Introduction to Probability
for Computing

MOR HARCHOL-BALTER

Cambridge University Press
Hllustrated by Elin Zhou

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

“Based on 20 years of teaching Computer Science and Operations Research at
Carnegie Mellon University, Professor Harchol-Balter provides a unique presen-
tation of probability and statistics that is both highly engaging and also strongly
motivated by real-world computing applications that students will encounter in
industry. This book is approachable and fun for undergraduate students, while
also covering advanced concepts relevant to graduate students.”

Eytan Modiano, Massachusetts Institute of Technology

“This book provides a fantastic introduction to probability for computer scien-
tists and computing professionals, addressing concepts and techniques crucial to
the design and analysis of randomized algorithms, to performance well-designed
simulations, to statistical inference and machine learning, and more. Also con-
tains many great exercises and examples. Highly recommend!”

Avrim Blum, Toyota Technological Institute at Chicago

“Mor Harchol-Balter’s new book does a beautiful job of introducing students
to probability! The book is full of great computer science-relevant examples,
wonderful intuition, simple and clear explanations, and mathematical rigor. I love
the question-answer style she uses, and could see using this book for students
ranging from undergraduate students with zero prior exposure to probability all
the way to graduate students (or researchers of any kind) who need to brush up
and significantly deepen (and/or broaden) their knowledge of probability.”

Anna Karlin, University of Washington

“Probability is at the heart of modeling, design, and analysis of computer systems
and networks. This book by a pioneer in the area is a beautiful introduction to the
topic for undergraduate students. The material in the book introduces theoreti-
cal topics rigorously, but also motivates each topic with practical applications.
This textbook is an excellent resource for budding computer scientists who are
interested in probability.”

R. Srikant, University of lllinois at Urbana-Champaign

“I know probability, and have taught it to undergrads and grads at MIT, UC
Berkeley, and Carnegie Mellon University. Yet this book has taught me some
wonderfully interesting important material that I did not know. Mor is a great
thinker, lecturer, and writer. I would love to have learned from this book as a
student — and to have taught from it as an instructor!”

Manuel Blum, U.C. Berkeley and Carnegie Mellon University

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Vi

To the students at CMU’s
School of Computer Science
whose curiosity and drive
inspire me every day
to keep writing.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Contents

Preface

Acknowledgments

Part |

1.1
1.2
1.3
1.4
1.5
1.6

1.7

2

21
2.2
23
24
2.5
2.6
2.7

Fundamentals and Probability on Events

Before We Start ... Some Mathematical Basics

Review of Simple Series

Review of Double Integrals and Sums
Fundamental Theorem of Calculus
Review of Taylor Series and Other Limits
A Little Combinatorics

Review of Asymptotic Notation

1.6.1 Big-O and Little-o

1.6.2 Big-Omega and Little-omega

1.6.3 Big-Theta

Exercises

Probability on Events

Sample Space and Events
Probability Defined on Events
Conditional Probabilities on Events
Independent Events

Law of Total Probability

Bayes’ Law

Exercises

Part Il Discrete Random Variables

3
3.1
3.2

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Common Discrete Random Variables
Random Variables

Common Discrete Random Variables
3.2.1 The Bernoulli(p) Random Variable
3.2.2 The Binomial(n,p) Random Variable
3.2.3 The Geometric(p) Random Variable

page xvi

XX1il

N BN

0

15
15
17
18
18

21
21
22
24
27
30
32
34

44
44
45
46
47
48

Contents ix
3.2.4 The Poisson(1) Random Variable 49
3.3 Multiple Random Variables and Joint Probabilities 50
3.4 Exercises 54
4 Expectation 58
4.1 Expectation of a Discrete Random Variable 58
4.2 Linearity of Expectation 63
4.3 Conditional Expectation 67
4.4 Computing Expectations via Conditioning 73
4.5 Simpson’s Paradox 74
4.6 Exercises 76
5 Variance, Higher Moments, and Random Sums 83
5.1 Higher Moments 83
5.2 Variance 85
5.3 Alternative Definitions of Variance 86
5.4 Properties of Variance 88
5.5 Summary Table for Discrete Distributions 91
5.6 Covariance 91
5.7 Central Moments 92
5.8 Sum of a Random Number of Random Variables 93
5.9 Tails 97
5.9.1 Simple Tail Bounds 98
5.9.2 Stochastic Dominance 99
5.10 Jensen’s Inequality 102
5.11 Inspection Paradox 104
5.12 Exercises 107
6 z-Transforms 116
6.1 Motivating Examples 116
6.2 The Transform as an Onion 117
6.3 Creating the Transform: Onion Building 118
6.4 Getting Moments: Onion Peeling 120
6.5 Linearity of Transforms 121
6.6 Conditioning 123
6.7 Using z-Transforms to Solve Recurrence Relations 124
6.8 Exercises 128
Part Il Continuous Random Variables
7 Continuous Random Variables: Single Distribution 134
7.1 Probability Density Functions 134
7.2 Common Continuous Distributions 137
7.3 Expectation, Variance, and Higher Moments 141

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

X Contents

7.4 Computing Probabilities by Conditioning on a R.V. 143
7.5 Conditional Expectation and the Conditional Density 146
7.6 Exercises 150
8 Continuous Random Variables: Joint Distributions 153
8.1 Joint Densities 153
8.2 Probability Involving Multiple Random Variables 156
8.3 Pop Quiz 160
8.4 Conditional Expectation for Multiple Random Variables 161
8.5 Linearity and Other Properties 163
8.6 Exercises 163
9 Normal Distribution 170
9.1 Definition 170
9.2 Linear Transformation Property 172
9.3 The Cumulative Distribution Function 173
9.4 Central Limit Theorem 176
9.5 Exercises 178
10 Heavy Tails: The Distributions of Computing 181
10.1 Tales of Tails 181
10.2 Increasing versus Decreasing Failure Rate 183
10.3 UNIX Process Lifetime Measurements 186
10.4 Properties of the Pareto Distribution 187
10.5 The Bounded-Pareto Distribution 189
10.6 Heavy Tails 189
10.7 The Benefits of Active Process Migration 190
10.8 From the 1990s to the 2020s 191
10.9 Pareto Distributions Are Everywhere 192
10.10 Summary Table for Continuous Distributions 194
10.11 Exercises 194
11 Laplace Transforms 198
11.1 Motivating Example 198
11.2 The Transform as an Onion 198
11.3 Creating the Transform: Onion Building 200
11.4 Getting Moments: Onion Peeling 201
11.5 Linearity of Transforms 203
11.6 Conditioning 203
11.7 Combining Laplace and z-Transforms 204
11.8 One Final Result on Transforms 205
11.9 Exercises 206

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Contents xi
Part IV Computer Systems Modeling and Simulation
12 The Poisson Process 210
12.1 Review of the Exponential Distribution 210
12.2 Relating the Exponential Distribution to the Geometric 211
12.3 More Properties of the Exponential 213
12.4 The Celebrated Poisson Process 216
12.5 Number of Poisson Arrivals during a Random Time 219
12.6 Merging Independent Poisson Processes 220
12.7 Poisson Splitting 221
12.8 Uniformity 224
12.9 Exercises 225
13 Generating Random Variables for Simulation 229
13.1 Inverse Transform Method 229
13.1.1 The Continuous Case 230
13.1.2 The Discrete Case 231
13.2 Accept-Reject Method 232
13.2.1 Discrete Case 233
13.2.2 Continuous Case 234
13.2.3 A Harder Problem 238
13.3 Readings 238
13.4 Exercises 238
14 Event-Driven Simulation 240
14.1 Some Queueing Definitions 240
14.2 How to Run a Simulation 242
14.3 How to Get Performance Metrics from Your Simulation 244
14.4 More Complex Examples 247
14.5 Exercises 249
Part V Statistical Inference
15 Estimators for Mean and Variance 255
15.1 Point Estimation 255
15.2 Sample Mean 256
15.3 Desirable Properties of a Point Estimator 256
15.4 An Estimator for Variance 259
15.4.1 Estimating the Variance when the Mean is Known 259
15.4.2 Estimating the Variance when the Mean is Unknown 259
15.5 Estimators Based on the Sample Mean 261
15.6 Exercises 263
15.7 Acknowledgment 264

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Xii Contents

16 Classical Statistical Inference

16.1 Towards More General Estimators

16.2 Maximum Likelihood Estimation

16.3 More Examples of ML Estimators

16.4 Log Likelihood

16.5 MLE with Data Modeled by Continuous Random Variables
16.6 When Estimating More than One Parameter

16.7 Linear Regression

16.8 Exercises

16.9 Acknowledgment

17 Bayesian Statistical Inference

17.1 A Motivating Example

17.2 The MAP Estimator

17.3 More Examples of MAP Estimators

17.4 Minimum Mean Square Error Estimator
17.5 Measuring Accuracy in Bayesian Estimators
17.6 Exercises

17.7 Acknowledgment

Part VI Tail Bounds and Applications

18 Tail Bounds

18.1 Markov’s Inequality

18.2 Chebyshev’s Inequality

18.3 Chernoff Bound

18.4 Chernoff Bound for Poisson Tail

18.5 Chernoff Bound for Binomial

18.6 Comparing the Different Bounds and Approximations
18.7 Proof of Chernoff Bound for Binomial: Theorem 18.4
18.8 A (Sometimes) Stronger Chernoff Bound for Binomial
18.9 Other Tail Bounds

18.10 Appendix: Proof of Lemma 18.5

18.11 Exercises

19 Applications of Tail Bounds: Confidence Intervals and
Balls and Bins
19.1 Interval Estimation
19.2 Exact Confidence Intervals
19.2.1 Using Chernoff Bounds to Get Exact Confidence Intervals
19.2.2 Using Chebyshev Bounds to Get Exact Confidence Intervals
19.2.3 Using Tail Bounds to Get Exact Confidence Intervals
in General Settings
19.3 Approximate Confidence Intervals

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

265
265
267
270
271
273
276
277
283
284

285
285
287
290
294
299
301
304

306
307
308
309
311
312
313
315
316
318
319
320

327
327
328
328
331

332
334

Contents xiii
19.4 Balls and Bins 337
19.5 Remarks on Balls and Bins 341
19.6 Exercises 341
20 Hashing Algorithms 346
20.1 What is Hashing? 346
20.2 Simple Uniform Hashing Assumption 348
20.3 Bucket Hashing with Separate Chaining 349
20.4 Linear Probing and Open Addressing 352
20.5 Cryptographic Signature Hashing 355
20.6 Remarks 360
20.7 Exercises 360
Part VI Randomized Algorithms
21 Las Vegas Randomized Algorithms 364
21.1 Randomized versus Deterministic Algorithms 364
21.2 Las Vegas versus Monte Carlo 366
21.3 Review of Deterministic Quicksort 367
21.4 Randomized Quicksort 368
21.5 Randomized Selection and Median-Finding 370
21.6 Exercises 373
22 Monte Carlo Randomized Algorithms 383
22.1 Randomized Matrix-Multiplication Checking 383
22.2 Randomized Polynomial Checking 387
22.3 Randomized Min-Cut 389
22.4 Related Readings 394
22.5 Exercises 394
23 Primality Testing 403
23.1 Naive Algorithms 403
23.2 Fermat’s Little Theorem 404
23.3 Fermat Primality Test 408
23.4 Miller—Rabin Primality Test 410
23.4.1 A New Witness of Compositeness 410
23.4.2 Logic Behind the Miller—Rabin Test 411
23.4.3 Miller-Rabin Primality Test 413
23.5 Readings 415
23.6 Appendix: Proof of Theorem 23.9 415
23.7 Exercises 417

Part VIII Discrete-Time Markov Chains

Mor Harchol-Balter. Introduction to Probability for Computing,

Cambridge University Press, 2024. Not for distribution.

Xiv Contents
24 Discrete-Time Markov Chains: Finite-State 420
24.1 Our First Discrete-Time Markov Chain 420
24.2 Formal Definition of a DTMC 421
24.3 Examples of Finite-State DTMCs 422
24.3.1 Repair Facility Problem 422
24.3.2 Umbrella Problem 423
24.3.3 Program Analysis Problem 424
24.4 Powers of P: n-Step Transition Probabilities 425
24.5 Limiting Probabilities 426
24.6 Stationary Equations 428
2477 The Stationary Distribution Equals the Limiting Distribution 429
24.8 Examples of Solving Stationary Equations 432
24.9 Exercises 433
25 Ergodicity for Finite-State Discrete-Time Markov Chains 438
25.1 Some Examples on Whether the Limiting Distribution Exists 439
25.2 Aperiodicity 441
25.3 TIrreducibility 442
25.4 Aperiodicity plus Irreducibility Implies Limiting Distribution 443
25.5 Mean Time Between Visits to a State 448
25.6 Long-Run Time Averages 450
25.6.1 Strong Law of Large Numbers 452
25.6.2 A Bit of Renewal Theory 454
25.6.3 Equality of the Time Average and Ensemble Average 455
25.7 Summary of Results for Ergodic Finite-State DTMCs 456
25.8 What If My DTMC Is Irreducible but Periodic? 456
25.9 When the DTMC Is Not Irreducible 457
25.10 An Application: PageRank 458
25.10.1 Problems with Real Web Graphs 461
25.10.2 Google’s Solution to Dead Ends and Spider Traps 462
25.10.3 Evaluation of the PageRank Algorithm and Practical
Considerations 463
25.11 From Stationary Equations to Time-Reversibility Equations 464
25.12 Exercises 469
26 Discrete-Time Markov Chains: Infinite-State 479
26.1 Stationary = Limiting 479
26.2 Solving Stationary Equations in Infinite-State DTMCs 480
26.3 A Harder Example of Solving Stationary Equations in Infinite-
State DTMCs 483
26.4 Ergodicity Questions 484
26.5 Recurrent versus Transient: Will the Fish Return to Shore? 487
26.6 Infinite Random Walk Example 490
26.7 Back to the Three Chains and the Ergodicity Question 492

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Contents XV

26.7.1 Figure 26.8(a) is Recurrent 492

26.7.2 Figure 26.8(b) is Transient 492

26.7.3 Figure 26.8(c) is Recurrent 494

26.8 Why Recurrence Is Not Enough 494
26.9 Ergodicity for Infinite-State Chains 496
26.10 Exercises 498
27 A Little Bit of Queueing Theory 510
27.1 What Is Queueing Theory? 510
27.2 A Single-Server Queue 511
27.3 Kendall Notation 513
27.4 Common Performance Metrics 514
27.4.1 Immediate Observations about the Single-Server Queue 515

27.5 Another Metric: Throughput 516
27.5.1 Throughput for M /G /k 517

27.5.2 Throughput for Network of Queues with Probabilistic Routing 518

27.5.3 Throughput for Network of Queues with Deterministic Routing 519

27.5.4 Throughput for Finite Buffer 520

27.6 Utilization 520
27.7 Introduction to Little’s Law 521
27.8 Intuitions for Little’s Law 522
27.9 Statement of Little’s Law 524
27.10 Proof of Little’s Law 525
27.11 Important Corollaries of Little’s Law 527
27.12 Exercises 531
References 539
Index 544

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Preface

Probability theory has become indispensable in computer science. It is at the
core of machine learning and statistics, where one often needs to make decisions
under stochastic uncertainty. It is also integral to computer science theory, where
most algorithms today are randomized algorithms, involve random coin flips. It
is a central part of performance modeling in computer networks and systems,
where probability is used to predict delays, schedule jobs and resources, and
provision capacity.

Why This Book?

This book gives an introduction to probability as it is used in computer science
theory and practice, drawing on applications and current research developments
as motivation and context. This is not a typical counting and combinatorics book,
but rather it is a book centered on distributions and how to work with them.

Every topic is driven by what computer science students need to know. For ex-
ample, the book covers distributions that come up in computer science, such as
heavy-tailed distributions. There is a large emphasis on variability and higher
moments, which are very important in empirical computing distributions. Com-
puter systems modeling and simulation are also discussed, as well as statistical
inference for estimating parameters of distributions. Much attention is devoted to
tail bounds, such as Chernoff bounds. Chernoff bounds are used for confidence
intervals and also play a big role in the analysis of randomized algorithms, which
themselves comprise a large part of the book. Finally, the book covers Markov
chains, as well as a bit of queueing theory, both with an emphasis on their use in
computer systems analysis.

Intended Audience

The material is presented at the advanced undergraduate level. The book is based
on an undergraduate class, Probability and Computing (PnC), which I have been
teaching at Carnegie Mellon University (CMU) for almost 20 years. While PnC
is primarily taken by undergraduates, several Masters and PhD students choose
to take the class. Thus we imagine that instructors can use the book for different
levels of classes, perhaps spanning multiple semesters.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Preface XVii

Question/Answer Writing Style

The book uses a style of writing aimed at engaging the reader to be active, rather
than passive. Instead of large blocks of text, we have short “Questions” and
“Answers.” In working through the book, you should cover up the answers, and
write down your own answer to each question, before looking at the given answer.
The goal is “thinking” rather than “reading,” where each chapter is intended to
feel like a conversation.

Exercises

The exercises in this book are an integral part of learning the material. They also
introduce many of the computer science and statistics applications. Very few of
the exercises are rote. Every problem has important insights, and the insights
often build on each other. Exercises are (very roughly) organized from easier to
harder. Several of the exercises in the book were contributed by students in the
class!

To aid in teaching, solutions to a large subset of the exercises are available
Jor instructors only at www.cambridge.org/harchol-balter. Instructors who need
solutions to the remaining exercises can request these from the author. The
solutions are for the personal use of the instructor only. They should not be
distributed or posted online, so that future generations can continue to enjoy the
exercises.

Organization of the Material

The book consists of eight parts. Parts I, II, and III provide an introduction to
basic probability. Part IV provides an introduction to computer systems mod-
eling and simulation. Part V provides an introduction to statistical inference.
Parts VI and VII comprise a course in randomized algorithms, starting with tail
bound inequalities and then applying these to analyze a long list of randomized
algorithms. Part VIII provides an introduction to stochastic processes as they’re
used in computing.

Before we describe the parts in more detail, it is worth looking at the dependency
structure for the book, given in Figure P1. Aside from Parts I, II, and III, most
of the parts can be taught in any order.

In particular, it is possible to imagine at least four different courses being taught
from this book, depending on the parts that an instructor might choose to teach.
Figure P2 depicts different courses that one might teach. All the courses start
with Parts I, II, and III, but then continue with Simulation, or Statistics, or
Randomized Algorithms, or Stochastic Processes, depending on the particular
course.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

xviii Preface

Part I
Probability
on Events

Part II
Discrete
Random
Variables

Part 111
Continuous
Random
Variables

Part IV Part V Part VI Part VIII

Systems Statistical Tail Discrete-Time
Modeling and Inference Bounds Markov Chains
Simulation and Queues

Part VII
Randomized
Algorithms

Figure P1 The dependency structure between the parts of this book. Most parts are
independent of other parts and can be taught in any order.

Description of Each Part

Part I: Foundations and Probability on Events: Part I starts by reviewing the
prerequisites for the book. These include series, calculus, elementary combina-
torics, and asymptotic notation. Exercises and examples are provided to help in
reviewing the prerequisites. The main focus of Part I is on defining probability
on events, including conditioning on events, independence of events, the Law
of Total Probability, and Bayes’ Law. Some examples of applications covered
in Part I are: faulty computer networks, Bayesian reasoning for healthcare test-
ing, modeling vaccine efficacy, the birthday paradox, Monty Hall problems, and
modeling packet corruption in the Internet.

Part II: Discrete Random Variables: Part II introduces the most common dis-
crete random variables (Bernoulli, Binomial, Geometric, and Poisson), and then

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Preface Xix

Course 1

Probability
and
Simulation

(Part 1)

Probability
on Events

g

Part 11

Discrete
Random

\ Variables /

Part II1

Continuous
Random

Course 2 Course 3
Probability Probability and
and Randomized
Statistics Algorithms
4 Part 1) 4 Part I)
Probability Probability
on Events on Events
(G 2 AN J
(" pPartmt | Partm)
Discrete Discrete
Random Random

\ Variables /

Part IV
Systems

Modeling and
Simulation

_ Variables)

_ Variables)

PartIll) PartIll)
Continuous Continuous
Random Random

Variables)

Variables)

v

v

Part V
Statistical
Inference

Part VI
Tail
Bounds

Part VII
Randomized

Algorithms

Course 4

Probability and
Stochastic
Processes

(Part I)

Probability
on Events

g

Part I1

Discrete
Random

\ Variables /

Part II1
Continuous
Random

Variables /
J

Part IV
Systems
Modeling and
Simulation

Part VIII
Discrete-Time
Markov Chains
and Queues

Figure P2 Four different courses that one can teach out of this book.

continues with the standard material on random variables, such as linearity of
expectation, conditioning, conditional probability mass functions, joint distribu-
tions, and marginal distributions. Some more advanced material is also included,
such as: variance and higher moments of random variables; moment-generating
functions (specifically z-transforms) and their use in solving recurrence rela-
tions; Jensen’s inequality; sums of a random number of random variables; tail
orderings, and simple tail inequalities. Both Simpson’s paradox and the inspec-
tion paradox are covered. Some examples of applications covered in Part II are:
noisy reading from a flash storage, the binary symmetric channel, approximating
a Binomial distribution by a Poisson, the classical marriage algorithm, mod-
eling the time until a disk fails, the coupon collector problem, properties of

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

XX Preface

random graphs, time until k consecutive failures, computer virus propagation,
epidemic growth modeling, hypothesis testing in data analysis, stopping times,
total variation distance, and polygon triangulation.

Part ITI: Continuous Random Variables: Part Il repeats the material in Part I,
but this time with continuous random variables. We introduce the Uniform,
Exponential, and Normal distributions, as well as the Central Limit Theorem.
In addition, we introduce the Pareto heavy-tailed distribution, which is most
relevant for empirical computing workloads, and discuss its relevance to today’s
data center workloads. We cover failure rate functions and the heavy-tail property
and their relevance to computing workloads. We again cover moment-generating
functions, but this time via Laplace transforms, which are more commonly used
with continuous random variables. Some applications covered in Part II are:
classifying jobs in a supercomputing center, learning the bias of a coin, dart
throwing, distributions whose parameters are random variables, relating laptop
quality to lifetime, modeling disk delays, modeling web file sizes, modeling
compute usage, modeling IP flow durations, and Internet node degrees.

Part IV: Computer Systems Modeling and Simulation: Part IV covers the
basics of what is needed to run simulations of computer systems. We start by
defining and analyzing the Poisson process, which is the most commonly used
model for the arrival process of jobs into computer systems. We then study how
to generate random variables for simulation, using the inverse transform method
and the accept-reject method. Finally, we discuss how one would program a
simple event-driven or trace-driven simulator. Some applications that we cover
include: Malware detection of infected hosts, population modeling, reliability
theory, generating a Normal random variable, generating Pareto and Bounded
Pareto random variables, generating a Poisson random variable, simulation of
heavy-tailed distributions, simulation of high-variance distributions, simulation
of jointly distributed random variables, simulation of queues, and simulation of
networks of queues.

Part V: Statistical Inference: Part V switches gears to statistics, particularly
statistical inference, where one is trying to estimate some parameters of an ex-
periment. We start with the most traditional estimators, the sample mean and
sample variance. We also cover desirable properties of estimators, including zero
bias, low mean squared error, and consistency. We next cover maximum likeli-
hood estimation and linear regression. We complete this part with a discussion
of maximum a posterior (MAP) estimators and minimum mean square error
(MMSE) estimators. Some applications that we cover include: estimating voting
probabilities, deducing the original signal in a noisy environment, estimating true
job sizes from user estimates, estimation in interaction graphs, and estimation in
networks with error correcting codes.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Preface XXi

Part VI: Tail Bounds and Applications: Part VI starts with a discussion of tail
bounds and concentration inequalities (Markov, Chebyshev, Chernoff), for which
we provide full derivations. We provide several immediate applications for these
tail bounds, including a variety of classic balls-and-bins applications. The balls
and bins framework has immediate application to dispatching tasks to servers in
a server farm, as well as immediate application to hashing algorithms, which we
also study extensively. We cover applications of tail bounds to defining confidence
intervals in statistical estimation, and well as bias estimation, polling schemes,
crowd sourcing, and other common settings from computing and statistics.

Part VII: Randomized Algorithms: Part VII introduces a wide range of ran-
domized algorithms. The randomized algorithms include Las Vegas algorithms,
such as randomized algorithms for sorting and median finding, as well as Monte
Carlo randomized algorithms such as MinCut, MaxCut, matrix multiplication
checking, polynomial multiplication, and primality testing. The exercises in this
part are particularly relevant because they introduce many additional randomized
algorithms such as randomized dominating set, approximate median finding, in-
dependent set, AND/OR tree evaluation, knockout tournaments, addition of n-bit
numbers, randomized string exchange, path-finding in graphs, and more. We use
the tail bounds that we derived earlier in Part VI to analyze the runtimes and
accuracy of our randomized algorithms.

Part VIII: Markov Chains with a Side of Queueing Theory: Part VIII provides
an introduction to stochastic processes as they come up in computer science.
Here we delve deeply into discrete-time Markov chains (both finite and infinite).
We discuss not only how to solve for limiting distributions, but also when
they exist and why. Ergodicity, positive-recurrence and null-recurrence, passage
times, and renewal theory are all covered. We also cover time averages versus
ensemble averages and the impact of these different types of averages on running
simulations. Queueing theory is integral to Part VIII. We define the performance
metrics that computer scientists care about: throughput, response time, and load.
We cover Little’s Law, stability, busy periods, and capacity provisioning. A
huge number of applications are covered in Part VIII, including, for example,
the classic PageRank algorithm for ranking web pages, modeling of epidemic
spread, modeling of caches, modeling processors with failures, Brownian motion,
estimating the spread of malware, reliability theory applications, population
modeling, server farm and data center modeling, admission control, and capacity
provisioning.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Acknowledgments

Most textbooks begin with a class, and this book is no exception. I created the
Probability and Computing (called “PnC” for short) class 20 years ago, with the
aim of teaching computer science undergraduates the probability that they need
to know to be great computer scientists. Since then I have had a few opportunities
to co-teach PnC with different colleagues, and each such opportunity has led to
my own learning. I would like to thank my fantastic co-instructors: John Lafferty,
Klaus Sutner, Rashmi Vinayak, Ryan O’Donnell, Victor Adamchik, and Weina
Wang. I'm particularly grateful to Weina, who collaborated with me on three of
the chapters of the book and who is a kindred spirit in Socratic teaching. The
book has also benefited greatly from many spirited TAs and students in the class,
who proposed fun exercises for the book, many referencing CMU or Pittsburgh.

I would also like to thank my illustrator, Elin Zhou, who painstakingly created
every image and figure in the book, while simultaneously managing her under-
graduate classes at CMU. I chose Elin as my illustrator because her artwork
embodies the spirit of fun and inclusiveness that permeates the PnC class. One
of the themes of PnC is chocolate, which is tossed out throughout the class to
students who answer questions. This chocolate would not be possible if it weren’t
for our class sponsor, Citadel, who even paid to have chocolate mailed directly
to student homes throughout the pandemic, while classes were online.

I have been fortunate to have several excellent editors at Cambridge University
Press: Julie Lancashire, Ilaria Tassistro, and Rachel Norridge. Thanks to their
recommendations, the statistics chapters were added, redundant material was
removed, and the style and layout of the book improved immensely. My copy
editor, Gary Smith, was also fantastic to work with and meticulous!

On a personal note, I want to thank my family. In particular, I'm grateful to my
son, Danny Balter, for always telling me that I’'m good at explaining things. I'm
also grateful to my mom, Irit Harchol, who is one of my best friends, and who
takes the time to talk with me every day as I walk to and from work. Thanks to
my inlaws, Ann and Richard Young, who are my cheering squad. Finally, I have
infinite love and gratitude for my husband, Ary Young, for always making me
their top priority and for never leaving my side, even if it means sleeping on my
sofa as I sit here typing away.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Part |

Fundamentals and
Probability on Events

In this first part of the book we focus on some basic tools that we will need
throughout the book.

We start, in Chapter 1, with a review of some mathematical basics: series,
limits, integrals, counting, and asymptotic notation. Rather than attempting an
exhaustive coverage, we instead focus on a select “toolbox” of techniques and
tricks that will come up over and over again in the exercises throughout the book.
Thus, while none of this chapter deals with probability, it is worth taking the
time to master its contents.

In Chapter 2, we cover the fundamentals of probability. Here we define proba-
bility based on an experiment and events. We discuss the axioms of probability,
conditioning, independence, the Law of Total Probability, and Bayes’ Law.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

1 Before We Start ... Some
Mathematical Basics

This book assumes some mathematical skills. The reader should be comfortable
with high school algebra, including logarithms. Basic calculus (integration, dif-
ferentiation, limits, and series evaluation) is also assumed, including nested (3D)
integrals and sums. We also assume that the reader is comfortable with sets and
with simple combinatorics and counting (as covered in a discrete math class).
Finally, we assume versatility with “big-O” and “little-0” notation. To help the
reader, in this chapter we review a few basic concepts that come up repeatedly
throughout the book. Taking the time to understand these now will make it much
easier to work through the book.

1.1 Review of Simple Series

There are several series that come up repeatedly in the book, starting in Chapter 3.

Question: Try evaluating the following in closed form. (Don’t peek at the answers
until you’ve tried these yourself.) We provide the full derivations below.

(@ S=1l+x+x2+x3+---+x"

) S=1+x+x>+x>+---, where |x| < 1.
(©) S=1+2x+3x2+4x3+ - +nmx" L.

(d) S=1+2x+3x>+4x>+---, where |x| < 1.

2 3 n

Example 1.1 Evaluate: S=1+x+x"+x" +---+x".

Solution: The trick here is to multiply both sides by the quantity (1 — x):
(1=-x)S=85-xS

=l4+x+x2+x+ 42"
_x_x2_x3_.“_xn+l
=1—x"+1

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

1.1 Review of Simple Series 3

Hence,

l_xn+1
- (1.1)

Note that (1.1) assumes that x # 1. If x = 1, then the answer is clearly S = n + 1.

S =

2 3

Example 1.2 Evaluate: S =1+ x+x"+x" +--- where |x| < 1.

Solution: This is the same as series (a) except that we need to take the limit as
n — oo:

1= n+l 1
S=1liml+x+x2+ - +x" = lim — > = : (1.2)

n—oo n—oo |1 —x 1—x

Question: Why did we need |x| < 1? What would happen if |x| > 1?

Answer: If |x| > 1, then the infinite sum diverges.

Example 1.3 Evaluate: S = 1 +2x +3x> +4x3 + - - - + nx""~1,

Approach 1: One approach is to again use the (1 — x) trick:

(1-x)S=142x+3x%+4x> + - + nx"*"!

—x = 2x2 =3 —dxt -
=l4x+x2 400+ 41" o
1 —x"
= —nx"
I-x

1 - (n+ Dx" +nx"*!

1-x
Hence,
g 1 - (n+ Dx" + nx"!
- (1-x)?

(1.3)

Approach 2: An easier approach is to view the sum as the derivative of a known
sum:

d
S:—(1+x+x2+x3+---+x")
dx

d l_xn+1
_E(1-x)

_ (1=x)-(=(n+Dx") + (1 —x™)

(1-x)?
= (n+1)x" +nx"*!
B (1-x)?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

4 1 Before We Start ... Some Mathematical Basics

T%le a)bove assumes that x # 1. If x = 1, then the answeris S=1+2+---+n =
n(n+1
—5—.

Example 1.4 Evaluate: S = 1 +2x +3x> +4x3 + -+ where |x| < 1.

Solution: We again view S as a derivative of a sum:

S:i(l+x+x2+x3+~--)
dx

_d (1
Cde \1-x

1

1.2 Review of Double Integrals and Sums

Integrals, nested integrals, and nested sums come up throughout the book, starting
in Chapter 7. When evaluating these, it is important to pay attention to the area
over which you’re integrating and also to remember tricks like integration by
parts.

Question: Try deriving the following three expressions (again, no peeking at the
answers).

(a) fooo ve Vdy.
(b) /ooo foy e Ydxdy. Do this both with and without changing the order of inte-
gration.

(©) fle Olnx 1dydx. Do this both with and without changing the order of inte-
gration.
Below we provide the derivations.

Example 1.5 Derive: fooo ve Vdy.

Solution: We start by reviewing integration by parts:

b b b
/udv:(uv) —/ vdu. (1.5)

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

1.2 Review of Double Integrals and Sums 5

Applying (1.5), letu = y, and du = dy. Let dv = e Ydy, and v = —e™”. Then,

/ ye Ydy = —ye‘y|y:oo - [(=e)dy
0 y= y=0
—0 - (-0) - —Y(W
(=0)—e™| |
=0+0-(0-1)
=1.

Example 1.6 Derive: _/000 foy e Vdxdy.

Solution: Without changing the order of integration, we have:

y=co px=y y=c0
/ / e_ydxdy=/ xe™”
y=0 x=0 y=0
y:OO
= / ye Ydy
y=0

To change the order of integration, we first need to understand the space over
which we’re integrating. The original region of integration is drawn in Fig-
ure 1.1(a), where y ranges from O to oo, and, for each particular value of y, we

let x range from 0 to y.
|HH|HH“““

(a) Original integration space (b) Equivalent integration space

x=y
dy

x=0

»

\.Illr |

Figure 1.1 Region of integration drawn two ways.

We can visualize this instead as shown in Figure 1.1(b), where x now ranges
from O to oo, and, for each particular value of x, we let y range from x to oo:

X=00 y=00 X=00 y=00
/ / e Ydydx / —efy| dx
x=0 y=x x=0 y=x

/ (0+e ™)dx
x=0

xX=00

=—e X

x=0

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

6 1 Before We Start ... Some Mathematical Basics

Inx

Example 1.7 Derive: /le , ldydx.

Solution: Without changing the order of integration, we have:

x=e y=Inx x=e
/ / ldydx = / In xdx
x=1 y=0 x=1

(applying integration by parts)

x=e x=e 1
= (Inx - x) —/ X - —dx
x=1 x=1 X
=e—-0-(e—-1)
=1.

To change the order of integration, we first need to understand the space over
which we’re integrating. This is drawn in Figure 1.2(a).

y

(a) Original integration space (b) Equivalent integration space

Figure 1.2 Region of integration drawn two ways.

We can visualize this instead as shown in Figure 1.2(b), which leads to the nested

integrals:
y=1 x=e y=1
/ / ldxdy / X
y=0 x=eY y=0

y=1
- [e-enay
y=0

y=1
= (ev=)|
=(e=e)=(0-¢"
=1

X=e

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

1.3 Fundamental Theorem of Calculus 7

1.3 Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus (FTC) will come up in the book starting
in Chapter 7. We state it here and provide some intuition for why it holds.

Theorem 1.8 (FTC and extension) Let f () be a continuous function defined
on the interval [a, b]. Then, for any x, where a < x < b,

d X
- / F()di = £ (). (1.6)

Furthermore, for any differentiable function g(x),

g(x)
[rwar=sew) g w. (1.7)

We start with intuition for (1.6):

The integral /a * £(¢)dr represents the area under the curve f() between r = a
and t = x. We are interested in the rate at which this area changes for a small
change in x.

It helps to think of the integral as a “box” parameterized by x.

Box(x) = /Xf(t)dt .

Box(x + A) — Box(x)
A

[rwar - [T f(ar
= lim

A—0 A

. /)'Cx+A f(l)dt
m —-——-—-

A—0 A

d /xf(t)dt d Box(x) = lim
— = — xX) =
dx J, dx A—0

f(x) = f(x +A) for tiny A

The same argument applies to (1.7):

(x)
Box(x) = /g f()dr |

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

8 1 Before We Start ... Some Mathematical Basics

Box(x + A) — Box(x)

d g(x) d
— =—B =1
dx /a F(n)di dx ox(x) Alﬂ%

A
i /ag(HA) f(t)dt—/ag(x) F(0)dt
e A
g(x+A)
f(t)dt
T g(x)
AT A
< i LEE) - (g0 +8) —g(x)
~ A—0 A

g(x+A) - g(x)

= f(g(x)) - lim £

= f(g(x)) - g'(x).

1.4 Review of Taylor Series and Other Limits

There are certain limits and limiting series which come up repeatedly in this
book, so we discuss these here.

Question: What is the famous limit in (1.8) called, and how should we interpret
it?

lim (1+1) . (1.8)

n—oo n

Answer: Expression (1.8) is the definition of Euler’s number, e, which is an
irrational, transcendental number having value approximately 2.7183.

It helps to think about (1.8) in terms of money. Suppose you have m dollars. You
are promised a 100% interest rate yearly. If the interest is compounded annually,
you will have 2m dollars after one year. If the interest is compounded every 6

2
months, you will have (1 + %) m= %m dollars after one year. If the interest is

3
compounded every 4 months, you will have (1 + %) m = %m dollars after one

year. Notice how this keeps going up. If the interest is compounded continuously,
you will have

ln
lim (1+—) -m=e-m

n—0oo n

dollars after one year. Big difference!

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

1.4 Review of Taylor Series and Other Limits 9

Question: What, then, is this limit (assume x is a constant):
. x\n
lim (1 + —) ?
n—oo n
Answer:

nli_r)l’olo(1+);c)n s (1.9)

To see this, let a = £. As n — oo, we also have a — co:

lim (1+f)" = lim (1+1) = lim ((1+1)) =", (1.10)

n—oo n a—oo a a—oo a
Question: Let 0 < x < 1. Let’s do some comparisons:

(a) What is bigger, 1 + x or ¢*?
(b) What is bigger, 1 —x or e *?

Hint: It helps to think about the Taylor series expansion of ¢* around x = 0.

Answer: For 0 < x < 1, it turns out that e > 1 +x and e™ > 1 —x. To
see this, we start with a brief reminder of the Taylor series expansion around 0,
also known as a Maclaurin series. Consider any function f(x) which is infinitely
differentiable at x = 0. Let us define

(0 (0 "o
P(x)=f(0)+f1(!)x+f2(!)x2+f3f)x3+---

Observe that the multiplier ’,‘l—': gets very small for large n. It is easy to see

that p(x) is a polynomial that approximates f(x) very well around x = 0. In
particular, you can see via differentiation that the following are true:

p(0) = (0)
P(0) = £(0)
PO = ()
P7(0) = £7(0)

etc.

In fact, Taylor’s theorem [71, p.678] says roughly that if x is within the radius of
convergence of p(-), then p(x) approaches f(x) as we write out more and more
terms of p(x). Expressing p(x) with an infinite number of terms allows us to say

that f(x) = p(x).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

10 1 Before We Start ... Some Mathematical Basics

Returning to our question, we can see that the function f(x) = e* is infinitely
differentiable around 0, and thus, for any x, we can express:
2,3

x_ LI N
e —f(x)—1+1!+2!+3!+ . (1.11)
Thus clearly for any x > 0, we have that
e’ > 1+ux, (1.12)

where 1 + x is a very good approximation for ¢* when x is very small.

X

Likewise, we can express f(x) = e~ as
2 3 4
X
e =1 1!+2! 3!+4! . (1.13)
Now, when 0 < x < 1, we see that
e ¥ >1-x, (1.14)
because ’5—? > ’3‘—7 > j—? > ... Again, 1 — x is a very good approximation for e ™*

when x is very small.

‘We end with a discussion of the harmonic series.

Definition 1.9 The nth harmonic number is denoted by H,,, where

11 1 1
Hy=lagsdg bt (1.15)

Example 1.10 (Approximating H,,)

Question: How can we find upper and lower bounds on H,,?

Answer: Figure 1.3 shows the function f(x) = % in red. We know how to exactly
compute the area under the red curve. Now observe that the area under the red
curve is upper-bounded by the sum of the areas in the blue rectangles, which
form a harmonic sum. Likewise, the area under the red curve is lower-bounded by
the sum of the rectangles with the yellow border, which form a related harmonic
sum. Specifically, summing the area in the blue rectangles, we have that:

11 1 ml
Hy=1l+-4+-+---+-—> —dx=In(n+1).
23 n 1 X

Likewise, summing the area in the yellow rectangles, we have that:

"1 I 1 1
lnn:/ —dx> -4z + -,
1 X 2 3 n

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

1.5 A Little Combinatorics 11

> X

1 2 3 4 5 6

Figure 1.3 The area under the red curve f(x) = J—C is upper-bounded by

1+ % + % + }L + % (in blue), and it is lower-bounded by % + % + % + % (in yellow).

Adding 1 to both sides,

1 1 1
1+1 >l+-+-+---+—-=H,.
n(n) 273

n
Hence:
In(n+1) < H, < 1+1n(n). (1.16)
From (1.16),
H, ~In(n), forhighn. (1.17)
Furthermore,
lim H 1+1+1+ (1.18)
1m n= —_ —_ ce. = 00, .
n—oo 2 3

1.5 A Little Combinatorics

Counting is the basis of discrete probability and will be assumed right from the
beginning. It’s important to differentiate between combinations and permuta-
tions.

Example 1.11 (Combinations versus permutations)

Suppose Baskin-Robins has #n flavors of ice cream. You are building a cone with
k < n scoops. How many different cones can you make if each flavor can only
be used once? There are two cases:

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

12 1 Before We Start ... Some Mathematical Basics

(a) The ordering of the flavors matters.
(b) The ordering of the flavors does not matter.

Question: Which of (a) and (b) is counting permutations? Which is counting
combinations?

Answer:

(a) Each ordering is called a permutation. There are n choices for the bottom
flavor, then n — 1 for the next flavor, then n — 2 for the next one, and so on,

with n — (k — 1) for the kth and final flavor. Hence there are
n!
n(n—l)(n—2)(n—(k—1)):m

possible permutations.

(b) Each choice of k flavors is called a combination. We can think of the number
of combinations as equal to the number of permutations divided by k!, since
the ordering of flavors doesn’t matter:

ABC =ACB=CAB=CBA =BAC = BCA.

Thus the number of combinations is:
n!

(n—kﬁz-k!‘

We write

n\ n!
(k)_ (n—k)!- k!

and call this “n choose k” to denote all the ways of choosing k flavors out of
n.

Note that the number of combinations is smaller than the number of permutations
by a factor of k!.

There are certain sums of combinations which come up a lot in this book. Try
these yourself without peeking at the answers:

Question: Evaluate S; = (i) + (7) + (5) +--- + ().

Answer: Imagine you have n elements. Then S| represents the total number of
possible subsets of the n elements (all subsets of size 0 plus all subsets of size 1
plus all subsets of size 2, etc.). But the total number of subsets of n elements is
2" because there are two choices for each of the n elements: each element can
either be “in the subset” or “out of the subset.” Hence S| = 2".

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

1.5 A Little Combinatorics 13

2’))(2)1”_2 +ooe ()

n

Question: Evaluate S = (3)y" + (7)xy" " + (

Answer: Consider the binomial expansion of (x+y)". In this expansion, the term
xky"=k appears exactly (2) times, because you're picking k of the n parentheses
from which to draw an x. Thus, S, = (x + y)".

Question: Evaluate S3 = () + (1)x + (5)x% + -+ (!)x" .

Answer: Sj is the same as S;, where we substitute y = 1. Hence S3 = (x + 1)".
Itis often useful to be able to approximate (Z) Theorem 1.12 provides easy-to-use
upper and lower bounds.

Theorem 1.12 (Simple bounds on (7))
n\k (n ne\k
() < (i) < (5)" (119)

Proof:

First we prove the upper bound:

(n) nn-1D(n-2)---(n—k+1)

k k!
-1 -2 —k+1

B k!

BT e o (et

B k! ’
nk

< —.
k!

kk

Now the Taylor series expansion of X for positive integer k tells us that eX > R

Thus:

STk S T %

HE R

Next we prove the lower bound.:

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

14 1 Before We Start ... Some Mathematical Basics

Starting from (1.20),

(”)zl'(_%).(_%)...(1_%),,11(

k|~ k-(k-1)-(k-2)- (k- (k-1))

The last line follows since k < n. Thus 1 — ﬁ >1- % for0 <i < k. [
Another useful combinatorial identity is called Vandermonde’s identity.

