compute usage is expressed in units of NCU-hours (normalized
CPU times hours) and per-job memory usage is expressed in units of NMU-hours
(normalized memory units times hours). Note that a 100 NCU-hour job might
have consumed 100 machines for 1 hour, or 5 machines for 20 hours, or various
other combinations.
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Figure 10.7 Tail of resource usage based on a trace of millions of jobs run at Google in
May 2019 [72, 77]. NCU-hours denotes normalized CPU-hours used. NMU-hours
denotes normalized memory-unit-hours used.

The distribution for compute usage at Google’s data centers fits a Pareto(𝛼 =

0.69) distribution, which is much more heavy-tailed than what we saw in the
1990s measurements. We find that, while the mean NCU-hours used per job is
about 1.2, the variance is 33,300, which means that the squared coefficient of
variation is

𝐶2 =
variance
mean2 = 23,000,

which is huge! The heavy-tailed property is also much more extreme than what
we saw in the 1990s: The largest (most compute-intensive) 1% of jobs comprise
about 99% of the compute load.

Memory usage follows much the same patterns as compute usage, obeying a
Pareto(𝛼 = 0.72) distribution with astronomical variability:𝐶2 ≈ 43,000. Again
we see an extremely strong heavy-tailed property, with the top 1% of jobs
comprising 99% of the total memory usage. Memory and compute usage are
also correlated.

10.9 Pareto Distributions Are Everywhere

It is not just computing jobs that fit a heavy-tailed Pareto distribution. Pareto job
size distributions are everywhere in computer science and in nature! Here are
some more practical and interesting stories:

Web file size: Around 1996–1998, Mark Crovella, Azer Bestavros, and Paul
Barford at Boston University were measuring the sizes of files on websites. They
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found that these file sizes obeyed a Pareto distribution with 𝛼 ≈ 1.1. They also
found similar results for the sizes of files requested from websites. Their SURGE
web workload generator is based on these findings [7, 18, 19].

Internet node degrees: Around the same time, the three Faloutsos brothers
were observing a similar distribution when looking at the Internet topology.
They observed, for example, that most nodes have low out-degree, but a very few
nodes have very high out-degree, and the distribution of the degrees follows a
Pareto distribution. Their beautiful 1999 paper won the Sigcomm Test of Time
award [25].

IP flow durations: In 1999, Jennifer Rexford, Anees Shaikh, and Kang Shin at
AT&T were working on routing IP flows to create better load balancing. Their
goal was to reroute only 1% of the IP flows. Would that be enough? Fortunately,
their measurements showed that the number of packets in IP flows follows a
heavy-tailed Pareto distribution. Consequently, the 1% largest IP flows (those
with the most packets) contain about 50% of the bytes in all flows. By rerouting
only 1% of the flows, they were able to redistribute half the load. Their paper
appeared in Sigcomm 99 [69] and generated a large group of follow-up papers
dealing with sampling methods for how to detect which flows are large, based
on using the DFR property and the knowledge of how many packets the flow has
sent so far.

Implications for designing scheduling policies: Around this same time, my
students and I, in collaboration with Mark Crovella at Boston University, started
a project called SYNC (Scheduling Your Network Connections). The goal was
to improve the performance of web servers by changing the order in which they
scheduled their jobs to favor requests for small files over requests for large files.
Clearly favoring requests for small files over large ones would decrease mean
response time. However, people had not tried this in the past because they were
afraid that the requests for large files would “starve” or at least be treated unfairly
compared to requests for small files. Using the heavy-tailed property of web
file sizes, we were able to prove analytically and in implementation that this
fear is unfounded for the distribution of web files. The crux of the argument
is that, although short requests do go ahead of long requests, all those short
requests together make up very little load (more than half the load is in the
top 1% of long requests) and hence do not interfere noticeably with the long
requests [5, 17, 39]. In 2004, Ernst Biersack, Idris Rai, and Guillaume Urvoy-
Keller extended the SYNC results to TCP flow scheduling by exploiting the DFR
property of the Pareto distribution to discern which flows have short remaining
duration [58, 59].

Wireless session times, phone call durations, wealth, natural disasters:
There are many, many more examples of the Pareto distribution in measured
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distributions involving jobs created by humans. Wireless session times have
been shown to follow a Pareto distribution [8]. Phone call durations have been
shown to follow a distribution similar to a Pareto. Human wealth follows a Pareto
distribution. Natural phenomena too follow Pareto distributions. For example,
John Doyle at Caltech has shown that the damage caused by forest fires follows
a Pareto distribution, with most forest fires causing little damage, but the largest
few forest fires causing the majority of the damage. The same property holds for
earthquakes and other natural disasters.

Given the prevalence of the Pareto distribution, there has been a great deal of
research interest in why the Pareto distribution comes up everywhere. Ideally,
we would like to prove something similar in nature to the Central Limit Theorem
(CLT), which explains the ubiquity of the Normal distribution, but this time for
the Pareto distribution. If you recall, CLT assumed that we are taking the average
of many i.i.d. random variables, each with finite variance. Suppose that we’re
taking the average of i.i.d. random variables, where these have infinite variance.
Does that lead to a different distribution than a Normal? Does it lead to a Pareto?
If you are interested in this question, and, more generally in the question of why
the Pareto distribution comes up, I recommend a book, The Fundamentals of
Heavy Tails [55].

10.10 Summary Table for Continuous Distributions

At this point, we have seen several continuous distributions. Just as we sum-
marized the mean and variance of our discrete distributions in Table 5.1, it is
worth taking the time to do the same for the continuous distributions. Table 10.1
summarizes the common continuous distributions.

10.11 Exercises

10.1 How variable is a Uniform distribution really?
The Uniform distribution feels highly variable, particularly when its end-
points are far apart. Consider 𝑋 ∼ Uniform(0, 𝑏), and assume that 𝑏 is
large. What is 𝐶2

𝑋
as a function of 𝑏? Do you still think the Uniform is

highly variable?

10.2 Failure rate
Let 𝑋 be a continuous random variable with p.d.f. 𝑓𝑋 (𝑡), 𝑡 ≥ 0 and c.d.f.
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Distribution p.d.f. 𝑓𝑋 (𝑥) Mean Variance

Exp(𝜆) 𝑓𝑋 (𝑥) = 𝜆𝑒−𝜆𝑥 , 𝑥 ≥ 0 1
𝜆

1
𝜆2

Uniform(𝑎, 𝑏) 𝑓𝑋 (𝑥) = 1
𝑏−𝑎 , if 𝑎 ≤ 𝑥 ≤ 𝑏 𝑏+𝑎

2
(𝑏−𝑎)2

12

Pareto(𝛼), 0 < 𝛼 < 2 𝑓𝑋 (𝑥) = 𝛼𝑥−𝛼−1, if 𝑥 > 1
{
∞ if 𝛼 ≤ 1
𝛼

𝛼−1 if 𝛼 > 1 ∞

Normal(𝜇, 𝜎2) 𝑓𝑋 (𝑥) = 1√
2𝜋𝜎

𝑒−
1
2 ( 𝑥−𝜇𝜎 )

2
, 𝜇 𝜎2

−∞ < 𝑥 < ∞

Table 10.1 Common continuous distributions.

𝐹𝑋 (𝑡) = P {𝑋 < 𝑡}. We define the failure rate of 𝑋 to be 𝑟𝑋 (𝑡), where

𝑟𝑋 (𝑡) ≡
𝑓𝑋 (𝑡)
𝐹𝑋 (𝑡)

.

Thus, 𝑟𝑋 (𝑡)𝑑𝑡 represents the probability that a 𝑡-year-old item will fail in
the next 𝑑𝑡 seconds.
(a) Prove that for the Exponential distribution the failure rate is a constant.
(b) Prove that the Exponential distribution is the only non-negative distri-

bution with constant failure rate.