Theorem 1.13 (Vandermonde’s identity)
m+n — (m n
(7= 202
Question: What is the logic behind Vandermonde’s identity?

Answer: Suppose you are trying to pick r leaders from a set of m women and n
men. There are (") ways of picking the r leaders, which is the left-hand side of
Vandermonde’s identity. However, we can also view the picking of the r leaders
as first picking k leaders from the set of m women, where 0 < k < r, and then
picking r — k leaders from the set of n men. We now need to sum over all possible
values of k. But this latter view represents the right-hand side of Vandermonde’s
identity.

Question: What does Vandermonde’s identity say about (2;)?

Answer: By Vandermonde’s identity,

(zn”) - Z‘) (Z)z (121)

We end with a final useful result when working with factorials, known as the
Stirling bounds, whose proof can be found in [76].

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

1.6 Review of Asymptotic Notation 15

Theorem 1.14 (Stirling) For all positive integers n,
n\n n\n

2nn (—) <n!< e\/ﬁ(—) .
e e

(1.22)

The power of Stirling’s result lies in the fact that the upper and lower bounds
given in (1.22) differ by a multiplicative constant of less than 1.1.

1.6 Review of Asymptotic Notation

Asymptotic notation primarily comes up starting in Chapter 18. Asymptotic
notation is a convenient way to summarize the rate at which a function f(n)
grows with n, without getting into the specifics. For example, we’d like to be
able to say that f(n) = 3n grows linearly with n, while f(n) = V5n® grows
quadratically with n. The asymptotic notation below will help us do this.

In words:

O(g(n)) is the set of functions that grow no faster than g(n).
o(g(n)) is the set of functions that grow strictly slower than g(n).
O(g(n)) is the set of functions that grow at the same rate as g(n).
Q(g(n)) is the set of functions that grow no slower than g(n).
w(g(n)) is the set of functions that grow strictly faster than g(n).

Throughout our discussion we will assume that f(n) and g(n) are functions
that map positive integers n to positive real numbers. If f(n) is negative (e.g.,
f(n) = =3n) we classify it based on its absolute value.

We typically write f(n) = O(g(n)) to denote that f(n) is in the set of functions
O(g(n)). We follow this same convention for the other sets.

1.6.1 Big-O and Little-o

Definition 1.15 We say that f(n) = O(g(n)), pronounced as f(n) is “big-O”
of g(n), if

lim sup AW
nooo g(n

< ©00.

It is sometimes easier to use the following alternative definition of big-O:

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

16 1 Before We Start ... Some Mathematical Basics

Alternative definition: f(n) = O(g(n)) if there exists a positive constants ¢ > 0
and ng > O such that 0 < f(n) < c - g(n), for all n > ny.

Example 1.16 (Big-O)

n=0(3n)
3n=0(n)

-3n% # 0(n)
nlgn+18n = 0(n?)

3lgl
. %20(1)

Definition 1.17 We say that f(n) = o(g(n)), pronounced as f(n) is “little-0”
of g(n), if
tim 207 _

=0.
no g(n)

Corollary 1.18 f(n) = o(1) if and only if f(n) — 0 as n — oo.
Example 1.19 (Little-o0)

3n # o(n)
nlgn+18n = o(n?)
n* = o(n’)

lgn = o(n®0h)

3lglgn _
° Ign _0(1)

Question: If f(n) = 0(g(n)), does that imply that f(n) = O(g(n))? How about
the converse?

Answer: f(n) = o(g(n)) implies that f(n) = O(g(n)). The converse is not true.

When comparing complicated functions, it is often helpful to first think about
simpler functions. Consider the following example.

Example 1.20 (More complicated functions)

logl
Let f(n) = n. Let g(n) = %.

Question: Is it the case that f(n) = 0(g(n))? Oris g(n) = o(f(n))?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

1.6 Review of Asymptotic Notation 17

Hint: Rather than take limits, consider an easier question: how do n and log log n
compare?

Answer: It is easy to see that
loglogn = o(n).

Thus it is also true that if we make the left-hand side smaller, the relationship
still holds. By dividing the left-hand side by logloglog n, we are dividing it by
something that is > 1, and hence we are only making it smaller. Thus we also
have

loglogn

log loglogn = o).

1.6.2 Big-Omega and Little-omega

Definition 1.21 We say that f(n) = Q(g(n)), pronounced as f(n) is “big-
Omega” of g(n), if

iminf £ > 0.
n—e g(n)

It is sometimes easier to use the following alternative definition of big-Omega:
Alternative definition: f(n) = Q(g(n)) if there exists a positive constants ¢ > 0
and ng > 0 such that f(n) > ¢ - g(n) > 0, for all n > ny.

Example 1.22 (Big-Omega)

3n =Q(n)
nlgn+18n = Q(nlgn)
n* =Q(nlgn)

31gl
o 222 5 Q1)

Definition 1.23 We say that f(n) = w(g(n)), pronounced as f(n) is “little-
omega” of g(n), if

)
g~

Example 1.24 (Little-omega)

e 3n # w(n)

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

18 1 Before We Start ... Some Mathematical Basics

e nlgn+18n=w(n)

o n>=w(nlgn)

3lglgn

Question: If f(n) = w(g(n)), does that imply that f(n) = Q(g(n))? How about
the converse?

Answer: f(n) = w(g(n)) implies that f(n) = Q(g(n)), but the converse is not
true.

1.6.3 Big-Theta

Definition 1.25 We say that f(n) = ©(g(n)), pronounced as f(n) is “big-
Theta” of g(n), if both

f(n) =0(g(n)) and f(n) = Q(g(n)).
Example 1.26 (Big-Theta)

e 3n=0(n)
e nlgn+18n # O(n)

Question: Can we have f(n) = 0(g(n)) and f(n) = w(g(n))?
Answer: No. This would require lim,,_, % to be both 0 and oo.

We end with a harder example:

Example 1.27 Prove that 3logy (n?) = o(n*).

Solution:

) 3log, (n?)) 32logy n) glogy n) glog; n ' 9 logy n

lim = Im A m T = lim I = lim |— =0.
n—o p n—oo glogy(n*) n—eo p4logyn noo [glogan n—eo | 1

1.7 Exercises

1.1 Choosing ice-cream flavors
There are n distinct flavors of ice-cream. Jin and Jong each pick two distinct

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

1.7 Exercises 19

1.2

1.3

1.4

1.5

1.6

flavors. Count the number of possibilities where Jin and Jong share exactly
one flavor. In this problem the order of the flavors does not matter. An
example of a possibility that “counts” is:

Jin gets {Chocolate, Vanilla} and Jong gets {Chocolate, Strawberry}.

Evaluating a single integral
Evaluate the following integral:

/ 5xe ¥ dx.
0

Evaluating a double integral

Evaluate this double integral:
10 y
/ / xdxdy.
0o Jo

Do this in two different ways. For each way, draw the region of integration:
(a) Without changing the order of integration.
(b) By changing the order of integration.

Evaluating a double integral
Evaluate this double integral:

10 px?
/ / dydx.
1 1

Do this in two different ways. For each way, draw the region of integration:
(a) Without changing the order of integration.
(b) By changing the order of integration.

Practice with Taylor series

Let f(x) = In(1 + x). Follow the procedure in the chapter to express the
Taylor series expansion of f(€), around 0, where 0 < € < 1.

Counting balls and bins

You are throwing n identical balls into n distinct (numbered) bins, where
each ball is thrown into one bin.

o ﬂ Y gﬂ Y H @ Breakdown: [1, 1,1, 1]
g‘ o0 ﬂ o ﬁ @ Breakdown: [0,2, 1, 1]
'YX | g‘ H g @ Breakdown: [3,0,0, 1]

Figure 1.4 Some examples of Exercise 1.6 where n = 4.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

20 1 Before We Start ... Some Mathematical Basics

(a) How many ways are there to distribute the n balls among the n bins?
[Hint: Figure 1.4 illustrates that each way of distributing balls can be
viewed as an arrangement of n — 1 “sticks” and » balls.]

(b) How many ways are there to distribute the n balls among the n bins such
that bin 1 has > k balls?

1.7 Permutations
Consider all permutations of the numbers {1,2,3,...,n}.
(a) How many permutations are there?
(b) What fraction of all permutations have a 1 in the first position?
(c) What fraction of all permutations have a 1 in the first position and a 2 in
the second position?
(d) What fraction of all permutations have a 1 somewhere before a 2?7

1.8 Practice with asymptotic notation
(a) Let a(n) = n. Let b(n) = nlogn. Which of the following are true?
(i) a(n) = O(b(n))
(i) a(n) = o(b(n))
(i) a(n) = O(b(n))
(iv) a(n) = w(b(n))
(V) a(n) = Q(b(n))
(b) Repeat the problem where now a(n) = 31023 o nd b(n) = 1.

Inlnn
(c) Repeat the problem where now a(n) = 2" and b(n) = n'™".

1.9 Harder practice with asymptotic notation
Use the definitions for asymptotic notation to prove the following statements:
(a) Show that 5logy () = w(n®).
(b) Show that (Inn) i = Q(n?).

91
(c) Given that k = ——*

, show that for large n we have kInk > 8Inn.
Inlnn

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

2 Probability on Events

In this chapter we introduce probability on events. We follow an axiomatic
approach that uses elementary set theory.

2.1 Sample Space and Events

Probability is typically defined in terms of some experiment. The sample space,
Q, of the experiment is the set of all possible outcomes of the experiment.

Definition 2.1 An event, E, is any subset of the sample space, Q.

For example, in an experiment where a die is rolled twice, each outcome (a.k.a.
sample point) is denoted by the pair (i, j), where i is the first roll and j is the
second roll. There are 36 sample points. The event

E={(1,3)or(2,2)or (3,1) }

denotes that the sum of the die rolls is 4.

In general, the sample space may be discrete, meaning that the number of out-
comes is finite, or at least countably infinite, or continuous, meaning that the
number of outcomes is uncountable.

One can talk of unions and intersections of events, because they are also sets.
For example, we can talk of E U F, EN F, and E. Here, E and F are events and
E, the complement of E, denotes the set of points in Q but not in E, also written
Q\ E.

Question: For the die-rolling experiment, consider events £ and E, defined on
Q in Figure 2.1. Do you think that £, and E; are independent?

Answer: No, they are not independent. We get to this later when we define
independence. We say instead that £ and E; are mutually exclusive.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

22 2 Probability on Events

Ey E;

r(1,1) (1,2 (13 a4 d,5 (1.6
2,0 22 23 24 2,5 (20
G, (32 33 G4 35 30
4,1) &2 @43 @4 @5 @0
G, 6,2 B3 G4 55 (56
6,1) (6,2) (63 (64 (6,5 (6,6)

Figure 2.1 [llustration of two mutually exclusive events in sample space Q.

Definition 2.2 If E| N E; = 0, then E| and E, are mutually exclusive.

Definition 2.3 IfEy, E, ..., E, are events such that E; N E; = 0, Vi # j, and
such that U?:l E; = F, then we say that events E|, E, ..., E, partition set F.

2.2 Probability Defined on Events

Given a sample space €2, we can talk about the probability of event E, written
P {E}. The probability of event E is the probability that the outcome of the
experiment lies in the set E.

Probability on events is defined via the Probability Axioms:

Axiom 2.4 (The Three Probability Axioms)

Non-negativity: P{E} > 0, for any event E.

Additivity: IfE,Ey, E3, . . .isacountable sequence of events, with E;NE j = (),
Vi # j, then

P{E] UEp U E; U} =P{E1}+P{E2}+P{E3}+'-' .
Normalization: P {Q} = 1.

From the three Probability Axioms, it is easy to reason that if we roll a die,
where each side is equally likely, then, by symmetry, P {roll is 3} = %. Likewise,
P{rollis <3} =P{rollis 1 or2or3}=2.

Question: Is something missing from these Axioms? Whatif E N F # 0?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

2.2 Probability Defined on Events 23

Answer: The case where events £ and F overlap can be derived from the
Additivity Axiom, as shown in Lemma 2.5.

Lemma 2.5
P{EUF}=P{E}+P{F} -P{ENF}.
Lemma 2.5 is illustrated in Figure 2.2, where events E and F are depicted as

sets. The subtraction of P {E N F} term is necessary so that those sample points
in the intersection are not counted twice.

E F

e = Sample point

Figure 2.2 Venn diagram.

Proof: We can express the set £ U F as a union of two mutually exclusive sets:
EUF=EU(F\(ENF)),

where F \ (E N F) denotes the points that are in F but are nor in E N F. Then,
by the Additivity Axiom, we have:

P{EUF}=P{E}+P{F\(ENnF)}. 2.1
Also by the Additivity Axiom we have:

P{F}=P{F\(ENF)}+P{ENF}. (2.2)
We can rewrite (2.2) as:

P{F\(ENnF)}=P{F}-P{ENF}. (2.3)
Substituting (2.3) into (2.1), we get:

P{EUF}=P{E}+P{F} -P{ENF}.]

Lemma 2.6 (Union bound) P{E U F} <P{E}+P{F}.

Proof: This follows immediately from Lemma 2.5.]

Question: When is Lemma 2.6 an equality?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

24 2 Probability on Events

Answer: When E and F are mutually exclusive.

Question: Suppose your experiment involves throwing a dart, which is equally
likely to land anywhere in the interval [0, 1]. What is the probability that the dart
lands at exactly 0.3?

Answer: The probability of landing at exactly 0.3 is defined to be 0. To see why,
suppose that the probability were some € > 0. Then the probability of landing at
0.5 would also be €, as would the probability of landing at any rational point. But
these different outcomes are mutually exclusive events, and there are countably
many rational points, so their probabilities add. Thus, the probability of landing
in [0, 1] would exceed 1, which contradicts P {Q} = 1. While the probability of
landing at exactly 0.3 is O, the probability of landing in the interval [0, 0.3] is
defined to be 0.3.

2.3 Conditional Probabilities on Events

Definition 2.7 The conditional probability of event E given event F is written
as P{E | F} and is given by the following, where we assume P {F} > 0:

P{ENF}

P{E|F) =5

(2.4)

P {E | F} should be thought of as the probability that event E occurs, given that
we have narrowed our sample space to points in F'.

Figure 2.3 Sample space with 42 sample points, all equally likely.

To visualize P {E | F}, consider Figure 2.3, where P{E} = % and P{F} = %.
If we imagine that we narrow our space to the 10 points in F, then the probability
that the outcome of the experiment is in set E, given that the outcome is in set

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

2.3 Conditional Probabilities on Events 25

F, should be 2 points out of 10 points. Indeed,
2
2 1 P{ENF}
P{E|F}=—="%=—"——=
ETF} 10 % P{F}

Example 2.8 (Sandwich choices)

Table 2.1 shows my sandwich choices each day. We define the “first half of the
week” to be Monday through Wednesday (inclusive), and the “second half of the
week” to be Thursday through Sunday (inclusive).

Mon Tue Wed Thu Fri Sat Sun

Jelly Cheese Turkey Cheese Turkey Cheese None

Table 2.1 My sandwich choices.

Question: What is P {Cheese | Second half of week}?

Answer: We want the fraction of days in the second half of the week when I eat
a cheese sandwich. The answer is clearly 2 out of 4. Alternatively, via (2.4):

P {Cheese & Second half}
P {Second half} B

P {Cheese | Second half of week} =

2
7

TENINTTNS)

Example 2.9 (Two offspring)

The offspring of a horse is called a foal. A horse couple has at most one foal at a
time. Each foal is equally likely to be a “colt” or a “filly.” We are told that a horse
couple has two foals, and at least one of these is a colt. Given this information,
what’s the probability that both foals are colts?

Question: What is P {both are colts | at least one is a colt}?

Answer:

P {both are colts | at least one is a colt}
_ P {both are colts and at least one is a colt}

P {at least one is a colt}
_ P{both are colts}
P {at least one is a colt}

EN[ISYENT
w

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

26 2 Probability on Events

Colt Filly

Colt

Filly

Figure 2.4 In Example 2.9, we’ve conditioned on being in the shaded region.

Question: How might the question read if you wanted the answer to be %‘?
Answer: The question would ask what is P {both are colts | first born is a colt}.

Question: Consider again the example of the couple with two colts, but
where we’re given the additional information that 10% of horse couples
only produce colts, 10% of horse couples only produce fillies, and 80% are
equally likely to produce either gender. Does this change your answer to
P {both are colts | atleast one is a colt}?

Answer: Yes! See Exercise 2.11(b).

We now look at generalizing the notion of conditioning. By Definition 2.7, if E;
and E; are events, where P {E| N E;} > 0, then

P{E\NEy} =P{E|}-P{Ey | E} =P{Ey} - P{E| | Er}.

That is, the probability that the outcome is both in £ and in E; can be com-
puted by multiplying two quantities: (1) first restrict the outcome to being in E|
(probability P {E}); (2) then further restrict the outcome to being in E;, given
that we’ve already restricted it to being in £ (probability P {E; | E1}). The next
theorem presents a useful “chain rule” for conditioning. This chain rule will be
proved in Exercise 2.9.

Theorem 2.10 (Chain rule for conditioning) Ler E, E»,...,E, be events,
where P{Flﬁ Ei} > 0. Then

n—1
N El} .

i=1

P{éEi} =P{E\} -P{E2 | E\} - P{E; | E ﬂEz}"'P{En

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

2.4 Independent Events 27

2.4 Independent Events

Definition 2.11 Events E and F are independent, written E L F, if
P{ENnF}=P{E}-P{F}.

The above definition might seem less-than-intuitive to you. You might prefer to
think of independence using the following definition:

Definition 2.12 (Alternative) Assuming that P {F} # 0, we say that events E
and F are independent if

P{E | F}=P{E}.
Definition 2.12 says that P {E'} is not affected by whether F is true or not.

Lemma 2.13 Definitions 2.11 and 2.12 are equivalent.

Proof:
Definition 2.11 = Definition 2.12: Assuming that P {F} > 0, we have:

P{ENF} vy211 P{E}-P{F}
P{F} ~ P{F}
Definition 2.12 = Definition 2.11:

P{E|F)}= ~P{E}.

P{ENF)=P{F} -P{E|F} "2 P(F}.P(E}. =

Generally people prefer Definition 2.11 because it doesn’t require that P {F} > 0
and because it shows clearly that a null event is independent of every event.

Question: Can two mutually exclusive (non-null) events ever be independent?
Answer: No. If E and F are mutually exclusive, then P{E | F} =0 # P{E}.

Question: Suppose one is rolling a die twice. Which of these pairs of events are
independent?

(a) Eq =“Firstroll is 6” and E> = “Second roll is 6”
(b) E1 = “Sum of the rolls is 7” and E, = “Second roll is 4”

Answer: They are both independent!

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

28 2 Probability on Events

Question: Suppose we had defined: £; = “Sum of the rolls is 8” and E; =
“Second roll is 4.” Are they independent now?

Answer: No.
Example 2.14 (The unreliable network)

Suppose you are routing a packet from the source node to the destination node,
as shown in Figure 2.5. On the plus side, there are 8 possible paths on which the
packet can be routed. On the minus side, each of the 16 edges in the network
independently only works with probability p. What is the probability that you
are able to route the packet from the source to the destination?

Source

Destination

Figure 2.5 Unreliable network. Each edge only works with probability p.

We want to figure out the probability that at least one path is working. We will
first demonstrate an intuitive, but wrong, solution.

Solution 1 (WRONG!):
There are eight possible two-hop paths to get from source to destination.

Let E| denote the event that the first two-hop path works, E,> denote the event
that the second two-hop path works, and E; denote the event that the ith two-hop
path works:

P{E;} = p°, Vi.

Now the probability that at least one path works is the union of these eight events,
namely:

P {At least one path works} = P{E| UE, U---U Eg}
=P{E\} +P{Ex} +---+P{Es}
=8p2.

Question: What is wrong with Solution 1?

Answer: We cannot say that the probability of the union of the events equals the

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

2.4 Independent Events 29

sum of their probabilities, unless the events are mutually exclusive. However, we
know that the E;’s are independent, and hence they cannot be mutually exclusive.

Question: How does the answer given in Solution 1 compare to the correct
answer? Higher? Lower?

Answer: The answer given in Solution 1 is an upper bound on the correct answer,
via the Union Bound in Lemma 2.6.

There’s a lesson to be learned from Solution 1. When dealing with the probability
of a union of independent events, it helps to turn the problem into an infersection
of independent events. We will illustrate this idea in Solution 2.

Solution 2 (CORRECT!):

P {At least one path works} = P{E; UFE, U -- U Eg}
= 1 — P {All paths are broken}

:1—P{E_mE_2r1---mE_g}

-1-e{g) #[ei e (5]

P {E_l} =P {path 1 is broken} = 1 — P {path 1 works} = 1 — p°.

Thus,
8
P {At least one path works} = 1 — (1 - pz) .

Question: Suppose we have three events: A, B, and C. Given that
P{AnBNC}=P{A} -P{B} -P{C}, (2.5)

can we conclude that A, B, and C are independent?

Answer: No. The problem is that (2.5) does not ensure that any pair of events
are independent, as required by Definition 2.15.

Definition 2.15 Events A;, Ay, ..., A, are independent if, for every subset S

of {1,2,...,n},
P{ﬂA,} = l_[P{Ai}.

ieS ieS

A weaker version of independence is called pairwise independence and is defined
in Definition 2.16.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

30 2 Probability on Events

Definition 2.16 Events A1, Ay, ..., A, are pairwise independent if every pair
of events is independent, i.e.,

Vi#j, P{AinA;} =P{A;}-P{A;}.
Although pairwise independence is weaker than full independence, it still admits
some nice properties, as we’ll see in Exercise 5.38.

A different notion of independence that comes up frequently in problems (see
for example, Exercise 2.14) is that of conditional independence.

Definition 2.17 Two events E and F are said to be conditionally independent
given event G, where P{G} > 0, if

P{ENF|G}=P{E|G} P{F|G}.

Independence does not imply conditional independence and vice-versa, see Ex-
ercise 2.19.

2.5 Law of Total Probability

Observe that the set E can be expressed as
E:(EnF)u(EmF).

That is, E is the union of the set E N F and the set E N F, because any point in
E is also either in F or not in F.

Now observe that E N F and E N F are mutually exclusive. Thus,
P{E} =P{EnF}+P{E mf}
—P{E | F}P{F}+P{E | F}P{F},
WhereP{F} =1-P{F}.

Theorem 2.18 is a generalization of this idea:

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

2.5 Law of Total Probability 31

Theorem 2.18 (Law of Total Probability) Let F, F,,...,F, partition the
state space Q. Then,

INgE

P{E} P{E N F;}

i=1

NgE

P{E | Fi}-P{Fi}.

1l
—

i

Remark: This also holds if Fy, F», . . ., F, partition E.
This also extends to the case where there are countably infinite partitions.

Proof:
n
E= U (ENF).
i=1
Now, because the events E N F;, i = 1,...,n are mutually exclusive, we have
that

P{E}:Zn:P{EﬂFi}

i=1

:ZP{E|F1‘}'P{F1‘}- n

i=1

Question: Suppose we are interested in the probability of a transaction failure.
We know that if there is a caching failure, that will lead to transaction failures
with probability 5/6. We also know that if there is a network failure then that will
lead to a transaction failure with probability 1/4. Suppose that a caching failure
occurs with probability 1/100 and a network failure occurs with probability
1/100. What is the probability of a transaction failure?

Answer: It is tempting to write (WRONGLY):

1
P {transaction fails} = P {transaction fails | caching failure} - 100

+ P {transaction fails | network failure} -

5 1 1 1

6 1004 100

100

Question: What is wrong with that solution?

Answer: The two events that we conditioned on — a network failure and a caching
failure — do not partition the space. The sum of the probabilities of these events

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

32 2 Probability on Events

is clearly < 1. Furthermore, there may be a non-zero probability that both a
network failure and a caching failure occur.

One needs to be very careful that the events that we condition on are (1) mutually
exclusive and (2) sum to the whole space under consideration.

We can generalize the Law of Total Probability to apply to a conditional proba-
bility, as in Theorem 2.19.

Theorem 2.19 (Law of Total Probability for conditional probability) Ler
Fi, F,, ..., F, partition the sample space Q. Then:

P{A|B}:Zn:P{A|BmF,-}-P{Fi | B}.

i=1

Proof:
P{A N B}
P {B}

_ 2/ P{ANBNF;}

a P {B}

_ 2 P{B} -P{F; | B} -P{A| BN F;}
a P{B}

P{A|B)}=

(chain rule)

=ZP{Fi|B}-P{A|BmFi}. m

2.6 Bayes’ Law

Sometimes, one needs to know P{F | E}, but all one knows is the reverse
direction: P{E | F}.Is it possible to get P{F | E} from P{E | F}? It turns out
that it is possible, assuming that we also know P{E} and P {F}.

Theorem 2.20 (Bayes’ Law) Assuming P{E} > 0,
P{E| F}-P{F}
P{E}

P{F|E}=

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

2.6 Bayes’ Law 33

Proof:
P{ENnF} P{E|F} -P{F}

PUIE == = pim)

The Law of Total Probability can be combined with Bayes’ Law as follows: Let
F\, P, ..., F, partition Q. Then we can write: P {E'} = Z’}zl P {E | FJ-} P {FJ}
This yields:

Theorem 2.21 (Extended Bayes’ Law) Let Fy, F»,. .., F, partition Q. As-
suming P{E} > 0,
P{E|F}-P{F} P{E|F} -P{F}

P{E} " P{E|F;}P{F;}

P{F|E}=

Example 2.22 (Cancer screening)

Suppose that there is a rare child cancer that occurs in one out of one million
kids. There’s a test for this cancer, which is 99.9% effective (see Figure 2.6).

("~)
High Accuracy Cancer Screening

If CANCER — Test Postive w.p. 99.9%
If CANCER — Test Negative w.p. 99.9%

J

Figure 2.6 High accuracy cancer screening.

Question: Suppose that my child’s test result is positive. How worried should I
be?

Answer:

P {Cancer | Test pos.}
3 P {Test pos. | Cancer } - P {Cancer}
~ P {Test pos. | Cancer} - P {Cancer} + P {Test pos. | No Cancer} - P { No Cancer}

_ 0.999 - 10°°
09991076+ 1073 - (1 — 10-6)
. 10°
T 10041073

1
= SooT-

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

34 2 Probability on Events

Thus, the probability that the child has the cancer is less than 1 in 1000.
Question: What was the key factor in obtaining the result?

Answer: There are two things going on here. First, the cancer is very rare: 107°
likelihood. Second, there is a very low probability of error in the test: 10~ chance
of error. The key determining factor in the chance that the child has cancer is
the ratio of these two. Consider the ratio of the rareness of the cancer, 1079,
to the low error probability of the test, 107, This ratio yields 103, which is
(roughly) the probability that the child has the cancer. If the cancer were even
rarer, say 107 likelihood, then the probability that the child has cancer would

be approximately the ratio }8—:; =104

2.7 Exercises

2.1 Bombs and alarms
A bomb detector alarm lights up with probability 0.99 if a bomb is present.
If no bomb is present, the bomb alarm still (incorrectly) lights up with
probability 0.05. Suppose that a bomb is present with probability 0.1.
What is the probability that there is no bomb and the alarm lights up?

2.2 More on independent events
Suppose that we roll a die twice. Consider the following three events:

E, = Second roll is 4
E> = Difference between the two rolls is 4

E5 = Difference between the two rolls is 3

(a) Are E; and E, independent?
(b) Are E; and E3 independent?

2.3 How much do vaccines help?
The US Surgeon General recently declared that 99.5% of COVID deaths
are among the unvaccinated [40]. Given that I’'m vaccinated, what are my
chances of dying from COVID? You may use any of the facts below:
e The fraction of people who are currently vaccinated in the United States
is 50%.
e The fraction of people who die from COVID in the United States is 0.2%.

2.4 Bayesian reasoning for weather prediction
In the hope of having a dry outdoor wedding, John and Mary decide to get
married in the desert, where the average number of rainy days per year is

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

2.7 Exercises 35

10. Unfortunately, the weather forecaster is predicting rain for tomorrow,
the day of John and Mary’s wedding. Suppose that the weather forecaster is
not perfectly accurate: If it rains the next day, 90% of the time the forecaster
predicts rain. If it is dry the next day, 10% of the time the forecaster still
(incorrectly) predicts rain. Given this information, what is the probability
that it will rain during John and Mary’s wedding?

2.5 Assessing risk
Airlines know that on average 5% of the people making flight reservations
do not show up. They model this by assuming that each person indepen-
dently does not show up with probability of 5%. Consequently, their policy
is to sell 52 tickets for a flight that can only hold 50 passengers. What is
the probability that there will be a seat available for every passenger who
shows up?

2.6 When one event implies another
Suppose that we are told that event A implies event B. Which of the
following must be true:
(a) P{A} <P{B}
(b) P{A} > P{B}
(c) Neither

2.7 Wearing masks and COVID
This problem analyzes mask wearing and COVID via Figure 2.7.
(a) Does consistently wearing masks reduce your chance of catching
COVID? Let C (respectively, M) denote the event that a randomly cho-
sen person catches COVID (respectively, consistently wears a mask).

Compare P{C | M} with P {C | M}
(b) Your friend comes down with COVID. Based on your answer to part

(a), do you think it’s more likely that they didn’t consistently wear a
mask, or that they did? Do the computation to see if you're right.

All people

Consistently Catch

wear "y » COVID
masks

Figure 2.7 Venn diagram showing fraction of people who wear masks consistently and
fraction of people who catch COVID, for Exercise 2.7.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

36 2 Probability on Events

2.8 Positive correlation
We say that events A and B are positively correlated if

P{A| B} > P{A}. (2.6)
Prove or disprove that (2.6) implies

P{B| A} > P{B}. (2.7)
Assume that P{A} > 0 and P {B} > 0.

2.9 Chain rule for conditioning
Let £y, E,, ..., E, be n events, where P {?\ E,-} > 0. Prove via induction

i=1

that

P{EWIEI'} =P{E\} -P{Ey | E1}-P{E; | E| ﬂEz}"'P{En

n-1
n El} .
i=1
2.10 Birthday paradox
The famous birthday paradox considers the situation of a room of m = 30
people, where we ask what is the probability that no two have the same
birthday. Let A be the event that no two people have the same birthday.
It would seem that P {A} is high, given that there are n = 365 possible
birthdays, but it turns out that P {A} < ¢~!; hence with high likelihood at
least two people have the same birthday.
Assume that all n birthdays are equally likely. Prove the above claim via
the following conditioning approach: Imagine that the people in the room
are ordered, from 1 to m. Let A; be the event that person i has a different

birthday from each of the first i — 1 people. Now observe that A = ﬁ] A;,
=

and use the chain rule from Exercise 2.9. [Hint: Leave everything in terms
of n and m until the final evaluation. You will need to use (1.14), which
says that 1 — & < e~ n for high n.]

2.11 It’s a colt!

The offspring of a horse is called a foal. A horse couple has at most one

foal at a time. Each foal is equally likely to be a “colt” or a “filly.” We are

told that a horse couple has two foals, and at least one of these is a colt.

Given this information, what’s the probability that both foals are colts?

(a) Compute the answer to the above question, assuming only that each
foal is equally likely to be a colt or a filly.

(b) Now re-compute the answer given the latest discovery: Scientists have
discovered that 10% of horse couples only produce colts, 10% of cou-
ples only produce fillies, and 80% are equally likely to produce either
gender.

(c) Is your answer for (b) different from that for (a)? Why?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

2.7 Exercises 37

2.12 It’s a Sunday colt!

2.13

As in Exercise 2.11, we are told that a horse couple has two foals. Addi-
tionally, we are told that at least one of these foals is a colt that was born on
a Sunday. Given this information, what’s the probability that both foals are
colts? Assume that a foal is equally like to be born on any day of the week,
and is equally likely to be a colt or a filly, and births are independent.

Happy or sad

Independently, on any given day, with probability 50% Mor is happy, and
with probability 50% she is sad. While it’s hard to know how Mor is feeling,
her clothes offer a clue. On her happy days, Mor is 90% likely to wear red
and 10% likely to wear black. On her sad days, Mor is 90% likely to wear
black and 10% likely to wear red. For the last two days, Mor has worn
black. What is the likelihood that Mor has been sad both of the last two
days?

2.14 Bayesian reasoning for healthcare testing

2.15

A pharmaceutical company has developed a potential vaccine against the

HINT flu virus. Before any testing of the vaccine, the developers assume

that with probability 0.5 their vaccine will be effective and with probability

0.5 it will be ineffective. The developers do an initial laboratory test on the

vaccine. This initial lab test is only partially indicative of the effectiveness of

the vaccine, with an accuracy of 0.6. Specifically, if the vaccine is effective,
then this laboratory test will return “success” with probability 0.6, whereas
if the vaccine is ineffective, then this laboratory test will return “failure”

with probability 0.6.

(a) What is the probability that the laboratory test returns “success”?

(b) What is the probability that the vaccine is effective, given that the
laboratory test returned “success”?

(c) The developers decide to add a second experiment (this one on human
beings) that is more indicative than the original lab test and has an
accuracy of 0.8. Specifically, if the vaccine is effective, then the human
being test will return “success” with probability 0.8. If the vaccine
is ineffective, then the human being test will return “failure” with
probability 0.8. What is the probability that the vaccine is effective,
given that both the lab test and the human being test came up “success”?
How useful was it to add this additional test? Assume that the two tests
(human test and lab test) are conditionally independent on the vaccine
being effective or ineffective.

Independence of three events
Natassa suggests the following definition for the independence of three

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

38

2 Probability on Events

2.16

2.17

2.18

2.19

events: Events A, B, and C are independent if
P{ANBNC}=P{A} -P{B}-P{C}.

Is Natassa correct? Specifically, does the above definition also ensure that
any pair of events are independent? Either provide a proof or a counter-
example. Assume that your events each have non-zero probability.

Does independence imply independence of the complement?

Haotian reasons that if event E is independent of event G, then E should
also be independent of G. He argues that if E is not affected by whether
G is true, then it should also not be affected by whether G is not true.
Either provide a formal proof via the definition of independence, or find a
counter-example where you define E, G, and G.

Corrupted packets

CMU has two campuses: one in Pittsburgh and one in Qatar. Suppose
all packets of a flow originate in either Pittsburgh or in Qatar. Packets
originating in Pittsburgh are (independently) corrupted with probability p.
Packets originating in Qatar are (independently) corrupted with probability
q. We are watching a flow of packets (all from the same origin). At first,
we don’t know the origin, so we assume that each origin is equally likely.
So far, we’ve seen two packets in the flow, both of which were corrupted.
Given this information:

(a) What is the probability that the flow originated in Pittsburgh?

(b) What is the probability that the next packet will be corrupted?

Pairwise independence and the mystery novel principle

The mystery novel principle considers three events, A, B, and C, where:

e A tells us nothing about C;

e B tells us nothing about C;

e But A and B together tell us everything about C'!

Another way of phrasing this is that A, B, and C are “pairwise independent,”
meaning that any pair of these is independent. However, the three events
together are not independent. Provide a simple example of three events with
this property. [Hint: You shouldn’t need more than two tosses of a coin.]

Independence does not imply conditional independence

Produce an example of two events, A and B, that are independent, but are
no longer independent once we condition on some event C. [Hint: Your
example can be very simple. Consider, for instance, the simple experiment
of flipping a coin two times, and define events based on that experiment.]

2.20 Does conditional independence imply conditional independence on the

complement?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

2.7 Exercises 39

221

Jelenareasons that if events £ and F are conditionally independent of event
G, then they should also be conditionally independent of event G. Either
provide a formal proof, or find a counter-example.

Another definition of conditional independence?
Recall that events E and F are conditionally independent on event G if

P{ENF|G}=P{E|G} -P{F|G).

Taegyun proposes an alternative definition: events E and F are condition-
ally independent on event G if

P{E|FNG}=P{E|G}.

Taegyun argues that “knowing F gives no additional information about
E, given that we already know G.” Is Taegyun’s definition equivalent to
the original definition (i.e., each definition implies the other) or not? If so,
prove it. If not, find a counter-example. Assume that P{F N G} > 0.

2.22 The famous Monty Hall problem

2.23

A game show host brings the contestant into a room with three closed
doors. Behind one of the doors is a car. Behind the other two doors is a
goat. The contestant is asked to pick a door and state which door she has
chosen (we’ll assume she picks the door at random, because she has no
insider knowledge).

Now the game show host, knowing what’s behind each door, picks a door
that was not chosen by the contestant and reveals that there is a goat behind
that door (the game show host will always choose to open a door with a
goat). The contestant is then asked, “Would you like to switch from your
chosen door?”

One would think that it shouldn’t matter whether the contestant switches
to the other unopened door, since the car is equally likely to be behind the
originally chosen door and the remaining unopened door. This intuition
is wrong. Derive the probability that the contestant gets the car, both in
the case that the contestant switches doors and the case that the contestant
sticks with her original door.

[Hint: Assume WLOG that the contestant picks door 1. Let D be ar.v. that
represents the door hiding the car. Let Y be ar.v. which represents the action
of the game show host. Compare P{D =1 |Y =i} withP{D =2 |Y =i}
for all logical values of i.]

Weighty coins

Imagine that there are two coins of weight w; and eight coins of weight w,
where w; # w;. All the coins look identical. We pick two pairs of coins,
without replacement, from the pile of 10 coins. What is the probability that

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

40 2 Probability on Events

all the chosen coins have weight w», given that the weights of the two pairs
are equal?

2.24 Winning streak

Assume that the Pittsburgh Steelers win a game with probability p irre-

spective of the opponent, and that the outcome of each game is independent

of the others.

(a) Suppose you are told that the Steelers won four out of the eight games
they played in a season. What is the probability that Steelers had a
winning streak (i.e., continuous wins) of at least three matches in that
season?

(b) Suppose p = 0.5. Suppose the Steelers play six games in a particular
season. What is the probability that the Steelers will have a winning
streak of at least three matches? (Is the hype that a winning streak
receives by the media worth it?)

2.25 Monty Hall with five doors
A game show host brings the contestant into a room with five closed doors.
Behind one of the doors is a car. Behind the other four doors is a goat.
The contestant is asked to pick a door and state which door she has chosen
(we’ll assume she picks the door at random, because she has no insider
knowledge).
Now the game show host, knowing what’s behind each door, picks a door
that was not chosen by the contestant and reveals that there is a goat behind
that door (the game show host will always choose to open a door with a
goat). The contestant is then asked, “Would you like to switch from your
chosen door?”
Derive the probability that the contestant gets the car, both in the case that
the contestant switches doors and the case that the contestant sticks with
her original door.

2.26 Another fun door problem

Imagine there are two doors. Both doors have money behind them, but one

contains twice as much money as the other. Suppose you choose one door

randomly, and before you look behind the door you are given the chance to

switch doors. Should you switch?

(a) Explain what is wrong with the following argument that favors switch-
ing:
Suppose M is the money behind the door I chose. Then with probability
%, I chose the door with less money and the other door contains 2M.
Also with probability %, I chose the door with more money and the
other door contains % Therefore the expected value of money in the

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

2.7 Exercises 41

227

2.28

other door is

5
=-M>M.

_2M
* 1

2

So we should switch.
(b) Prove that there is no point to switching.

M
2

NS

Prediction with an unknown source

You have two dice. Die A is a fair die and die B is a biased die (the number
six comes up with probability % and the remaining % probability is split
evenly across all the other numbers). Kaige picks a die at random and rolls
that die three times. Given that the first two rolls are both sixes, what is the
probability that the third roll will also be a six?

Modeling packet corruption

Packet switched networks are the backbone of the Internet. Here, data is

transferred from a source to a destination by encapsulating and transferring

data as a series of packets. There are a number of reasons due to which
packets get lost in the network and never reach the destination. Consider
two models for packet losses in the network.

Model I: Each packet is lost with probability p independently.

Model 2: A packet is lost with probability p; if its previous packet was

transmitted successfully, and is lost with probability p, if its previous

packet was lost.

Suppose a source sends exactly three packets over the network to a destina-

tion. For this setup, under Model 2, assume that the probability of the first

packet getting lost is p. Further assume p = p; = 0.01 and p, = 0.5.

(a) What is the probability that the second packet is lost under Model 1
and Model 2?

(b) Suppose you are told that the third packet is lost. Given this additional
information, what is the probability that the second packet is lost under
Model 1 and Model 2?

(c) Suppose we represent the loss pattern for the three packets using Os
and 1s, where O represents the packet being lost and 1 represents the
packet being transferred successfully. For example, loss pattern 110
corresponds to the scenario when the first two packets are transferred
successfully and the third packet is lost. What is the probability of loss
patterns {010, 100,001} under Model 1 and Model 2?

(d) What do you observe from your answer to the above question? Specif-
ically, what kind of loss patterns have higher probability in Model 2 as
compared to Model 1?

Aside: Extensive measurements over the Internet have shown that packet

losses in real-world networks are correlated. Models similar to Model 2

are used to model such correlated packet-loss scenarios. For example, one

such model is called the Gilbert—Elliot model [23, 32].

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Part |l

Discrete Random Variables

In Part I, we saw that experiments are classified as either having a discrete sample
space, with a countable number of possible outcomes, or a continuous sample
space, with an uncountable number of possible outcomes. In this part, our focus
will be on the discrete world. In Part III we will focus on the continuous world.

We start, in Chapter 3, by introducing the notion of a discrete random variable.
We then show that everything that we’ve learned about probability on events
applies to random variables as well. In this chapter, we cover the most common
discrete distributions: the Bernoulli, Binomial, Geometric, and Poisson.

Chapter 4 is devoted to understanding expectation of discrete random variables.
This includes linearity of expectation and conditional expectation. We end with
a discussion of Simpson’s paradox.

In Chapter 5, we move on to variance and higher moments of discrete random
variables. We also introduce the notion of a sum of random variables, where
the number being summed is itself a random variable. We next turn to the tail
of a random variable, namely the probability that the random variable exceeds
some value, introducing some very simple tail bounds, as well as the concept
of stochastic dominance. We end with a discussion of the inspection paradox,
which is one of the more subtle consequences of high variability.

Finally, in Chapter 6, we finish off our unit on discrete random variables by
introducing the z-transform, a moment-generating function which is tailored
for discrete random variables. The z-transform allows us to quickly compute
all higher moments of random variables. It also has many other applications,
including solving recurrence relations.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

3 Common Discrete Random
Variables

While the previous chapter covered probability on events, in this chapter we will
switch to talking about random variables and their corresponding distributions.
We will cover the most common discrete distributions, define the notion of a joint
distribution, and finish with some practical examples of how to reason about the
probability that one device will fail before another.

3.1 Random Variables

Consider an experiment, such as rolling two dice. Suppose that we are interested
in the sum of the two rolls. That sum could range anywhere from 2 to 12,
with each of these events having a different probability. A random variable, X,
associated with this experiment is a way to represent the value of the experiment
(in this case the sum of the rolls). Specifically, when we write X, it is understood
that X has many instances, ranging from 2 to 12 and that different instances
occur with different probabilities. For example, P {X = 3} = %.

Formally, we say,

Definition 3.1 A random variable (r.v.) is a real-valued function of the out-
come of an experiment involving randomness.

For the above experiment, r.v. X could be the sum of the rolls, while r.v. Y could
be the sum of the squares of the two rolls, and r.v. Z could be the value of the
first roll only. Any real-valued function of the outcome is legitimate.

As another experiment, we can imagine throwing two darts at the interval [0, 1],
where each dart is equally likely to land anywhere in the interval. Random
variable D could then represent the distance between the two darts, while r.v. L
represents the position of the leftmost dart.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

3.2 Common Discrete Random Variables 45

Definition 3.2 A discrete random variable can take on at most a countably
infinite number of possible values, whereas a continuous random variable
can take on an uncountable set of possible values.

Question: Which of these random variables is discrete and which is continuous?

(a) The sum of the rolls of two dice

(b) The number of arrivals at a website by time ¢
(c) The time until the next arrival at a website
(d) The CPU requirement of an HTTP request

Answer: The sum of rolls can take on only a finite number of values — those
between 2 and 12 — so it clearly is a discrete r.v. The number of arrivals at
a website can take on the values: 0,1,2,3,... namely a countable set; hence
this is discrete as well. Time, in general, is modeled as a continuous quantity,
even though there is a non-zero granularity in our ability to measure time via a
computer. Thus quantities (c) and (d) are continuous random variables.

We use capital letters to denote random variables. For example, X could be ar.v.
denoting the sum of two dice, where
1
P{X=7}=P{(1,6) or (2,5) or (3,4),..., 0or (6,1)} = 2

Key insight: Because the “outcome of the experiment” is just an event, all the
theorems that we learned about events apply to random variables as well.
For example, X = 7 above is an event. In particular, the Law of Total Probability
(Theorem 2.18) holds. For example, if N denotes the number of arrivals at a
website by time ¢, then N > 10 is an event. We can then use conditioning on
events to get

5 2
P{N>10}=P{N > 10| weekday}~7+P{N > 10 | weekend}-§.

All of this will become more concrete when we study examples of random
variables.

3.2 Common Discrete Random Variables

Discrete random variables take on a countable number of values, each with some
probability. A discrete r.v. is associated with a discrete probability distribution

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

46 3 Common Discrete Random Variables

that represents the likelihood of each of these values occurring. We will some-
times go so far as to define a r.v. by the distribution associated with it, omitting
the whole discussion of an “experiment.”

Definition 3.3 Let X be a discrete r.v. Then the probability mass function
(pm.f.), px(-) of X, is defined as:

px(a) =P{X =a} where pr(x) =1l

X

The camulative distribution function of X is defined as:

Fx(a) =P{X <a}=) px(x).

x<a

The tail of X is defined as:

Fx(a) =P{X >a}=) px(x)=1-Fx(a).

xX>a

Common discrete distributions include the Bernoulli, the Binomial, the Geomet-
ric, and the Poisson, all of which are discussed next.

3.2.1 The Bernoulli(p) Random Variable

Consider an experiment involving a single coin flip, where the coin has proba-
bility p of coming up heads and 1 — p of coming up tails.

Let r.v. X represent the outcome of the experiment, that is, the value of the coin.
We say that the value is 1 if the coin comes up heads and O otherwise. Then,

X = 1 w/prob p
“ | 0 otherwise °

We say that X is a r.v. drawn from the Bernoulli(p) distribution, and we write:
X ~ Bernoulli(p).
The p.m.f. of r.v. X is defined as follows:
px(1)=p
px(0) =1-p.
The p.m.f. is depicted in Figure 3.1.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

3.2 Common Discrete Random Variables 47

px ()
A
10
0.8
0.6
04
02|
0

Figure 3.1 Probability mass function of the Bernoulli(p = 0.3) distribution.

3.2.2 The Binomial(n,p) Random Variable

Now consider an experiment where we again have a coin with probability p
of coming up heads (success). This time we flip the coin n times (these are
independent flips).

Let r.v. X represent the number of heads (successes). Observe that X can take on
any of these (discrete) values: 0,1,2,...,n.

The p.m.f. of r.v. X is defined as follows:
px(i) =P{X =i}

= (’_l)pi(l - p)", wherei=0,1,2,...,n.
i

A r.v. X with the above p.m.f. is said to be drawn from the Binomial(n, p)
distribution, written: X ~ Binomial(n, p). The p.m.f. is shown in Figure 3.2.

0.10
0.05 ‘ |
0 _II II ,,,,,,,, i

Figure 3.2 Probability mass function of the Binomial(n = 20, p = 0.3) distribution.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

48 3 Common Discrete Random Variables

Observe that the sum of the p.m.f. is 1, as desired:

NITOEDY (?)pi(l -p)"=(p+1-p)" =1 v
i=0 0

i=

Here we’ve used the binomial expansion from Section 1.5.

3.2.3 The Geometric(p) Random Variable

Again consider an experiment where we have a coin with probability p of
coming up heads (success). We now flip the coin until we get a success; these
are independent trials, each distributed Bernoulli(p).

Let r.v. X represent the number of flips until we get a success.

The p.m.f. of X is defined as follows:

px(i) =P{X =i}
=(1-p)~'p, wherei=1,2,3,....

A r.v. X with the above p.m.f. is said to be drawn from the Geometric(p)
distribution, written: X ~ Geometric(p). The p.m.f. is shown in Figure 3.3.

0.1 |‘
0 |IIII.I-- %l
1 5 10

15
Figure 3.3 Probability mass function of the Geometric(p = 0.3) distribution.

Question: What is Fx (i)?

Answer:

Fx(i) =P{X > i} = P {First i flips were tails} = (1 — p)".

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

3.2 Common Discrete Random Variables 49

Observe that the sum of the p.m.f. is 1, as desired:

Zm(l)—Z(l—p)’1 p= Z(l—p)‘ p=p- (1 5=

Here we’ve used the Geometric series sum from Section 1.1.

Question: Let’s review. Suppose you have a room of n disks. Each disk inde-
pendently dies with probability p each year. How are the following quantities
distributed?

(a) The number of disks that die in the first year
(b) The number of years until a particular disk dies
(c) The state of a particular disk after one year

Answer: The distributions are: (a) Binomial(n, p); (b) Geometric(p); (c)
Bernoulli(p).

3.2.4 The Poisson(1) Random Variable

We define the Poisson(2) distribution via its p.m.f. Although the p.m.f. does
not appear to have any meaning at present, we will see that it comes up in
many applications where the distribution is bell-shaped, but has a lower bound
of 0. For example, we will see in Chapter 5 that the Poisson distribution is a
good representation of the number of pairs of shoes owned by people. Likewise,
in Chapter 12, we will see that the Poisson distribution occurs naturally when
looking at a mixture of a very large number of independent sources, each with a
very small individual probability. It can therefore be a reasonable approximation
for the distribution of the number of arrivals to a website or a router.

If X ~ Poisson(1), then
—Ayi
A
px (i) = e,—', wherei =0,1,2,....
i!
The p.m.f. for the Poisson(A) distribution is shown in Figure 3.4.

The sum of the p.m.f. is again 1, as desired:

pr(o =

Here we’ve used the Taylor series expansion from (1.11) of Section 1.4.

i o
-2 /1__
il
l.
i=0

- 1=1. v

Question: Does the shape of the Poisson distribution remind you of other distri-
butions?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

50 3 Common Discrete Random Variables

px ()
020‘
0.15
0.10

0.05

0 i
0 5 10 15

Figure 3.4 Probability mass function of the Poisson(A = 6) distribution.

Answer: The Poisson distribution does not look all that different from the Bino-
mial distribution. It too has a bell-like shape. However, it has an infinite range.
In Exercise 3.8 we will see that if # is large and p is small, then Binomial(n, p)
is actually very close to Poisson(np). The Poisson distribution is also similar to
the Normal distribution (Chapter 9), except that it is lower-bounded by 0.

3.3 Multiple Random Variables and Joint Probabilities

We are often interested in probability statements concerning two or more random
variables simultaneously. For example, imagine that we have n disks, each of
which fails with probability p every day. We might want to know the probability
that all n disks fail on the same day, or the probability that disk 1 fails before
disk 2. In asking such questions, we often are assuming that the failure of disks
is independent (in which case we often say that the disks “independently fail”
with probability p on each day). By independent, we mean that the fact that one
disk fails doesn’t influence the failure of the other disks. However, it could be
that the failures are positively correlated. By this we mean that the fact that one
disk fails makes it more likely that other disks fail as well (for example, maybe
the fact that a disk failed means there are mice in the building, which in turn can
influence other disks).

In the above scenario, the state of each disk (working or failed) is a r.v. There
are several ways to reason about multiple random variables. We introduce two
techniques in this section. The first technique involves using the joint p.m.f. and is
illustrated in Example 3.6. The second involves conditioning one r.v. on another
and is illustrated in Example 3.8.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

3.3 Multiple Random Variables and Joint Probabilities 51

Definition 3.4 The joint probability mass function between discrete random
variables X and Y is defined by

pxy(x,y) =P{X=x&Y =y}.
This is equivalently written as P{X = x,Y =y} orasP{X =xNY = y}.

By definition:
Z ZPX,Y(X, y)=1.
x y

Question: What is the relationship between px(x) and pxy(x,y)?

Answer: Via the Law of Total Probability, we have:

px(x) = ZPX,Y()C’ y) and py(y) = ZPX,Y(X,)’)-
y X

When written this way, px(x) is often referred to as the marginal probability
mass function of X. The term “marginal” comes from the fact that px(x) here
would appear in the margins of a joint p.m.f. table, after summing an entire
column over all y values.

Similarly to the way we defined two events E and F as being independent, we
can likewise define two random variables as being independent. This is because
X =xand Y =y are events.

Definition 3.5 We say that discrete random variables X and Y are indepen-
dent, written X LY, if

P{X=x&Y=y}=P{X=x}-P{Y =y}, Vxy
or, equivalently,

pxy(x,y) = px(x) - py(y).

Question: If X and Y are independent, what does this say about
P{X=x|Y=y}?

Answer: Again, since X = x and Y = y are events, we can apply the simple
conditioning formula that we learned in Chapter 2. As expected,
P{X=x&Y=y} P{X=x} P{Y=y}

P ===y T por=y

=P{X =x}.

Example 3.6 (Who fails first?)

Here’s a question that commonly comes up in industry, but isn’t immediately

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

52 3 Common Discrete Random Variables

obvious. You have a disk with probability p; of failing each day. You have a
CPU which independently has probability p, of failing each day.

Question: What is the probability that your disk fails before your CPU?

Before you look at the answer, try to think for yourself what the answer might
be. Isit |p; — pa|, or %, or p1 (1 - p2)?

Answer: We model the problem by considering two Geometric random vari-
ables and deriving the probability that one is smaller than the other. Let
X1 ~ Geometric(p;) and X, ~ Geometric(p,), where X; L X,. We want
P{Xl < Xz}.

P{X; <Xy} = Z Z Px,.x,(k, k2)

k=1 ko=k+1

= Z Z px, (k) - px,(k2) (by independence)
k=1 ky=k+1

=2 2, =p0)*pi- (1=)" p
k=1 ky=k+1

= Z(l -p)* ' Z (1-p2)*"'ps
k=1 ky=k+1

= > (1 =p) " pi(1=p2)* Y (1= p2)* ' ps
k=1 ko=l

= > (=p) ' pi(1=pa)k -1

=~
l
—_

=pi(1=p2) Y [(1=p2)(1 = p))]*~!

=l
_ p1(1 - p2)
1-(1-p)(1-p1)

(3.1

Question: Explain why your final expression (3.1) makes sense.

Answer: Think about X; and X, in terms of coin flips. Notice that all the flips
are irrelevant until the final flip, since before the final flip both the X; coin and
the X, coin only yield tails. P {X; < X5} is the probability that on that final flip,
where by definition at least one coin comes up heads, it is the case that the X
coin is heads and the X, coin is tails. So we’re looking for the probability that
the X; coin produces a heads and the X; coin produces a tails, conditioned on

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

3.3 Multiple Random Variables and Joint Probabilities 53

the fact that they’re not both tails, which is derived as:

P{Coinl =H & Coin2 =T}
P {not both 7'}

_ pi(l - p2)

C1-(1-p)(1-py)’

P{Coinl=H & Coin2 =T | notboth T} =

Another way to approach Example 3.6 is to use conditioning. In computing the
probability of an event, we saw in Chapter 2 that it is useful to condition on other
events. We can use this same idea in computing probabilities involving random
variables, because X = k and Y = y are just events. Thus, Theorem 3.7 follows
immediately from the Law of Total Probability (Theorem 2.18).

Theorem 3.7 (Law of Total Probability for Discrete R.V.) We can express
the probability of an event E by conditioning on a discrete r.v. Y as follows:

P{E}=) P{ENY=y}=) P{E|Y =)} P{Y=y}.
y y

Likewise, for discrete random variables X and Y, we can express the probability
of the event X = k by conditioning on the value of Y as follows:

P{X:k}:ZP{X:ka:y}:ZP{X:k|Y:y}-P{Y=y}.
y y

As always, being able to condition is a huge tool! It allows us to break a problem
into a number of simpler problems. The trick, as usual, is knowing what to
condition on.

Example 3.8 (Who fails first, revisited)

Suppose again that your disk has probability p; of failing each day, and your
CPU independently has probability p, of failing each day.

Question: What is the probability that your disk fails before your CPU? This
time use conditioning to determine this probability.

Answer: Again, let X; ~ Geometric(p;) and X, ~ Geometric(p;), where
X L X5,

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

54 3 Common Discrete Random Variables

P {X, <X2}=ZP{X1 <X | X) =k} -P{X; =k}
k=1

:ZP{k<X2|X1 =k} -P{X; =k}
k=1

P{X, > k}-P{X, =k} (byindependence)

D2 T

(1-p)*-(1=p)¥'p

b
Il
—

=pi(1=p2) Y [(1 = p2)(1 = pp)]<!

=l
_ p1(1=p2)
1-(1-p)(1=p1)

Unsurprisingly, conditioning leads to a simpler solution.

3.4 Exercises

3.1 ORs and ANDs
Two fair coins are flipped. Let X represent the logical OR of the two flips.
Let Y represent the logical AND of the two flips.
(a) What is the distribution of X?
(b) What is the distribution of Y'?
(c) What is the distribution of X +Y?

3.2 If at first you don’t succeed
Every day, independently at random, I win a prize with probability ﬁ.
What is the probability that it takes more than 100 days to win a prize?

3.3 Independence
We’re given a joint p.m.f. for two discrete random variables X and Y.

|y=1 v=2 v=3
X=0[1/8 1/4 1/8
X=1[1/8 0 3/8

(a) Whatis pxy(0,1)? What is px(0)? What is py (1)?
(b) Are X and Y independent?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

3.4 Exercises 55

3.4 From 10 disks to 1
Today you have 10 working disks. Suppose that each disk independently
dies with probability p each day. What is the probability that tomorrow you
have just 1 working disk?

3.5 Independence of random variables
Sachit has been studying the definition of independence of discrete random
variables (Definition 3.5). He’s wondering if the following statement is a
corollary of the definition:

IfX LY, thenP{X>i&Y >} =P{X>i}-P{Y>}.

Prove or disprove this statement.

3.6 More independence practice
We’re given a joint p.m.f. for two random variables X and Y.

|ly=1 Y=2 v=3
X=1|3/8 3/16 1/4
X=2|1/8 1/16 0

(a) Are X and Y independent?
(b) WhatisP{X =11]Y > 1}?
(c) Find an event A where X and Y are conditionally independent given A.

3.7 Sum of two independent Binomials
Let X ~ Binomial(n, p) and Y ~ Binomial(n, p), where X L Y. What is
the distribution of Z = X + Y? [Hint: Don’t try to do this via math. Think
about the experiment.]

3.8 Poisson approximation to Binomial

You will prove that the Binomial(#n, p) distribution is well approximated
by the Poisson(np) distribution when n is large and p is small. Let X ~
Binomial(n, p) and consider px (i), for an arbitrary fixed value of i > 0. In
your expression for px (i), set p = A/n so that px (i) is expressed in terms
of only A4 and n. Expand out all the “choose” terms. Now take the limit
as n — oo, while remembering that i is a fixed constant. Show that px (i)
approaches the p.m.f. of a Poisson() r.v.

3.9 COVID testing
[Proposed by Vanshika Chowdhary] On day 0, you take a long-distance
flight and you are infected with COVID with probability % Being a respon-
sible citizen, you decide to quarantine for 14 days. You also visit a wizard,
who gives you some special beans to help cure you, just in case you are
sick. You take the beans every day, starting on day 1 of your quarantine.
Each day, the beans have a % chance of immediately curing you. Suppose

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

56 3 Common Discrete Random Variables

you are tested at the end of day 14 (after 14 days of taking beans) and the
test comes back negative. What is the probability that you were actually
infected with COVID on day 0? Assume that the test is fully accurate.

3.10 Marginal probability
An urn contains n balls, which are numbered 1, 2,...,n. Suppose that we
draw k < n balls without replacement from the urn. Each ball is selected
at random. Specifically, in the first draw, each ball has probability % of
being selected. In the second draw, each of the remaining n — 1 balls has
probability ﬁ of being selected, and so on. Let X; denote the number on
the ith ball drawn. Your goal is to prove that

1
P{X, :f} = ;

To do that, follow these steps:
(a) Are the X;’s independent?
(b) Write an expression for P{X| = a1, X, = as, ..., Xx = ax}, where 1 <

a; < n.
(c) Express the marginal probability, P {X; = £}, as a sum

P{Xl:[}:ZP{Xl =at,...,Xi-1 =ai_l,Xi=f,...,Xk=ak}.

What is the sum over?
(d) Evaluate the summation from (c). Start by evaluating the term inside
the sum. Then determine the number of terms being summed.

3.11 Binary symmetric channel (BSC)
A binary symmetric channel is a communications model used in coding
theory. There is a transmitter who wishes to send a bit, B. There is noise,
N, which may corrupt the bit, and there is a final output Y, where

Y=B®N.

Here, @ is a binary sum. Assume that B ~ Bernoulli(p) and that N ~
Bernoulli(0.5) and that N L B. Can we say that B L Y? Why or why not?

3.12 Noisy reading from flash storage
Flash memories are a type of storage media which provide orders of mag-
nitude faster access to data as compared to hard disks. However, one of the
downsides of flash memories is that they are prone to error when reading.
You have two flash memory devices, F1 and F2. The noisy readings from
F1 and F2 are modeled as follows:
e F1: For any stored bit, the value read is flipped with probability p;.
e F2: For any stored bit, the value read is flipped with probability p».
Suppose you write a bit into both F1 and F2 (i.e., the same bit is written
into both devices), and that F1 and F2 act independently on that bit. A day

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

3.4 Exercises 57

3.13

later, you read the bit that you wrote from F1 and from F2. Represent the

value read from F1 by the r.v. ¥} and the value read from F2 by Y;. Assume

that the stored bit is represented by X, where X is equally likely to be O or

1, barring any other information.

(a) Assume that p; = 0.1 and p, = 0.2, that is, the probability of flip-
ping is low. Are Y| and Y, dependent? Explain using the definition of
independence of random variables.

(b) Repeat when p; = 0.5 and p, = 0.2. Now are Y] and Y, dependent?

(c) Repeat when p; = 0.7 and p, = 0.8. Now are Y] and Y, dependent?

(d) For what values of p; and p, do you conjecture that Y; and Y, are
dependent? Why do you think this is?

Correlated basketball

A basketball player attempts a shot and makes it. She attempts another
shot and misses it. Her subsequent shots have success probability based on
the proportion of her previous successful shots. What’s the probability she
makes 50 out of 100 shots? [Hint: Try looking for a pattern.]

3.14 How to find a mate

Imagine that there are n people in the world. You want to find the best
spouse. You date one person at a time. After dating a person, you must
decide if you want to marry them. If you decide to marry, then you’re done.
If you decide not to marry, then that person will never again agree to marry
you (they’re on the “burn list”), and you move on to the next person.
Suppose that after dating a person you can accurately rank them in com-
parison with all the other people you’ve dated so far. You do not, however,
know their rank relative to people you haven’t dated. So, for example, you
might early on date the person who is the best of the 7, but you don’t know
that — you only know that this person is better than the people you’ve dated
so far.

For the purpose of this problem, assume that each candidate has a unique
score, uniformly distributed between O and 1. Your goal is to find the
candidate with the highest score.

Algorithm 3.9 (Marriage algorithm)

1. Date r < n people. Rank those r to determine the “best of r.”

2. Now keep dating people until you find a person who is better than that
“best of r” person.

3. As soon as you find such a person, marry them. If you never find such
a person, you'll stay unwed.

What value of r maximizes P {end up marrying the best of n}? When using
that r, what is the probability that you end up marrying the best person? In
your analysis, feel free to assume that n is large and thus H,, =~ In(n), by
(1.17).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

4 Expectation

In Chapter 3, we studied several common discrete distributions. In this chapter
we will learn how to obtain their mean, or expectation. We will also cover some
useful tools that help us to simplify deriving expectations, such as the linearity
of expectation result and deriving expectations by conditioning.

4.1 Expectation of a Discrete Random Variable

The probability mass function (p.m.f.) of a random variable (r.v.) specifies the
possible values of the r.v., each with a probability (“weight”). The expectation of
the random variable, also known as its mean or average, is a way of summarizing
all these different values into a single number. This single number is the sum
of all the values, each weighted by its probability of occurring. Expectation is
typically used to give us a single value when trading off different options.

Example 4.1 (Choosing between startups)

Suppose you have to choose between startups to join. Startup A will give you a
win of ten million dollars with probability 10%, but will cost you one million
dollars with probability 90%. Startup B will give you a win of one million dollars
with probability 50%, but will cost you half a million with probability 50%.

Question: Which do you choose?
Answer: One way of comparing the two options is to think of A and B as random
variables and compare their expectations:

Expected value of A = 107 - (0.1) + (=10%) - (0.9) = 10°.

Expected value of B = 10° - (0.5) + (=0.5 - 10%) - (0.5) = 2.5 - 10°.

By this metric, one might choose startup B. On the other hand, one could also
say that expectation is not the right view, since no startup is worth joining if there
isn’t a potential upside of at least 10 million dollars.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

4.1 Expectation of a Discrete Random Variable 59

Definition 4.2 The expectation of a discrete random variable X, written
E [X], is the sum of the possible values of X, each weighted by its probability:

E [X] :ZxP{X:x}.

We can also think of E [X] as representing the mean of the distribution from
which X is drawn.
The following example illustrates why expectation is thought of as an average.

Example 4.3 (Average cost of lunch)

Table 4.1 shows the daily cost of my lunch. What is the average cost of my lunch?

Mon Tues Wed Thurs Fri Sat Sun
$7 $7 $12 $12 $12 $0 %9

Table 4.1 Cost of lunch example.

We can think of Cost as a r.v. that takes on each of the values in Table 4.1 with
probability % Then,

T+7+12+12+12+0+9
7

Average Cost =

e R R L]

In the expectation view, each possible value (7, 12, 9, and 0) is weighted by its
probability.

Question: If X ~ Bernoulli(p), what is E [X]?

Answer: E[X]=0-(1-p)+1-(p) =p.
Example 4.4 (Expected time until disk fails)

Question: Suppose a disk has probability % of failing each year. On average,
how many years will it be until the disk fails?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

60 4 Expectation

Answer: This is simply E [X], where X ~ Geometric(p), with p = % Assuming
X ~ Geometric(p), we have:

[ee]

E[X] =) n(l-p)"'p

n=1

n—1

n-q where g = (1 — p)

Ms

p .
1

n
=p-(l+2q+3q2+4q3+...)
1
(1-9)?

using (1.4)

So when p = %, the expected number of years until the disk fails is 3. (This type
of analysis will be repeated throughout the book, so commit it to memory.)

Question: If X ~ Poisson(A1), what is E [X]?

Answer:
E[X]=>"i
i=0

[ee]

e

i!

e

i!

= i
1

i=

= e et using (1.11)
=1

It is interesting to note that the A parameter for the Poisson distribution is also
its mean. The same holds for the p parameter of the Bernoulli distribution. By
contrast, the p parameter of the Geometric distribution is the reciprocal of its
mean.

One can also consider the expectation of a function of a random variable.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

4.1 Expectation of a Discrete Random Variable 61

Definition 4.5 The expectation of a function g(-) of a discrete random vari-
able X is defined as follows:

E[(X)] = > 2(x) - px(x).

Example 4.6 (Volume of sphere)

Consider a sphere, where the radius is a random variable, R, where

1w/ prob.
R =4 2 w/prob.
3w/ prob.

W= =W =

Question: What is the expected volume of the sphere?

Answer:
4 3
E [Volume] = E §7TR
4 1 4 1 4 1
=g 13. 2+ .23 24 24.33.2
E R T R T S
= 167.
Observe that

E[R*| # (E[R])’.

Question: Suppose X is defined as follows:

0 w/prob. 0.2
X=1{1 w/prob.0.5 .
2w/ prob. 0.3

What is E [X] and what is E [2X? + 3]?
Answer:
E[X]=0-(02)+1-(0.5)+2-(0.3).
E[2X%+3] = (2 0%+ 3)(0.2) + (2 12+ 3)(0.5) + (2 224 3)(0.3).

You may have noticed that E [2X 24 3] =2E [X 2] + 3. This is no coincidence
and is due to Linearity of Expectation, to be discussed in Section 4.2.

We can also consider the expectation of a function of multiple random variables.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

62 4 Expectation

Definition 4.7 Let X and Y be random variables. The expectation of the
product XY is defined by summing over all possible outcomes (x, y) as follows:

E[XY] = Z ny “pxy(x,y),
X Yy

where pxy(x,y) =P{X =x &Y = y}.

Theorem 4.8 (Expectation of a product) If X LY, then
E[XY]=E[X]-E[Y].

Proof:

E[XY]=) > xy P{X=xY =y}
x oy

= Z ny ‘P{X=x}P{Y =y} (bydefinition of 1)
X oy

=) AP (X =x}) yP{Y =y}
X y
=E[X]E[Y]. n

The same proof shows that if X L Y, then

E[g(X)fN]=E[gX)]-E[f()], 4.1)
for arbitrary functions g and f. A consequence of (4.1) is thatif X L Y, then:

B|5|-poe|y|.

Question: If E [XY] = E [X] E [Y], does that imply that X 1 Y?
Answer: No, see Exercise 4.7.

We end this section with Theorem 4.9, which offers an alternative way of com-
puting expectations that can be very useful in practice. Remember this!

Theorem 4.9 (Alternative definition of expectation) Let rv. X be non-
negative, discrete, and integer-valued. Then

E [X] =ZP{X>x}. 4.2)
x=0
Proof: See Exercise 4.16. []

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

4.2 Linearity of Expectation 63

4.2 Linearity of Expectation

The following is one of the most powerful theorems of probability:

Theorem 4.10 (Linearity of Expectation) For random variables X andY,

E[X+Y]=E[X]+E[Y].
Question: Does Theorem 4.10 require X L Y?
Answer: Surprisingly not!

Proof: Theorem 4.10 holds for both discrete and continuous random variables.
‘We show below a proof for the case of discrete random variables and will re-prove
this in Chapter 8 for the case of continuous random variables.

E[X+Y]= ZZ<x+y>pxy(x y)

_ Zprxy(x y) +ZZypxy(x y)
_ Z > xpxy(ry) + Z > ypxy(x.)
- ixyz Py (x.y) + i , D pxy(E.y)
- Z:lxpi(x) + zy:ypy(yy) "

=E[X]+E[Y]. n

Observe that the same proof can also be used to show that

E[f(X)+sM]=E[f(X)]+E[g(Y)].
Linearity of Expectation can simplify many proofs. We show some examples.
Example 4.11 (Mean of Binomial)

Let X ~ Binomial(n, p). Whatis E [X]?
Recall E [X] = X1 i ('l‘) p'(1 — p)"~i. This expression may appear daunting.

Question: Can we instead think of Binomial(#, p) as a sum of random variables?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

64 4 Expectation

Answer:
X = number of heads (successes) in n trials = X; + Xp + - - - + X,

where

X = 1 if trial i is successful
"7 1 0 otherwise

E[X;] = p.

Then,
E[X]=E[X;]+E[X;] +---+E[X,] =nE [X;] = np.

Question: What is the intuition behind this result?

Answer: There are n coin flips, each with probability p of coming up heads,
which should result in an average of np heads.

The X;’s above are called indicator random variables because they take on
values O or 1. In the previous example, the X;’s were independent and identically
distributed (i.i.d.). However, even if the trials were not independent, we would
still have

E[X]=E[X|]+---+E[X,].

The following example makes this clear.
Example 4.12 (Drinking from your own cup)

At a party, n people put their drink on a table. Later that night, no one can
remember which cup is theirs, so they simply each grab any cup at random
(Figure 4.1). Let X denote the number of people who get back their own drink.
Think of this as a random permutation of cups across people.

Question: What is E [X]? How do you imagine that E [X] might depend on n?
Hint: Start by trying to express X as a sum of indicator random variables?

Answer: X =11+ 1, +---+1I,, where

I = 1 if the ith person gets their own drink
"7 1 0 otherwise '

Although the I;’s have the same distribution (by symmetry), they are not inde-
pendent of each other! Nevertheless, we can still use Linearity of Expectation to

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

4.2 Linearity of Expectation 65

Figure 4.1 Each person picks up a random cup.

say

E[X]=E[L]+E[L]+---+E[l,]

=nE [I;]
=n(l 1+n—l O)
=1.

Interestingly, the expected number of people who get back their own drink is
independent of !

Example 4.13 (Coupon collector)

Imagine there are n distinct coupons that we are trying to collect (Figure 4.2).
Every time that we draw a coupon, we get one of the n coupons at random,
with each coupon being equally likely. (You can think of this as draws with
replacement, or you can imagine that there are an infinite number of each of the
n coupon types.) Thus it is quite likely that the same coupon will be drawn more
than one time. The coupon collector question asks:

How many draws does it take in expectation until I get all n distinct coupons?

Let D denote the number of draws needed to collect all coupons.
Question: What is E [D]?

Answer: It is not at all obvious how to get E [D]. The trick is to try to express

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

66 4 Expectation

Rite Aid
20%

Off & :

Figure 4.2 The goal of the coupon collector problem is to collect all n coupons.

D as a sum of random variables:

D=D+Dy+---+D,,. 4.3)

Question: What should D; represent?

Answer: One might think that D; should be the number of draws needed to get
coupon number i. But this doesn’t work, because while I'm trying to get coupon
i, I might be drawing other coupons.

Question: Is there a better definition for D; that doesn’t result in over-counting?

Answer: Let D; denote the number of draws needed to get the ith distinct coupon,
after getting i — 1 distinct coupons. That is, D is the number of draws needed to
get any coupon (namely D = 1). D5 is the number of additional draws needed
to get a coupon which is distinct from the first coupon. D3 is the number of
additional draws needed to get a coupon which is distinct from the first two
distinct coupons.

Question: How is D; distributed?

Answer:

D ~ Geometric (1) =1

-1
D, ~ Geometric (n)
n

-2
D3 ~ Geometric (n)
n

1
D,, ~ Geometric (—) .
n

We are now finally ready to apply Linearity of Expectation to (4.3).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

4.3 Conditional Expectation 67

E[D]|=E[D{+Dy+---+D,]

=E[D/]+E[D>]+---+E[D,]
n

n n
+
n—-1 n-=-2

=1+

oot -
1

But we can express this in terms of the harmonic series (see Section 1.4) as
follows:

1 1
+ +---+1|=n-Hy,, “4.4)
n n—-1 n-2

where

1 1 1
Hy=1+-+-+...+—.
2 3 n

Question: What is E [D] approximately equal to for large n?

Answer: From (1.17), it follows that E [D] ~ nlnn.

4.3 Conditional Expectation

One is often interested in the expected value of a random variable conditioned
on some event. For example, if X is a random variable denoting the price of a
hotel room and A is the event that the month is March, one might be interested
in E [X | A], which is the expected price of the room given that the month is
March.

Recall that px(-) is the p.m.f. for r.v. X, where
px(x) = P{X =x}.

To understand conditional expectation, rather than working with the p.m.f., we
need to work with the conditional p.m.f.

Definition 4.14 Let X be a discrete r.v. with p.m.f. px(-) defined over a count-
able sample space. Let A be an event s.t. P{A} > 0. Then px|a(-) is the
conditional p.m.f. of X given event A. We define
P{(X=x)NnA}

P{A}

pxja(x) =P{X =x|A}=

A conditional probability thus involves narrowing down the probability space.
To see this, let’s consider some examples.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

68 4 Expectation

Example 4.15 (Conditioning on an event)

Let X denote the size of a job. Suppose that

1w/ prob. 0.1
2w/ prob. 0.2
X=4{ 3 w/prob.0.3 .
4 w/ prob. 0.2
5 w/ prob. 0.2

Let A be the event that the job is “small,” meaning that its size is < 3. Our goal
is to understand the conditional p.m.f. of X given event A, colored in blue.

Question: What is px(1)?
Answer: px(1) =0.1.
Question: What is px 4 (1)?

Answer: Intuitively, if we condition on the job being small (blue), we can see
that, of the blue jobs, one-sixth of them have size 1. Algebraically:

rxja(l) =P{X=1| A}:W

_P{x=1}
~ P{A}

We have normalized P {X = 1} by the probability of being in A.
Question: What is px a(x),if x ¢ A?

Answer: 0.

Lemma 4.16 A conditional p.m.f. is a p.m.f., that is,

ZPXIA(X) = Z pxjalx) = 1.

X€EA

Proof: See Exercise 4.12. []

We can likewise think of [X | A] as a new r.v., where

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

4.3 Conditional Expectation 69

w/ prob. px|a(1) =1/6
w/ prob. px|a(2) =2/6
w/ prob. px|a(3) =3/6 .
w/ prob. px|a(4) =0

w/ prob. px|a(5) =0

[X | A] =

DN B~ W=

In the next example, we consider the case where the event, A, is an instance of
another r.v. For example, A might be the event Y = y.

Example 4.17 (Conditioning on the value of a random variable)

Two discrete random variables X and Y taking the values {0, 1,2} have a joint
p.m.f. given by Table 4.2.

_ 1 1
Y=2 0 ! 1
— 1 1 1
Y=1_ 3 6 8
_ 1 1

y=0 | ! 0

X=0 X=1 X=2

Table 4.2 Joint p.m.f., pxy(x,).

Question: What is pxjy—»(1)?

Answer:

P(X=1&Y=2}
+

4
P{y =2} 7

Pxjy=2(1) =P{X=1|Y=2}= 1
6" 8
Question: What is px|y—»(2)?

Answer: By the fact that p x|y, (x) is a p.m.f., and observing that px|y->(0) = 0,
it must be the case that

3
Pxiy=2(2) = 1 - pxyy=2(1) = 7

Definition 4.18 For a discrete r.v. X, the conditional expectation of X given
event A is as follows:

E[X|A]= prxm(x) = Zx ' P{(Xl)z{);)}m =

X X

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

70 4 Expectation

Simply put, the conditional expectation is the expectation of the r.v. [X | A].
That is, we're taking the usual expectation, but using the conditional p.m.f..

Example 4.19 (Conditional expectation)

Again let X denote the size of a job. Suppose that

w/ prob. 0.1
w/ prob. 0.2
w/ prob. 0.3 .
w/ prob. 0.2
w/ prob. 0.2

e
I
DN B~ W N ==

Let A be the event that the job is “small,” meaning that its size is < 3.
Question: What is E [X]?

Answer:

1 2 3 2 2 B
ElX]=1 —+2- = 43. 2 44. 2 45. 2 _22
] 0 ST 0T 10 10

Question: Whatis E [X | A]?

Answer: Note that this should be a smaller value than E [X].

E[X|A]l =1 pxja(l)+2-pxja(2) +3 - pxja(3)
12 3
=1.--4+2.243.2
6726 %

14

c

Example 4.20 (More conditional expectation practice)

Two discrete random variables X and Y taking the values {0, 1,2} have a joint
p-m.f. given by Table 4.3.

_ 1 1
Y=2 0 ! 1
_ 1 1 1
ry=1 3 5 8
_ 1 1

vy=0 1 I 0

X=0 X:l X:2

Table 4.3 Joint p.m.f., px y(x,y).

Question: Compute the conditional expectation E [X | ¥ =2].

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

4.3 Conditional Expectation 71

Answer:

E[X|Y =2]=0"pxjy=2(0)+ 1 pxjy=2(1) +2 - pxjy=2(2)
=1- i +2. E = E
7 7 7

Example 4.21 (Indicators: an alternative to conditioning)

Let S be a discrete r.v., without loss of generality, say:

w/prob ps(1)
w/prob ps(2)
w/prob ps(3)
w/prob ps(4)

9%}
I
AW N =

Let Is<, be an indicator r.v. which is 1 when § < x and O otherwise. Likewise,
let Is~, be an indicator r.v. which is 1 when § > x and O otherwise.

Question: Argue that
SLS Ige +S Igon. 4.5)

The £ is indicating that the left-hand side and right-hand side of (4.5) are equal
in distribution, that is, they take on the same values with the same probabilities.

Answer: S - Ig<, is a r.v. that returns the same values of S if those values are
< x, and otherwise returns 0. Think of this as the r.v. § with a bunch of 0’s where
the terms for S > x would be. For example, if x = 2, then:

1 w/prob ps(1) 0 w/prob ps(1)
2 w/prob ps(2) 0 w/prob ps(2)
$Iss2=1 O WhoD ps(3) $ilssa=] 3 Wrobps(3)

w/prob ps(4) w/prob ps(4)

Adding together S - Is<, and S - Is~, we get exactly the distribution of S.

Question: Can we make the stronger statement that

S=8 Iscx+8 - Igsoy?

Answer: Yes! Let Z =S Is<x +S - Is>x. Now,

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

72 4 Expectation

e IfS<x,thenZ=S-1+5-0=5.v
e IfS>x,thenZ=S-0+S5-1=85.

Question: How does S - Is<; compare to the r.v. [S | § < 2]?

Answer:
1 w/prob ps(1)
S-Is<co=19 2 w/prob ps(2) .
0 w/prob1-P{S <2}

By contrast,

w/prob ps(1)/P{S <2}

|
[S15=2] :{ 2 wiprob ps(2)/P{S <2} °

Question: How is E [S - Is<;] related to E[S | S < 2]?

Answer:
E[S-Is<2] =1-ps(1)+2- ps(2).

More generally,

X

E[S-Is<] =) ips(i). (4.6)

i=1

By contrast,

N ops) 1 X
E[SISSx]—;zP{SSx}—P{SSX} ;lps(t). 4.7

Comparing (4.6) and (4.7), we have:
E[S -Is<x] =E[S|S<x]-P{S <x}. (4.8)

Question: Express E [S] in two ways: (1) using indicator random variables and
(2) via conditioning on S < x.

Answer: For (1), we use (4.5) and take expectations of both sides as follows:

E [S] =E [S : ISSx] +E [S : IS>x] . 4.9

For (2) we use the result from (4.8) to replace each term in (4.9), obtaining:

E[S]=E[S|S<x] - P{S<x}+E[S|S>x]-P{S>x}. (4.10)

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

4.4 Computing Expectations via Conditioning 73

4.4 Computing Expectations via Conditioning

Recall the Law of Total Probability, which says that the probability of an event
can be computed as a sum of conditional probabilities. In the same way, an
expectation can be computed as a sum of conditional expectations — we saw an
example of this in (4.10). Conditioning is often the easiest way to compute an
expectation.

Theorem 4.22 Let events Fy, F», F3, . . . partition the sample space Q. Then,

E[X]=) E[X|F] P{F}.

i=1

Given a discrete r.v. Y, if we think of Y = y as an event, then we have:

E[X] =Y E[X|Y=y]P{Y=y}.
y

Proof: We show the proof for the second expression in the theorem. The proof
for the first expression follows the same lines.

E[X] =) xP{X =x}
:Zx:xZP{sz |Y =y} P{Y =y}
:Zx:Zny{X:x|Y=y}P{Y:y}
=Zx]2y1xP{X=x|Y=y}P{Y:y}
=Zzsz{Y:y}lexP{X:x|Y=y}

= Z P{Y=y}E[X|Y=y] (byDefinition 4.18). .
y

Example 4.23 (Expectation of Geometric, revisited)

Recall that in Example 4.4 we computed the mean of a Geometric with parameter
p. How can we redo this more simply via conditioning? Specifically, we seek
E [N], where N is the number of flips required to get the first head.

Question: What do we condition on?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

74 4 Expectation

Answer: We condition on the value of the first flip, Y, as follows:
E[N]=E[N|Y=1]P{Y=1}+E[N|Y=0]P{Y =0}
=1-p+(1+E[N])-(1-p)
PE[N]=p+(1-p)
E[N] = l
p

The difficult step here is reasoning that E[N |Y =0] = 1 + E[N]. That is,
knowing that we already got a tail on the first flip adds 1 to the expected time
to get a head, because the remaining time needed to get a head “restarts” after
that tail. This is the same idea as a person who has been trying to win the lottery
for the last 100 days. Their remaining time to win the lottery is the same as if
they started today. The fact that they already tried for 100 days just adds 100 to
their total time spent trying to win the lottery. The property that your past doesn’t
affect your future is called memorylessness and will come up again.

Note how conditioning greatly simplifies the original derivation given in Exam-
ple 4.4.

The proof of Theorem 4.22 generalizes to Theorem 4.24:

Theorem 4.24

E[g(X)] =) E[g(X) | Y =y]P{¥=y}.
y

Theorem 4.24 will be particularly useful in Chapter 5’s discussion of higher
moments.

4.5 Simpson’s Paradox

We end this chapter with Simpson’s paradox [70]. The paradox is counter-
intuitive because people mistakenly think it is related to conditioning, when it is
not.

The best way to understand Simpson’s paradox is via an example. A common
example from the healthcare area involves the evaluation of two potential treat-
ments for kidney stones: call these Treatment A and Treatment B. Suppose that
patients are classified as having “small” kidney stones or “large” ones. It turns
out that Treatment A is more effective than B on small stones, and also that
Treatment A is more effective than B on large stones. However, paradoxically, if

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

4.5 Simpson’s Paradox 75

we ignore patient classifications, we find that Treatment B is the more effective
treatment. The fact that the “winner” changes when we remove the classification
is called Simpson’s paradox.

Treatment A Treatment B

Small stones 90% effective (winner!) 80% effective
(successful on 90 out of 100) (successful on 800 out of 1000)

Large stones 60% effective (winner!) 50% effective
(successful on 600 out of 1000) (successful on 50 out of 100)

Aggregate mix 63% effective 77% effective (winner!)
(successful on 690 out of 1100) (successful on 850 out of 1100)

Table 4.4 Simpson’s paradox: Treatment A is more effective than Treatment B both on
small stones and on large stones. But Treatment B is more effective than Treatment A
when we ignore stone size.

Question: Spend some time asking yourself: How can this be?

Answer: Table 4.4 shows a numerical instance of the paradox. Looking at the
top left box, (small, A), we see that Treatment A is 90% effective on small
stones — it is effective on 90 out of the 100 small-stone patients who receive
it. By contrast, Treatment B is only 80% effective on small stones, as shown in
box (small, B) — it is effective on 800 out of the 1000 small-stone patients who
receive it. Thus Treatment A is more effective than Treatment B on small-stone
patients. The large stone row of the table shows that Treatment A is 60% effective
on large-stone patients, while Treatment B is only 50% effective on large-stone
patients. Based on the above data, it seems that Treatment A is best.

In the last line of the table, labeled “aggregate mix,” we mix up all the small-stone
and large-stone patients, so that they are no longer classified by their stone size.
We now look at the 1100 patients that received Treatment A and ask how many
of them had success. We find that only 690 of the 1100 patients had success,
meaning that Treatment A is 63% effective. By contrast, of the 1100 patients that
received Treatment B, we find that 77% of them had success. Based on this, it
seems that Treatment B is best.

Question: Which treatment is actually best, A or B?

Answer: Treatment A is best. Treatment A is best when used for patients with
small stones, and it is also best when used for patients with large stones. In
practice, doctors know that Treatment A is best, and they thus reserve it for
patients with large stones, which are the more difficult cases. This is why we

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

76 4 Expectation

see bigger studies (1000 patients) where Treatment A is applied to patients with
large stones. Treatment B is more typically reserved for the easier patients, which
is why we see bigger studies (1000 patients) where Treatment B is applied to
patients with small stones.

Question: But if Treatment A is best, why does it turn out to look bad in the
“mix,” where we ignore the patient classification?

Answer: Mathematically, the paradox is caused by a combination of two things:

1. The biggest contributors to the “mix” are quadrants [large, A] and [small, B],
since these both involve tests with 1000 patients.