10.3 Modeling distributions with low variability: the Erlang-k
The Erlang-𝑘 distribution is often used to model distributions, 𝑋 , where 0 <
𝐶2
𝑋
< 1. An Erlang-𝑘 distribution is a sum of 𝑘 Exponentially distributed

“stages.” Formally, we say that 𝑋 ∼ Erlang-𝑘 (𝜇) if

𝑋 = 𝑋1 + 𝑋2 + · · · + 𝑋𝑘 ,

where the 𝑋𝑖’s are i.i.d., with 𝑋𝑖 ∼ Exp(𝑘𝜇).
(a) What is E [𝑋]?
(b) What is Var(𝑋)?
(c) What is 𝐶2

𝑋
?

(d) What happens to 𝑋 as 𝑘 →∞?

10.4 Hyperexponential distribution and DFR
We say that 𝑋 follows a two-phase Hyperexponential distribution (written
𝐻2) if:

𝑋 ∼
{

Exp(𝜇1) w/prob 𝑝
Exp(𝜇2) w/prob 1 − 𝑝 ,



Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

196 10 Heavy Tails: The Distributions of Computing

where 𝜇1 ≠ 𝜇2.
(a) Prove that the Hyperexponential distribution has DFR. [Hint: Take the

derivative of the failure rate.]
(b) Explain intuitively why the Hyperexponential has DFR.

10.5 Squared coefficient of variation for the Hyperexponential
Consider three different distributions:

(i.) 𝑋 ∼ Exp(𝜇 = 1)
(ii.) 𝑋 ∼ Exp(𝜇 = .01)

(iii.)

𝑋 ∼
{

Exp (1) w/prob. 0.99
Exp(𝜇 = 0.01) w/prob. 0.01 .

For each distribution:
(a) What is E [𝑋]?
(b) What is Var(𝑋)?
(c) What is 𝐶2

𝑋
?

10.6 Why the Hyperexponential is good for modeling high variability
The Hyperexponential is good at modeling high-variability distributions.
To gain some intuition for why this is true, let us analyze the simple case
of a Degenerate Hyperexponential distribution, where one of the phases is
identically zero:

𝑋 ∼
{

Exp (𝑝𝜇) w/prob 𝑝
0 w/prob 1 − 𝑝 .

(a) What is E [𝑋]?
(b) What is 𝐶2

𝑋
?

(c) What values of 𝐶2
𝑋

are possible?

10.7 Bounded-Pareto with negative parameter
A Pareto(𝛼) distribution is defined with 0 < 𝛼 < 2. But what happens if
you set 𝛼 = −1? Let 𝑋 ∼ BoundedPareto(𝑘 , 𝑝,𝛼), where 𝛼 = −1. What is
the density function 𝑓𝑋 (𝑥)? What does this tell you about the distribution
of 𝑋?

10.8 The heavy-tail property
We explore three distributions for job size, all with mean 3, 000:
(a) Exponential distribution with rate 1

3,000 .
(b) BoundedPareto(𝑘 = 0.0009, 𝑝 = 1010,𝛼 = 0.5).
(c) BoundedPareto(𝑘 = 332.067, 𝑝 = 1010,𝛼 = 1.1).
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In each case, compute the fraction of load, 𝑞, made up by just the top
(largest) 1% of all jobs. For a non-negative job size distribution, 𝑋 , with
density 𝑓𝑋 (·),

𝑞 =

∫
[𝑡 in top 1%] 𝑡 𝑓𝑋 (𝑡)𝑑𝑡∫ ∞

0 𝑡 𝑓𝑋 (𝑡)𝑑𝑡
.

Also report the size cutoff, 𝑥, defining the top 1% of jobs. It may help to
use a symbolic math package to do this calculation.