2. But [small, B] has a higher effectiveness percentage than [large, A] because,
although Treatment A is the better treatment, this fact is dwarfed by the fact
that small stones are so much easier to handle than large ones.

Together, these leave us believing that Treatment B is better when we look at the
aggregate mix.

4.6 Exercises

4.1 Socks
Socks come in two colors: red and blue. There are an infinite number of
socks of each color. Each time we pick a sock, we get a random sock.
What is the expected number of picks until we have a pair (two of the same
color)?

4.2 Random graphs
Consider a “random graph” on n vertices, where each pair of vertices is
connected by an edge with probability p.
(a) What is the expected number of edges in the random graph?
(b) What is the distribution of the degree of vertex i?

4.3 Multi-round gamble

[Proposed by Rashmi Vinayak] At a casino, you're attracted to an “amazing”

offer. Every round you bet, you either triple your bet with probability half

or lose your bet with probability half.

(a) What is the obvious betting strategy, that is, how much of your money
should you bet in each round to maximize your winnings?

(b) For this strategy, what is the probability that you end up with no money?
(Are you surprised by the answers to the above two questions?)

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

4.6 Exercises 77

4.4

4.5

4.6

4.7

4.8

4.9

4.10

Probability bounds

You are told that the average file size in a database is 6K bytes.

(a) Explain why it follows (from the definition of expectation) that fewer
than half of the files can have size > 12K.

(b) You are now given the additional information that the minimum file
size is 3K. Derive a tighter upper bound on the percentage of files of
size > 12K.

Shared birthdays
There are n people in a room. A person is “happy” if he/she shares a
birthday with another person in the room. What is the expected number of

happy people?

Identities
Let A and B be independent random variables. Assume that B # 0 and that
E [B] # 0. Prove or disprove the following statement:

A] E[A]
E[E]‘E[B]'

Expectation of product
Prove or disprove the following claim: If

E[XY] =E[X] -E[Y],

then X and Y are independent random variables.

Coin pattern

Your coin produces heads with probability p. You flip your coin n > 3
times. What is the expected number of times that the pattern HT H appears?
Example: If the n flips are (H,T,H,T,H,T,H) then the pattern HTH
appears three times.

Random word generation: I love to love

Every minute, a random word generator spits out one word uniformly at
random from the set { I, love, to }. Suppose we let the generator run for n
minutes. What is the expected number of times that the phrase “I love to
love” appears?

Permutations

Let be apermutationon [n] = {1, ...,n}, where n > 3. Here 7 (i) denotes
the number in the ith position of permutation 7. We say that 7 has a local
maximum at i € [n] if all these are true:

e (i) >n(i+1),ifi=1

e n(i—1)<n()andn(i) >n(i+1),ifl <i<n

o 1(i—1) < n(i),ifi=n

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

78 4 Expectation

What is the expected number of local maxima of a random permutation 7 on
[7]? [Hint: Use Linearity of Expectation and indicator random variables.]

4.11 Triangles in random graphs
Consider a “random graph,” G, on n vertices, where each pair of vertices
is connected by an edge with probability p = %. Let Y denote the number
of triangles in G. Derive E [Y]. What does E [Y] look like for high n?

4.12 A conditional p.m.f. is a p.m.f
Prove that the conditional p.m.f. px|4(-) is a p.m.f. by showing that

D pxiate) =1.

4.13 Tail of Geometric and memorylessness
Let X ~ Geometric(p).
(a) Derive E [X | X > 5] by summing over the conditional p.m.f. Be care-
ful to get the indices correct.
(b) Your final answer should be extremely simple in light of the memo-
rylessness property of the Geometric distribution. Explain your final
answer.

4.14 Practice with conditional expectation
For the joint p.m.f. in Table 4.2, compute E [X | Y # 1].

4.15 More conditional expectation practice
We’re given a joint p.m.f. for two random variables X and Y.

|Yy=1 vY=2 v=3
1/4 3/16 1/16
1/8 0 3/8

X=0
X=1

Whatis E [£]| X2 +Y? < 4]?

4.16 Alternative definition of expectation: summing the tail
Let X be a non-negative, discrete, integer-valued r.v. Prove that

E [X] :iP{X>x}.
x=0

4.17 Simpson’s paradox for PhD admissions
A total of 110 Berkeley undergrads and 110 CMU undergrads apply for
PhD programs in CS at Berkeley and CMU. Assume that all the students
started their grad applications at the very last minute, and as a result were

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

4.6 Exercises 79

4.18

4.19

only able to apply to their first choice between Berkeley PhD or CMU PhD
(not both). Below are the acceptance rates for each group at each university:

Berkeley Undergrad CMU Undergrad

Berkeley PhD 32% (32 out of 100 applicants) 40% (4 out of 10 applicants)

CMU PhD 10% (1 out of 10 applicants) 18% (18 out of 100 applicants)

Either PhD 30% (33 out of 110 applicants) 20% (22 out of 110 applicants)

(a) Which group of students, CMU students or Berkeley students, had a
higher acceptance rate into the Berkeley PhD program?

(b) Which group of students, CMU students or Berkeley students, had a
higher acceptance rate into the CMU PhD program?

(c) Which group of students, CMU students or Berkeley students, were
more likely to be admitted into a PhD program?

(d) What was Berkeley’s overall acceptance rate and what was CMU’s
overall acceptance rate (assume that no students outside Berkeley or
CMU applied)?

(e) What proportion of the students admitted to either the CMU or Berkeley
PhD programs were admitted to the Berkeley PhD program?

(f) How is it possible that CMU students had a higher acceptance rate
at each of the PhD programs than Berkeley students, and yet a lower
chance of getting into a PhD program overall?

k heads in a row

Stacy’s fault-tolerant system only crashes if there are k consecutive failures.
Assume that every minute a failure occurs independently with probability
p. What is the expected number of minutes until Stacy’s system crashes?
This is equivalent to E [T], where T} denotes the number of flips needed
to get k heads in a row when flipping a coin with probability p of heads.
[Hint: Write a recurrence relation for the r.v. T; in terms of 7Ty _;.]

Virus propagation

We start with a network of three computers. Unbeknownst to us, two of
the computers are infected with a hidden virus and the other is not. A
sequence of new uninfected computers now join the network, one at a
time. Each new computer joins the existing network by attaching itself to a
random computer in the network (all computers in the network are equally
likely attachment points). If the new computer attaches itself to an infected
computer, then it immediately becomes infected with the virus; otherwise
the new computer does not get the virus. At the point where the network
consists of k total computers, what is the expected fraction of these that is
infected? Assume k > 3.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

80 4 Expectation

4.20 Coupon collector, time to repeat
In the coupon collection problem, there are n distinct coupons that we
are trying to collect. Every time we draw a coupon, we get one of the n
at random, with each coupon being equally likely (the coupon we get is
replaced after each drawing). Thus it is likely that we quickly see a repeat.
Define N to be the r.v., where

N = Number of coupons collected until we first get a repeat.

What is E [N]? [Note: You can leave your answer in the form of a sum.]

4.21 Minimum of n dice

Your goal is to derive a simple expression for the expected minimum value

of n independent rolls of a die. Below are some steps to help:

(a) You roll a die twice. What’s the expected value of the minimum of the
rolls? Compute this by simple counting and/or conditioning.

(b) Now redo the problem in (a), but use the result of Exercise 4.16 to
compute your answer.

(c) Now repeat (b), but for the case of n rolls. What does your expression
for the expected minimum value become as n — co?

4.22 The counter-intuitive nature of conditional independence
A fair coin is flipped N times, and H heads are obtained (both N and H
are random variables in the experiment). Suppose we are told that H = 5.
Whatis E[N | H =5]?
(a) If you had to guess, what would you guess is E [N | H = 5]?
(b) Write out E [N | H = 5] based on Definition 4.18. Go as far as you can

in evaluating the expression. What is missing?

(c) Suppose we’re now given a “prior” distribution on N, namely that

N = 10 w/prob 0.5
| 20 w/prob 0.5

Use this information to finish evaluating E [N | H = 5]. You will need
a computer for the final evaluation. Is this the answer you originally
expected?

4.23 Revisiting die rolls
Recall Exercise 2.27, where you have two dice. Die A is a fair die (each
of the six numbers is equally likely) and die B is a biased die (the number
six comes up with probability % and the remaining % probability is split
evenly across all the other numbers). Kaige picks a die at random and rolls
that die three times. Given that the first two rolls are both sixes, what is the
expected value of the third roll?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

4.6 Exercises 81

4.24

4.25

4.26

Expectation of a product

[Proposed by Priyatham Bollimpalli] In his spare time, Priyatham likes to

sit around multiplying random numbers. After studying probability, he has

become interested in the expected value of the product.

(a) Priyatham multiplies two single-digit, non-equal, positive numbers. If
each number is equally likely to be picked from {1, 2, 3, ..., 9} (without
replacement), what is the expected value of the product? [Note: This
formula may come in handy:)" i = w]

(b) What is the expectation of a product of two two-digit numbers, where
all four digits are non-zero, unique, and picked uniformly at random?
For example 45 and 76 are two valid numbers, whereas 45 and 59 are
not since 5 is repeated. [Hint: Solution is short.]

(c) Suppose we didn’t need to assume the digits were unique. Explain in
one line what the answer to part (a) would be now.

Socks for multi-footed animals

Socks come in two colors: red and blue. There are an infinite number of

socks of each color. Every time we pick a sock, we get a random sock.

(a) A human has two feet. What is the expected number of picks until we
have a pair (sock for each foot) of a single color?

(b) The three-toed sloth needs a sock for each toe. What is the expected
number of picks until we have three socks of the same color?

(c) Prof. Veloso’s new soccer-playing robot has n feet (more feet helps it
win). What is the expected number of picks until the robot has a sock
for each foot, where all socks must be of the same color? [Note: Don’t
worry about trying to come up with a closed-form expression.]

The three rivers of Pittsburgh

[Proposed by Lea Herzberg] In Pittsburgh, three rivers meet as shown in

Figure 4.3. Assume that, for every boat traveling up the Ohio River, with

probability % the boat continues up the Allegheny and, independently, with

probability % the boat continues up the Monongahela.

Let X denote the number of boats approaching the fork from the Ohio in

the last hour. Let A (respectively, M) denote the number of boats entering

the Allegheny (respectively, Monongahela) in the last hour.

Suppose X ~ Poisson(A = 100). Your goal is to derive E [X | M = 100].

(a) Do you have any intuition about what E [X | M = 100] should be?

(b) Using Definition 4.18 for conditional expectation, write an expression
for E [X | M = 100] using all the information given in the problem.
Express your answer in terms of an expression involving A’s and x’s
and some sums. Do not worry about simplifying your expression.

(c) Your expression in (b) is very unwieldy and hard to evaluate. Instead,
we will follow a different approach to get to the answer. In following

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

82 4 Expectation

Figure 4.3 The three rivers of Pittsburgh, where the arrows represent the direction of the
boats.

this approach, assume p = % and A = 100, but express your answers
generally in terms of p and A until the last part.
(i) Let Z = [M | X = x]. How is Z distributed?

(ii) Using step (i), what is the joint probability px as (x, m)?

(iii) Use step (ii) to prove that M ~ Poisson(Ap).

(iv) Combine steps (ii) and (iii) to derive px|p=m(x), and then use
that to get the distribution of the r.v. [X —m | M = m].

(v) Use the resultin (iv) to get E [X | M = m].

(vi) Returning to the original problem, given that in the last hour 100
boats entered the Monongahela, what is the expected number of
boats leaving the Ohio in the last hour? Note that you will likely
find your intuition from part (a) was incorrect.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

5 Variance, Higher Moments,
and Random Sums

In Chapter 4 we devoted a lot of time to computing the expectation of random
variables. As we explained, the expectation is useful because it provides us
with a single summary value when trading off different options. For example, in
Example 4.1, we used the “expected earnings” in choosing between two startups.

However one might want more information than just the expected earnings. For
example, two companies, say Microsoft and Startup X could both have expected
earnings of 100K, but at Microsoft your earnings are unlikely to deviate much
from 100K, whereas at Startup X your earnings could range from 0 to 1M.
Although both companies offer the same expected earnings, Startup X feels
“riskier.” The purpose of this chapter is to formalize what we mean by “risk”
or “variability.” Before we start, it will be useful to go over the definition of
moments.

5.1 Higher Moments

Definition 5.1 For a random variable, X, we say that the kth moment of X is
E [Xk]. Observe that E [X] is the first moment of X.

Example 5.2 (Second moment of Geometric)

Let X ~ Geometric(p). What is E [X?]?

Formally,

[o9)

E[X?] = > px(i)= Y i*(1-p)'p.
i=1 i=1
It is not obvious how to compute this sum.

Question: Can we use Theorem 4.8 to express E [Xz] =E[X] E[X]?

Answer: No, because X is certainly not independent of X.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

84 5 Variance, Higher Moments, and Random Sums

Fortunately, there is something we can do: Since E [X 2] is an expectation, we
can compute it via conditioning. We will condition on the value of the first flip.

E[X?] =E[X?| Istflipishead] - p+E[X* | Istflipis tail] - (1 - p)
=1 p+E[(1+X)?*] - (1-p)
=p+E[1+2X+X?] - (1-p)
=p+(1+2E[X]+E[X2])(1—p)

=p+<1—p>+2<1—p>-})+E[x2]<1—p>

PE[x2] =1+2. 122
p
2-p

E[X?] = e

Question: In the above, observe that we write:
E [X? | Istflipis tail| = E [(1 + X)?].
Why didn’t we write E [X? | Ist flip is tail| = 1 + E [X?]?
Answer: Consider the random variable (r.v.) Y, where
Y=[X|Istflipistail] = [X | X > 1].

That is, we define Y to be the r.v. X conditioned on the fact that we know that
X > 1. Given that the first flip is a tail, everything starts from scratch, that is,
we’ve wasted one flip, and we get a new draw of X. It thus makes sense that

Yy £1+X, 5.1)
that is, Y is equal in distribution to 1 + X. In Exercise 5.18, we formally prove

(5.1) by showing that P{Y =i} =P {1 + X =i} for all i.

From (5.1), it follows that:
E[X | Istflipis tail] = E[¥] 2 E[(1+X)] = 1 +E [X]

E[X?| Istflipistail] = E [¥2] 2 E[(1+Xx)?].

Question: Could we use the same approach to compute the third moment of X?

Answer: Sure:
E[X’]| =01 p+E[(1+X)°] - (1-p).

Now expand out the cube and then again apply Linearity of Expectation.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

5.2 Variance 85

5.2 Variance

We are often interested in how much an experiment is likely to deviate from its
mean.

Definition 5.3 The variance of r.v. X, written as Var(X), is the expected
squared difference of X from its mean.

Var(X) =E [(X -E [X])?].

A depiction of variance is given in Figure 5.1.

“«—»
5 -« »
: > :
h X4 X2 X x3
E [X]

Figure 5.1 Variance of X. For each value of X, we square its distance to E [X], and take
the appropriate weighted average of these.

Example 5.4 (Variance of Bernoulli)

Let X ~ Bernoulli(p). Our goal is to determine Var(X). Here X represents a
single flip of a coin, where the coin has probability p of heads. That is:

X = 1 w/prob p
"1 0 whprobl-p °

Question: What is E [X]? What is Var(X)?

Answer:

E[X]=p-1+(1-p)-0=p

Var(X) =E [(X - p)?]
=E [X2 —2Xp+p2]
=E[X?| - 2pE [X] + p?
= (p-12+(1—p) -02) -2p-p+p’
=p(l-p). (5.2)

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

86 5 Variance, Higher Moments, and Random Sums

Formula (5.2) is worth memorizing.
Question: Can we compute Var(X) via conditioning?
Answer: There is a right and a wrong way to do this.

The WRONG way is to say:
Var(X)=p-Var(X | X=1)+(1—p)-Var(X | X =0)
=p-0+(1-p)-0=0.

This is incorrect, because no theorem says that we can condition on variance.
We only have Theorem 4.24, which allows us to condition on expectation.

That said, if we can leave variance in the form of an expectation, then we can
use conditioning. Here’s the CORRECT way to condition:

Var(X) =E [(X - p)?]
=E[(X-p)* | X=1] - p+E[(X-p)* | X=0] - (1-p)
=(1-p)-p+p*-(1-p)
=p(l-p).

Question: For any r.v. X, how does Var(—X) compare to Var(X)?

Answer: Looking at Figure 5.1, we see that every value of X is now negated,
including the mean of X. Thus the distance of each value to the mean doesn’t
change. Hence the sum of the squares of the distances doesn’t change either. So
Var(X) = Var(-X).

5.3 Alternative Definitions of Variance

Question: How else might you want to define variance?

Answer: There are many answers possible. One thing that is bothersome about
the existing definition is the squaring, since the units of Var(X) are then different
from the units of X. One might instead choose to define Var(X) as

E[X-E[X]],

without the square term.
Question: What’s wrong with this?

Answer: By Linearity of Expectation: E[X —E[X]] = E[X] - E[X] = 0.
Hence this definition doesn’t work.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

5.3 Alternative Definitions of Variance 87

Another possibility is to define Var(X) as
E|[x-Em|].
using the absolute value instead of the square.

This alternative definition is totally legitimate. The only problem is that it is
missing the convenient linearity property that we’ll see shortly in Theorem 5.8.

One more idea is to consider the square root of variance, which has the same
units as X. This is actually so common that it has a name.

Definition 5.5 We define the standard deviation of X as

ox = std(X) = v Var(X).

We often write
Var(X) = 0.

There’s something disturbing about the definition of variance: The same mea-
surement taken in different scales will end up with different values of variance.
For example, suppose that X and Y are measuring the same quantity, but X is
measured in centimeters and Y is measured in millimeters. As a result, we find
that:

3 wiprob 1 30 wiprob §
X =4 2 w/prob % Y =1 20 w/prob % .
1 w/prob % 10 w/prob %

We would like to believe that X and Y have the same variance, in that they’re
measuring the same quantity, just in different units.

Question: How do Var(X) and Var(Y) compare?

Answer: Var(X) = % while Var(Y) = % Since units are not typically shown,
we are left with very different values.

The problem is not fixed by switching to the standard deviation.

Question: How do std(X) and std(Y) compare?

Answer: std(X) = % while std(Y) = ,/2%0.

Again, this feels less than satisfactory. For these reasons, researchers use a

normalized version of variance, which is scale-invariant (insensitive to scaling),
called the squared coefficient of variation.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

88 5 Variance, Higher Moments, and Random Sums

Definition 5.6 The squared coefficient of variation of r.v. X is defined as
C}Z(_ Var(Xz)
E [X]

Question: How do C)Z(and Cf, compare?
Answer: Both are %.

Note that C)2(is not defined if E [X] = 0. In practice, the C)2(metric is used when
modeling empirical quantities like job sizes, flow durations, memory consump-
tion, etc., whose values are typically positive with positive means.

5.4 Properties of Variance

Lemma 5.7 provides another way of computing variance.

Lemma 5.7 (Equivalent definition of variance) The variance of r.v. X can
equivalently be expressed as follows:

Var(X) = E [X?] - (E [X])*.

Proof:
Var(X) =E [(X - E [X])?] =E[X* - 2XE [X] +E [X]?]
=E[X?| - 2E [X] E [X] + E[X]?
=E[X*] -E[X]*. m
Even with this easier formulation, variance is often hard to compute. Fortunately,

the Linearity of Variance Theorem helps us break down the variance of a random
variable into easier subproblems.

Theorem 5.8 (Linearity of Variance) Ler X and Y be random variables
where X LY. Then,

Var(X +7Y) = Var(X) + Var(Y).
This generalizes to show that if X1, X», . .., X, are independent, then

Var(X; + X, +---+ X)) = Var(X;) + Var(X,) +- - - + Var(X,,).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

5.4 Properties of Variance 89

Proof: We prove the first statement of the theorem:

Var(X +Y) =E[(X +Y)*] - (E[(X +Y)])?
=E [X?] +E[Y?| +2E [XY] - (E[X])* - (E[Y])* - 2E [X]E [Y]
= Var(X) + Var(Y) + 2E [XY] - 2E [X] E [Y].

]
equals 0if X LY

Theorem 5.8 is hugely powerful, assuming that X and Y are independent. One
of the key reasons for the chosen definition of variance (as opposed to using
absolute values, for example) is that the chosen definition lends itself to this
linearity property.

It turns out that Theorem 5.8 can be extended to the case where the X;’s are
not independent but rather only pairwise independent, which means that each
pair of variables X; and X; are independent. This generalization is proven in
Exercise 5.38.

We now present some examples of the benefits of Linearity of Variance.
Example 5.9 (Second moment of Binomial)

Let X ~ Binomial(n, p). Our goal is to derive E [Xz].

If we work directly from the definition of the second moment, we have:

n

B[] =)22t ot

i=0

This is not an easy sum to work with. On the other hand, we can write X as a
sum of indicator random variables, as we’ve done in the past:

X = number of successes in n trials = X + Xo + -+ - + X,

where
X; ~ Bernoulli(p) and E [X;] = p.
Then
Var(X) = Var(X;) + Var(X;) + - - - + Var(X,,)
= nVar(X;)
=np(1l - p).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

a0 5 Variance, Higher Moments, and Random Sums

Now, invoking Lemma 5.7, we have:

E [X?] = Var(X) +E [X]* = np(1 - p) + (np)*.

Question: Recall the drinks example from Section 4.2, where n people put their
drinks on a table, and each picks up a random cup. Let X denote the number of
people who get back their own cup. Can we use indicator random variables to
derive Var(X)?

Answer: We could define X; to be an indicator r.v. on whether person i gets back
their own drink or not. Unfortunately, these X;’s are not independent, so we can’t
apply the Linearity of Variance Theorem as we did in computing the variance
of the Binomial. In Exercise 5.36 you will see that you can nonetheless deduce
Var(X) by writing out E [Xz] =E [(X1 +Xp+- -+ Xn)z] and reasoning about
the E [Xin] terms.

Example 5.10 (Sums versus copies)

Consider two independent and identically distributed (i.i.d.) random variables,
X; and X,, which are both distributed like X. Let

Y=X1+Xp and Z =2X.

Question: Do Y and Z have the same distribution?

Answer: No. Suppose, for example, that your experiment is flipping a fair coin,
where heads is 1 and tails is 0. In the case of Y, you flip the coin two independent
times and look at the sum. The possible values for Y are 0, 1, or 2. In the case of
Z, you flip the coin one time, and return double your result. The only possible
values for Z are 0 or 2.

Question: How do E [Y] and E [Z] compare?

Answer: They are the same. E [Y] = E [Z] = 2E [X]. In the case of the coin
experiment, E[Y]| =E [Z] =2 % =1.

Question: How do Var(Y) and Var(Z) compare?
Answer: Var(Y) = 2Var(X), but Var(Z) = 4Var(X).
Question: Does it make sense that Var(Y) is smaller than Var(Z)?

Answer: In the case of Y, you are adding two independent results, which tends
to yield a result that is often closer to the average. By contrast, in the case of Z
you are taking one result and doubling it. This yields more extreme values. The
variance is higher when we see extreme values.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

5.6 Covariance 91

5.5 Summary Table for Discrete Distributions

It is worth memorizing the mean and variance of the common distributions,
because they come up over and over again. Table 5.1 shows these quantities.

Distribution p.m.f. Mean Variance
Bernoulli(p) ~ px(0)=1-p ; px(1)=p p p(1-p)
Binomial(n,p) px(x) = ()p*(1-p)"™*, x=0,1,..., n np np(l-p)
Geometric(p) px(x)=(1-p)*lp, x=1,2,3,... % 1;—21’
Poisson(A) px()=e -4 x=0,12,... 2 Pl

Table 5.1 Common discrete distributions.

5.6 Covariance

Suppose we now have two random variables, X and Y.
Definition 5.11 The covariance of any two random variables X andY, denoted
by Cov(X,Y), is defined by
Cov(X,Y)=E[(X-E[X])(Y -E[Y])].
Lemma 5.12 provides an alternative definition of covariance.

Lemma 5.12 Cov(X,Y) =E [XY] —E [X]E[Y].

Proof:

Cov(X,Y) =E[(X —E [X])(Y —E[Y])]

[
=E[XY]-E[E[X]-Y]-E[X-E[Y]]+E[E[X]-E[Y]]
—E[XY]-E[X]E[Y]-E[X]E[Y]+E[X]E[Y]

—E[XY] -E[X]E[Y] n

Intuitively, the covariance between X and Y indicates something about the joint
distribution between X and Y. If the larger-than-average values of X tend to

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

92 5 Variance, Higher Moments, and Random Sums

happen with the larger-than-average values of Y, then (X — E[X])(Y — E[Y])
is positive on average, so the Cov(X,Y) is positive, and we say that the random
variables X and Y are positively correlated. If the larger-than-average values of
X mainly tend to happen together with the smaller-than-average values of Y, then
(X —E [X])(Y — E[Y]) is negative on average, so the Cov(X,Y) is negative,
and we say that the random variables X and Y are negatively correlated.

Thus the sign of Cov(X,Y) tells us the direction of the relationship between X
and Y. Note that the magnitude of Cov(X,Y) is meaningless because it is too
influenced by the magnitudes of X and Y.

Question: What is a nice name for Cov(X, X)?
Answer: Var(X).

We will explore properties of covariance in Exercises 5.13-5.17.

5.7 Central Moments

The variance of a r.v. X is the second moment of the difference of X from its
mean. In the same way, we can define higher moments of the difference of X
from its mean.

Definition 5.13 The kth moment of a r.v. X is
E[x"] = > i px(i).
i
The kth central moment of a r.v. X is

E[(X-E[XD*]=) (~E[XD* px(0).

Question: What do we call the second central moment?
Answer: Variance.

We’ve discussed the intuition behind the second central moment in terms of
capturing the variability of the distribution. The third central moment is related
to the “skew” of the distribution, namely whether it leans right or leans left.

Question: Consider the three distributions shown in Figure 5.2. Which have
positive skew? Negative skew? Zero skew?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

5.8 Sum of a Random Number of Random Variables 93

px(D) px() px(0)
0'3 0.3 0.3

02 ala 021 Bu oo 020wl
0.1

01l o NRN_.

JHHH L1
1234567 " 1234567 1234567
(a) (b) (c)

Figure 5.2 Which of these distributions has positive/negative/zero skew?

Answer: It is easy to see that the distribution in (a) has zero skew. Here, X
is symmetric about its mean so E [(X -E [X])3] = 0. The distribution in (b)
has positive skew because it is “skewed” above its mean, so there will be more
positive terms than negative ones in computing E [(X -E[X])3]. Likewise the
distribution in (c) has negative skew because it is “skewed” below its mean.

Question: Does having a zero third central moment guarantee that the distribu-
tion is symmetric?

Answer: No. This is why “skew” is not a perfect term. There are also plenty of
distributions that don’t look skewed one way or the other.

Question: Is there intuition behind the fourth central moment?

Answer: The fourth central moment is very similar to the second central moment,
except that “outliers” count a lot more, because their difference from the mean
is accentuated when raised to the fourth power.

5.8 Sum of a Random Number of Random Variables

In many applications one needs to add up a number of i.i.d. random variables,
where the number of these variables is itself a r.v. Let X, X», X3,... be i.i.d.
random variables, where X; ~ X. Let S denote the sum:

N
S = Xi;, where N L {X,X>,...},
i=1

where N is not a constant, but rather a non-negative, integer-valued r.v.

Figure 5.3 shows an example where a game show contestant gets a prize each
day. Here, X; represents the prize on day i. After receiving the prize, the wheel is

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

94 5 Variance, Higher Moments, and Random Sums

spun. If the wheel lands on STOP then the game ends; otherwise the contestant
is invited to come back tomorrow. The number of times that the wheel is spun is

arv., N.In this story N ~ Geometric (%) The total earnings of the contestant

isS = Zfl | Xi. We are interested in understanding E [S] and Var(S).

Figure 5.3 Keep getting prizes until the wheel says STOP.

Question: In computing E [S], why can’t we directly apply Linearity of Expec-
tation?

Answer: Linearity of Expectation only applies when N is a constant. But this
suggests that we can condition on the value of N, and then apply Linearity of
Expectation.

E[S]=E ix,. :ZE ixi N=n|-P{N=n}
i=1 n i=1
=)E ixi P{N =n}
n i=1
= > nE[X]-P{N =n}
= En[X] ‘E[N]. (5.3)

Question: Let’s try the same approach to get Var(S). What is Var(S | N = n)?

Answer:
Var(S | N =n) =n- Var(X), by Linearity of Variance.

Unfortunately, we there’s no “Total Law of Variance” the way there’s a “Total

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

5.8 Sum of a Random Number of Random Variables

95

Law of Expectation.” So we cannot write:

(WRONG) Var(S) = Z Var(S | N =n)-P{N =n}

:Zn-Var(X)-P{N:n}

=E[N] - Var(X).
We can’t use conditioning to get Var(S), but we can use it to get E [Sz] :

E[s’] = Y E[s*|N=n] -P{N=n}

=) E anxi
n i=1

:ZE[(X1+X2+---+X,,)2] "P{N =n}

2
-P{N =n}

=y (nE [X2] + (n?=n) -E [xlxz]) P{N=n)
= ZnE [X2| P(N =n}+ Z(n2 ~E[X]*P{N =n}
=E[N]E [X*] +E[N*|E[X]* -E[N]E [X]’
=E[N] Var(X) + E [N?| E[X]*.
Now,
Var(S) =E [$*] - E[S]*
=E[N] Var(X) + E [N*| E[X]* - (E[N]E[X])*
= E [N] Var(X) + Var(N)E [X]*.

We have proven Theorem 5.14.

Theorem 5.14 Let X1, X», X3, ... be i.i.d. random variables, where X;
Let

N
S ZX,-, where N L {X1,X>,...}.

i=1
Then,

E[S]|=E[N]E[X],
E [$?| =E [N] Var(X) + E [N?] (E[X]),
Var(S) = E [N] Var(X) + Var(N) (E [X]).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

~ X.

(5.4)

(5.5)

(5.6)

96 5 Variance, Higher Moments, and Random Sums

While we were able to derive E [SZ], with some effort, you may be wondering
how we would manage if we needed E [53], or some higher moment. It turns
out that there’s a much easier way to handle this type of analysis, by leveraging
z-transforms, which we cover in Chapter 6.

Example 5.15 (Epidemic growth modeling)

A common way of modeling epidemic growth is via a tree.

Imagine that at time # = 0 we start with a single node (leaf). At each time step,
every leaf independently either forks off two children with probability % or stays
inert (does nothing) with probability %

We will be interested in
X; = Total number of leaves in the tree after ¢ steps.

Specifically, what is E [X,] and Var(X;)?
Figure 5.4 provides one example of how our tree might grow.

t=0 t=1 t=2 t=3 t=4

RN

X()=1 X1=1 X2=2 X3=3 X4=6

Figure 5.4 Example of tree growth.

Question: How can we model X,?
It is tempting to try to write X; = C - X,_; for some C.

Question: Certainly the number of leaves at time ¢ are related to the number of
leaves at time ¢ — 1, so how can we relate X; to X;_{?

Hint: Think of X; as a sum of a random number of random variables.

Answer: The key insight is that each of the X,_| leaves contributes either 1 or 2
to X;. Specifically, if the leaf is inert in the current round, then it contributes 1 to
the next round. If the leaf forks children in the current round, then it contributes

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

5.9 Tails

97

2 to the next round. Thus we can write:
Xi-1
X, = ¥,
i=1
where
1 w/prob 0.5

Li~¥= { 2 w/prob 0.5

and where X, = 1.
Question: Do the conditions of Theorem 5.14 apply?
Answer: Yes, the ¥;’s are all i.i.d. and are independent of X,_;.

Observe that
1
E[Y] = and Var(Y) = T

Question: Applying Theorem 5.14, what are E [X;] and Var(X;)?
Answer:

E[X]=E[X] -E[Y]=E[X_]- 3.

-

Var(X,) = E[X,_1] - Var(Y) + Var(X,_,) - E [Y]?

Therefore,

BLx]=ELx]- (3]

3\ 9
= (5) ‘2 + Var(X,_) - T

This recursion simplifies to:
9\" 1 2\’
Var(X;)=(-| = (1-[=] |-
w0 =(5) 5= (3))

5.9 Tails

The mean, the variance, and higher moments are all ways of summarizing a
distribution. For a discrete r.v., X, when we refer to the distribution associated

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

98 5 Variance, Higher Moments, and Random Sums

with X, we are typically talking about either the p.m.f. of X, namely, px (i) =
P {X =i} or the cumulative distribution function (c.d.f.) of X, namely, Fx (i) =
P{X <i}.

It is also common to talk about the tail of X, which is defined as

Fx(i) =P{X > i} =1- Fx(i).

The tail comes up in quality-of-service guarantees for computer systems. For
example, we might want to understand the probability of a buffer overflow in a
router of fixed capacity, or the probability that a hash table bucket has more than
ten items, or the probability that a page download time exceeds half a second.

5.9.1 Simple Tail Bounds

A tail bound provides an upper bound on the tail of a distribution. We will spend
considerable time on motivating and developing tail bounds in Chapter 18, but
for now we only state the two simplest tail bounds. The first, Markov’s inequality,
relies only on the mean of the distribution, but requires the assumption that the
distribution only takes on non-negative values.

Theorem 5.16 (Markov’s inequality) Let X be a non-negative r.v., with finite
mean yu = E [X]. Then, Ya > 0,

P{XZa}sE.
a

Proof:

b= e
x=0

2 ixpx(x)

S e

=a) px(x)
= aP_{X >at. [

The second tail bound, Chebyshev’s inequality, is based on the variance of the

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

5.9 Tails 99

distribution. Chebyshev’s inequality is derived by applying Markov’s inequality
to the deviation of a r.v. from its mean.

Theorem 5.17 (Chebyshev’s inequality) Let X be a r.v. with finite mean u =
E [X] and finite variance Var(X). Then, Ya > 0,

Var(X)

P{X-pulza} <—
a

Proof:
P{X-ul>a} =P{(X-p?*=>d}
E[(X - p)?
< M (by Markov’s inequality)
a
Var(X)
== [

5.9.2 Stochastic Dominance

Question: Suppose that r.v. X and r.v. Y are defined on the same sample space,
but X # Y in distribution. Is it possible that

P{X >i} >P{Y >i} V valuesofi?
Answer: Yes! In fact this has a name.

Definition 5.18 Given two random variables X and Y, if
P{X>i}>P{Y>i}, Vi

we say that X stochastically dominates Y. We write this as X >g; Y.
Example 5.19 (Stochastic dominance)

Figure 5.5 illustrates stochastic dominance of X over Y. Let

1 w/prob 0.3 1 w/prob 0.4
) 2 w/prob0.2) 2 w/prob 0.4
X=13 wiprob0.4 and V=03 oreb 02
4 w/prob 0.1 4 w/prob 0

When looking at the p.m.f. of X and the p.m.f. of Y, it is not at all obvious that
X dominates Y. However, when looking at the tails of the distributions, we see

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

100 5 Variance, Higher Moments, and Random Sums

that the tail of X (purple function) is always above or equal to that of ¥ (red
function).

px (@) py (@)
A A
04 0.4
03 A A 03
02 -8 .. M. 02
(R B B I 0.1
0L = = = = , 0 i

A
10
/P{X>i}
07
06 e
05} 1
'L —P{rsiy
024t s T
O o o
0 N

Figure 5.5 X >g; Y, where X is shown in purple and Y is shown in red.

Question: When looking at the tail part of Figure 5.5, what does the area under
the red (dashed) P {Y > i} function represent?

Answer: The area under the red function is E [Y] and the area under the purple
(solid) P {X > i} function is E [X]. To understand this, recall Exercise 4.16.

Example 5.20 (More shoes are better!)

As another example of stochastic dominance, let’s look at shoes. My husband
likes to tell me that I own way too many shoes (Figure 5.6), but I argue that
women stochastically dominate men when it comes to the number of pairs of
shoes they own.! Let X be a random variable representing the number of pairs
of shoes owned by women, where X is reasonably approximated by a Poisson
distribution with mean 27. Similarly let ¥ ~ Poisson(12) denote the number of
pairs of shoes owned by men. While a given man might have more shoes than a

1" According to a study of shoe brands in the United States, the average man owns 12 pairs of shoes,
while the average woman owns 27 pairs [81].

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

5.9 Tails 101

Figure 5.6 The shoes in my closet.

given woman, the number of shoes owned by an arbitrary woman stochastically
dominates the number owned by an arbitrary man.

Figure 5.7 shows an illustration of two Poisson distributions: ¥ ~ Poisson(20)
(red/dashed) and X ~ Poisson(50) (purple/solid). In Figure 5.7(a), we see that
px (i) is above py (i) for large values of i (although it is below for small val-
ues of 7). In Figure 5.7(b), we see that P{X > i} is always at least equal to
P{Y > i}. Thus, we say that Poisson(50) (purple/solid) stochastically dominates
Poisson(20) (red/dashed).

A A

010+ e T | St e
008 1t gl b\ L
006 L f Gl A ST
00402] Al

002l 1.v] ol N
. . .

v
~

100 100

(a) p.m.f. comparison (b) tail comparison

Figure 5.7 The purple (solid) curve represents X ~ Poisson(50) while the red (dashed)
curve represents Y ~ Poisson(20). The purple curve stochastically dominates the red
one.

Question: If X stochastically dominates Y, and both are non-negative, then it
feels like the mean of X should be at least that of Y. Is this true? What about
higher moments of X versus Y?

Answer: The answer is yes! See Exercise 5.37.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

102 5 Variance, Higher Moments, and Random Sums

5.10 Jensen’s Inequality

By the definition of variance, and the fact that it must be positive, we know that
E [X?] > E[X]*.

Question: Does it also hold that E [X?] > E [X]*? s E [X*] > E [X]*?

Answer: Yes! Specifically, if X is a positive random variable, then

E [X¢] > E[X]%, Va € R, where a > 1. (5.7)

The proof of (5.7) is given in Exercise 5.32 and follows immediately from
Jensen’s inequality (Theorem 5.23). Before we can describe Jensen’s inequality,
we need to review convex functions.

g(x)

X1 X2

Figure 5.8 [llustration of convex function g(x).

Informally a convex function is an upturned curve. More precisely, if we pick
any two points on the curve and draw a line segment between these, then the line
segment will lie above the curve (see Figure 5.8).

Definition 5.21 A real-valued function g(-) defined on an interval S C R is
said to be convex on S if, for any x1,xy € S and any a € [0, 1], we have

g (ax; + (1 —a)xz) < ag(x)) + (1 —a)g(x2).
To visualize Definition 5.21, observe that

e ax; + (1 — a)x; is a weighted average of x| and x;; and
e ag(x))+ (1 —a)g(xy) is a weighted average of g(x1) and g(x;).

Thus Definition 5.21 is saying that if z is any weighted average of x| and x», then
the point g(z) on the curve will always lie below the corresponding point on the
line, namely the weighted average of g(x;) and g(x3).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

5.10 Jensen’s Inequality 103

Suppose now that X is a r.v. where

X = x1 w/prob px(x)
| x2 w/prob px(xz) °

Then, for any convex function g(-), Definition 5.21 says that

g (px(x1)x1 + px(x2)x2) < px(x1)g(x1) + px(x2)g(x2). (5.8)

Question: What does (5.8) say about g(E [X])?

Answer:

g(E[X]) <E[g(X)].

Itis easy to generalize Definition 5.21 using induction to obtain Definition 5.22:

Definition 5.22 A real-valued function g(-) defined on an interval S C R is said
to be convex on S if, for any points x1,x, . ..,x, € S and any a1, @, . .., @, €
[0,1], where a; + @ + - - - + a, = 1, we have

glaxi +aoxy + -+ apxy) < @18(x1) + @28 (x2) + - - - + @ng(xp).

Let X be ar.v. where

x1 w/prob px(x1)
X, w/prob px(xz)

—_

Xn W/prob px(x»)

Question: What does Definition 5.22 say about E [g(X)]?
Answer: Again

g (px(xp)x1 + -+ + px(xp)xn) < px(x1)g(x1) + -+ + px(x,)g(xn),
so again g(E [X]) < E [g(X)].

This is summarized by Jensen’s inequality:

Theorem 5.23 (Jensen’s inequality) Let X be a r.v. that takes on values in an
interval S, and let g © S — R be convex on S. Then,

g (E[X]) < E[g(X)]. (5.9

We have proven Theorem 5.23 in the case of a discrete r.v. X with finite support.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

104 5 Variance, Higher Moments, and Random Sums

The theorem also generalizes to the case where X has infinite support and further
to the case where X is a continuous r.v. We omit the proof.

Important: A useful method for determining that a function is convex is to check
its second derivative. Specifically, g(-) is convex on § if and only if g”’(x) > 0
for all x € S. For example, g(x) = x? is convex over R, because g”’ (x) =2 > 0.

5.11 Inspection Paradox

We end this chapter by describing one of the more subtle consequences of
variability, called the inspection paradox. The inspection paradox says that the
mean seen by a random observer can be very different from the true mean. This
is best illustrated via examples.

Example 5.24 (Waiting for the bus)

The 61C bus arrives at my bus stop every 10 minutes on average. Specifically,
if S denotes the time between buses, then E [S] = 10. I arrive at the bus stop at
random times. I would expect that my average wait time for a bus is five minutes.
However, I’ve been monitoring it, and my average wait time is actually eight
minutes.

Question: How can this be?

Hint: The answer has to do with the variability of S, specifically its squared
coefficient of variation, Cg.

Question: If Cé = 0, what should the average waiting time of a random arrival
be?

Answer: Five minutes, since the person is equally likely to arrive anywhere in
[0, 10].

Question: So what goes wrong when Cg is high?

Hint: Looking at Figure 5.9, we see that there are short intervals and long
intervals between buses. The average length of an interval is 10 minutes. But
which interval is a random arriving person more likely to “land” in?

Answer: A random arriving person is more likely to land in a large interval, thus
experiencing an extra-long waiting time. This difference between the true average
and the average experienced by a randomly arriving person is what we call the
inspection paradox. For a concrete example involving buses, see Exercise 5.20.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

5.11 Inspection Paradox 105

/’JW' (’W' AT /’JW'

[]] [] []

61C('9) PORTAUTHORITY () 61C/ 9) PORTAUTHORITY ("o '61C() PORTAUTHORITY () 61C/"y) PORTAUTHORITY ()
d 1 1 1 1 [,
o 1 1 1 1 L

T

Figure 5.9 Inspection paradox. The mean time between buses is 10 minutes, so why is
my average wait so high?

Example 5.25 (Class size)

As another example, suppose we ask every student at CMU about the sizes of
their classes and we take the average of all these numbers. You will probably
hear that the average is somewhere around 100 students in a class. But when you
talk to the dean, the dean will tell you that the average class size is 30.

Question: Can the dean and the students both be right?

Class size 130 Class
Class N2 size 10 Class
st 002 ., ‘ s?zl(i/lo
GoRIA L0
85085 .
@@ﬁ .
~ e

Figure 5.10 Inspection paradox. The average class size is 30, so why is my average class
size so large?

®

@
@

®
<y 59

size 10

D0 €9

@

Answer: Yes! This again is a classic example of the inspection paradox. Fig-
ure 5.10 provides an illustration. Say we have five classes of size 10 students and
one class of size 130 students. The average across classes is indeed 30. However,
most students are in the 130 person class, so they experience a high average.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

106 5 Variance, Higher Moments, and Random Sums

Question: Suppose that each student takes just one class and there are 50+130 =
180 students in the school. What is the average observed class size?

Answer: % fraction of students observe a class size of 10, while % fraction
of students observe a class size of 130. Thus,

. 50 130
Average observed class size = =0 10 + =0 130 = 97.

Example 5.26 (My friends have more Facebook friends than I do!)

As a final example, we consider a study done by Allen Downey which samples
4,000 Facebook users [20]. For each person, p, the study computes the number
of friends of p, and the number of friends of each of p’s friends. The study
found that an average user has 44 friends. However, your average friend has 104
friends. Furthermore, the probability that your friend is more popular than you
is 76%.

&

, P
= 6 ©

Figure 5.11 Inspection paradox. Popular people (shown with red links) are more likely
to be your friends.

Question: How can this be?

Answer: This is again an inspection paradox, which stems from the fact that there
is variability in the number of friends that people have. As shown in Figure 5.11,
most people have a few friends, but a few people have a lot of friends. Let’s call
a person who has lots of friends a “popular” person. Popular people are simply
counted more and thus are more visible to an observer. Consider two potential
friends: one popular and one unpopular. The popular person is more likely to be
included among your friends than the unpopular one, because the popular person
has lots of friends. Now, whenever a popular person is included as one of your

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

5.12 Exercises 107

friends, this ends up raising the average number of friends that your friends have.
The friends phenomenon was originally studied by Scott Feld [26].

5.12 Exercises

5.1

52

53

54

5.5

5.6

5.7

Simplifying variance

Simplify each of the following expressions into its simplest form using
either definition of variance. Also provide an interpretation of your result
by explaining what changes in Figure 5.1.

(a) Var(X +5)

(b) Var(X -5)

(c) Var(5X)

(d) Var(-X +3)

Difference of independent random variables
Let X and Y be discrete random variables where X L1 Y. Express
Var(X —Y) in terms of Var(X) and Var(Y). Prove it!

Sums versus copies

Let X, Y, and Z be i.i.d. random variables, all distributed as Bernoulli(p).
Evaluate the following:

(a) E[X+Y +Z]

(b) E[3X]

) E[X+Y +Z]?

d) E[(X+Y +2)*]

(e) E|(3X)?]

The coveted 212 area code

There are eight million people in NYC. Suppose that each independently
is given a phone number with a 212 area code with probability 2%. What
is the standard deviation on the number of people who get the coveted 212
area code?

Variance of Poisson
Let X ~ Poisson(A). Derive Var(X).

Die throws
Let X; and X, be the results of two independent die throws. Which is larger
E [X;X;] orE [Xlz] ? Or are they the same? Compute each.

Understanding variance and risk
Let X;, X5,..., X, bei.i.d. instances of r.v. X.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

108 5 Variance, Higher Moments, and Random Sums

(a) Which is lower: Var(X; + X + - - - + X.) or Var(cX)? Compute each.

(b) A mutual fund allows you to buy a small piece of many different
companies, as opposed to buying a large piece of a single company. It
is said that investing in a mutual fund is less risky than investing in a
single company. Explain this statement via your analysis in part (a).

5.8 Grade of A
The average grade on the first probability exam is 70%. The “A” grade
cutoff is 90%. What is an upper bound on the fraction of students who get
an “A”?
(a) Assume that we have no other knowledge, and use Markov’s inequality.
(b) Assume that we know the standard deviation of grades is 5%, and apply
Chebyshev’s inequality.

5.9 Chebyshev’s inequality
Show that Chebyshev’s inequality guarantees that the probability of devi-
ating from the mean by more than k standard deviations is less than #
Specifically, if X is any random variable with mean y and finite variance
o2, then for any real number £ > 0,

1
P{X -l 2 kox} < 4.

5.10 Stochastic dominance of Geometrics
Let X ~ Geometric(0.2), Y ~ Geometric(0.4), where X L Y. What is
P{X>Y}?7IsX >, Y?

5.11 Applications of Jensen’s inequality
Let X be a positive random variable.
(a) How do E [X‘l] and E [X]~! compare?
(b) How do E [eX] and PFlX] compare?

5.12 Zero covariance
(a) Prove that if X and Y are independent random variables, then
Cov(X,Y) =0.
(b) Show that the converse is not true. That is, Cov(X,Y) = 0 does not
imply that X L Y. [Hint: Find a counter-example.]

5.13 Using covariance to express variance of a sum
Let X and Y be random variables. Prove that

Var(X +Y) = Var(X) + Var(Y) + 2Cov(X,Y). (5.10)

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

5.12 Exercises 109

5.14

5.15

5.16

5.17

Equation (5.10) can be generalized to:

n n
Var(Y Xi| = > Var(x)+2 Y Cov(X,X;) (5.11)
i=1 i=1 1<i<j<n
for random variables Xi, X», ..., X,. You do not have to prove (5.11).

Covariance and events
Let X and Y be indicator random variables, where

1 ifevent A occurs 1 if event B occurs
X = . Y = . .
0 otherwise 0 otherwise

Prove that Cov(X,Y) > 0 if and only if events A and B are positively cor-
related (see Exercise 2.8 for the definition of positively correlated events).

Cauchy-Schwarz inequality
In this problem, you will prove the Cauchy—Schwarz inequality for random
variables which says that for any two random variables X and Y,

[E [xY]| < \E [X2] E[r?]. (5.12)
Follow these steps:

(a) Let Z = (X — cY)?, where c is a constant. Explain why E [Z] > 0.
E[XY]
E[¥?]

(b) Now substitute in ¢ = and simplify until you get (5.12).
Correlation coefficient

Recall that Cov(X,Y) can be arbitrarily high or low depending on the
magnitude of X and Y. In practice, it is common to use a normalized
version on covariance called the correlation coefficient, p(X,Y), where

Ox0y

where ox and oy represent the standard deviations of X and Y respectively.
Prove that the magnitude of Cov(X,Y) is bounded, specifically

-1<p(X,Y)< 1.

[Hint 1: It helps to use the Cauchy—Schwarz inequality from Exercise 5.15.]
[Hint 2: Start by working with V = (TLX (X-E[X])and W = (TLY (Y-E[Y]).]

Sampling without replacement: variance and covariance
Suppose that we have an urn that contains b balls numbered 1,2,...b.
We draw n < b balls at random from the urn, one at a time, without

replacement. Let X; denote the number on the ith ball drawn.
(a) Whatis P{X; = k}?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

110 5 Variance, Higher Moments, and Random Sums

(b) Show that

b-1)(b+1
Var(x;) = L= D@+ (5.13)
12
[Hint: Use the identity that 3,7 i* = 1b(b +1)(2b + 1).]
(c) Follow the steps below to show that:
b+1
Cov(X;, X;) = —1—+2. (5.14)

(i) Whatis P{X; = ki, X; = k2 }?
(ii) Explain why Var(Zf’:1 Xi) =0.

(iti) Apply Var(3Z, X;) = T2, Var(X;) +2 51<i<j<5 Cov(X:, X;)
from (5.11) to get Cov(X;, X;).
(iv) Explain why it makes sense that Cov(X;, X;) is negative.

5.18 Memorylessness of Geometric
Let X ~ Geometric(p). LetY = [X | X > 1]. You will prove that

vy€1+x.

(a) Argue thatY and 1+ X have the same sample space of possible values.
(b) Write a simple expression for P{Y =i}, where i > 2.

(c) Write a simple expression for P {1 + X =i}, where i > 2.

Your answers for parts (b) and (c) should be the same.

5.19 Variance of the Geometric
Let X ~ Geometric(p). Derive Var(X) = 1[:—2” [Hint: Use conditioning.]

5.20 Buses and the inspection paradox

Suppose that half of all buses arrive 5 minutes after the previous bus, and

half arrive 15 minutes after the previous bus. Let r.v. S denote the time

between buses.

(a) Whatis E [S]?

(b) If you arrive at a random time, what is the expected length of the
inter-bus interval that you find yourself in?

(c) Let’s consider a more extreme example where half of all buses arrive
€ > 0 minutes after the previous bus, while half arrive 20 — € minutes
after the previous bus. How do your answers to (a) and (b) change?
Derive the answers in the limit as € — 0.

5.21 Happy gambling
At the Happy Casino, at every turn you earn a dollar with probability 0.6
and lose a dollar with probability 0.4. Let W denote your total money won
after n games (this could be positive or negative).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

5.12 Exercises 111

522

5.23

5.24

5.25

(a) What is E [W]?
(b) What is Var(W)?

Good chips versus lemons

A chip supplier produces 95% good chips and 5% lemons (bad chips).
The good chips fail with probability 0.0001 each day. The lemons fail with
probability 0.01 each day. You buy a random chip. Let T be the time until
your chip fails. Compute E [T] and Var(T).

Napster

As a present for my brother, I decided to create a collection of all 50 songs
from his favorite band. Unfortunately, whenever I typed in the band name,
I was sent a random song from the band. Let D denote the number of
downloads required to get all 50 songs.

(a) What is E [D]? Give a closed-form approximation.

(b) What is Var(D)? (No need for closed-form here.)

Ensuring Internet connectivity
Janice manages the wireless Internet connection in a building. Let N denote
the number of occupants in the building each day, where E [N] = 100 and
oy = 10. Each occupant needs Internet connectivity. Suppose that one
wireless access point can serve m = 10 occupants. Janice wants to use as
few access points as possible, while ensuring all occupants of the building
get Internet connectivity.

(a) Suppose that on a given day Janice wants to ensure that, with probability
at least 80%, all occupants get Internet connectivity. According to
Markov’s inequality, how many access points, n, does she need?

(b) Repeat part (a), this time using the Chebyshev bound.

Hypothesis testing in data analysis

In hypothesis testing, a decision between two alternatives, one of which is
called the “null hypothesis” (Hp) and the other the “alternative hypothesis”
(H1), is to be made. You are given a coin with probability p of heads, and
you want to test if it is fair or biased in favor of heads. Here,

Hy: Coin is fair (that is, p = 0.5).

H: Coin is biased toward heads (that is, p > 0.5).

You perform an experiment of tossing the coin n = 10 times and observe
k = 8 heads. Based on this outcome, you have to decide whether to “reject
Hy” (thatis, choose H1). A popular approach used in making such decisions
is based on the “p-value.” The p-value of an outcome is the probability
that the observed outcome, or something more extreme than the observed
outcome, occurs under the assumption that Hy is true. Here, “more extreme”
means more in favor of Hj.

(a) What is the p-value for the outcome of your experiment?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

112 5 Variance, Higher Moments, and Random Sums

(b) To be more confident in choosing between hypotheses Hy and Hi,
should the associated p-value be higher or lower?

(c) To be confident of your decision, you set the p-value at 0.01. How many
heads do you need to observe in the experiment in order to choose H.

5.26 Mouse in a maze
[Problem adapted from Sheldon Ross.] A mouse is trapped in a maze.
Initially it has to choose one of two directions. If it goes to the right, then
it will wander around in the maze for three minutes and will then return
to its initial position. If it goes to the left, then with probability % it will
depart the maze after two minutes of traveling, and with probability % it
will return to its initial position after five minutes. The mouse is at all times
equally likely to go to the left or the right. Let T denote the number of
minutes that it will be trapped in the maze.
(a) Whatis E [T]?
(b) What is Var(7T)?

5.27 Central moments
Recall that when X and Y are independent random variables, we have:

Var(X +Y) = Var(X) + Var(Y).
Let Skew(X) denote the third central moment of X, that is,
Skew(X) =E [(X - E[X])*].
Either prove or disprove (via a counter-example) that, for independent X
and Y:
Skew(X +Y) = Skew(X) + Skew(Y).

[Hint: It may help to define X’ = X —E[X] and Y’ =Y — E [Y] and then
restate the problem in terms of X’ and Y]

5.28 All1do is sleep and work

A typical CMU student’s life consists of alternating between home and
school every hour, according to Figure 5.12. If the student is home, with
probability p she will switch to school at the next hour (otherwise she will
stay home). If the student is at school, with probability g she will switch
to home at the next hour (otherwise she will stay at school). Assuming the
student just got to school, let 7" be the time (in hours) until the student goes
home. What is Var(7T)?

5.29 Dominance
[Proposed by Weina Wang] Suppose that X and Y represent the result of
coin flips, where

X ~ Bernoulli(0.5) and Y ~ Bernoulli(0.6).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

5.12 Exercises 113

5.30

5.31

Figure 5.12 Figure for Exercise 5.28.

Clearly sometimes the value of X exceeds that of Y, although slightly more
often the value of Y exceeds that of X. Define a joint probability distribution,
px.y(x,y) where the marginal distributions are px(x) ~ Bernoulli(0.5)
and py(y) ~ Bernoulli(0.6), but P{X <Y} = 1.

All I do is sleep, work, and drink coffee

Imagine a poor student caught in an endless cycle between sleeping, work-
ing, and drinking coffee at the coffee house. The student’s life is described
by Figure 5.13, where the student is always in one of three states, and every
hour the student transitions (possibly back to the same state) with the prob-
ability shown. For example, after drinking a cup of coffee, the student will,
at the next hour, with probability % go back to work, or with probability %
stay to drink another cup of coffee. Assuming that the student is at work,
let T denote the number of hours until she goes home to sleep.

Figure 5.13 Figure for Exercise 5.30.

(a) Whatis E [T]?
(b) What is Var(T)?

Average of random number of random variables
Let X;, X5, X3, ... bei.i.d. random variables with distribution X. Let NV be
a positive, integer-valued r.v., where N L X. Let

1 N
A:N;Xl

(a) Derive E [A].
(b) Derive Var(A).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

114 5 Variance, Higher Moments, and Random Sums

5.32 Higher moment inequalities
Use Jensen’s inequality to prove that for any positive r.v. X,

E [X¢] > E[X]“, Va € R, where a > 1.

5.33 Summing up to a stopping time
[Proposed by Tianxin Xu] Imagine I roll a fair three-sided die.
o If the die comes up 1, I give you one dollar, and I roll again.
o If the die comes up 2, I give you two dollars, and I roll again.
o If the die comes up 3, I give you three dollars, but we stop playing.
Let S denote the total amount of money that I give you during the game.
Observe

S=) X,

M-

Il
—_

1

where X; is the result of the ith role, and N is the number of rolls until we

see a 3 (inclusive). Your goal is to compute E [S] and Var(S).

(a) Explain why we can’t apply Theorem 5.14.

(b) Compute E [S]. [Hint: Condition on the first roll.] Is your answer the
same as in Theorem 5.147?

(¢) Now compute Var(S). Is your answer the same as in Theorem 5.14?

The r.v. N in this problem is called a “stopping time” because its value only

depends on the X;’s that were seen so far, and not on the future. When N

is a stopping time, and the X;’s are i.i.d. with X; ~ X, an identity called

Wald’s equation says that E [il\il Xi] =E[N]-E[X] [74].

5.34 Skewering the Binomial
Let Skew(X) = E[(X—E[X])3]. If Y ~ Binomial(n, p), what is
Skew(Y)?

5.35 Race to win

Obama and Romney are counting votes as they come in. Suppose that each

incoming vote is for Obama with probability p = 0.6 and is for Romney

with probability 1 — p = 0.4. At the moment when Obama has 100 votes,

we’d like to understand how many votes Romney has. Let R denote the

number of Romney votes at the moment when Obama gets his 100th vote.?

(a) What is pr(i)? (We want the probability of the event that there are
i Romney votes and 100 Obama votes and that the last vote is for
Obama.)

(b) What is E [R]? [Hint: If you try to derive E [R] from pg (i), you will
find it hard. Look for the much easier way. Hint: Linearity.]

(¢c) What is Var(R)? [Hint: This should be easy after (b).]

2 This is an instance of a Negative Binomial distribution.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

5.12 Exercises 115

5.36

5.37

5.38

5.39

Cups at a party

There are n people at a party. Each person puts their cup down on the table.

Then they each pick up a random cup.

(a) What is the expected number of people who get back their own cup?

(b) Derive the variance of the number of people who get back their own
cup.

Stochastic dominance
Let X and Y be non-negative, discrete, integer-valued random variables.
We are given that X >,; Y.
(a) Prove that E [X] > E[Y].
(b) Prove that E [X?] > E [Y?].
[Hint: Compare ;i - P{X > i} with }; i - P{Y > i}.]

Pairwise independence
Consider n random variables: X1, X, ..., X;,,. We say that these are pair-
wise independent if any two of these are independent, that is,

Vi#j, P{Xi=i&X;=j}=P{X;=i}-P{X; =}.
We will show that if X1, X5, ..., X}, are pairwise independent, then:
Var(X; + X, +---+ X,,) = Var(X;) + Var(X,) + - - - + Var(X,,).

(a) Prove the desired linearity theorem in the case where E [X;] = 0, Vi.

(b) For the rest of the problem, assume that E [X;] # 0. Define ¥; =
X; —E[X;]. Whatis E [Y;]?

(c) What does your result from part (a) say about the linearity of
Var(Y, + Yy +---+Y,)? After writing down the linearity statement
for the Y;’s, substitute back ¥; = X; — E [X;]. You will see that you can
claim a linearity result for the X;’s as well.

Total variation distance

We often want to express the “distance” between two distributions. There
are many ways to define such a distance. One way is the total variation
distance (TVD). Given two discrete distributions, X and Y, we write:

TVD(X,Y) = %Z|P{X:i}—P{Y=i}|.

Prove two properties of TVD(X,Y):
(a) Prove that TVD(X,Y) < 1.
(b) Prove that TVD(X,Y) < P{X # Y}.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

6 z-Transforms

This chapter is a very brief introduction to the wonderful world of transforms.
Transforms come in many varieties. There are z-transforms, moment-generating
functions, characteristic functions, Fourier transforms, Laplace transforms, and
more. All are very similar in their function. In this chapter, we will study z-
transforms, a variant particularly well suited to common discrete random vari-
ables. In Chapter 11, we will study Laplace transforms, a variant ideally suited
to common continuous random variables.

Transforms are an extremely powerful analysis technique. In this chapter we will
cover two of the most common uses of transforms:

1. Computing higher moments of random variables (see Sections 6.1 — 6.6).

2. Solving recurrence relations, particularly recurrences that will come up later
when we study Markov chains. This will be discussed in Section 6.7 and then
again when we get to infinite-state Markov chains in Chapter 26.

6.1 Motivating Examples

Suppose that you want to know the third moment of a Binomial(n, p) distribution.
Let X ~ Binomial(n, p). Then,

E[x] =) (’Z)p"m -p)" i,

i=0
This is a daunting expression.

As another example, you might want to know the fifth moment of a Poisson (1)
distribution. Let Y ~ Poisson(1). Then,

o e b
.

57 _
B[] = i!
i=0
Again, it’s not easy to see how to derive this. One of the most important uses of

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

6.2 The Transform as an Onion 117

transforms is that they allow us to obtain all moments of a random variable, as
we now explain.

6.2 The Transform as an Onion

One can think of the transform of a random variable as an onion, shown in
Figure 6.1. This onion contains inside it all the moments of the random variable.
Getting the moments out of the onion is not an easy task, however, and may
involve some tears as the onion is peeled, where the “peeling process” involves
differentiating the transform. The first moment is stored in the outermost layer
of the onion and thus does not require too much peeling to reach. The second
moment is stored a little deeper, the third moment even deeper (more tears), etc.
Although getting the moments is painful, it is entirely straightforward how to do
it — just keep peeling the layers.

E[X]
E[X°]
E[X’]
E[X*]

Figure 6.1 The z-transform onion.

Definition 6.1 The z-transform, G,(z), of a discrete function, p(i), i =
0,1,2,...is defined as

Gp(z) = Zp(i)zi.
i=0

Observe that the z-transform is a power series in z. Here, z should be thought of
as a placeholder that keeps p (i) separated from p (i + 1), by multiplying p (i) by
z' and multiplying p(i + 1) by z**1.

When we speak of the z-transform of a discrete random variable (r.v.) X, we

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

118 6 z-Transforms

are referring to the z-transform of the probability mass function (p.m.f.), px(-),
associated with X.

Definition 6.2 Let X be a non-negative discrete r.v. with p.m.f. px (i), where
i=0,1,2,.... Then the z-transform of r.v. X is written as X(z), where

(o]

X(2) = Gpy(2) =E [2¥] = pr(i)zi.

i=0

Throughout, we assume that 7 is a constant and we will assume that |z| < 1.

The z-transform definition, E [ZX], can in theory apply to any r.v., X, even if
X takes on negative values or is continuous. However, as Theorem 6.6 shows,
convergence is guaranteed when X is non-negative, discrete, and integer-valued,
and |z| < 1, as specified in Definition 6.2. That does not preclude convergence
in more general settings, and the E [ZX] definition is often applied more broadly.

Question: What is X (1)?

Theorem 6.3 For all discrete random variables, X,

X(1) =1.

Proof:

X(1) =E[Z¥] |Z:1 = Z px(i) -1 =1. n

i=—o00

6.3 Creating the Transform: Onion Building

The z-transform is defined so as to be really easy to compute for all the commonly
used discrete random variables. Below are some examples.

Example 6.4 Derive the z-transform of X ~ Binomial(n, p):

n

X()=E[*] =) (?)pi(l -p)"7

i=0

= (’f) (zp)'(1 - p)"”
i=0

=(zp+(1-p)".

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

6.3 Creating the Transform: Onion Building 119

Example 6.5 Derive the z-transform of X ~ Geometric(p):

)?(z) =E [ZX] = Zp(l - p)l7
i=1
=zp Y (z(1-p))!
i=1

=zp) (z(1=p))
o
S l-z(1-p)

Question: Can you see where we used the fact that |z| < 1 above?
Answer: We needed |z(1 — p)| < 1 to get 2,72, (z(1 — 7)1 to converge.

In both the above cases, notice how much easier it is to create the transform than
to compute higher moments.

One might wonder if the series defined by X (z) might in some cases diverge.
This is not the case.

Theorem 6.6 (Convergence of z-transform) X (z) is bounded for any non-
negative, discrete, integer-valued r.v. X, assuming |z| < 1.

Proof: We are given that
-1<z<1

Because i > 0 is an integer, this implies that
1< <1
Multiplying all terms by px (i), we have
-px(i) < 2'px(i) < px(i).
Now summing over all i, we have
= > px(D) < D 2px() <) px(i),
i i i
which evaluates to

“1<X(2) < 1.

So X (z) is bounded between —1 and 1. u

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

120 6 z-Transforms

6.4 Getting Moments: Onion Peeling

Once we have created the onion corresponding to a r.v., we can “peel its layers”
to extract the moments of the random variable.

Theorem 6.7 (Onion Peeling Theorem) Letr X be a discrete, integer-valued,
non-negative r.v. with p.m.f. px (i), i = 0, 1,2, Then we can get the moments
of X by differentiating X (z) as follows:

X'(z)| =E[X]

z=1

X" (2) =EX(X-1)]

=

X" (2) =E [X(X - 1)(X -2)]

X" (z) =EX(X-1)(X -2)(X -3)]

Note: If the above moments are not defined at z = 1, one can instead consider
the limit as 7 — 1, where evaluating the limit may require using L’'Hospital’s
rule.

Proof: Below we provide a sketch of the proof argument. This can be obtained
formally via induction and can also be expressed more compactly. However, we
choose to write it out this way so that you can visualize exactly how the moments
“pop” out of the transform when it’s differentiated:

X(2) = px (0% + px(Dz' + px(2)2% + px(3)2® + px (D) z* + px (5)2° +- -

X'(2) = px(1) + 2px(2)z' +3px(3)2% +4px (4)2° +5px ()2 + -
X2 _, = 1px(1)+2px(D) +3px(3) +4px(4) + 5px(5) + -
—E[X]V

X7'(2) = 2px(2) +3-2px(3)z +4 3px (92 +5 - 4px (5)2° ++ -
R/()] | =2 1px(D)+3-2px(3) +4-3px(#) +5-4px(5)+ -
SE[X(X-1)]V

X"(2)=3-2px(3) +4-3 2px()z+5-4-3px(5)* +---
R(@| =320 1px(3)+4-3-2px(4) 454 3px(5) + -
SE[X(X-1)(X-2)]

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

6.5 Linearity of Transforms 121

And soon ... u

Question: What is the insight behind the above proof? How does the transform
hold all these moments?

Answer: The insight is that the “z” term separates the layers, allowing us to get
each successive moment when differentiating. One can think of the z’s as the
pasta in the lasagna that keeps everything from running together.

Let’s consider an example of applying the Onion Peeling Theorem.

Example 6.8 (Variance of Geometric) Ler X ~ Geometric(p). Compute
Var(X).

X(2) = 1-z(1-p)

_d(_zw | ___pr | _1
Elx]= dz(l—z(l—p))zzl_ (1-z(1-p)?|o P

o) 2p(1 - 1_2-
E[X*]=X (Z)|Z:1+E[X]:—(1—pz((1—l;)))3 o Ij: pzp

-p

Var(X) = E [X?] - (E[X])* = ! >
p

Question: As we’ve seen, the z-transform of X is an onion that contains all
moments of X. But does it also contain the distribution of X? Specifically, can
you get the p.m.f., px (i), from the onion, X(z)?

Answer: The answer is yes! In Exercise 6.14 you will derive an algorithm for
extracting px (i) from X (z) for any non-negative discrete r.v. X. This tells us
that there is an injective mapping from the set of discrete non-negative random
variables to the set of z-transforms. Put another way, the z-transform uniquely
determines the distribution.

6.5 Linearity of Transforms

Since transforms are just expectations, it makes sense that one might have a law
similar to Linearity of Expectation. However, since transforms encompass all
moments, it also makes sense that such a law might require independence of the
random variables being added. Theorem 6.9 encapsulates these points.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

122 6 z-Transforms

Theorem 6.9 (Linearity) Let X and Y be independent discrete random vari-
ables. Let W = X + Y. Then the z-transform of W is W(z) = X(z) - Y(2).

Proof:
W(z) =E["]
- [ZX+Y]
=E[X "]
—E[] B[]
=X(z)-Y(2). L]
Question: Where did we use the fact that X 1L Y?

Answer: In splitting up the expectation into a product of expectations.
Example 6.10 (From Bernoulli to Binomial)

Let X ~ Bernoulli(p). Let Y ~ Binomial(n, p).

Question: (a) What is X (z)? (b) How can we use X (z) to get Y (z)?
Answer:

@ X(x)=(1-p)-L+p-zl=1-p+pz.

(b) Y = 3", X;. Given that X; ~ X, for all , and the X;’s are independent,

P(2) = (%) = (1=p+pa)
Example 6.11 (Sum of Binomials)

Let X ~ Binomial(n, p) and Y ~ Binomial (m, p), where X LY.
Question: What is the distribution of Z = X +Y?

Answer:
Z(2) =X(2) - Y(2)
=(@zp+A=p)"-(zp+(1-p)"
=(zp+(1-p)™™".
Observe that (zp + (1 — p))™*" is the z-transform of a Binomial r.v. with pa-

rameters m + n and p. Thus, the distribution of Z must be Binomial(m + n, p),
which should make sense.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

6.6 Conditioning 123

6.6 Conditioning

Theorem 6.12 Let X, A, and B be discrete random variables where

X = A w/probp
" | B whprobl-p -

Then,
X(z)=p-A(2)+(1-p)-B(2).

Theorem 6.12 should be interpreted as first tossing a p-coin (coin with probability
p of heads). If that coin comes up heads, then set X = A. Otherwise set X = B.

Proof:
X(z) =E
K|X=A]-p+E[|X=B]-(1-p)
| p+E[®]-(1-p)
= pA(2) + (1= p)B(2). n

("]
[
[

=E
=E

Question: In the examples in the previous section, we considered the sum of a
constant number (1) of random variables. How can we use conditioning to derive
the z-transform of the sum of a r.v. number (V) of random variables?

Answer: Exercise 6.10 walks you through the proof of Theorem 6.13, which
generalizes Theorem 5.14 to all higher moments.

Theorem 6.13 (Summing a random number of i.i.d. random variables)
Let X1, X5, X3, ... be i.id. discrete random variables, where X; ~ X. Let N be
a positive, integer-valued, discrete r.v., where N L X; for alli. Let

N
S = Z X;.
i=1
Then,
S() =N ().

that is, we substitute in X (z) as the z-parameter in N (z). Observe that this
argument, X (z), is a constant since X (z) is an expectation. Also, if X is discrete,
non-negative, and integer-valued, then by Theorem 6.6, —1 < X(z) < 1.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

124 6 z-Transforms

6.7 Using z-Transforms to Solve Recurrence Relations

Recurrence relations are prevalent throughout computer science, biology, signal
processing, and economics, just to name a few fields. One of the most common
types of recurrence relations is a linear homogeneous recurrence, of the form:

Jien = a1 fisn-1 + @2 fisn—2+ -+ anfi.
A popular example of such a recurrence relation is the following:
fivz = fir1 + [(6.1)
where fop =0and f; = 1.

Question: Do you recognize the relation?

L i L L
R ¥ R
_‘ _‘ _‘
i i i ad_$ i . $ ad_$
s ° S ° S ° S ° 5 ° Q ° Q ° s ° S °
\b I \b I \b \b I \b \b I \b \b \b
- - e e e e e e T

Figure 6.2 Fibonacci sequence.

Answer: Equation (6.1) is the Fibonacci sequence. It was used to model the
growth in the population of rabbits, where f; denotes the number of rabbits in
month i.

Solving a recurrence relation means finding a closed-form expression for f;,.
While (6.1) seems very simple to solve by just “unraveling the recurrence,” it
turns out to be impossible to do this. It also is hard to imagine how one might
“guess” the form of the solution. Fortunately, z-transforms provide an excellent
technique for solving these recurrence relations. In this section, we see how to
derive a closed-form expression for f,, using z-transforms. This method may
seem overly complex. However it’s the easiest technique known for handling
recurrences. We start by defining the z-transform of a sequence.

Definition 6.14 Given a sequence of values: { fo, f1, f>, . ..}. Define
F(2) = Z fiZ'.
i=0

F(z) is the z-transform of the sequence. Note that z just functions as a
placeholder, for the purpose of separating out the f;’s. Note that the f;’s here
are not probabilities, and there is no r.v. associated with this z-transform.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

6.7 Using z-Transforms to Solve Recurrence Relations 125

‘We illustrate the method on a recurrence relation of this form:
fin=>bfin+af; (6.2)

where we assume fy and f; are given and a and b are constants. However,
the method can be applied more generally. Our goal is to derive a closed-form
expression for f;,.

Step 1: Derive F (z) as a ratio of polynomials.

The goal in Step 1 is to derive F' (z). It will be useful to represent F(z) as a ratio
of two polynomials in z. From (6.2), we have:

fin=bfin+af;

fi+21i+2 — bﬁ+lzi+2 + aﬁzi+2
) 00 o0
Z ﬁ+2zl+2 — b Zﬁ+]zl+2 +a Zﬁzl+2
i=0 i=0 i=0
0 0
F()=fiz-fo=bz) frnz™ +az®) fid'
i=0 i=0

F(2) - fiz— fo=bz(F (2) - fo) +az’F (2)
(1 - bz—azz) F(2) = fiz+ fo—bzfo
fo+z(fi —bfo)'

1-bz—az? ©3)

F(z) =

Step 2: Rewrite F(z) via partial fractions.

The goal in Step 2 is to apply partial fractions to F (z). Specifically, we want to

write
N(iz) A B

= + ,
D(z) h(z) g(2)
where D (z) = h(z) - g(z) and h, g are (hopefully) linear in z.

F(z) =

Lemma 6.15 If D (z) = az*> + bz + 1, then

vo-(1-)0-5)
ro ry

where ro and ry are the (real) roots of D (z).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

126 6 z-Transforms

Proof: To see that the two ways of writing D(z) are equivalent, we note that the
two quadratic expressions have the same two roots (ry and 1) and furthermore

have the same constant term, 1.

In our case, see (6.3), D (z) = —az2—bz+1,s0

-b-Vb%2+4a -b+Vb%+4a

2a 2a

(ro,r1) =

D(z) = h(z) - g(2)

h(z)=1-—
ro
Z

g(z)=1-—.
ri

We now use N (z) = fo +z (f1 — fob) from (6.3) to solve for A and B:

A B
1z 1-Z

o r

All-2)+B(1-2)

F(z2) =

(A+B)+Z(%_%)_N(Z)_fo+z(f1—fob)
(1-2)(1-2) "D Dk

r

Matching the z-coefficients in the numerators of (6.6), we have

A+B=f0
A B
-— - —=h— fob,
rero

which solves to

B= rofo+ (fi = fob) rori
ro—ri

A= fy — B.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

6.4)

(6.5)

(6.6)

(6.7)
(6.8)

6.7 Using z-Transforms to Solve Recurrence Relations 127

Step 3: Rewrite F(z) via series expansion.

Returning to (6.5), we assume that z is chosen such that 0 < z < rg and
0 < z < ry. This allows us to write:

= —_— an = - .
1-£ rQ 1-= ry

i=0

Thus, the geometric series expansion of F (z) can be rewritten as follows:

F(2) :2f,»z" :Ag(f—o)l+32(%)l. (6.9)

Step 4: Match terms to obtain f,.

Finally, we match the z-coefficients in (6.9) to obtain the f,’s:

A B
ﬂ=ﬁ+ﬁ, (6.10)
0 1

where A and B are obtained from (6.8) and (6.7) and r¢ and r; are obtained from
(6.4).

To get a final form, recall that we are given that fy = 0 and f; = 1. Furthermore,
a =1and b = 1. Then, from (6.4), we have that

I‘():—(b
r1=¢_1
where
1++5
o= —5—

1 1
=—— and B=—
V5 V5
Substituting these into (6.10), we get
1
fa=—7=(@" = (=$)"").
s

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

128 6 z-Transforms

6.8 Exercises

6.1 Moments of Poisson
Use z-transforms to derive E [X(X — 1)(X =2)--- (X -k +1)], for k =
1,2,3,..., where X ~ Poisson(1).

6.2 Sum of Poissons
Let X; ~ Poisson(1;). Let X, ~ Poisson(1;). Suppose X; L Xp. Let
Y = X1 + X,. How is Y distributed? Prove it using z-transforms. Note that
the parameter for the Poisson denotes its mean.

6.3 Moments of Binomial
Use z-transforms to derive E[X(X - 1)(X =2)--- (X -k +1)], for k =
1,2,3,..., where X ~ Binomial(n, p).

6.4 Sums of Binomials
Suppose that X ~ Binomial(#, p) and Y ~ Binomial(n,q) and X L Y. Let
Z = X +Y. Can we say that Z ~ Binomial(n, p + ¢)? If so, prove it via
z-transforms. If not, explain why not.

6.5 z-Transform of linear combination
Suppose X and Y are independent random variables. What is the z-
transform of aX + bY, where a and b are arbitrary integers. Express your
answer as a function of X (+) and ?(-).

6.6 Scaling up random variables via transforms
Let X, X5, and X3 be i.i.d. random variables, all with distribution X. Let
S =X+ X, + Xz and let Y = 3X. Suppose we are told that the z-transform
of X is some function gx(z). What can you say about the z-transform of
S? What can you say about the z-transform of Y'? Express both of these in
terms of gx (+).

6.7 Matching random variables and their z-transforms
Assume that X, Y, Z, and T are independent random variables, where:
e X,Y,Z ~ Binomial(3,0.5)
e T ~ Bernoulli(0.5)
Match each expression on the left to its z-transform on the right.

1. 3T a. 270 (z+1)°
2. X+3 b. 273 (z+1)3- 23
3. X+Y+Z c. 274 (z+1)*+05
4. X-T d. 05-(Z+1)

6.8 Difference transform R
Let W =X —Y, where X L Y. Which of the following represents W (z):

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

6.8 Exercises 129

@ X(2)-Y(2)

X(2)
(b) Y(2)

© X(2)-7 (1)

(d) X(2) =Y (2)

(e) None of the above. R

Justity your answer. Define W(z) = E [ZW] even if W is negative.

6.9 Trip time
A professor walks all the way down Carnegie St. (Figure 6.3). When she
reaches the end, with probability 0.5, she turns down Mellon St. and walks
all the way to the end. Otherwise, with probability 0.5 she turns down
University St. and walks all the way to the end. We are interested in the
professor’s total trip time, 7.
e Let C be ar.v. denoting the time to walk down Carnegie St.
e Let M be ar.v. denoting the time to walk down Mellon St.
e Let U be ar.v. denoting the time to walk down University St.
Assume that you are given E [C],E [C2] ,Var(C), C(z). You are also given
these expressions for M and U. Assume that C, M, and U are independent.
(a) Express E [T] in terms of the given quantities (and constants).
(b) Express Yar(T) in terms of the given quantities (and constants).
(c) Express T(z) in terms of the given quantities (and constants).
You do not have to simplify your answers.

g o 2] %
-\o8
| | 9 S‘VN\L
- - - - Carnegie St. - - - -»Z _ 0
'S“A

Un:
ivey Sity
t

T : total time

Figure 6.3 Figure for Exercise 6.9.

6.10 Sum of a random number of random variables
Suppose that X1, X5, . .. are i.i.d. discrete random variables, all distributed
as X. Suppose that N is a positive integer-valued discrete r.v., where N L X;
for all i. Let

Xi.

e

~
Il
—_

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

130 6 z-Transforms

(a) Prove that S (2) = N (5(\ (z)). [Hint: Condition on N.]

(b) Suppose that each day that the sun shines, I earn 10 dollars with prob-
ability p = % and 1 dollar with probability p = % The sun shines
every day with probability g = %. Today is sunny. Let S denote the total
money I earn starting today until it turns cloudy.

(i) Write an expression for S(z) using part (a).
(ii) Differentiate your z-transform to get E [S] and Var(S).

6.11 Geometric number of Geometrics
Suppose that X1, X, . .. are i.i.d. discrete random variables, all with distri-
bution Geometric(g). Suppose that N ~ Geometric(p), where N L X; for

alli. Let
N
Y = Z X;.

i=1

Derive the z-transform ?(z). What does the transform say about the distri-
bution of Y? Provide some intuition for the result.

6.12 Mouse in maze with transforms

A mouse is trapped in a maze. Initially it has to choose one of two directions.
If it goes to the right, then it will wander around in the maze for three
minutes and will then return to its initial position. If it goes to the left, then
with probability % it will depart the maze after two minutes of traveling,
and with probability % it will return to its initial position after five minutes
of traveling. Assume that the mouse is at all times equally likely to go to the
left or the right. Let 7 denote the number of minutes that it will be trapped
in the maze. In Exercise 5.26 we computed E [T] and Var(7). This time
compute 7T(z), and then differentiate it to get E [T1].

6.13 The wandering frog

[Proposed by Tianxin Xu] There are three lily pads, A, B, and C. A frog

sits on lily pad A. At each time step, the frog has an equal probability of

jumping from the lily pad that it is currently on to either of the other pads.

(a) What is the expected number of hops before the frog returns to pad A?

(b) What is the z-transform of the number of hops before the frog returns
to A?

(c) What is the probability that the frog is on lily pad A after n hops? Check
your answer by thinking about the case where n — oo.

6.14 Getting distribution from the transform
The transform of a r.v. captures all moments of the r.v., but does it also
capture the distribution? The answer is yes! You are given the z-transform,

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

6.8 Exercises 131

6.15

6.16

X (z), of a non-negative, discrete, integer:yalued r.v., X. Provide an algo-
rithm for extracting the p.m.f. of X from X (z).

Using z-transforms to solve recurrences
This problem will walk you through the process of solving a recurrence
relation:

aps1 = 2a, + 3, ap = 1.
(a) Define A(z) = X,y a,2" to be the z-transform of the sequence of a,,’s.

Multiply every term of the recurrence relation by z”*! and sum over all
n to obtain an expression for A(z) in terms of A(z)’s. You should get:

1+2z
(1-22)(1-2)°
(b) Apply partial fractions to determine the constants v and w that allow
you to break up (6.11) into simpler terms:

A(z) = (6.11)

1427 v N w
(1-22)(1-z) 1-2z 1-7

(c) Recall from Section 1.1 how we can express ﬁ and ﬁ as power
series in z. Use these, and the correct values of v and w, to express
A(z) as a power series in z.

(d) Determine a,, by looking at the coefficient of z" in your power series.

A(z) =

Polygon triangulation

In this problem, we are interested in the number of triangulations of an n-
sided polygon. Figure 6.4 shows all possible triangulations for n = 3,4, 5.
Let

a, = number of triangulations of an n + 1-sided polygon,

where n > 2. Our goal is to derive a clean expression for a,,. We will use
z-transforms, where

A(z) = i anz".
n=0

Follow these steps:
(a) Argue that (6.12) holds for n > 2:

n
a, = Zakan_k, n>2, (6.12)
k=0

where we will set ag = 0, a; = 1, and ap, = 1. This is a counting
argument. Looking at Figure 6.5, first start by assuming that the pink
triangle (1,k + 1,n + 1) is included in your triangulation. Count the
number of ways to triangulate, given that constraint. Now consider all
possibilities for the k£ + 1 endpoint of the included pink triangle.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

132 6 z-Transforms

4

3
3 1 2 e o1

. 4 4

3 3

By v TG
L L

Figure 6.4 Figure for Exercise 6.16, showing all possible triangulations of n-sided
polygons.

k+1
3 k+2
k+3
2
k+4
1 n+1

Figure 6.5 For Exercise 6.16: counting triangulations in an n + 1-sided polygon.

(b) Using (6.12), argue that
A(z) = 2+ (A(2))*. (6.13)

The first few steps of the derivation are given below:

Explain why each of the above steps is true and then finish the derivation
to get (6.13).

(c) Solve (6.13) to get A(z). You will need to use A(0) =0

(d) All that remains is to express A(z) as a power series of z. To do this,
we are providing you with the Taylor series expansion of V1 —4z in
(6.14):

1 (2n -
1— z—1—2§: ()" (6.14)
- n\n-1

(e) Obtain a,,.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Part |l

Continuous Random
Variables

In this part of the book, we repeat the material in Part II, but this time we focus
on continuous random variables, which can take on an uncountable number of
values. Continuous random variables are very relevant to computer systems —
how else can we model response time, for example? Working in continuous time
also allows us to leverage everything we know about calculus.

Because continuous-time analysis is often harder for students (no one seems to
remember how to integrate!), we split up our discussion of continuous random
variables into two parts. In Chapter 7, we consider the case of random variables
drawn from a single distribution. Here we introduce the two most common
continuous distributions: the Uniform and the Exponential. In Chapter 8, we move
on to multiple distributions and introduce jointly distributed continuous random
variables. All the topics, such as conditioning, Bayes’ Law, independence, that
were covered in Part I are reintroduced in these two chapters, from the continuous
perspective.

Chapter 9 is devoted to one very important continuous distribution, the Normal,
a.k.a., Gaussian distribution, which occurs throughout nature. We also introduce
the Central Limit Theorem, which we will use multiple times in the book as a
tail approximation.

In Chapter 10 we discuss another very important continuous distribution, the
Pareto distribution. This distribution also occurs throughout nature and is par-
ticularly relevant to computer science. We discuss properties of the Pareto dis-
tribution, in particular the heavy-tailed property and decreasing failure rate, and
their implications for the design of computer systems.

Finally, Chapter 11 is the counterpart to Chapter 6. While z-transforms are the
moment-generating function of choice for discrete random variables, the Laplace
transform is the moment-generating function of choice for continuous random
variables. We illustrate how the Laplace transform can be used to generate
all moments of continuous random variables, and we also show how one can
combine Laplace transforms and z-transforms.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

7 Continuous Random
Variables: Single
Distribution

Until now we have only studied discrete random variables. These are defined by
a probability mass function (p.m.f.). This chapter introduces continuous random
variables, which are defined by a probability density function.

7.1 Probability Density Functions

Definition 7.1 A continuous random variable (r.v.) has a continuous range
of values that it can take on. This might be an interval or a set of intervals.
Thus a continuous r.v. can take on an uncountable set of possible values.

Continuous random variables are extremely common. They might be used to
represent the time of an event, the speed of a device, the location of a satellite, or
the distance between people’s eyeballs. All these quantities can be discretized, of
course, but it’s more accurate to think of them as continuous random variables,
and the math also gets much easier as well, since one can invoke calculus.

The probability that a continuous r.v., X, is equal to any particular value is
defined to be zero. We define probability for a continuous r.v. in terms of a
density function.

Definition 7.2 The probability density function (p.d.f.) of a continuous r.v.
X is a non-negative function fx(-), where

b)
P{a < X < b} =/ fx(x)dx and where / fx(x)dx = 1.

Definition 7.2 is illustrated in Figure 7.1. To interpret the p.d.f., fx(x), think
about a very skinny rectangle of height fx(x) and width dx with area fx(x)dx.
This area represents a tiny probability:

fx(x)dx ~P{x < X < x+dx}.

Now the integral from a to b of fx(x)dx is the sum of all these tiny probabilities.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

7.1 Probability Density Functions 135

Blue region
represents fy (x)dx

which is approximately _ Pink area
P{x<X<ux+dx} § represents

é P{5<X<6)}

5 x x+dx 6
Figure 7.1 The area under the curve represents the probability that X is between 5 and
6, namely f56 Sfx(x)dx.
Question: How does P {a < X < b} compare with P{a < X < b}?

Answer: These are the same. For continuous distributions we don’t have to be
careful about differentiating between < and <, because there is no mass at any
particular value.

Question: Does fx(x) have to be below 1 for all x?
Answer: No, fx(x) is not a probability.

Density functions are used everywhere, and are not necessarily related to prob-
ability. We start with a typical example from a calculus class.

Example 7.3 (Density as a rate)

Imagine that we’re filling a bathtub, as in Figure 7.2, where the rate of water out
of the faucet starts out slow but increases over time. Specifically, let

f(t) =1 t>0

denote the rate (in gallons/s) at which water comes out of the faucet.

Question: If we start filling at time 0, what is the total amount of water in the
bathtub by time 4 seconds?

Answer: In this example, f(¢) = ¢> is a density function, where f(¢) is the
instantaneous rate at time ¢. If we want to talk about a fotal amount of water, we
need to integrate the rate (density) over some period of time:

4
64 1
/0 2dt = 3= 21§ gallons.

Question: Is f(¢) = t?, where t > 0, a p.d.f.?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

136 7 Continuous Random Variables: Single Distribution

Rate f(1)
gallons/s

4
f(t)dt = total water
after 4 seconds

Figure 7.2 Here, (1) = 2 represents the gallons/s coming out at time t.
Answer: No. For f(¢) to be a p.d.f., it must be the case that /_0; f(®dt =1,
which is not true. Also, in our example f(z) has no relation to probability.

Now for an example involving a p.d.f.
Example 7.4 (Weight of two-year-olds)

Let’s say that the weight of two-year-olds can range anywhere from 15 pounds
to 35 pounds. Let fy (x) denote the p.d.f. of weight for two-year-olds, where

3 3 2
[A —-29? if15<x<35
fw(x) { 0 otherwise

Question: What is the fraction of two-year-olds who weigh > 30 pounds?

Answer: As illustrated in Figure 7.3,

0o 35
P {Two-year-old weighs > 30 pounds} = / Jwx)dx = Jw(x)dx =~ 16%.
30 30

Definition 7.5 The camulative distribution function (c.d.f.) F(-) of a contin-
uous r.v. X is defined by

a
Fx(a)=P{-c0 <X <a}= / Sfx(x)dx.
We can express the tail of X by
Fx(a)=1-Fx(a) =P{X > a}.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

7.2 Common Continuous Distributions 137

Jwx)

A . .
Yol

Shaded area
represents 16%

»

15 253035

Figure 7.3 Probability density function for the weight of two-year-olds.

Question: We know how to get Fx(x) from fx(x). How do we get fx(x) from
FX ()C)?

Answer: By the Fundamental Theorem of Calculus (explained in Section 1.3),

f = / f0di = 4 Fx(x)

7.2 Common Continuous Distributions

There are many common continuous distributions. Below we briefly define just
a couple: the Uniform and Exponential distributions.

Uniform(a, b), often written U(a, b), models the fact that any interval of length
6 between a and b is equally likely. Specifically, if X ~ U(a, b), then
1

P ifa<x<b

fx(x) =

0 otherwise

Question: For X ~ U(a, b), what is Fx(x)?

Answer:

X
1 —
FX(X)=/ mdt=z_;l, a<x<b.

Figure 7.4 depicts fx(x) and Fx(x) graphically.

Exp(1) denotes the Exponential distribution, whose p.d.f. drops off exponen-

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

138 7 Continuous Random Variables: Single Distribution

A A
1
Fx(x)
1 Jx(x)
.......... _—
b-a | é !
a X b " 0 a x b

Figure 7.4 The p.d.f., fx(x), and c.d.f., Fx(x), functions for X ~ Uniform(a,b). The
shaded (pink) region under the p.d.f. has an area equal to the height of the blue segment
in the c.d.f.

tially. We say that a r.v. X is distributed Exponentially with rate A > 0, written
X ~ Exp(Q), if

de ™ ifx >0
fX(x)‘{o ifx <0

The graph of the p.d.f. is shown in Figure 7.5.

Figure 7.5 Exponential probability density function, where A = 0.5.
The c.d.f., Fx(x) = P{X < x}, is given by

X l—e ™ ifx>0
Fx(x) = / Fe(r)di = { : ISP

Fx(x)=1-Fx(x)=e, ifx>0.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

7.2 Common Continuous Distributions 139

Both fx(x) and Fx(x) drop off by a constant factor, e =, with each unit increase
of x.

The Exponential distribution has a property called memorylessness.

Definition 7.6 We say that r.v. X has the memoryless property if
P{X>t+s | X>s} =P{X >t} Vs, t > 0.

To understand memorylessness, think of X as representing the time until I win
the lottery. Suppose we know that I haven’t yet won the lottery by time s. Then
the probability that I will need > ¢ more time to win the lottery is independent
of s (that is, it’s independent of how long I’ve been trying so far).

Equivalently, we say X is memoryless if

X[X>s]2s+X, Vs>0.
That is, the r.v. [X | X > s] and the r.v. s + X have the same distribution.
Question: Prove that if X ~ Exp(4), then X has the memoryless property.

Answer:

P{X>r+ —Alt+s)
P{X>t+s | X>s}= li{X>s}s}:ee—/ls e M =P{X >1}.

Question: What other distribution has the memoryless property?
Answer: The Geometric distribution.
Question: Does the Uniform distribution also have the memoryless property?

Answer: No. If X ~ Uniform(a, b) and we are given that X > b — ¢, then we
know that X will end very soon.

The memoryless property is a little counter-intuitive, because it says that history
doesn’t affect the future.

Example 7.7 (The naked mole-rat)

Most living beings have the property that their mortality rate increases as they age.
The naked mole-rat is an exception in that its remaining lifetime is independent
of its age [65].

Question: Let X denote the lifetime of the naked mole-rat in years, where

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

140 7 Continuous Random Variables: Single Distribution

Figure 7.6 The naked mole-rat’s mortality rate does not increase with age.

X ~ Exp(1). If a naked mole-rat is four years old, what is its probability of
surviving at least one more year?

Answer:
P{X>5} e

P{X>4+1|X>4})=—"— - =—=
{ | } P{X>4} e

Question: If a naked mole-rat is 24 years old, what is its probability of surviving
at least one more year?

Answer: Same thing! P{X > 24+ 1| X > 24} = ¢!,
Example 7.8 (Post office)

Suppose that a post office has two clerks. When customer A walks in, customer
B is being served by one clerk, and customer C is being served by the other clerk.
All service times are Exponentially distributed with rate A.

Question: What is P {A is the last to leave}?

Answer: % Note that one of B or C will leave first. Without loss of generality,
let us say B leaves first. Then C and A will have the same distribution on their
remaining service time. It does not matter that C has been served for a while.

We will return to the memoryless property of the Exponential distribution in
Chapter 12. There are additional important continuous distributions, including
the Normal and Pareto distributions, which we defer to Chapters 9 and 10,
respectively.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

7.3 Expectation, Variance, and Higher Moments 141

7.3 Expectation, Variance, and Higher Moments

The moments of a continuous distribution are derived from its p.d.f., just as we
used the p.m.f. in the case of discrete distributions. Likewise, we can also define
arbitrary functions of a continuous random variable.

Definition 7.9 For a continuous r.v. X, with p.d.f. fx(-), we have:
E [X] =/ x - fx(x)dx
E [Xi] =/ x' - fx(x)dx.

o

For any function g(-), we have:

E [¢(X)] = / " o) - fx(x)dr.

In particular,

Var(X) =E [(X -E[X])*] = / : (x —=E[X])?- fx(x)dx

Example 7.10 (The Uniform distribution)

Question: Derive the mean and variance of X ~ Uniform(a, b).

Answer: Recall that
1

ifa<x<b
P ifa<ux

fx(x) =

0 otherwise
Thus,

b2 —a*> a+b

00 b
1 1
] ,/_oofX(t)tt ,/a b—at[b-a 2 2

This answer should make sense! Likewise,

0 b 3 3 2 2

1 1 b’ —a b+ab+a

E [Xz] :/ fX(f)tzd[:/ mtzdt = h—a . 3 = 3
—oo a

After some algebra, this yields:

Var(X) =E [X?] -E[X]’ = %.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

142 7 Continuous Random Variables: Single Distribution

Example 7.11 (The Exponential distribution)

Question: Derive the mean and variance of X ~ Exp(1).

Answer: Recall that

Ae™™ ifx >0
fX(x)‘{o ifx <0

Thus,

(o) [e's) 1
E[X] = / fx(t)rdt = / AeMidt = 7 (integration by parts).
—o0 0

Likewise,

[ee] [ee) 2
E [Xz] = /_ fx(t)tzdt = /0 Ae Mi2dr = = (double integration by parts).

Thus,
1
Var(X) =E [X*]| -E[X]* = =

Observe that whereas the A parameter for the Poisson distribution is also its
mean, for the Exponential distribution, the A parameter is the reciprocal of the
mean. We thus refer to A as the rate of the Exponential. For example, if the
time until the next arrival is Exponentially distributed with rate three arrivals per
second, then the expected time until the next arrival is % seconds.

Example 7.12 (Time to get from NYC to Boston)

I
New York City 180 miles Boston

Figure 7.7 What is the expected time to get from NYC to Boston?

Suppose that the distance from NYC to Boston is 180 miles. You decide to buy
a motorized bicycle for the trip. Suppose that motorized bikes have speeds that
are Uniformly distributed between 30 and 60 m.p.h., and you buy a random
motorized bike. Let T be the time to get from NYC to Boston. What is E [T']?

Consider two ideas for figuring this out:

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

7.4 Computing Probabilities by Conditioning on a R.V. 143

Idea I: Average speed is 45 m.p.h. Thus, E [T] = % = 4 hours.

Idea 2: E [T] is the average of % and %. Thus E [T] is the average of 6 and 3,
which is 4.5 hours.

Question: Which of ideas 1 and 2 is correct?

Answer: Neither is correct! We are interested in

180
T=—,
S

where S ~ Uniform(30, 60) represents the speed of the bike. Then,
180 % 180
E[T] :E[—] =/ — - fs(s)ds
S 30 N

/60 180 1
= — ——ds
30 N 60 — 30

60 1
= 6/ —ds
30 §
=6 - (In(60) — In(30))
~ 4.15 hours.

7.4 Computing Probabilities by Conditioning on a R.V.

Recall the Law of Total Probability for discrete random variables (Theorem 3.7)
which said the following: For any event A and any discrete r.v. X,

P{A}=) P(AN(X=0)}=) P(A|X=x} px(x) (1D

The same result holds when conditioning on a continuous r.v., expect that: (1)
We are working with densities, rather than probabilities, (2) we need to integrate
the densities, rather than summing probabilities, and (3) when we condition on
a continuous r.v., we’re conditioning on a zero-probability event, which can feel
a little odd but is still well defined.

Theorem 7.13 (Law of Total Probability: Continuous) Given any event A
and continuous r.v. X, we can compute P {A} by conditioning on the value of
X, as follows:

P{A}:/_wfx(xﬂA)dxz‘/_mP{A|X=x}fx(x)dx.

Here, fx(x N A) is notation that we're adopting to denote the density of the
intersection of the event A with X = x.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

144 7 Continuous Random Variables: Single Distribution

Theorem 7.13 is analogous to (7.1), except that now the state space that we’re
conditioning on has been partitioned into an uncountable number of events of
Zero mass.

As an example, suppose A is the event X > 50. Then,

fx(x) ifx>50
0

fX(xmA):{ ifx <50

That is, Vx < 50, the quantity fx(x N A) is simply 0, because the intersection
of X = x and X > 50 is zero. Similarly, Vx > 50, the quantity fx(x N A) is just
Jfx(x) because the event X > 50 doesn’t add any new information.

Using Theorem 7.13,

P{X >50}=P{A} = ‘/00 fx(xNA)dx = ‘/5000 Sx (x)dx.

Likewise, we get this same answer by writing:

P{X>50}:/00P{X>50|X=x}-fx(x)dx=/m1-fX(x)dx.
o 50

Question: It may seem confusing to think about P {A | X = x}. How can this
possibly be well defined? If we write:
P{ANX=x}
P{A|X=x}=————,
{AlX=x}=— X =]
don’t we have zero in the denominator?

Answer: Yes, we do have zero in the denominator, but we also have zero in
the numerator, so this is not necessarily a problem. Both the numerator and
denominator are actually densities. The correct notation is:

fx(xnA)

P{A|X=X}:W

Conditioning on a zero-probability event is best explained via an example.
Example 7.14 (Coin whose probability of heads is a r.v.)

Suppose we have a coin with probability P of heads, where P is drawn from a
Uniform(0, 1) distribution.

Question: What is the probability that the next 10 flips are all heads?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

7.4 Computing Probabilities by Conditioning on a R.V. 145

Answer:

1
P {10 Heads} :/ P{10Heads | P = p} - fp(p)dp
0

1
:/ P{10Heads | P = p} - 1dp
0

1
:,/ p'dp
0

1

11

As we saw above, conditioning on a zero-probability event, as in
P {10 Heads | P = p}, makes perfect sense.

Definition 7.15 defines the conditional p.d.f., fx a(x).

Definition 7.15 (Conditional p.d.f. and Bayes’ Law) For a continuous r.v. X
and an event A, we define the conditional p.d.f. of r.v. X given event A as:

fx(xnA) P{A|X=x} fx(x)
P{A} P{A)}

Once again, fx(x N A) denotes the density of the intersection of the event A
with X = x.

fxja(x) =

Observe that fx|4(x) has a value of O when x is outside of A. The conditional
p.d.f. is still a proper p.d.f. in the sense that:

[foatoac=1
X
Example 7.16 (Pictorial view of conditional density)

A conditional density function can be viewed as a density function whose domain
has been restricted in some way, and then scaled up to compensate. To see this,
imagine we have a density function fx(x), where

fx(x) >0 for 0<x<100.

Now let A be the event that X > 50. Figure 7.8 shows fx(x) in blue/dashed
and fx|a(x) in red/solid. The fx(x) curve is positive over the interval [0, 100].
The fx|a(x) curve is positive over the interval [50, 100]. The fx|4(x) curveis a
scaled-up version of fx(x), where the scaling factor is m. This allows the

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

146 7 Continuous Random Variables: Single Distribution

Jx1a(x)
y
A
Sx(x)
VARRY
; \
1 1 /
I 1y
L
L]
L
» X
0 50 100

Figure 7.8 In blue/dashed we see the p.d.f. fx(x). In red/solid we see the conditional
p-df. fx)x>50(%).

area under each curve to be 1, so both are proper probability density functions.
Specifically,

fx1a(x) = fxix>s0(x) =

fx(xnX>50) | xS ifx s 50
1o ifx <50 °

P{X>50}
P{X > 50}

Here we’ve used the fact that

fx(x) ifx>50
0

fx(me>50):{ 1220

We furthermore see that the conditional p.d.f. integrates to 1:

100 ~ 100 fX(x) B P{X > 50} B
/xzo Fxia(x)dx = /xzso PIX>s01 Y T Pxss0r

7.5 Conditional Expectation and the Conditional Density

One is often interested in the expected value of a random variable, conditioned on
some event, A. In the continuous world this could, for example, be the expected
height of people if we’re restricted to people of height greater than 6 feet.

It is useful to start by recalling the definition of conditional expectation for the
discrete space, given in Definitions 4.18 and 4.14: For a discrete r.v. X, and an
event A, where P {A} > 0, the conditional expectation of X given event A is:

E[X|A] =) x pxjal), (7.2)

X

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

7.5 Conditional Expectation and the Conditional Density 147

where
_ P{(X=x)NnA}

pxja(x) =P{X =x| A} PA)

(7.3)

Definition 7.17 provides the corresponding definitions for a continuous r.v. X
and an event A. Note the use of a conditional p.d.f. for the continuous case,
where we used a conditional p.m.f. for the discrete case.

Definition 7.17 For the case of a continuous r.v. X, corresponding to (7.2),
we similarly define the conditional expectation of .v. X given event A, where
P{A} >0, as:

E[X | A] = / o el

where fx|a(x) is the conditional p.d.f. defined in Definition 7.15.

Example 7.18 (Pittsburgh Supercomputing Center)

The Pittsburgh Supercomputing Center (PSC) runs large parallel jobs for scien-
tists from all over the country. Jobs are grouped into different bins based on their
size, where “‘size” denotes the required number of CPU-hours. Suppose that job
sizes are Exponentially distributed with mean 1000 CPU-hours. Further suppose
that all jobs of size less than 500 CPU-hours are sent to bin 1, and all remaining
jobs are sent to bin 2.

Question: Consider the following questions:

(a) What is P {Job is sent to bin 1}?

(b) What is P {Job size < 200 | job is sent to bin 1}?

(c) What is fx|a(x), where X is the job size and A is the event that the job is
sent to bin 1?

(d) What is E [Job size | job is in bin 1]?

Answer: Start by recalling that for X ~ Exp (ﬁ) we have

1 —x .
——e 1000 ifx >0
— | 1000
Xx) = .
fx(x) { 0 otherwise

Fx(x) =P{X <x} =1 — ¢"T®~,

(a)
P {Job is sent to bin 1} = Fx(500) = 1 — e~ 100 = | — ™2 ~ 0.39.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

148 7 Continuous Random Variables: Single Distribution

(b)

P{X <200 N bin 1
P {Job size < 200 | job is sent to bin 1} = { <P{bin 5 in 1}

Fx(2
Fx(500)

()

1 X _
fxja(x) = fx(xndA) _ fx(xnA) FQX((;(‘)())) - 10(1)(166*1;00 ifx < 500
Pial Fx(500) 0 otherwise

We have used the fact that fx(x N A) = fx(x) if and only if x < 500.

(d)
oo 500 ﬁe‘ﬁw
E [Job size | jobin bin 1] = / X fxja(x)dx = / X—————dx ~ 229.
—0o0 0 1—-e"2

Question: Why is the expected size of jobs in bin 1 less than 2507

Answer: Consider the shape of the Exponential p.d.f. Now truncate it at 500,
and scale everything by a constant needed to make it integrate to 1. There is
still more weight on the smaller values, so the expected value is less than the
midpoint.

Question: How would the answer to question (d) change if the job sizes were
distributed Uniform(0, 2000), still with mean 1000?

Answer: Logically, given that the job is in bin 1 and the distribution is Uniform,
we should find that the expected job size is 250 CPU-hours. Here is an algebraic
argument:

fxja(x) =

1
fxanA) _ fxrnd) | Al =28 = L ifx <500
P{A} Fx(500))

0 otherwise

o0 500
1
E [Job size | job in bin 1] = / xfxja(x)dx = / x%dx = 250.
—00 0

This next example talks about a coin. However, it represents the type of math
used all the time when learning the bias of humans, such as a human’s likelihood
for clicking on a particular type of ad, or their likelihood for buying a particular
brand of shoes, etc.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

7.5 Conditional Expectation and the Conditional Density 149

Example 7.19 (Learning the bias of a coin, or a human)

Suppose that we have a biased coin, with probability P of heads. P is a r.v. in
that we don’t know what it is. Since we know nothing, our initial assumption is
that P ~ Uniform(0, 1). We are interested in the expected value of P, given that
the coin has resulted in 10 heads out of the first 10 flips.

At first, one might think that the best estimator of P is the fraction of heads
obtained. For example, if the coin has resulted in 7 heads and 3 tails out of 10
flips, then one might be tempted to say that E [P] = 0.7. Likewise, if the coin has
resulted in 10 heads out of 10 flips, one might be tempted to say that E [P] = 1.
However, this reasoning seems shakier if you’ve only seen 1 flip so far, and in
fact the reasoning is incorrect.

We define A as the event that 10 heads have occurred in 10 flips. By Defini-
tion 7.17,

1
E[P|A] = /0 fo1a(p) - pdp,

where, by Definition 7.15,

P{A|P=p} - fp(p) p'°-1

fria(p) = P A} =P

and where

1 1 1
P{A}=/0 P{A|P=1D]“fp(p)d1v=/O plo-ldpzﬁ,

Putting these together, we have:

1
E[P|A] = /O Fora(p) - pdp
~ lp10.1
_/0 play P

1
=/ 11p' - pdp
0

11
12

Thus, the expected bias of the coin is not 1 but is close to 1, as one would
intuit. Observe that the answer depends on our initial assumption that P ~
Uniform(0, 1). That initial assumption is referred to as “the prior” and will be
the focus of Chapter 17.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

150 7 Continuous Random Variables: Single Distribution

7.6 Exercises

7.1 Valid p.d.f.s
Which of the following are plausible probability density functions?

05x7° if0<x<l1
fx(x) _{ 0 otherwise

2x72 if0<x<1
fx(x) _{ 0 otherwise

x?2 ifl<x<oo
fx(x) _{ 0 otherwise

7.2 Translation
Let X ~ Exp(u). Let Y =3X. Whatis fy()?

7.3 Weight of two-year-olds
For Example 7.4, where W denotes the weight of two-year-olds:
(a) Derive E [W].
(b) Derive Var(W).

7.4 Exponential distribution warm-up
Suppose that the time a customer spends in a bank is Exponentially dis-
tributed with mean 10 minutes.
(a) What is P {Customer spends > 5 min in bank}?
(b) Whatis P {Customer spends > 15 min total | he is there after 10 min}?

7.5 Memorylessness
Let X ~ Exp(1). Whatis E [X | X > 10]? Solve this in two ways:
(a) By integrating the conditional p.d.f.
(b) By a two-line argument via the memoryless property of Exponential
distribution.

7.6 Memorylessness continued
Given X ~ Exp(1), whatis E [X? | X > 10]?

7.7 Practice with conditional expectations
Let X be a continuous r.v. with the following p.d.f.:

3

= ifl<t<3
—) 272 1
fx(1) { 0 otherwise

Derive E[X |1 < X < 2].

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

7.6 Exercises 151

7.8

7.9

7.10

7.11

7.12

When will I hear back?

More than 20 days ago, I interviewed at U-co for a software engineer

position, but I still haven’t heard back. Turns out that this is a common

phenomenon. There are two types of recruiters at U-co:

e Type A: Get back to you in time Exponentially distributed with mean 20
days.

e Type B: Never get back to you.

There are an equal number of Type A and Type B recruiters at U-co. What

is P {My recruiter is type B | I've been waiting more than 20 days}?

Alternative definition of expectation: summing the tail
Let X be a non-negative, continuous r.v.
(a) Prove

E [X] =/:P{X>x}dx.

(b) What is a nicer name for this quantity?

/ xP{X > x}dx.

=0

Transformations

Transforming probability density functions must be handled carefully,

through the cumulative distribution functions.

(a) Let fx(-) denote the p.d.f. of r.v. X and fy(-) denote the p.d.f. of r.v.
Y. Suppose that

Y=aX+b,

where a > 0 and b > 0 are constants. Express fy () in terms of fx(-).
You will need to work with Fy(y), the c.d.f. of Y, or you will get the
wrong answer.

(b) Let X ~ Uniform(—1,1). Let Y = ¢X. Derive the p.d.f. of Y from that
of X.

When the first alarm goes off

Before I go to bed, I set three alarms.

e Alarm A goes off after X4 time, where X4 ~ Exp(14).

e Alarm B goes off after X time, where Xp ~ Exp(4p).

e Alarm C goes off after X time, where X¢ ~ Exp(A¢).

Assumethat X4 L Xp L Xc.LetT denote the time until the first alarm goes
off. What is E [T']? What is Var(T)? [Hint: It helps to start by analyzing
the tail distribution of 7'.]

Reliability: when the last server dies
Nivedita has bought two very old servers to host her new online game. At

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

152 7 Continuous Random Variables: Single Distribution

the time of purchase, she was told that each of the servers will fail at some

Uniformly distributed random time during the next year, where the servers

fail independently of each other. Half a year later, her game is still up,

which means that at least one server did not yet fail. What is the expected

time until the last server fails?

(a) Start by solving the following easier problem: Let X; ~ Uniform(0, 1)
and X, ~ Uniform(0, 1), where X; L X,.Let X = max(Xj, X,). Derive
E [X].

(b) The original problem is asking, what is: E [X | X > %] Derive this
quantity.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

8 Continuous Random
Variables: Joint
Distributions

In the previous chapter, we studied individual continuous random variables. We
now move on to discussing multiple random variables, which may or may not
be independent of each other. Just as in Chapter 3 we used a joint probabil-
ity mass function (p.m.f.), we now introduce the continuous counterpart, the
joint probability density function (joint p.d.f.). We will use the joint p.d.f. to
answer questions about the expected value of one random variable, given some
information about the other random variable.

8.1 Joint Densities

When dealing with multiple continuous random variables, we can define a joint
p.d.f. which is similar to the joint p.m.f. in Definition 3.4.

Definition 8.1 The joint probability density function berween continuous
random variables X and Y is a non-negative function fxy(x,y), where

d b
/ / fxy(x,v)dxdy=P{a <X <b & c<Y <d}
C a

/ / fxy(x,y)dxdy = 1.

Definition 8.1 is illustrated in Figure 8.1.

and where

Example 8.2 (Height and weight of two-year-olds)

Let’s say that two-year-olds range in weight from 15 pounds to 35 pounds and
range in height from 25 inches to 40 inches. Let W be a r.v. denoting the weight
of a two-year-old, and H be a r.v. denoting the height. Let fw g (w, h) denote the
joint density function of weight and height.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

154 8 Continuous Random Variables: Joint Distributions

»
»

z=fx,y (x.,y)

Figure 8.1 Volume under the curve showsP{a < X <b & c <Y < d}.

Question: What is the fraction of two-year-olds whose weight exceeds 30 pounds,
but whose height is less than 30 inches?

Answer:

h=30 pw=co h=30 pw=35
/ / fW,H(W,h)deh=/ / fw.a(w, h)dwdh.

=—o0 =30 h=25 =30
These are equivalent because the joint density function is only non-zero in the
range where 15 < w < 35and 25 < h < 40.

We can also integrate the joint p.d.f. over just one variable to get a marginal p.d.f.

Definition 8.3 The marginal densities, fx(x) and fy(y), are defined as:
fx(x) = / fx,y(x,y)dy
fr(y) = / Sxy (x,y)dx.

Note that fx(x) and fy (y) are densities and not probabilities.

Question: If fy g7 (w, h) is the joint p.d.f of weight and height in two-year-olds,
what is the fraction of two-year-olds whose height is exactly 30 inches?

Answer: The event of having height exactly 30 inches is a zero-probability event,
so the answer is zero. We could write

Ww=00
/ Sw.a(w,30)dw = fi(30), by Definition 8.3,
w

=—00

but, again, this is a density and hence has zero probability.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

8.1 Joint Densities 155

Finally, as in Definition 3.5, we can define independence for continuous random
variables.

Definition 8.4 We say that continuous random variables X and Y are inde-
pendent, written X 1Y, if

fxy(x,y) = fx(x) - fir(y) Vx,y.
Example 8.5 (Joint p.d.f.)

Let

[x+y if0<xy<1
fxy(x,y) = { 0 otherwise

Note that fx y(x,y) is a proper density in that fol /01 fxy(x,y)dxdy = 1.
Question: (a) Whatis E [X]? (b)Is X L Y?

Answer:
(a) To derive E [X], we first derive fx(x). We do this using Definition 8.3.

y=0 y=1 1
fx(x) = / fxy (x,y)dy = / (x+y)dy=x+ 5
y

=—00 y:()

X=00 1
E[X]=/ fx(x)-xdx=/ (x+l)'xdx=l.

=—00 x=0
(b) We will show that X and Y are not independent, using Definition 8.4:
y=00 1
fx(x) =/ fxy(x,y)dy =x+§ for0<x <1
y

=—00

X=00 1
fr(y) =/ Sxy(x,y)dx =y + 3 forO0<y<1.

==

Hence, clearly,

fxy(x,y) # fx(x) - fr(y).

Example 8.6 (Joint p.d.f. for independent random variables)

Question: What is an example of a joint p.d.f. where X and Y are independent?

Answer: Let

[4xy ifO<xy<l
fxy(x,y) = { 0 otherwise

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

156 8 Continuous Random Variables: Joint Distributions

Again, this is a proper p.d.f., since it integrates to 1. Furthermore:

1
fX(x)=/ dxydy = 2x for0<x<1
y=0

1

fY(y):/ 4xydx =2y for0<y<1.
x=0

Hence,

fxy(x,y) = fx(x) - fr(y)

as desired.
Example 8.7 (Which Exponential happens first?)

Suppose that the time until server 1 crashes is denoted by X ~ Exp(2) and the
time until server 2 crashes is denoted by ¥ ~ Exp(u). We want to know the
probability that server 1 crashes before server 2 crashes. Assume that X L Y.

The goal is thus P {X < Y}. We will show how to do this by integrating the joint
density function between X and Y:

P(X<Y)= / For (6, y)dyds
x=0 Jy=x

- [e s

:/ /le_’lx-/ ue *Ydydx
x= y=x

Ae ¥ . eTHX gy

=1 e~ (X gy

Question: Where did we use the fact that X 1 Y?

Answer: We used independence in splitting the joint p.d.f. in the second line.

8.2 Probability Involving Multiple Random Variables

We can use the joint p.d.f. to derive expectations involving multiple random
variables, via Definition 8.8.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

8.2 Probability Involving Multiple Random Variables 157

Definition 8.8 Let X and Y be continuous random variables with joint p.d.f.
fxy (x,y). Then, for any function g(X,Y), we have

E[g(X.Y)] = / /)~ fa

We can also use the joint p.d.f. to define the conditional p.d.f. involving two
continuous random variables, thus extending Definition 7.15.

Definition 8.9 (Conditional p.d.f. and Bayes’ Law: two random variables)
Given two continuous random variables, X and Y, we define the conditional
p.d.f. of r.v. X given eventY =y as:
Fer@y) frixex®) - fx®) frixee) - fx®)

fr(y) fr(y) fxfx,y(x,y)dx '

fX|Y=y (x) =

The first equality in Definition 8.9 is just the definition of a conditional p.d.f.,
where now we’re conditioning on a zero-probability event, Y = y. The second
equality is a reapplication of the first equality, but this time with X and Y
interchanged. The result is a Bayes” Law, akin to that in Definition 7.15.

Observe that the conditional p.d.f. is still a proper p.d.f. in the sense that:

/leY:y(x)dx =L

Recall the Law of Total Probability for continuous random variables from The-
orem 7.13, which we have repeated below in Theorem 8.10 for easy reference.

Theorem 8.10 (Law of Total Probability: Continuous) Given any event A
and any continuous r.v., Y, we can compute P {A} by conditioning on the value
of Y as follows:

[ee)

P{A}:[fy(yﬂA)dy=/ P{A|Y =y} fy(5)dy.

—00

Here, fy(y N A) denotes the density of the intersection of the event A with
Y =y.

Analogously to Theorem 8.10, we can express a density of one r.v. by conditioning
on another r.v., as shown in Theorem 8.11.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

158 8 Continuous Random Variables: Joint Distributions

Theorem 8.11 (Law of Total Probability: Multiple Random Variables)
Let X and Y be continuous random variables. Then:

frx) = / el ey = / Fiv=y (@) fr () dy.
y y

As a starting example, let’s revisit Example 8.7 and show how it can be solved
more simply by conditioning.

Example 8.12 (Which Exponential happens first — revisited)

Suppose that the time until server 1 crashes is denoted by X ~ Exp(A1) and the
time until server 2 crashes is denoted by ¥ ~ Exp(u). We want to know the
probability that server 1 crashes before server 2 crashes. Assume that X L Y.

The goal is thus P{X < Y}. This time, we derive the quantity by conditioning
on the value of X, as follows:

P{X<Y}=/wP{X<Y | X =x}- fx(x)dx
0

=/ P{Y>x|X=x} de ¥dx
0

:/ P{Y > x} - le Ydx
0

o0
:/ e M e Y dx
0

:/l‘/ooé’_(’““)xdx: A)
0 A+p

Question: Where did we use the fact that X 1 Y?

Answer: We used independence to claim that P{Y > x | X =x} = P{Y > x};
here we assumed that the fact that X = x has no effect on the value of Y.

Now let’s consider a more involved example.
Example 8.13 (Relationship between hand-in time and grade)

[Parts of this problem are borrowed from [51]] As a professor, I’'m curious about
whether there’s a relationship between the time when a student turns in their
homework and the grade that the student receives on the homework.Let T denote
the amount of time prior to the deadline that the homework is submitted. I have
noticed that no one ever submits the homework earlier than two days before the

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

8.2 Probability Involving Multiple Random Variables 159

homework is due, so 0 < T < 2. Let G denote the grade that the homework
receives, viewed as a percentage, meaning 0 < G < 1. Both G and T are
continuous random variables. Suppose their joint p.d.f. is given by

9 1
for(g. 1) = 1—0th 5 where 0 < g < land0 <t <2.

Question:

(a) What is the probability that a randomly selected student gets a grade above
50% on the homework?

(b) What is the probability that a student gets a grade above 50%, given that the
student submitted less than a day before the deadline?

Answer: It’s easiest to start this problem by determining the marginal density
function f;(g). We will determine f7(¢) as well, for future use:
=2

=2
fe(g) = fG,T(gat)dt:/O (

=0 t=

9 , 1 9
= “Ndar=2.
10tg+5)t5g+

Wl N
—
&
—
~

g=1 =1 , 1 3 1
Fr(t) = / for(g.0)dg = / (—zg +—)dg=—-r+§. (82)
g=0 g=0

To understand the probability that a randomly selected student gets a grade above
50% on the homework, we want P {G > %} We can directly use f;(g) to get
this as follows:

1 8=l g=l (9 2 29
P{(G>-}= dg = 2.9+ 2)dg == =0.725.
{ >2} - fe(g)dg /g:% (5 8 +5) 8= 10

To understand the probability that a student gets a grade above 50%, given that the
student submitted less than a day before the deadline, we want P {G > % | T < 1} :

P{G>05&T <1}
P{T <1}

=1 pt=1
/;igs =0 fer(g,t)dtdg
- =1
,/tt:() fT(t)dl‘
g=l rt=l{9 o |
_ /g:O.S =0 (ml‘g +§) dtdg
- t=1 3 1
fz:o (m't"'g)dt
_ 023125
~ 035

P{G>%'T<1}:

= (0.66.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

160 8 Continuous Random Variables: Joint Distributions

8.3 Pop Quiz

Density functions can be tricky. Below we quickly summarize what we’ve learned
in the form of a pop quiz. Throughout, assume that X and Y are continuous
random variables with joint density function

Txy(x,y), where — oo < x,y < o0,
Question: What are the marginal densities fx(x) and fy(y)?

Answer:

y:oo X=00
fx(x) 2/ fxy(x,y)dy fr(y) Z/ fxy(x,y)dx.
y p's

=—00 =—00

Question: What is the conditional density fx|y-y(x)? How about fy x—.(y)?

Answer:
_ fxy(x,y)
fxjy=y(x) = o) (8.3)
_ fxy(x,y)
fY|X=x(y) = —fx(x) (8.4)

Question: How can we write fx|y=y (x) in terms of fy|x-x(y)?

Answer: If we substitute fx y (x,y) from (8.4) into (8.3), we get:

fxy(ey) _ Sfrix=x(y) - fx(x)
fr(y) r(y) '

fxy=y(x) =

Question: How do we write P{X < a | Y = y}?

Answer: This is just a question of summing up the conditional density fx|y-y (x)
over all values of x where x < a:

X=a

P{X<al|Y=y}= Ixy=y(x)dx.

X=—o00

Question: How do we write fy|y<4(y) in terms of fy(y)?

Answer: Intuitively, we're just conditioning on the event that ¥ < a, which
narrows the range of values, so the conditional density gets scaled up by a

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

8.4 Conditional Expectation for Multiple Random Variables 161

constant factor. Here are all the steps. Let A denote the event that Y < a. Then:

fY|Y<a()’) = leA(y)

_fryna)
P{A}
_frnY<a
P{Y < a}
] o ify<a |
0 otherwise

Question: How do we write fy|x<,(y) in terms of fxy(x,y)?

Answer: In the case of fy|x<,(y), we define A to be the event that X < a. Now
we are conditioning on an event A that doesn’t involve Y. Because of this, we
can’t simply scale up the density function, and we must instead return to the joint
density. Then the steps are as follows:

fY|X<a(y) = fY|A(y)
_frhnA)
P{A}
_frhnX<a)
P{X < a}
I e (s yydx
P{X < a}

8.4 Conditional Expectation for Multiple Random Variables

We now move on to expectation. We will extend the definitions from Section 7.5
on conditional expectation to multiple random variables. As before, the key to
defining conditional expectation is to use a conditional p.d.f.

Definition 8.14 Given continuous random variables X and Y, we define:

E[X|Y=y]= / I

A typical situation where Definition 8.14 might come up is in computing the
expected weight of two-year-olds if their height is 30 inches. Another way in
which Definition 8.14 is useful is that it allows us to simplify computations of
expectation by conditioning, as in Theorem 8.15.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

162 8 Continuous Random Variables: Joint Distributions

Theorem 8.15 We can derive E [X] by conditioning on the value of a contin-
uous r.v. Y as follows:

E[X] :/E[X|Y=y] e
y

Theorem 8.15 is the direct continuous counterpart to Theorem 4.22. The proof
of Theorem 8.15 follows the same lines as that of Theorem 4.22, except that we
use Definition 8.14 in place of Definition 4.18.

Let’s now return to Example 8.13, this time from the perspective of expectation.
Example 8.16 (Relationship between hand-in time and grade, continued)

Let T denote the number of days prior to the deadline that the homework is
submitted. No one ever submits the homework earlier than two days before the
homework is due, so 0 < 7" < 2. Let G denote the grade that the homework
receives, viewed as a percentage, meaning 0 < G < 1. Both G and T are
continuous random variables. Their joint p.d.f. is given by

9 , 1
fG,T(g,f)—Elg t3

Question: A random student submits at 7 = 0, that is, exactly when the home-
work is due. What is the student’s expected grade?

Answer:
1
E[G|T=0]= / g fo|r=0(g)dg by Definition 8.14
g=
L Jor(z.0)
g=0 fT(O)
1
8

dg by Definition 8.9

dg

uu»—‘|um—‘

=0

Il

(8.5)
Question: Who has a higher expected grade: a student who submits exactly when
the homework is due, or a student who submits more than 1 day early?

Answer: To answer this, we must compare E [G | T = 0] from (8.5) with
E[G|1<T<2].

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

8.6 Exercises 163

We derive E [G | 1 < T < 2] in the same way as we derived E [G | T =0]:

1
E[G|1<T<?2] =/ gfGli<r<2(g)dg by Definition 7.17
=0

' fo(gn (1<T<2)
0’ P{1<T<2}

/ _/tl 1 fGT(g’t)dt g

1 [fr(ndt
_/1 _/zi]z(lotg +)dt
B g:Og /tl_:lz(it+l)dt

/1 27g +4)d
= 8 8
= 0.65

dg by Definition 7.15

dg fr(t) is from (8.2)

So the expected grade is higher for those who turn in their homework more than
a day early, as compared with those who turn in their homework exactly on time.
This makes sense!

8.5 Linearity and Other Properties

In this chapter and the prior one on continuous random variables, we have
not bothered to repeat all the prior results that we saw for discrete random
variables, such as Linearity of Expectation (Theorem 4.10), Linearity of Variance
(Theorem 5.8), and Expectation of a Product (Theorem 4.8). However, all of
these results extend to continuous random variables as well. The proofs are
straightforward and are deferred to the exercises.

8.6 Exercises

8.1 Linearity of expectation for continuous random variables
Let X and Y be continuous random variables. Prove that

E[X+Y] =E[X]+E[Y].

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

164 8 Continuous Random Variables: Joint Distributions

8.2 Product of continuous random variables
Let X and Y be continuous random variables, where X L Y. Prove that

E[XY] =E[X] -E[Y].

8.3 Two Uniforms
Let X ~ Uniform(0, 1) and ¥ ~ Uniform(0,2) be independent random
variables. Whatis P{X < Y}?
(a) Solve this via the joint p.d.f. of X and Y.
(b) Solve this by conditioning on X.

8.4 Quality of service

A company pays a fine if the time to process a request exceeds 7 seconds.
Processing a request consists of two tasks: (a) retrieving the file, which
takes some time X that is Exponentially distributed with mean 5; and (b)
processing the file, which takes some time Y that is independent of X and
is distributed Uniform(1, 3). Given that the mean time to process a request
is clearly 7 seconds, the company views the fine as unfair, because it will
have to pay the fine on half its requests. Is this right? What is the actual
fraction of time that the fine will have to be paid?

8.5 Meeting up
Eric and Timmy have agreed to meet between 2 and 3 pm to work on
homework. They are rather busy and are not quite sure when they can arrive,
so assume that each of their arrival times is independent and uniformly
distributed over the hour. Each agrees to wait 15 minutes for the other, after
which he will leave. What is the probability that Eric and Timmy will be
able to meet?

8.6 Practice with joint random variables
Let X and Y be continuous random variables with the following joint p.d.f.

e if0<y<ux

0 otherwise

fxy(x,y) = {

(a) Start by drawing the region R where the joint p.d.f. is non-zero. This
will help you determine the limits of integration for the remaining
parts.

(b) What is fx(x)? State the region over which this p.d.f. is non-zero.

(c) What is fy(y)? State the region over which this p.d.f. is non-zero.

(d) Whatis fy|x=x(y), where x > 07 State the region over which this p.d.f.
is non-zero.

(e) Whatis E [Y | X = x], where x > 0?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

8.6 Exercises 165

8.7

8.8

8.9

8.10

8.11

Distance between darts

We are given a line segment, [0, 1]. Kristy and Timmy each independently
throw a dart uniformly at random within the line segment. What is the
expected distance between Kristy’s and Timmy’s darts?

Comparison of two darts

We are given a line segment, [0, 1]. Two darts are each independently
thrown uniformly at random within the line segment. What is the probability
that the value of one dart is at least three times the value of the other?

Sum of independent random variables
The convolution of two functions f(-) and g(-) is defined as

fog(2) =/_ f(z—x)g(x)dx.

Let X and Y be two independent continuous random variables. Define a
new r.v. Z = X +Y. In this problem, you will show that the p.d.f. of Z is the
convolution of the probability density functions of X and Y. Follow these
steps:

(a) Show that Fz(z) = [*_ [fx(x) - fy(t — x)dxdt.

(b) Differentiate F'z(z) to obtain fz(z).

[Hint: You will need to invoke the Fundamental Theorem of Calculus from
Section 1.3.]

Bear problem

[Proposed by Weina Wang] You stand at a position X ~ Exp(1) on the
line. Your friend stands at position ¥ ~ Exp(2). Assume that X and Y are
independent. A bear comes from the left. The bear will eat the first person it
comes to; however, if the distance between you and your friend is < 1, then
the bear will eat both of you. What is the probability that you get eaten?

— 11

Figure 8.2 Figure for Exercise 8.10.

Bayes of our lives

The number of seasons in a television series is N ~ Geometric(P). After
each season, there is a fixed probability, P, that the series is canceled.
However, the parameter P depends on the popularity of the series, so

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

166 8 Continuous Random Variables: Joint Distributions

we don’t know what it is in general. For a new series, we assume that
P ~ Uniform(0, 1). A television series has been running for 37 seasons (and
renewed for more). Derive the expected value of P, given this information,
that is, derive E [P | N > 37].

8.12 Density of choice
Suppose that X and Y are continuous random variables and let

7= X wi/prob p
| Y wiprobl—-p -

(a) Derive the p.d.f. of Z in terms of the probability density functions of
XandY.

(b) The Double Exponential distribution is defined via the random variable
W, where W = ST and T ~ Exp(2) and S is a discrete r.v. with equal
probability of being 1 or —1. Use part (a) to derive the p.d.f. of W.

8.13 When the parameters of a distribution are random variables
There are many situations where the parameters of a distribution are
themselves random variables. For example, let X ~ Exp(1) and ¥ ~
Uniform(0, X). (a) What is E [Y]? (b) What is Var(Y)?

8.14 Smallest interval
A dart is thrown uniformly at random at the unit interval [0, 1]. The dart
splits the interval into two segments, one to its right and one to its left.
What is the expected length of the smaller segment?

8.15 Smallest interval with two darts

Two independent darts are thrown uniformly at random at the unit interval
[0, 1]. The two darts naturally split the interval into three segments. Let
S be the length of the smallest segment. What is E [S]? [Hint: There are
several ways to solve this problem. A good way to start is to derive the tail
of S, and then integrate the tail to get E [S], as in Exercise 7.9. To get the
tail, it may help to draw a 2D picture of where each of the darts is allowed
to fall.]

8.16 Different views on conditional expectation
[Proposed by Misha Ivkov] Let X ~ Uniform(0, 1) and Y ~ Uniform(0, 1).
Our goal is to understand

E[X|X+Y=15].

(a) Dong makes the realization that X +Y = 1.5 implies that X = 1.5 -Y.
He then reasons that

E[X|X+Y=15]=E[l5-7Y].

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

8.6 Exercises 167

8.17

8.18

What’s the result via Dong’s approach? Is Dong right? Why or why
not?

(b) Lisa suggests that one should first compute the conditional den-
sity function, fx|x+y=1.5(x), using Definition 8.14 and then use
that to get E[X | X +Y = 1.5]. Follow Lisa’s approach to derive
E[X|X+Y=1.5].

(c) Misha believes that pictures are the only way to prove things. Draw a
2D plot that allows you to understand E [X | X +Y = 1.5].

Hiring for tech

Atapopular tech company, candidates are rated on two axes: technical skills
(T') and communication skills (C). The values of 7" and C can in theory be
any real number from 0 (worst) to 1 (best). In practice, however, it never
happens that a candidate gets a rating of less than 0.5 in both categories
(that’s just too harsh), so candidate scores actually fall within region R in
Figure 8.3(a). Assume that candidate scores are uniformly distributed over
region R, as shown in Figure 8.3(b).

c f7jc (I,C) c

A

e .

R
05— |-
» ! t
0 05 10 0 05 10
(a) Region R (b) Joint density function fr.c (t,c)

Figure 8.3 For Exercise 8.17.

(a) What is the joint density function fr c(z,¢c)?

(b) What is the marginal p.d.f. of T, that is, fy(¢)?

(¢) Whatis E[C | T < 0.75]? (Write out the full conditional density and
then integrate it appropriately.)

On the probability of a triangle

Suppose we have an interval of length 1. We throw two darts at the interval

independently and uniformly at random. The two darts divide our inter-

val into three segments. We want to know the probability that the three

segments form a triangle.

(a) Describe the criterion we need in order to achieve our goal.

(b) If the first dart lands at x € [O, %], what’s the probability that the
resulting segments give us a triangle?

(c) What is the probability that the three segments form a triangle?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

168 8 Continuous Random Variables: Joint Distributions

8.19 Relating laptop quality to lifetime
[Proposed by Weina Wang] You have a laptop whose quality is represented
by Q ~ Uniform(1,2), with a larger number representing higher quality.
Laptops with higher quality have higher expected lifetimes. Let X be the
lifetime of the laptop in years (assume this ranges from 0 to co). We are
told that, given that Q = g, the lifetime of the laptop is X ~ Exp (é) for
I<qg<2
(a) Assume 1 < g < 2. Whatis fx|p—4(x)? Whatis E [X | O = ¢q]?
(b) What is the joint p.d.f. fx o(x,q)?
(c) Suppose your laptop is still working after one year. What is the expected

quality of your laptop given that fact?

[Note: In your final expression, you will get some integrals that you

L 2 1
can’t compute. Here are approximations to use: /1 te"7dt = 0.78 and
2 1
[e rdt = 05.]

8.20 Gambling at the casino
[Proposed by Weina Wang] Your friend Alice is visiting Las Vegas and
takes X dollars to a casino, where X ~ Uniform(10,20). At the end of
the day, she brings back Y dollars. Given that she takes X = x dollars, the
density of Y is

2> +1 if0<y<2x

0 otherwise '

fY|x:x (y) = {

(a) Whatis Alice’s expected return from gambling, that is, E [Y — X]? The

following steps will help:
(i) Derive E [X]. This is uncomplicated.

(ii) Derive E[Y | X = x].
(iii) Use (ii) to derive E [Y].
(iv) Derive E[Y] - E [X].

(b) Suppose you know that Alice wins at gambling. What is the expectation
of the amount of money she takes to the casino? [Hint: The problem is
asking for E[X | Y > X]. To get this, you will need fx|y>x(x).]

8.21 Modeling expected disk delay

The delay to read a single byte from a hard disk consists of two components:
(1) seek time — this is the time needed to move the disk head to the desired
track; and (2) rotation time — this is the time needed to rotate the disk head
on the track to reach the desired byte (Figure 8.4). Suppose that bytes are
uniformly distributed across the disk. Let 7" be a r.v. denoting the time to
reach a single (randomly located) byte. Your goal is to compute E [T7].

Assume that the disk has radius r (a constant). Assume that the tracks are
infinitely thin. Assume the disk head starts from wherever the last byte was
read. Assume that the time to traverse the full radius r is 15 ms. At all

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

8.6 Exercises 169

o Diskhead

Figure 8.4 For Exercise 8.21. A disk with radius r. Each circle represents a track. The

red square (on the inner track) shows the byte most recently read. The blue square (on the
outer track) shows the next byte requested. To read the blue byte, the disk head first seeks
to the outer track of the blue byte and then waits for the disk to rotate to the correct byte.

times, the disk rotates at 6,000 RPM (rotations per minute) in one direction
only. Provide your final answer in ms. [Hint: Outer tracks hold more bytes
than inner ones.]

8.22 Hula hoop cutting
You are holding a hula hoop of unit radius with your hand at its top (12
o’clock; Figure 8.5). In a moment, two points on the hoop will be selected
uniformly at random, and the hoop will be cut at those points, splitting it
into two arcs.

Figure 8.5 For Exercise 8.22. The cuts create two arcs: a pink one that you're holding,
and a purple one that falls.

(a) Compute the expected value of the angular difference between the two
arcs.

(b) When the cuts are made, one arc falls to the ground while the other
one stays in your hand. What is the probability that you are holding the
larger arc?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

9 Normal Distribution

An important and ubiquitous continuous distribution is the Normal distribution
(also called the Gaussian). Normal distributions occur frequently in statistics,
economics, natural sciences, and social sciences. For example, [Qs approximately
follow a Normal distribution. Men’s heights and weights are approximately
Normally distributed, as are women’s heights and weights. Part of what makes the
Normal distribution so relevant is the Central Limit Theorem (CLT; Section 9.4),
which says that the average of a large number of independent and identically
distributed (i.i.d.) quantities converges to a Normal. This explains, for example,
why the Binomial random variable (r.v.) has a Normal shape when the number
of coin flips is high. It also explains why noise (which is the mixture of many
independent factors) is typically Normally distributed.

9.1 Definition

Definition 9.1 A continuous r.v. X follows a Normal or Gaussian distribution,
written X ~ Normal(u, o?), if X has probability density function (p.d.f.) fx(x)
of the form

1 L(x=p)2
M) = —=e2(F) ', —ocx<o,
V2no
where o > 0. The parameter u is called the mean, and the parameter o is
called the standard deviation.

Definition 9.2 X follows a standard Normal distribution if X ~ Normal(0, 1),
that is,

1 1
fx(x) = L L —00 < x < 00,

Var

The Normal(u, 0-?) p.d.f. has a “bell” shape and is symmetric around u, as shown
in Figure 9.1. The fact that fx(x) in Definition 9.1 is actually a density function
can be seen by proving that it integrates to 1. This integration involves a change
into polar coordinates (trust me, you do not want to see the gory details [71]).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

9.1 Definition 171

Figure 9.1 Normal(1,1) p.d.f.

Theorem 9.3 shows that the parameters of the Normal distribution in fact repre-
sent its mean and variance.

Theorem 9.3 Let X ~ Normal(u, o%), then E [X] = p and Var(X) =

Proof: Because fx(x) is symmetric around y, it is obvious that E [X] = u.

Var(X) = / (x = 102 fe(@)dx
_ 1 /w(x B eI N

2no

_ (oa &0 2 _y2/2 _ _
= — ye dy (lety = (x — u)/o and dx = ody)
=/

ye yz/z) dy

=l

0_2

= — _y /2 _y /2
\/ﬂ(ye)‘ ‘/ﬂ / dy (integration by parts)

2
y /2dy

m/

_O'

The last line was obtained by using the fact that

2
- eV /2 dy =1,
V27T -/—oo
because the integrand is the density function of the standard Normal. [

One of the things that makes the Normal distribution challenging is that its
cumulative distribution function (c.d.f.) is not known in closed form. For the

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

172 9 Normal Distribution

standard Normal, it is common to use the function ®(-) to represent the c.d.f.,
but the value of ®(x) must be computed numerically. We will return to this point
in Section 9.3.

Definition 9.4 [f X ~ Normal(0, 1), then the c.d.f. of X is denoted by

®(x) = Fx(x) = P{X < x} = \/% / "l

[ee)

9.2 Linear Transformation Property

The Normal distribution has a very particular property known as the “Linear
Transformation Property,” which says that if X is a Normal r.v., and you take a
linear function of X, then that new r.v. will also be distributed as a Normal. Note
that this property is not true for other distributions that we have seen, such as the
Exponential.

Theorem 9.5 (Linear Transformation Property) Let X ~ Normal(u,o?).
Let

Y=aX+b,

where a > 0 and b € R. Then, Y ~ Normal(au + b, a>c?).

Proof: Clearly E [Y] = aE [X] + b = au + b and Var(Y) = a’>Var(X) = a’c>.
All that remains is to show that fy (y) is Normally distributed.

Question: What do we want fy (y) to look like?

Answer: We want to show that

[E———]
y(y) = e “
V2r(ao)
Question: Can we relate the p.d.f. of Y to the p.d.f. of X as follows:
-b -b
fY(y):P{Y:y}:P{aX+b:y}:P{X:yT}zfX(ya)?

Answer: The above is WRONG, because we can’t say that fy (y) = P{Y = y}.To
make this argument correctly, we need to go through the c.d.f., which represents
a valid probability.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

9.3 The Cumulative Distribution Function 173

We relate the c.d.f. of Y to the c.d.f. of X as follows:

FY()’)ZP{YSy}ZP{aX+bSy}:P{X5 y;b}:FX(ya;b)'

We now differentiate both sides with respect to y:

FTC

SR =5 / Fr0dt ™ fr(y)

d _ (y-b me , (y=b) d (y-b y—b
@F(a) o o= a2 () ()

where FTC denotes the Fundamental Theorem of Calculus (Section 1.3).

Thus we have shown that

fr(y) = —fx(y b)

Evaluating this, we have

fr(y) = lfx (u)
a a

L e
avN2no
_ L obawpaior
V2r(ao)
L -tbraw)ate?
V2r(ac)
So fy(y) is a Normal p.d.f. with mean ayu + b and variance a’o. [

9.3 The Cumulative Distribution Function

As stated earlier, unfortunately we do not know how to compute the c.d.f. of
a Normal distribution. We must therefore use a table of numerically integrated
results for @(y), such as that given in [82].!

Here is a snippet of the numerical table for ®(y):

! In practice no one ever goes to the table anymore, because there are online calculators that will
compute this for you, e.g. see the “standard normal cdf calculator” from WolframAlpha.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

174 9 Normal Distribution

y 0.5 1.0 1.5 2.0 2.5 3.0
d(y) 0.6915 0.8413 0.9332 0.9772 0.9938 0.9987

Question: Looking at the table you see, for example, that ®(1) = 0.8413. What
does this tell us about the probability that the standard Normal is within one
standard deviation of its mean?

Answer: Let Y ~ Normal(0, 1). Since ®(1) = 0.84, we know that P{Y < 1} =
0.84. We want to know P{—1 <Y < 1}.
P{-1<Y<1}=P{¥Y<1}-P{Y <-1}
=P{Y <1} -P{Y > 1} (by symmetry)
=P{¥Yr<1}-(1-P{¥r<1})
=2P{¥Y<1}-1
=20(1) -1
=2-084-1
= 0.68.

So with probability approximately 68%, we are within one standard deviation of
the mean.

Question: If Y ~ Normal(0, 1), what’s the probability that Y is within & standard
deviations of its mean?

Answer:

P{-k <Y <k}=2D(k)-1. 9.1)
Equation (9.1) tells us the following useful facts:

e With probability ~ 68%, the Normal is within 1 standard deviation of its mean.

e With probability = 95%, the Normal is within 2 standard deviations of its
mean.

e With probability ~ 99.7%, the Normal is within 3 standard deviations of its
mean.

Question: The “useful facts” were expressed for a standard Normal. What if we
do not have a standard Normal?

Answer: We can convert a non-standard Normal into a standard Normal using

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

9.3 The Cumulative Distribution Function 175

the Linear Transformation Property. That is:

X —
X ~ Normal(u,0?) = Y = K

~ Normal(0, 1).

Thus, if ¥ ~ Normal(0, 1), and X ~ Normal(u, o%), then the probability that X
deviates from its mean by less than k standard deviations is:

X -
P{—ka<X—,u<ko-}=P{—k< K <k}:P{—k<Y<k}.
o
This point is summarized in Theorem 9.6.

Theorem 9.6 If X ~ Normal(u, o2), then the probability that X deviates from
its mean by less than k standard deviations is the same as the probability that
the standard Normal deviates from its mean by less than k.

Theorem 9.6 illustrates why it is often easier to think in terms of standard
deviations than absolute values.

Question: Proponents of 1Q testing will tell you that human intelligence (IQ) has
been shown to be Normally distributed with mean 100 and standard deviation
15. What fraction of people have an IQ greater than 130 (“the gifted cutoff”’)?

Answer: We are looking for the fraction of people whose IQ is more than two
standard deviations above the mean. This is the same as the probability that the
standard Normal exceeds its mean by more than two standard deviations, which
is 1 — ®(2) = 0.023. Thus only about 2.3% of people have an 1Q above 130.

Other properties of the Normal distribution will be proven later in the book. A
particularly useful property is that the sum of two independent Normal distribu-
tions is Normally distributed.

Theorem 9.7 (Sum of two independent Normals) Let X ~ Normal(uy, o2).
LetY ~ Normal(uy, 0')2,) Assume X LY. Let W =X +Y. Then

W ~ Normal(+,uy,a'§ + 0'3).

Proof: This will be proven in Exercise 11.10 via Laplace transforms. [|

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

176 9 Normal Distribution

9.4 Central Limit Theorem

Consider sampling the heights of 1000 individuals within the country and taking
that average. The CLT, which we define soon, says that this average will tend to
be Normally distributed. This would be true even if the distribution of individual
heights were not Normal. Likewise, the CLT would apply if we took the average
of a large number of Uniform random variables. It is this property that makes
the Normal distribution so important! We now state this more formally.

Let X1, Xo, X3, ..., X, be independent and identically distributed random vari-
ables with some mean u and variance o-2. Note: We are not assuming that these
are Normally distributed random variables. In fact we are not even assuming that
they are necessarily continuous random variables — they may be discrete.

Let

Spa=Xi+Xo+---+ X,,. 9.2)

Question: What are the mean and standard deviation of S,,?
Answer: E [S,,] = nu and Var(S,,) = no?. Thus std(S,,) = on.

Let
_ Su—npu

Zn .
on

Question: What are the mean and standard deviation of Z,,?

Answer: Z,, has mean 0 and standard deviation 1.

Theorem 9.8 (Central Limit Theorem (CLT)) Let X1, X>,..., X, be a se-
quence of i.i.d. random variables with common mean y1 and finite variance o2,

and define
_ Sp—nu

o\n

Then the distribution of Z,, converges to the standard normal, Normal(0, 1), as
n — oo. That is,

n
S, :ZXi and Zip
i=1

li P{Z < } @() 1 /Z —x2/2d
m <z} =P(z) = — e x
n—eo " V2r Jow

for every z.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

9.4 Central Limit Theorem 177

Proof: Our proof uses Laplace transforms, so we defer it to Exercise 11.12. m

It should seem counter-intuitive to you that Z,, converges to a Normal in distri-
bution, especially when the X;’s might be very skewed and not-at-all Normal
themselves.

Question: Does the sum S, also converge to a Normal?

Answer: This is a little trickier, but, for practical purposes, yes. Since S, is a
linear transformation of Z,,, then by the Linear Transformation Property, S,, gets
closer and closer to a Normal distribution too. However, S,, is not well defined as
n — oo, because S, is getting closer and closer to Normal(nu, no?), which has
infinite mean and variance as n — oo. There’s another problem with looking at
S,. Suppose all the X;’s are integer-valued. Then S,, will also be integer-valued
and hence not exactly Normal (although it will behave close to Normal for high
n — see Exercise 9.6). For all these reasons, CLT involves Z,, rather than S,,.

Question: Does the average A, = %Sn converge to a Normal?

Answer: Yes! Applying the Linear Transformation Property to Z,,, we see that
. . 2
A, gets closer and closer to a Normal with mean u and variance <-.

The CLT is extremely general and explains many natural phenomena that result
in Normal distributions. The fact that CLT applies to any sum of i.i.d. random
variables allows us to prove that the Binomial(n, p) distribution, which is a
sum of i.i.d. Bernoulli(p) random variables, can be approximated by a Normal
distribution when 7 is sufficiently high. In Exercise 9.7 you will use a similar
argument to explain why the Poisson(1) distribution is well represented by a
Normal distribution when A is high.

In the next example, we illustrate how the CLT is used in practice.
Example 9.9 (Signal with noise)

Imagine that we are trying to transmit a signal. During the transmission, there are
100 sources independently making low noise. Each source produces an amount
of noise that is Uniformly distributed between a = —1 and b = 1. If the total
amount of noise is greater than 10 or less than —10, then it corrupts the signal.
However, if the absolute value of the total amount of noise is under 10, then it is
not a problem.

Question: What is the approximate probability that the absolute value of the
total amount of noise from the 100 signals is less than 10?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

178

9 Normal Distribution

Answer: Let X; be the noise from source i. Observe that

/’lX[=O
2 (b—a)z 1
O-X' = = —
i 12 3
1
ox;, = —(—.
V3

Let S100 = X1+ Xp + -+ - + Xj00.

-10 -0 10
P{—10<5100<10}=P{ <Sw =0 }

V100/3 4/100/3 4/100/3
~P {—\5 < Normal(0, 1) < \/5}

- 20 (\/5) ~1

~ 0.91.

Hence the approximate probability of the signal getting corrupted is < 10%. In
practice, this CLT approximation is excellent, as we’ll see in Chapter 18.

9.5

9.1

9.2

9.3

Exercises

Practice with the ®(-) table

Let X ~ Normal(0, 1). Let ¥ ~ Normal(10, 25). Using the table for ®@(-)
values given in the chapter, answer the following questions:

(a) Whatis P{X > 0}?

(b) WhatisP{-1 < X < 1.5}?

(c) Whatis P{-2.5 <Y < 22.5}?

Total work processed by server

A server handles 300 jobs per day. Job sizes are i.i.d. and are Uniformly
distributed between 1 second and 3 seconds. Let S denote the sum of
the sizes of jobs handled by the server in a day. Approximately, what is
P {590 < § < 610}?

Bytes at a server
A server receives 100 messages a day. Message sizes (in bytes) are i.i.d.

from distribution Exp(u). Let S denote the total number of bytes received

by the server. Approximately, what is P {(’L—O <S< 1710}?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

9.5 Exercises 179

9.4 Estimating failure probability
Suppose that 10% of cars have engine light problems at some point in their
lifetime. If a dealer sells 200 cars, what is the (approximate) probability
that fewer than 5% of the cars she sells will eventually have engine light
problems? Use the appropriate Normal distribution table. Express your
answer as a decimal.

9.5 Linear Transformation of Exponential
Recall that the Normal distribution has a pretty Linear Transformation
property. Does the Exponential distribution have this as well? Let X ~
Exp(u). Let Y = aX + b, where a and b are positive constants. Is ¥
Exponentially distributed? Prove your answer.

9.6 Accuracy of the Central Limit Theorem

Bill Gater invites 1,000 friends to a dinner. Each is asked to make a con-
tribution. The contributions are i.i.d. Poisson-distributed random variables
with mean $1,000 each. Bill hopes to raise $1,000,000. Your job is to
compute the probability that Bill raises < $999,000.

(a) Compute this using the Normal approximation from this chapter.

(b) Now write an exact expression for this probability, and then use your

calculator or small program to evaluate the expression.

9.7 Why a Poisson looks like a Normal
You may have noticed that the Poisson(A) distribution looks very similar
in shape to a Normal with mean A and variance A. This is particularly true
for high A. Use the CLT approximation to explain why this is, in the case
where A is a high integer. [Hint: The exercises on the Poisson distribution
from Chapter 6 are useful here.]

9.8 Heuristic proof of Stirling’s approximation
[Contributed by Ishani Santurkar] Stirling’s approximation, Theorem 1.14,
says that n! grows in accordance with (9.3) for large n:

n! ~ N2xn (ﬁ)" 9.3)

e

In this problem you will come up with a heuristic proof for this fact.

(a) Let X ~ Poisson(n). What is px(n)?

(b) Now assume that n is large, and use the Normal approximation from
Exercise 9.7 to write an alternative approximate expression for px(n).
Note that for a continuous r.v. Y we can’t talk about P {Y =i}, but we
canwrite: P{i <Y <i+ 1} = fy(i) - 1.

(c) Equate (a) and (b) to get (9.3).

9.9 Fractional moments

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

180

9 Normal Distribution

9.10

Given the ugliness of the Normal distribution, I am happy to say that it
never comes up in my research . .. until a few days ago! Here is the story:

IThad ar.v. X ~ Exp(1) and I needed to compute E [X %]. Figure out why

I needed a Normal distribution to do this and what answer I finally got.
[Hint: Start by applying integration by parts. Then make the right change of
variables. If you do it right, the standard Normal should pop out. Remember
that the Exponential ranges from 0 to co, whereas the Normal ranges from
—00 t0 0.]

Sampling from an unknown distribution

We want to understand some statistics (e.g., mean and variance) of the
webpage load time distribution, X. To do that, we randomly choose n
websites and measure their load times, X, X, . .., X,,. We assume that the
X;’s arei.i.d. samples of X, where X; ~ X. Our goal is to use these samples
to estimate X’s mean, u = E [X], and X’s variance, o> = Var(X).

Our sample mean X is defined as

YE%ZX,

Our sample variance is defined as

o 1% 12
S =(n—l);(xi_x)'

(a) If the expectation of the sample mean is the same as the actual mean,

thatisif E [Y] = u, then X is called an unbiased estimator of the mean

of the sampling distribution. Prove that X is an unbiased estimator of
the mean.

(b) If the expectation of the sample variance is the same as the actual
variance, that is, if E [$?| = 0%, then $? is called an unbiased estimator
of the variance of the sampling distribution. Prove that S? is an unbiased
estimator of the variance.

It will help to follow these steps:
(i) Start by expressing (n — 1)§? = i ((X,- —w)+ (u- Y))

i=1
n

(ii) From (i), show that: (n — 1)S? = Z (X; —p)> —n(u—-X)>2

2

i=1
(iii) Take expectations of both sides of (ii).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

10 Heavy Tails: The
Distributions of Computing

We have studied several common continuous distributions: the Uniform, the
Exponential, and the Normal. However, if we turn to computer science quantities,
such as file sizes, job CPU requirements, IP flow times, and so on, we find that
none of these are well represented by the continuous distributions that we’ve
studied so far. To understand the type of distributions that come up in computer
science, it’s useful to start with a story. This chapter is a story of my own
experience in studying UNIX jobs in the mid-1990s, as a PhD student at U.C.
Berkeley. Results of this research are detailed in [37, 38]. The story serves as both
an introduction to empirical measurements of computer workloads and as a case
study of how a deeper understanding of computer workloads can inform computer
system design. We end with results from 2020 measurements of workloads at
Google from [72].

10.1 Tales of Tails

Back in the early 1990s, I was a PhD student happily studying computer science
theory. Like many others in the theory area, I had avoided taking my graduate
operating systems requirement for as long as possible. When I finally got up
the guts to walk into the graduate operating systems class, I looked up at the
blackboard (Figure 10.1) and thought, “Hmm ... maybe this isn’t going to be so
bad.”

Figure 10.1 The blackboard in my operating systems class.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

182 10 Heavy Tails: The Distributions of Computing

Sadly the professor wasn’t referring to complexity theory. Instead, he was re-
ferring to migration for the purpose of CPU load balancing in a Network of
Workstations — at U.C. Berkeley this project was coined the “N.O.W. project”
[4]. The idea in CPU load balancing is that CPU-bound jobs (processes) might
benefit from being migrated from a heavily loaded workstation to a more lightly
loaded workstation (Figure 10.2).

Switch

Heavily Heavily Lightly Lightly Lightly
loaded loaded loaded loaded loaded

Figure 10.2 “Network of Workstations.” CPU load balancing migrates jobs from heavily
loaded workstations to lightly loaded ones.

CPU load balancing is still important in today’s networks of servers. It is not
free, however: Migration can be expensive if the job has a lot of “state” that
has to be migrated with it (e.g., lots of open files associated with the job), as is
common for jobs that have been running for a while. A job that has accrued a lot
of state might not be worth migrating.

There are two types of migration used in load balancing techniques:

NP - non-preemptive migration This is migration of newborn jobs only — also
called initial placement or remote execution, where you don’t migrate a
job once it has started running.

P - preemptive migration This is migration of jobs that are already active
(running) — also referred to as active process migration.

In the mid-1990s it was generally accepted that migrating active processes was a
bad idea, because of their high migration cost. Except for one or two experimental
operating systems, like MOSIX [6], people only migrated newborn jobs.

First, some important terminology used in CPU load balancing:

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

10.2 Increasing versus Decreasing Failure Rate 183

Definition 10.1 A job’s size (a.k.a. lifetime) refers to the job’s total CPU
requirement (measured in seconds or CPU cycles). A job’s age refers to its
total CPU usage thus far (also measured in seconds or CPU cycles). A job’s
remaining size (a.k.a. remaining lifetime) refers to its remaining CPU re-
quirement.

What we really want to know is a job’s remaining lifetime. If the job has a high
remaining CPU requirement, then it may pay to migrate the job, even if it has
accumulated a lot of state, because the job will get to spend its long remaining
lifetime on a lightly loaded machine. Sadly, we do not know a job’s remaining
lifetime, just its current CPU age.

What we’re interested in is the tail of the job size, that is, P {Size > x}. More
specifically, we want to understand the conditional remaining lifetime given an
age a:

P{Size > x +a | Size > a}.

Question: Suppose we have two jobs, one with age 2 seconds and the other with
age 100 seconds, as in Figure 10.3. Which job is likely to have greater remaining
lifetime?

Age 2 seconds Age 100 seconds

Figure 10.3 Which job has greater remaining lifetime?

Answer: We’ll find out soon ...

10.2 Increasing versus Decreasing Failure Rate

The obvious question is, then, “How are UNIX job CPU lifetimes distributed?”

The common wisdom at the time, backed up by many research papers, suggested
that UNIX job CPU lifetimes were Exponentially distributed.

Question: If UNIX job lifetimes are Exponentially distributed, what does that
tell us about the question in Figure 10.3?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

184 10 Heavy Tails: The Distributions of Computing

Answer: Recall from Section 7.1 that if Size is Exponentially distributed, then,
by the memoryless property,

P {Size > x +a | Size > a} = P {Size > x}.

Thus the conditional remaining lifetime is independent of the current age. This
says that newborn jobs and older (active) jobs have the same expected remaining
lifetime. Hence, since newborn jobs are much cheaper to migrate, it makes sense
to favor migrating the newborn jobs and ignore the older jobs (NP beats P!).

One can imagine, however, that P {Size >x+a | Size > a} might not be inde-
pendent of a but rather might either decrease with a or might increase with
a.

If P {Size > x + a | Size > a} decreases with a, we call that increasing failure
rate or increasing hazard rate. This is not a typo! The term “failure rate” refers
to the probability that the job terminates. So we’re saying that the older a job
is, the sooner it will terminate, that is, the lower its probability of running an
additional x seconds. Likewise, if P {Size > x+a | Size > a} increases with a,
we say that the Size has decreasing failure rate or decreasing hazard rate.

Colloquially, increasing failure rate says, “the older you are, the sooner you’ll
die,” while decreasing failure rate says “the older you are, the longer you’ll live.”

Question: What are some real-world examples of random variables with increas-
ing failure rate?

Answer: Here are a few:

e the lifetime of a car;
o the lifetime of a washing machine;
o the lifetime of a person.

Actually, almost anything you think of will have increasing failure rate. Aging
leads to failing (ending) sooner.

Question: What are some real-world examples of random variables with de-
creasing failure rate?

Answer: This is a lot harder to think about because we’re looking for an example
where older is better in the sense of lasting longer. Here are some examples:

e The lifetime of a friendship. Generally, the longer you’ve been friends with
someone, the longer you're likely to continue to be friends.

e The time you’ve lived in your home. If you’ve lived in your home for many
years, you're more likely to continue to stay there.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

10.2 Increasing versus Decreasing Failure Rate 185

To make the concept of failure rate more precise, we define the failure rate
function.

Definition 10.2 Given a continuous random variable (r.v.) X with probability
density function (p.d.f.) fx(t) and tail Fx(t) = P{X > t}, the failure rate
function, rx (1), for X is:

_ fx(t) ‘
Fx(t)

rx(1)

Question: rx () looks like a conditional density function. What is that density?

Answer: If we write Fx (1) = P{X >t} = P{X > ¢}, then we can see that:

_ fx()
x(1) = Fel) Ixix=: (1)

This is the density that X = ¢ given that X > t.

To further interpret rx (), consider the probability that a z-year-old item will fail
during the next dt seconds:
P{X € (t,t +dt)}
P{X >t}
fx(1) - di
Fx(1)
rx(t) - dt.

P{Xe(t,t+dt)| X >t} =

Thus, rx(t) represents the instantaneous failure rate of a t-year-old item, whose
lifetime distribution is X.

Definition 10.3 Ifrx(t) is strictly decreasing int, we say that X has decreasing
failure rate; if rx(¢) is strictly increasing in t, we say that X has increasing
failure rate.

In general, rx(¢) is not necessarily going to always decrease with 7 or increase
with #; it’s common that rx () is decreasing for some ¢ and increasing for others.

Question: Suppose rx(¢) is constant. What do you know about X?
Answer: In Exercise 10.2, we prove that X must be Exponentially distributed.

Before we leave our discussion of the Exponential distribution, let’s recall the
notion of the squared coefficient of variation of a r.v. X. By Definition 5.6, this

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

186 10 Heavy Tails: The Distributions of Computing

is

, _ Var(X)
=g [X]?

and represents the normalized variance. It is the metric of choice for systems
measurements because it is scale invariant.

Question: What is C%, when X ~ Exp(1)?

Answer: 1.

10.3 UNIX Process Lifetime Measurements

If UNIX process lifetimes (sizes) are Exponentially distributed, then there is
no benefit to active process migration: all jobs have the remaining lifetime
distribution, regardless of their age.

Refusing to believe that there were no benefits to active process migration, I
decided to measure the distribution of job lifetimes. I collected the CPU lifetimes
of millions of UNIX jobs on a wide range of different machines, including
instructional, research, and administrative machines, over the course of many
months, including only jobs whose size exceeded 1 second. Figure 10.4 shows
the tail of my measured distribution.

At first glance Figure 10.4 looks like an Exponential distribution,
FSize(x) =e

But on closer examination you can see that it’s not Exponential.

Question: How can you tell that job sizes are not Exponentially distributed?

P{Job size > x}

» x seconds

124 8 16 32

Figure 10.4 Plot of measured distribution, Fx(x) = P {Job size > x}, where x > 1.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

10.4 Properties of the Pareto Distribution 187

Answer: For an Exponential distribution, the fraction of jobs remaining should
drop by a constant factor with each unit increase in x (constant failure rate). In
Figure 10.4, we see that the fraction of jobs remaining decreases by a slower
and slower rate as we increase x (decreasing failure rate). In fact, looking at the
graph, we see that if we start with jobs of CPU age 1 second, half of them make
it to 2 seconds. Of those that make it to 2 seconds, half of those make it to 4
seconds. Of those that make it to 4 seconds, half of those make it to 8 seconds,
and so on.

To see the distribution more easily it helps to view it on a log-log plot, as shown
in Figure 10.5. The bumpy line shows the data, and the straight line is the best
curve-fit. From Figure 10.5 it is apparent that the tail of the distribution of job
lifetimes decays like % That is, the distribution is well approximated by

1
P {Size > x} = —, x> 1.
X

P{Job size > x}
A

4y x seconds

1 2 4 8163264

Figure 10.5 Log-log plot of measured distribution, Fx(x) = P {Job size > x},
x> 1

10.4 Properties of the Pareto Distribution

It turns out that the distribution that I had measured has a name in economic
theory. It is called the Pareto distribution, or “power-law distribution,” and is
named after Vilfredo Pareto, who was an economist in the early 1900s.

Definition 10.4 We say that X follows a Pareto distribution with parameter
a, written X ~ Pareto(a), if

Fx(x)=P{X>x}=x"%, forx>1,

where 0 < a < 2.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

188 10 Heavy Tails: The Distributions of Computing

Question: So job sizes are distributed as Pareto(a = 1). What does this say
about E [Size]? Also, does the job size distribution exhibit increasing failure
rate, or decreasing failure rate, or neither?

Answer:

It’s easy to see that E [Size] = oo and that the failure rate is decreasing. We
derive this below for general 0 < @ < 2.

Let X ~ Pareto(a). Then:

Fx(x)=P{X >x}=x"9, x>1
= Fx(x)=P{X <x}=1-x"¢, x =1
= fx(x) = dFXx(x) ax™ M x>
o () = fx(x) _ax” @
Fx(x) x°@ X

Because rx(x) = ¢ decreases with x, the Pareto distribution has decreasing
failure rate (DFR). Thus the older a job is (the more CPU it has used up so far),
the greater its probability of using another second of CPU.

The Pareto(a = 1) distribution has an interesting doubling property.

Question: Given that Job size ~ Pareto(a@ = 1), what is the probability that a
job of age t > 1 survives to age > 217

Answer:

P {Size > 2t | Size > t} = >

N|._.||\>|._.

Question: For X ~ Pareto(«), with 0 < @ < 1, what are the moments of X?

Answer: The calculations are straightforward, by integration over the density
function. It is easy to see that all moments are infinite.

Question: For X ~ Pareto(a), with 1 < @ < 2, what are the moments of X?
Answer: The mean of X is now finite. Higher moments are still infinite.
But something doesn’t seem right here. How can our distribution of job sizes

have infinite mean? Although the data fits a Pareto(@ = 1) distribution very

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

10.6 Heavy Tails 189

well, the moments of job size are still finite. To see this we need to introduce the
Bounded-Pareto distribution.

10.5 The Bounded-Pareto Distribution

When fitting a curve to measured (empirical) data, the data has a minimum job
lifetime, k, and a maximum job lifetime, p. In particular, the measured data has
finite moments, not infinite ones. To model the empirical data, we therefore want
a distribution with a Pareto shape, but that has been truncated between k and p.
We refer to such a distribution as a Bounded-Pareto distribution.

Definition 10.5 The Bounded-Pareto(k, p, @) distribution has density func-

() |
p

) =axt
fork <x<pand0<a<?2.

The factor]_(,]2—0, in Definition 10.5 is a normalization factor needed to make
the integral of the density function between k and p come out to 1. For the
Bounded-Pareto distribution, obviously all of the moments are finite.

For the UNIX job sizes that I measured, the squared coefficient of variation,
C?, was finite, ranging between C 2 = 25 and C? = 49, which was considered
extremely high in the 1990s.

10.6 Heavy Tails

The following are three properties of the Pareto distribution:

1. Decreasing failure rate (DFR) — The more CPU you have used so far, the
more you will continue to use.

2. Infinite variance

3. “Heavy-tail property” — A minuscule fraction of the very largest jobs com-
prise 50% of the total system load. (Note that this is much more biased than
the often quoted 80-20 rule.)

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

190 10 Heavy Tails: The Distributions of Computing

The “heavy-tail property” comes up in many other settings. For example, in
economics, when studying people’s wealth, it turns out that the richest 1% of
all people have more money between them than all the remaining 99% of us
combined. The heavy-tailed property is often referred to as “a few big elephants
(big jobs) and many, many mice (little jobs),” as illustrated in Figure 10.6. For
comparison, in an Exponential distribution, the largest 1% of the jobs comprise
only about 5% of the total demand.

o @ e e @ e e o e
& 48 2n £ 2n
e Cryyye
pt] 22 20 22 22 22
e 6 e 5 6 6 6 @ e

Figure 10.6 Heavy-tailed property: “Elephants and mice.”

The parameter a can be interpreted as a measure of the variability of the dis-
tribution and the heavy-tailedness: @ — 0 yields the most variable and most
heavy-tailed distribution, whereas @ — 2 yields the least variable, and least
heavy-tailed distribution. These properties are explored in more depth in the
exercises.

These properties largely hold for the Bounded-Pareto distribution as well as
the Pareto, although clearly the Bounded-Pareto has finite moments. Also the
Bounded-Pareto cannot have strict DFR because there is an upper bound on job
size.

10.7 The Benefits of Active Process Migration

Let’s return to the original question of CPU load balancing.

Question: What does the DFR property of the Pareto distribution tell us about
whether it pays to migrate older jobs?

Answer: DFR says that the older jobs have higher expected remaining lifetimes.
This leads us to think that it may pay to migrate older jobs. Although an old
job may have a high migration cost because it has accumulated a lot of state
(memory), if the job is really old then it has a high probability of using a lot more
CPU in the future. This means that the cost of migration can be amortized over

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

10.8 From the 1990s to the 2020s 191

a very long lifetime, as the job gets to spend its long remaining lifetime running
on a lightly loaded machine.

Question: What does the heavy-tail property of the Pareto distribution tell us?

Answer: By the heavy-tail property, it is only necessary to migrate the 1%
biggest jobs, because they contain most of the work [38].

10.8 From the 1990s to the 2020s

At this point you might be wondering whether these Pareto distributions still
apply to jobs today. To answer this, we look at the jobs scheduled by the Borg
scheduler [73], which serves jobs in Google data centers.

Question: How do you imagine that jobs look different today than they did in
the 1990s?

Answer: There are many differences, but an important one is that back in the
1990s a job ran on a single CPU. The job’s size was the time it needed on a single
CPU. By contrast, the Google jobs today are all parallel jobs. We can think of a
job as holding onto a certain number of processors (CPUs) for an amount of time.
The size of a job is then measured in CPU-hours (number of CPUs occupied
times the number of hours).

Jobs today also often utilize a lot of memory (think about machine learning jobs).
We can also view the size of a job as measured in memory-unit-hours (number
of memory units times hours held).

Question: If you had to guess, would you guess that the distribution of compute
usage today is more variable or less variable than in the 1990s? Would you guess
that the distribution is more heavy-tailed or less heavy-tailed than in the 1990s?

Answer: The answer to both is “more,” but the degree to which the answer is
“more” is quite shocking.

Figure 10.7(a) shows the distribution of compute usage, and Figure 10.7(b) shows
the distribution of memory usage [72]. Because Google doesn’t like to reveal ex-
act numbers, it uses normalized units in expressing compute and memory usage.
Thus, per-job compute usage is expressed in units of NCU-hours (normalized
CPU times hours) and per-job memory usage is expressed in units of NMU-hours
(normalized memory units times hours). Note that a 100 NCU-hour job might
have consumed 100 machines for 1 hour, or 5 machines for 20 hours, or various
other combinations.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

192 10 Heavy Tails: The Distributions of Computing

P{NCU-Hours > x} P{NMU-Hours > x}
A A

10° ' '

10"

10

10°

(a) Per-job NCU-hours (b) Per-job NMU-hours

Figure 10.7 Tail of resource usage based on a trace of millions of jobs run at Google in
May 2019 [72, 77]. NCU-hours denotes normalized CPU-hours used. NMU-hours
denotes normalized memory-unit-hours used.

The distribution for compute usage at Google’s data centers fits a Pareto(a =
0.69) distribution, which is much more heavy-tailed than what we saw in the
1990s measurements. We find that, while the mean NCU-hours used per job is
about 1.2, the variance is 33,300, which means that the squared coefficient of
variation is

variance

C? = 23,000,

mean?

which is huge! The heavy-tailed property is also much more extreme than what
we saw in the 1990s: The largest (most compute-intensive) 1% of jobs comprise
about 99% of the compute load.

Memory usage follows much the same patterns as compute usage, obeying a
Pareto(a = 0.72) distribution with astronomical variability: C? ~ 43,000. Again
we see an extremely strong heavy-tailed property, with the top 1% of jobs
comprising 99% of the total memory usage. Memory and compute usage are
also correlated.

10.9 Pareto Distributions Are Everywhere

It is not just computing jobs that fit a heavy-tailed Pareto distribution. Pareto job
size distributions are everywhere in computer science and in nature! Here are
some more practical and interesting stories:

Web file size: Around 1996-1998, Mark Crovella, Azer Bestavros, and Paul
Barford at Boston University were measuring the sizes of files on websites. They

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

10.9 Pareto Distributions Are Everywhere 193

found that these file sizes obeyed a Pareto distribution with @ ~ 1.1. They also
found similar results for the sizes of files requested from websites. Their SURGE
web workload generator is based on these findings [7, 18, 19].

Internet node degrees: Around the same time, the three Faloutsos brothers
were observing a similar distribution when looking at the Internet topology.
They observed, for example, that most nodes have low out-degree, but a very few
nodes have very high out-degree, and the distribution of the degrees follows a
Pareto distribution. Their beautiful 1999 paper won the Sigcomm Test of Time
award [25].

IP flow durations: In 1999, Jennifer Rexford, Anees Shaikh, and Kang Shin at
AT&T were working on routing IP flows to create better load balancing. Their
goal was to reroute only 1% of the IP flows. Would that be enough? Fortunately,
their measurements showed that the number of packets in IP flows follows a
heavy-tailed Pareto distribution. Consequently, the 1% largest IP flows (those
with the most packets) contain about 50% of the bytes in all flows. By rerouting
only 1% of the flows, they were able to redistribute half the load. Their paper
appeared in Sigcomm 99 [69] and generated a large group of follow-up papers
dealing with sampling methods for how to detect which flows are large, based
on using the DFR property and the knowledge of how many packets the flow has
sent so far.

Implications for designing scheduling policies: Around this same time, my
students and I, in collaboration with Mark Crovella at Boston University, started
a project called SYNC (Scheduling Your Network Connections). The goal was
to improve the performance of web servers by changing the order in which they
scheduled their jobs to favor requests for small files over requests for large files.
Clearly favoring requests for small files over large ones would decrease mean
response time. However, people had not tried this in the past because they were
afraid that the requests for large files would “starve” or at least be treated unfairly
compared to requests for small files. Using the heavy-tailed property of web
file sizes, we were able to prove analytically and in implementation that this
fear is unfounded for the distribution of web files. The crux of the argument
is that, although short requests do go ahead of long requests, all those short
requests together make up very little load (more than half the load is in the
top 1% of long requests) and hence do not interfere noticeably with the long
requests [5, 17, 39]. In 2004, Ernst Biersack, Idris Rai, and Guillaume Urvoy-
Keller extended the SYNC results to TCP flow scheduling by exploiting the DFR
property of the Pareto distribution to discern which flows have short remaining
duration [58, 59].

Wireless session times, phone call durations, wealth, natural disasters:
There are many, many more examples of the Pareto distribution in measured

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

194 10 Heavy Tails: The Distributions of Computing

distributions involving jobs created by humans. Wireless session times have
been shown to follow a Pareto distribution [8]. Phone call durations have been
shown to follow a distribution similar to a Pareto. Human wealth follows a Pareto
distribution. Natural phenomena too follow Pareto distributions. For example,
John Doyle at Caltech has shown that the damage caused by forest fires follows
a Pareto distribution, with most forest fires causing little damage, but the largest
few forest fires causing the majority of the damage. The same property holds for
earthquakes and other natural disasters.

Given the prevalence of the Pareto distribution, there has been a great deal of
research interest in why the Pareto distribution comes up everywhere. Ideally,
we would like to prove something similar in nature to the Central Limit Theorem
(CLT), which explains the ubiquity of the Normal distribution, but this time for
the Pareto distribution. If you recall, CLT assumed that we are taking the average
of many i.i.d. random variables, each with finite variance. Suppose that we’re
taking the average of i.i.d. random variables, where these have infinite variance.
Does that lead to a different distribution than a Normal? Does it lead to a Pareto?
If you are interested in this question, and, more generally in the question of why
the Pareto distribution comes up, I recommend a book, The Fundamentals of
Heavy Tails [55].

10.10 Summary Table for Continuous Distributions

At this point, we have seen several continuous distributions. Just as we sum-
marized the mean and variance of our discrete distributions in Table 5.1, it is
worth taking the time to do the same for the continuous distributions. Table 10.1
summarizes the common continuous distributions.

10.11 Exercises

10.1 How variable is a Uniform distribution really?
The Uniform distribution feels highly variable, particularly when its end-
points are far apart. Consider X ~ Uniform(0, b), and assume that b is
large. What is C)2(as a function of 5? Do you still think the Uniform is
highly variable?

10.2 Failure rate
Let X be a continuous random variable with p.d.f. fx(¢),7 > 0 and c.d.f.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

10.11 Exercises 195

Distribution p.d.f. fx(x) Mean Variance
Exp(4) fx(x)=e™ P, x>0 1 .5

2
Uniform(a, b) fx(x) = ﬁ, ifa<x<b b% (sza)

Pareto(e), 0 < @ <2 fx(x) =ax~ "1 ifx > 1

X—pN\2
Normal(y, 0-2) fx(x) = —L—em3(5FH)", p o2

V2no

—00 < X < 00

10.3

10.4

Table 10.1 Common continuous distributions.

Fx(t) = P{X < t}. We define the failure rate of X to be rx (), where

Ix (1)

Fx (1)

Thus, rx(f)dt represents the probability that a 7-year-old item will fail in

the next dt seconds.

(a) Prove that for the Exponential distribution the failure rate is a constant.

(b) Prove that the Exponential distribution is the only non-negative distri-
bution with constant failure rate.

rx(t) =

Modeling distributions with low variability: the Erlang-k

The Erlang-k distribution is often used to model distributions, X, where 0 <
C)2(< 1. An Erlang-k distribution is a sum of k Exponentially distributed
“stages.” Formally, we say that X ~ Erlang-k (u) if

X=X1+X2+'~'+Xk,

where the X;’s are i.i.d., with X; ~ Exp(ku).
(a) Whatis E [X]?

(b) What is Var(X)?

(c) Whatis C%?

(d) What happens to X as k — co?

Hyperexponential distribution and DFR
We say that X follows a two-phase Hyperexponential distribution (written
H 2) if:

_ | Exp(u1) wiprob p
Exp(uz) w/prob1l—p°

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

196 10 Heavy Tails: The Distributions of Computing

where u; # yo.

(a) Prove that the Hyperexponential distribution has DFR. [Hint: Take the
derivative of the failure rate.]

(b) Explain intuitively why the Hyperexponential has DFR.

10.5 Squared coefficient of variation for the Hyperexponential
Consider three different distributions:
(i) X ~Exp(u =1)
(ii.) X ~ Exp(u =.01)
(iii.)
X ~ { Exp (1) w/prob. 0.99
Exp(u =0.01) w/prob. 0.01 °

For each distribution:
(a) Whatis E [X]?
(b) What is Var(X)?
(c) Whatis C3?

10.6 Why the Hyperexponential is good for modeling high variability
The Hyperexponential is good at modeling high-variability distributions.
To gain some intuition for why this is true, let us analyze the simple case
of a Degenerate Hyperexponential distribution, where one of the phases is
identically zero:

x - | Exp(pp) wiprob p
0 w/prob 1 —p °

(a) Whatis E [X]?
(b) What is C%?
(c) What values of C}Z(are possible?

10.7 Bounded-Pareto with negative parameter
A Pareto(«) distribution is defined with 0 < @ < 2. But what happens if
you set @ = —1? Let X ~ BoundedPareto(k, p, @), where @ = —1. What is
the density function fx(x)? What does this tell you about the distribution
of X?

10.8 The heavy-tail property
We explore three distributions for job size, all with mean 3, 000:
(a) Exponential distribution with rate Wlo()'
(b) BoundedPareto(k = 0.0009, p = 10'°, & = 0.5).
(c) BoundedPareto(k = 332.067, p = 10'%, o = 1.1).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

10.11 Exercises 197

In each case, compute the fraction of load, g, made up by just the top
(largest) 1% of all jobs. For a non-negative job size distribution, X, with

density fx(-),
-/['t in top 1%] th(t)dt

o tfx ()i

Also report the size cutoff, x, defining the top 1% of jobs. It may help to
use a symbolic math package to do this calculation.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

11 Laplace Transforms

In Chapter 6, we covered a type of generating function known as the z-transform,
which is particularly well suited to discrete, integer-valued, random variables.
In this chapter, we will introduce a new type of generating function, called
the Laplace transform, which is particularly well suited to common continuous
random variables.

11.1 Motivating Example

We start with a motivating example.
Question: Let X ~ Exp(1). How can we derive E [X 3] ?

Answer: By definition,

E [X°] =/ Bretdr.
0

While this is doable, it requires applying integration by parts many times —
enough to guarantee that our answer will be wrong. In this chapter, we will
see how Laplace transforms can be used to quickly yield the kth moment of
X ~ Exp(Q), for any k.

11.2 The Transform as an Onion

As in the case of the z-transform, we can think of the Laplace transform of a
random variable (r.v.) as an onion, where the onion is an expression that contains
all the moments of the r.v. The Laplace onion (Figure 11.1) looks different
than the z-transform onion (Figure 6.1), but the basic point is the same: higher
moments are stored deeper inside the onion and thus more peeling (tears) are
required to get to them.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

11.2 The Transform as an Onion 199

E[Xx]
« E[X°]
/4 S E[X°]
- ——E[x*]

Figure 11.1 The Laplace transform onion.

Definition 11.1 The Laplace transform, L/ (s), of a continuous function,
f(1), t =0, is defined as

L¢(s) =/0 e T f(t)dt.

Observe that the Laplace transform is a function of s. Here s should be thought
of as a placeholder that keeps the layers of the onion separate, similar to the
function of z in the z-transform.

When we speak of the Laplace transform of a continuous r.v. X, we are refer-
ring to the Laplace transform of the probability density function (p.d.f.), fx (),
associated with X.

Definition 11.2 Let X be a non-negative continuous r.v. with p.d.f. fx(t). Then
the Laplace transform of X is denoted by X (s), where

X(s) = L (s) = ‘/000 e fx(t)dt =E [e_sx] .

Throughout, we will imagine that s is a constant where s > 0.

Question: What is X (0)?

Theorem 11.3 For all continuous random variables, X,

X(0)=1.

Proof:
X(0) =E[e "] =1. n

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

200 11 Laplace Transforms

11.3 Creating the Transform: Onion Building

The Laplace transform is defined so as to be really easy to compute for all the
commonly used continuous random variables. Below are some examples.

Example 11.4 Derive the Laplace transform of X ~ Exp(Ad):

. &) [Se] /1
X(s) = / e S le M dr = /1/ e gy =)
0 0 A+s

Example 11.5 Derive the Laplace transform of X = a, where a is some constant:

X(s) = %%

Example 11.6 Derive the Laplace transform of X ~ Uniform(a,b), a,b > 0:

X(s) = / e fx(1)dt
0
b
1
_ —St
—‘/a e b—adt

sb

Il
—_——
|
=] m|
©
S
+
Q
@l g
Q
~————
S
| —
N}

e~ 54 _ o~

s(b-a)

Question: How do we know that the Laplace transform converges?

Theorem 11.7 (Convergence of Laplace transform) X(s) is bounded for
any non-negative continuous r.v. X, assuming s > 0.

Proof: Observe that
et <1,

for all non-negative values of ¢. Since s > 0, it follows that
et =(e") < 1.
Thus:
X(s) = /Oooe—”fx(t)dz < /Om 1- fx(t)dt = 1.]

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

11.4 Getting Moments: Onion Peeling 201

Question: Why don’t we use the z-transform for continuous random variables?

Answer: We could, in theory. It just looks uglier. Consider, for example, the
z-transform of X ~ Exp(A):

X(z)=E [2¥] = / . 7 de™Mdt.
1=

This doesn’t look fun to integrate! However, it can be done, if we first express 7z’
as e! "2, Try it!

11.4 Getting Moments: Onion Peeling

Once we have created the onion corresponding to r.v., X, we can “peel its layers”
to extract the moments of X.

Theorem 11.8 (Onion peeling) Ler X be a non-negative, continuous r.v. with
p-d.f. fx(t),t = 0. Then:

X'(s)| _ =-EIX]

X" (s) L =E[X]
X)) =-E[x
X" (s) L =E[X]

Note: If the above moments are not defined at s = 0, one can instead consider
the limit as s — 0.

Example 11.9 (Higher moments of Exponential) Derive the kth moment of
X ~ Exp(A):

X(s) = T A +s)7!

R()=-11+97 = E[Xl=7
X'(s)=20(A+5) = E[X?= %
X"(s)= -3+ = E[X)]-= %

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

202 11 Laplace Transforms

‘We can show via induction that:
k!
k] _
E[X*] = e

Proof: [Theorem 11.8] Below we provide a sketch of the proof argument. A
more compact version of this proof is given in Exercise 11.3. However, for now
we choose to write it out this way so that you can visualize exactly how the
moments “pop” out of the transform when it’s differentiated.

We start with the Taylor series expansion of ¢ ~57:

(0?0 0t

—st _ 1 _
e =1-(st)+ o 3l + 0

2 3 4
e 10 = 1) =) 0+ S 0 = S i+ By -

00 00 00 o) 2
/Oe“”f(t)dt:/0 f(t)dt—/o (st)f(t)dt+/O %f(t)dt—~-~

~ SZ S3 s4 SS
X(s)=1-sE[X] + —E [x2] L) [x3] +2E [X4] - E [x5] b
2! 31 41 51

X'(s) =-E[X] + sE [XZ] - %SZE [X3] + %S3E [X4] - %s“E [XS] T

X'(0)=-E[X]V

X"(s)=E [XZ] - sE [X3] + %szE [X“] - %S?’E [XS] P
|

X" (0) = E [XZ

P10 <-u] o k][]
X" (0) = —E [x3] v
And soon ... u

Question: At this point, you might be wondering why we don’t define the Laplace
transform of X to be E [eSX] rather than E [e“‘X] . What would be the pros and
cons of using E [esx] ?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

11.6 Conditioning 203

Answer: On the plus side, using E [esx] would obviate the need for the alter-
nating negative signs. On the minus side, we would not have the convergence
guarantee from Theorem 11.7.

As in the case of z-transforms, we will assume that the Laplace transform (when
it converges) uniquely determines the distribution.

11.5 Linearity of Transforms

Just as we had a linearity theory for z-transforms, we have a similar result for
Laplace transforms. Again, the random variables need to be independent!

Theorem 11.10 (Linearity) Let X and Y be continuous, non-negative, inde-
pendent random variables. Let Z = X + Y. Then,

Z(s) = X(s) - Y(s).

Proof:

e_SX] -E [e_SY] (because X LY)

11.6 Conditioning

Conditioning also holds for Laplace transforms, just as it held for z-transforms:

Theorem 11.11 Let X, A, and B be continuous random variables where

X = A w/prob p
" | B w/hprob1-p

Then,
X(s)=p-A(s)+ (1 - p)- B(s).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

204 11 Laplace Transforms

Proof:
X(s) =E[e_SX]
=E [e_SX|X=A] -p+E [e_sxlX:B] -(1-p)
=pE [e_SA] +(1-pE [e_SB]
= pA(s) + (1= p)B(s). .

Theorem 11.12 is a generalization of Theorem 11.11, where we condition not
just on two options, but a continuum of options. Theorem 11.12 is useful when
you have a r.v. that depends on the value of another r.v.

Theorem 11.12 Let Y be a non-negative continuous r.v., and let Xy be a
continuous r.v. that depends on Y. Then, if fy(y) denotes the p.d.f. of Y, we
have that

Ew=/WZ®ﬁw@.
y

Proof: Observe that it is the fact that a transform is just an expectation that allows
us to do the conditioning below:

Xy (s) = E[e™%] =/ E[e|Y =y] fr()dy

y=0

=/‘wakﬁ®®
y=0

:/'Zﬁyﬁmw. .
y=0

An example of where Theorem 11.12 is used is given in Exercise 11.13. We will
see many more examples when we get to later chapters on stochastic processes.

11.7 Combining Laplace and z-Transforms

Consider again the sum of a random number of random variables, similarly
to what we did in Chapter 6, but this time where the random variables being
summed are continuous.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

11.8 One Final Result on Transforms 205

Theorem 11.13 (Summing a random number of i.i.d. random variables)
Let X1, X2, X3, ... be i.i.d. continuous random variables, where X; ~ X. Let N
be a positive discrete r.v., where N L X; for all i. Let

N
S = Z Xi.
i=1
Then,
S(s) =N (;?(s)) ,

that is, the z parameter of N () has been replaced by X (s).

Example 11.14 (Transform of a Poisson number of i.i.d. Exponentials)
Derive the Laplace transform of a Poisson(1) number of i.i.d. Exp(u) random
variables.

Recall that for N ~ Poisson(1) we have that N(z) = e 1(1=2)_ Recall likewise
that for X ~ Exp(u) we have that

J7i

X(s) = St

From this it follows that

_ _ K A
=e /l(l S+l‘) :e_ﬁ_

S(s) = N(X(s)) = e~ 1172

u

S+

Proof: (Theorem 11.13) Let St (s | N = n) denote the Laplace transform of S
~ —~ n
given N = n. By Theorem 11.10, S(s | N =n) = (X(s)) . By conditioning,

5(s) =iP{N=n}§(s IN=n)= iP{Nzn} (X“(s))"
n=0 n=0

=N (;?(s)) . n

11.8 One Final Result on Transforms

Normally we look at the Laplace transform of the p.d.f., but we could also ask
about the Laplace transform of an arbitrary function. Theorem 11.15 considers
the Laplace transform of the cumulative distribution function (c.d.f.) and relates
that to the Laplace transform of the p.d.f.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

206 11 Laplace Transforms

Theorem 11.15 Let B(x) be the c.d.f. corresponding to p.d.f. b(t), wheret > 0.
That is,

B(x) = /Oxb(t)dt.

Let
b(s) = Ly (s) = / e *'b(t)dt.
0
Let
= 0 0 X
B(s) = Lp(x)(s) = / e **B(x)dx = / e‘”/ b(r)dtdx.
0 0 0
Then,
= b
B(s) = &
s
Proof: The proof is just a few lines. See Exercise 11.4. L

11.9 Exercises

11.1 Conditioning practice
Let X; ~ Exp(u;). Let Xo ~ Exp(uz). Assume X; L X5. Let

X1 w/prob %
X =19 X1+X, w/prob %
1 w/prob ¢

What is X (5)?

11.2 Effect of doubling B
Let X ~ Exp(2). Let Y = 2X. What is Y (s)?

11.3 Compact proof of onion peeling
In this problem we provide a more compact proof of Theorem 11.8. Let
X be a non-negative, continuous r.v. with p.d.f. fx(¢),¢ > 0. Prove that:
d—k)?(s) = (-1)*E [x*]
dsk s=0 ‘

[Hint: Bring the derivative into the integral of X (s) and simplify.]

11.4 Relating the transform of the c.d.f. to the transform of the p.d.f.
Prove Theorem 11.15.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

11.9 Exercises 207

11.5 Inverting the transform
You are given that the Laplace transform of r.v. X is:

~ 3e73s
X(s) = ——.
(s) 3+4s+s?
How is X distributed? You can express X in terms of other random

variables.

11.6 Two species of onions
We have defined two types of onions: the z-transform and the Laplace
transform. Show that these are actually the same. Let X be ar.v.
(a) Show that X(s) becomes X (z) when s is a particular function of z.
(b) Show that X(z) becomes X (s) when z is a particular function of s.

11.7 Sum of Geometric number of Exponentials
Let N ~ Geometric(p). Let X; ~ Exp(u), where the X;’s are independent.
Let Sy = Zf\:/ | Xi. Use transforms to prove that Sy is Exponentially
distributed and derive the rate of Sy .

11.8 Downloading files

You need to download two files: file 1 and file 2. File 1 is available via
source A or source B. File 2 is available only via source C. The time to
download file 1 from source A is Exponentially distributed with rate 1.
The time to download file 1 from source B is Exponentially distributed
with rate 2. The time to download file 2 from source C is Exponentially
distributed with rate 3. All of these download times are independent. You
decide to download from all three sources simultaneously, in the hope
that you get both file 1 and file 2 as soon as possible. Let T denote the
time until you get both files. What is T(s)?

11.9 Two-sided Laplace transform: Normal distribution
In the case where a distribution can take on negative values, we define the
Laplace transform as follows: Let X be ar.v. withp.d.f. f(¢), —c0 < t < oc0:

)?(s)=Lf(s)=/ e f(1)dt.

—00

Let X ~ Normal(0, 1) be the standard Normal. Prove that

Y(s):e% (11.1)

Note: More generally, if X ~ Normal(u, 02), then

2 2

X(s) = e~sH*1s70”, (11.2)

You only need to prove (11.1).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

208 11 Laplace Transforms

11.10 Sum of two Normals
Let X ~ Normal(uy,o?2). Let Y ~ Normal(uy,dyz). Assume X 1 Y.
Derive the distribution of X + Y. First try doing this without Laplace
transforms. After you give up, use Laplace transforms, specifically (11.2).

11.11 Those tricky interview questions
Let X,Y ~ Normal(0, 1) be i.i.d. random variables. Derive P {X < 3Y}.

11.12 Heuristic proof of Central Limit Theorem (CLT) via transforms
You will derive a heuristic proof of the CLT. Let X;, X», . . . be a sequence
of i.i.d. non-negative random variables, each with distribution X and mean
u and variance o-2. CLT says that the distribution of

X1+Xo0+- -+ X, —nu

11.3
—~ (11.3)
tends to the standard Normal as n — oo. Specifically,
P{X1+X2+'”+Xn_n'u§a}—>— e 2dx, as n — .
O'\/E 27‘(-0

We’ll show that the Laplace transform of (11.3) (roughly) converges to
that of the standard Normal (11.1), hence the underlying distributions are
the same. Let

X1+ X0+ + Xy

= 7 .

(a) Start with the case where ¢ = 0 and o2 = 1.
(i) Show that

S

n

sE[X] | SE[X?]
N Vn " 2n

(ii) Using what you know about u and o2, show that

E(s) ~ |1

S(s) - N,1)(s), asn — oo.

(b) Now go back to the case where u # 0 and o # 1.
(1) Define Y; = X‘T;” What are the mean and variance of Y;?

(i) Based on (a), what can you say about P {% < a} ?

(iii) What does (ii) tell us about P {W < a}?
11.13 Random variable with random parameters
The time until a light bulb burns out is Exponentially distributed with
mean somewhere between % year and 1 year. We model the lifetime using
r.v. Xy where Xy ~ Exp(Y) and Y ~ Uniform(1, 2). Derive)?;(s).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Part IV

Computer Systems
Modeling and Simulation

The goal of this part of the book is to learn how to run simulations of computer
systems. Simulations are an important part of evaluating computer system perfor-
mance. For example, we might have a new load-balancing algorithm, and we’re
trying to understand whether it reduces the mean job response time or improves
utilization. Or we might have a queueing network, where we want to understand
the fraction of packet drops when we double the arrival rate of packets. Being
able to simulate the computer system is an easy way to get answers to such
questions.

Before we can dive into the art of simulation, we first have to understand a few
things about modeling. In Chapter 12 we study the Poisson process, which is the
most common model used for the arrival process into a computer system. The
Poisson process is not only easy to simulate, it also has many other beneficial
properties when it comes to simulation and modeling.

In Chapter 13 we study the art of generating random variables for simulation.
This is an extremely important part of simulation, since we often have to generate
the interarrival times of jobs and the service requirements of jobs. Each of these
is typically modeled by some random variable that is a good estimate of the
empirical (true) workload. In our simulation, we need to generate instances of
these random variables.

Finally, in Chapter 14 we are ready to understand how to program an event-driven
simulation. We discuss several examples of event-driven simulation, focusing on
the state that needs to be tracked and also on how to measure the quantities that
we need from our simulation.

When simulating a computer system, we’re often simulating a queueing network.
We cover the basics of queueing networks in Chapter 14. However, we defer a
more detailed discussion of queueing networks to Chapter 27, after we’ve covered
Markov chains, which allow us to understand more about the analysis of queueing
networks.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

12 The Poisson Process

This chapter deals with one of the most important aspects of systems modeling,
namely the arrival process. When we say “arrival process” we are referring to the
sequence of arrivals into the system. The most widely used arrival process model
is the Poisson process. This chapter defines the Poisson process and highlights its
properties. Before we dive into the Poisson process, it will be helpful to review
the Exponential distribution, which is closely related to the Poisson process.

12.1 Review of the Exponential Distribution

Recall we say that a random variable (r.v.) X is distributed Exponentially with
rate A, written X ~ Exp(1), if its probability density function (p.d.f.) is

Ae™™ x>0
fX(x)_{O x<0"

The cumulative distribution function (c.d.f.), Fx(x) = P{X < x}, is given by

P = [pear={ o7

X x>0
x <0

Fx(x)=1-Fx(x)=e ™, x>0.

Observe that both fx(x) and Fx(x) drop off by a constant factor, e, with each
unit increase of x.

Recall also that for X ~ Exp(1), we have:

1 1 vV
E[X]=~ Var(X)=; Cy= Ea[")(;]? —1

In particular, the rate of the Exponential distribution, A, is the reciprocal of its
mean. Also recall that an Exponentially distributed r.v. X exhibits the memory-
less property, which says that:

P{X>s+t|X>s}=P{X>1t}, Vs, t>0.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

12.2 Relating the Exponential Distribution to the Geometric 211

Finally, recall that the Exponential distribution has constant failure rate equal
to A (Exercise 10.2).

Question: Suppose that the lifetime of a job is Exponentially distributed with
rate A. Suppose that the job has already run for # seconds (its age is t). Consider
a very small 6. What does the constant failure rate say about the probability that
the job will complete in the next ¢ seconds?

Answer: The probability that a job of age ¢ will complete in the next § seconds
is A6, independent of ¢. See Chapter 10 for a review of the notion of failure rate.

12.2 Relating the Exponential Distribution to the Geometric

It can be proven that the Exponential distribution is the only continuous-time
memoryless distribution.

Question: What is the only discrete-time memoryless distribution?
Answer: The Geometric distribution.

When reasoning about Exponential random variables, we find it very helpful
to instead think about Geometric random variables, for which we have more
intuition. We can think of the Exponential distribution as the “continuous coun-
terpart” of the Geometric distribution by making the following analogy:

o The Geometric distribution can be viewed as the number of flips needed to get
a “success.” The distribution of the remaining number of flips is independent
of how many times we have flipped so far.

e The Exponential distribution is the time until “success.” The distribution of
the remaining time is independent of how long we have waited so far.

To unify the Geometric and Exponential distributions, we introduce the notion
of a “d-step proof.” Throughout the chapter, we will use this way of thinking to
come up with quick intuitions and arguments. The idea is to imagine each unit
of time as divided into n pieces, each of duration ¢ = %, and suppose that a trial
(coin flip) occurs every ¢ time period, rather than at unit times.

We now define a r.v. Y, where Y is Geometrically distributed with probability
p = A6 of getting a head, for some small 6 — 0. However, rather than flipping
every unit time step, we flip every d-step. That is,

Y ~ Geometric(p = A6 | Flip every d-step).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

212 12 The Poisson Process

Observe that Y denotes the number of flips until success. Now define Y* to be
the time until success under Y:

Y* = Time associated with Y.

Observe that as 6 — 0 (or n — o0), Y* becomes a positive, real-valued r.v.,
because success can occur at any time.

Question: What is E [Y*]? How is Y* distributed?

Answer:

E [Y*] = (avg. # trials until success) - (time per trial)
1 1

“oa T
To understand the distribution of Y*, we express P {Y* > ¢} as the probability

that all the trials up to at least time ¢ have been failures (i.e., we have had at least
t/6 failures).

(1-062)%

Bt
()
oA

= [1-

| o1

—s [e7 'Y, as 6 — 0, by (1.9)
e,

t
P{Y*">t}=P {at least 3 failures}

-~
=
&‘_
S
~
5

But P {Y* > t} = e~ implies that Y* ~ Exp(2).
We have thus proven the following theorem, which is depicted in Figure 12.1.
Theorem 12.1 Let X ~ Exp(A). Then X represents the time to a successful

event, given that an event occurs every 0-step and is successful with probability
A0, where 6 — 0.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

12.3 More Properties of the Exponential 213

v

Figure 12.1 Geometric depiction of the Exp(Q) distribution. Time is divided into steps of
duration 6, and a coin (with probability A5 of “heads”) is flipped only at each §-step.

12.3 More Properties of the Exponential

Before we continue, here is a useful definition.

Definition 12.2
A

f=o0@) if lim:x<=0.

For example, f = 62 is 0(8) because %2 — 0as 6 — 0. Likewise f = V6 is not
0(0). Basically, a function is 0(6) if it goes to zero faster than 6, as § — 0.

This definition may seem a little odd, because in general asymptotic notation (as
in Section 1.6) “big-O” and “little-0” are defined in terms of some n — oo, not
as § — 0. When we use § — 0, everything is flipped.

We now illustrate how to combine the o () notation with the discretized view of
an Exponential to prove a few properties of the Exponential distribution.

Theorem 12.3 Given X| ~ Exp(Ad;), X ~ Exp(43), X1 L X,
A
A1+ A ’

P{X1 < Xz} =

Proof: (Traditional algebraic proof)
P{X] <X2}:/ P{X] <X2|X2 :x}-fz(x)dx
0
= / P{X, <x|X>=x} dre ¥dx
0

:/ P{X, <x} - Aae %y, since X; L X,
0

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

214 12 The Poisson Process

Continuing,

P{X| < X>} :/ (1 — e M%) (e %) dx
0

:/ /lze_’lzxdx—/lzf e~ ()X gy
0 0

Now for a more intuitive proof, by analogy with the Geometric distribution:

Proof: (Intuitive Geometric proof) Success of type 1 occurs with probability
416 on each ¢-step. Independently, success of type 2 occurs with probability 4,6
on each d-step. P{X| < X;} is really asking, given that a success of type 1 or
type 2 has occurred, what is the probability that it is a success of type 1?

P {type 1}

P {type 1 or type 2}
i 16
L6+ 6 — (116)(1206)
B 1,6
T 216+ 426 — 0(9)

/7.1 +/12 - L{?)

A
/11 +/12

P {type 1 | type 1 or type 2} =

— asd — 0. []

Example 12.4 (Which fails first?)

There are two potential failure points for our server: the power supply and the
disk. The lifetime of the power supply is Exponentially distributed with mean
500, and the lifetime of the disk is independently Exponentially distributed with
mean 1,000.

Question: What is the probability that the system failure, when it occurs, is
caused by the power supply?

€
Answer: —%—.

500 T 7000

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

12.3 More Properties of the Exponential 215

Theorem 12.5 Given X; ~ Exp(11), Xo ~ Exp(d2), X1 L X5. Let
X = min(Xy, X3).

Then
X ~ Exp(A1 + Ap).

Proof: (Traditional algebraic proof)

P{X >t} = P{min(X, Xp) > ¢t}
=P{X; >trand X, > 1}

=P{X; >t} - P{Xp >1}
e—/llt‘e—/lzt

= o~ (li+2)t

Here is an alternative argument by analogy with the Geometric distribution:

Proof: (Intuitive Geometric proof)

A trial occurs every o-step.

The trial is “successful of type 1" with probability 4,4.

The trial is “successful of type 2”” independently with probability 1;6.
We are looking for the time until there is a success of either type.

A trial is “successful” (either type) with probability

116+ 26 — (,6) - (1a6) = 6 (/11 Ny 0(66)).
[—

rate
e Thus the time until we get a “success” is Exponentially distributed with rate

0
/11+/12—¥,

and as ¢ — 0 this gives the desired result.]

Question: In the server from Example 12.4, what is the time until there is a
failure of either the power supply or the disk?

Answer: Exponential with rate (500 + 1000).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

216 12 The Poisson Process

12.4 The Celebrated Poisson Process

The Poisson process is the most widely used model for arrivals into a system.
Part of the reason for this is that it is analytically tractable. However, the Poisson
process is also a good model for any process of arrivals which is the aggregation
of many independently behaving users. For example, the Poisson process is a
good representation of the arrivals of requests into a web server, or the arrivals
of jobs into a supercomputing center, or the arrivals of emails into a mail server.
The “Limiting Theorem,” see [45, pp. 221-228] explains how an aggregate of
independent arrival processes leads to a Poisson process. The point is this: If you
look at the request stream from an individual user, it will not look like a Poisson
process. However, if you aggregate the requests from a very large number of
users, that aggregate stream starts to look like a Poisson process.

Before we define a Poisson process, it helps to recall the Poisson distribution.
Question: If X ~ Poisson(1), what is px (i), E [X], and Var(X)?

Answer:
—A3i

px(i)=——, i=012,...
L

E[X] = Var(X) = A.
A Poisson process is a particular type of arrival sequence. We will need a little

terminology. Figure 12.2 shows a sequence of arrivals. Each arrival is associated
with a time. The arrival times are called “events.”

Events

| } » Time

Figure 12.2 Sequence of events.

Definition 12.6 For any sequence of events, we define N(t), t > 0 to be the
number of events that occurred by time ¢ (including time t).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

12.4 The Celebrated Poisson Process 217

Definition 12.7 An event sequence has independent increments if the num-
bers of events that occur in disjoint time intervals are independent. Specifically,
forallty <t) <ty <...<ty then quantities below are independent:

N(t1) —N(1) L N(2) -N(t1) L ... L N(tn) = N(tn-1).
Example 12.8 (Examples of sequences of events)

Consider three sequences of events:

(a) births of children
(b) people entering a store
(c) goals scored by a particular soccer player.

Question: Do these event processes have independent increments?

Answer:

(a) No. The number of births depends on the population size, which increases
with prior births.

(b) Yes.

(c) Maybe. Depends on whether we believe in slumps!

Definition 12.9 The event sequence has stationary increments if the number
of events during a time period depends only on the length of the time period
and not on its starting point. That is, N(t +s) — N(s) has the same distribution
for all s.

Definition 12.10 (First definition of the Poisson process) A Poisson process
with rate A is a sequence of events such that

1. N(0) =0.

2. The process has independent increments.

3. The number of events in any interval of length t is Poisson distributed with
mean At. That is, Vs,t > 0,

e—/lt (/lt)"

P{N(t+s)—N(s)=n} = .

n=0,1,...

Question: Why is A called the “rate” of the process?

Answer: Observe that E [N ()] = At, so the rate of events is w =A

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

218 12 The Poisson Process

Question: Why only “independent increments”?

Answer: The third item in the definition already implies stationary increments,
because the number of events within an interval of length 7 depends only on 7.

Observe that the assumption of stationary and independent increments is equiv-
alent to asserting that, at any point in time, the process probabilistically restarts
itself. That is, the process from any point on is independent of all that occurred
previously (by independent increments) and also has the same distribution as
the original process (by stationary increments). Simply put, the process has no
memory. This leads us to the second definition of the Poisson process.

Definition 12.11 (Second definition of the Poisson process) A Poisson pro-
cess with rate A is a sequence of events such that the inter-event times are i.i.d.
Exponential random variables with rate A and N (0) = 0.

Question: Which definition of a Poisson process would you use when trying to
simulate a Poisson process, the first or the second?

Answer: The Second Definition seems much easier to work with. The times
between arrivals are just instances of Exp(1). We will learn how to generate
instances of Exp() in Chapter 13.

First Definition = Second Definition

Let 71,75, T3, . .. be the inter-event times of a sequence of events. We need to
show that 7; ~ Exp(1), Vi. By the first definition,

—At 0
At
e (A1) o

P{T > 1} =P{N(1) =0} = —

Next,

n n
P{Tn+1 >t’ Z]}:s}:P{Oeventsin (s,s+t)| ZT":S}
i=1 i=1

=P{0eventsin (s,s +¢)}, by indpt. increments

=e¢ Y, Dy stationary increments.

Second Definition = First Definition

Feller [27, p. 11] has a rigorous algebraic proof that the Second Definition
implies the First Definition. The idea is to show that the sum of n i.i.d. Exp(2)

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

12.5 Number of Poisson Arrivals during a Random Time 219

random variables has a Gamma, I'(n, A) distribution. Feller then uses the I'(n, 1)
distribution to show that N (¢) follows a Poisson distribution.

Rather than going through this tedious algebraic proof, we instead provide an
argument by analogy with the Geometric distribution: N (z) refers to the number
of arrivals by time . Our goal is to prove that N(¢) ~ Poisson(Af). Think of
an arrival/event as being a “success.” The fact that the interarrival times are
distributed as Exp(1) corresponds to flipping a coin every d-step, where a flip is
a success (arrival) with probability A46:

N(t) = Number of successes (arrivals) by time ¢

~ Binomial (# flips, probability of success of each flip)
~ Binomial (L,/lé) .
0
Observe that as § — 0, L becomes very large and 16 becomes very small.
Question: Now what do you know about Binomial(n, p) for large n and tiny p?

Answer: Recall from Exercise 3.8 that
Binomial(n, p) — Poisson(np), asn — oo and p — 0.

So,as 6 — 0,

t
N(t) ~ Poisson (5 . /16) = Poisson(Af).

12.5 Number of Poisson Arrivals during a Random Time

Imagine that jobs arrive to a system according to a Poisson process with rate
A. We wish to understand how many arrivals occur during time S, where S is a
r.v. Here, S might represent the time that a job is being processed. Assume that
S is independent of the Poisson process. Let Ag denote the number of Poisson
arrivals during S. It is useful to first talk about A;, the number of arrivals during
a constant time ¢. Notice that A; is what we normally refer to as N(t).

Definition 12.12 Assume that arrivals occur according to a Poisson process
with rate 1. We define

A; = N(t) = Number of arrivals during time t

and

As = Number of arrivals during time r.v. S.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

220 12 The Poisson Process

Question: What is E [A;]?

Answer: E [A;,] = E[N(?)] = 1t

Question: What is Var(A;)?

Answer: Recall that A, = N(t) ~ Poisson(At). Thus Var(A;) = At.
Question: If we want to know the moments of Ag, what should we do?

Answer: Condition on the value of S. For example, to get the first moment of
As we write:

E [As] =/°°E[AS|S=r] fs(tydr

=0

/ E[A,]- fs()dt

=0

/oo At - fs(t)dt

=0
- IE[S]. (12.1)

12.6 Merging Independent Poisson Processes

In networks, it is common that two Poisson processes are merged, meaning that
they’re interleaved into a single process as shown in Figure 12.3.

v

PP. (L)) x X X

v

PP. (1)

X
.
X

Merge M - - M M M

Figure 12.3 A Poisson process with rate A is merged with a Poisson process with rate
Ar.

Theorem 12.13 (Poisson merging) Given two independent Poisson pro-
cesses, where process 1 has rate A1 and process 2 has rate A, the merge
of process I and process 2 is a single Poisson process with rate A1 + A,.

Proof: Process 1 has Exp(A;) interarrival times. Process 2 has Exp(A1,) inter-

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

12.7 Poisson Splitting 221

arrival times. The time until the first event from either process 1 or process 2
is the minimum of Exp(4;) and Exp(A,), which is distributed Exp(1; + 1)
(Theorem 12.5). Likewise, the time until the second event is also distributed
Exp(Ad; +A2), etc. Thus, using the Second Definition, we have a Poisson process
with rate A; + A». []

Proof: (Alternative) Let N;(¢) denote the number of events in process i by time
t:

Ni(t) ~ Poisson(A;t)

N;(t) ~ Poisson(A,t).

Yet the sum of two independent Poisson random variables is still Poisson with
the sum of the means, so

Ni() + N»(t) ~ Poisson(A;t + Aot).
E/_/ .
merged process

12.7 Poisson Splitting

It is also common that a stream of arrivals is split into two streams, where each
arrival is sent to the A stream with probability p and to the B stream with
probability 1 — p. Figure 12.4 illustrates the splitting of a Poisson stream.

LV w w LV
n LY LY n

P.P. (1) >
A’s only 25 % >
A A
B’s only X X% >

B B

Figure 12.4 Splitting a Poisson process with rate A into an A stream and a B stream,
based on coin flips.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

222 12 The Poisson Process

Theorem 12.14 (Poisson splitting) Given a Poisson process with rate A, sup-
pose that each event is classified “type A” with probability p and “type B” with
probability 1 — p. Then type A events form a Poisson process with rate pA, type
B events form a Poisson process with rate (1 — p)A, and these two processes
are independent. Specifically, if Na(t) denotes the number of type A events by
time t, and N (t) denotes the number of type B events by time t, then

P{Na(1) =n,Ng(t) = m} =P {Na(t) = n} - P{Np(1) = m}
_ e—/ltp (/ltp)n . e—/lt(l—p) (/U(l _p))m
a n! m! ’

This is one of those theorems that initially seems very counter-intuitive. It is really
not clear why the times between the type A events end up being Exponentially
distributed with rate Ap as opposed to something else. Consider the sequence
of events comprising the original Poisson process, where a coin with bias p is
flipped at each event. When the coin flip comes up “head,” the event is classified
as “type A.” If we look at just the type A events, we might imagine that some
pairs of consecutive type A events are separated by Exp(1) (where we had two
heads in a row) while other pairs of consecutive type A events are separated by
multiple Exp(2) periods (where we didn’t have a head for a while). It is not at
all clear why the times between type A events are actually Exp(4p).

Before proving Theorem 12.14, we provide intuition for what’s going on, by again
making use of d-step arguments. The original process has Exp(A) interarrival
times, which is equivalent to tossing a coin every 6§ — O steps, where the coin
comes up “success’ with probability 16. We refer to this A coin as the first coin.
Now we can imagine a second coin being flipped, where the second coin has
probability p of success. Only if both the first and second coins are successes at
the same time do we have a type A success. But this is equivalent to flipping just a
single coin, with probability A6 p of success. The time between successes for the
single coin is then distributed Exp(Ap). This proof is illustrated in Figure 12.5
and can be repeated for type B events.

Proof: [Theorem 12.14] This proof is taken from [64, p. 258]. What makes this
proof precise is that (1) it uses no approximations and (2) it explicitly proves
independence. Let
N(t) = Number of events by time ¢ in the original process
N4 () = Number of type A events by time ¢
Np(t) = Number of type B events by time 7.

We start by computing the joint probability that there are n events of type A and

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

12.7 Poisson Splitting 223

Second coin o o XX
First coin @ @ e0e

0 0 20
SUCCess
IR
| 1 1 1 ; 1 e
0 0 20 :

time = Exp(4p)

Figure 12.5 A “type A success” only occurs if both the A0-coin and the p-coin are heads.

m events of type B by time 7.
P{Na(t) = n,Ng(1) = m}

=ZP{NA(I) =n,Ng(t) =m | N(1) = k} - P{N(1) = k}
k=0
=P{Nas(t) =n,Ng(t) =m | N(@t) =n+m} -P{N() =n+m}

(because this is the only non-zero term in the above sum)

“ar (/U)n+m
=P{Na(t) =n,Ng(t)=m | N(t) =n+m} -e ' ———
(n+m)!
n+m\ , _ (Ap)mm
= 1= p)™ St A
(u)p (I-p)™e CETT
where the last line comes from the Binomial.
Simplifying, we have:
! /‘lt n+m
PNA() = Np(t) = my = L g pymgmar A
nlm! (n+m)!
= e_’ltp—(/up)n . e"lt(l_p)—(/u(l _ p))m. (12.2)
n! m!

To illustrate that the type A process and type B process are independent, we
now compute the marginal probability P{N(z) = n} by summing the joint

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

224 12 The Poisson Process

probability, (12.2), over all values of m:
P {Na(t) =n} = Z P {NA(t) = n, N (1) = m}

o—Atp AP) (/UP) Z —Ar(1-p) (At(1 = p))™
m!
— e—/ltp (/ltp) .
n!
In a similar fashion we compute the marginal probability P {Ng(z) = m}, ob-
taining:
~a1-p) (AL = p))™

P{Ng(t)=m}=e
m!

Hence, by (12.2) we have that
P{Na(1) =n,Ng(t) =m} =P {Na(t) =m} - P{Np(t) =m}, (12.3)

showing that the processes are independent. Now because the other conditions in
the First Definition such as independent increments are also obviously satisfied,
we have that {N(t),t > 0} forms a Poisson process with rate 1p and that
{Npg(t),t = 0} forms an independent Poisson process with rate (1 — p). [

12.8 Uniformity

Theorem 12.15 Given that one event of a Poisson process has occurred by
time t, that event is equally likely to have occurred anywhere in [0, t].

Proof: Let 71 denote the time of that one event:

P <s|N(t)=1) = LA <sand N(D) = 1}

P{N(t) =1}
_ P{leventin [0,s] and O events in [s, 7]}

e—/lt(/lt)l
1!

P {1 eventin [0,s]}-P{0eventsin [s,7]}
e~ . At
e A5 e) L (A(r - 5))°
e~ . At

~lu

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

12.9 Exercises 225

Generalization: If k events of a Poisson process occur by time ¢, then the k
events are distributed independently and uniformly in [0, 7] [62, pp. 36-38].

12.9

12.1

12.2

12.3

12.4

12.5

12.6

Exercises

Doubling Exponentials
Suppose that job sizes are distributed Exp(u). If job sizes all double, what
can we say about the distribution of job sizes now? Prove it.

Conditional Exponential
Let X ~ Exp(1). Whatis E [X2 | X < 1] ? [Hint: No integrals, just think!]

Stationary and independent increments

For a Poisson process with arrival rate A, let N(¢) denote the number of
arrivals by time ¢. Simplify the following, pointing out explicitly where you
used stationary increments and where you used independent increments:

P{N(t) =10 | N(3) =2} (assume t > 3).

Poisson process definition

Suppose requests arrive to a website according to a Poisson process with
rate A = 1 request per ms. What is the probability that there are 5 arrivals
in the first 5 ms and 10 arrivals in the first 10 ms?

Packets of different colors

(a) A stream of packets arrives according to a Poisson process with rate
A = 50 packets/s. Suppose each packet is of type “green” with prob-
ability 5% and of type “yellow” with probability 95%. Given that
100 green packets arrived during the previous second, (i) what is
the expected number of yellow packets that arrived during the previ-
ous second? And (ii) what is the probability that 200 yellow packets
arrived during the previous second?

(b) Red packets arrive according to a Poisson process with rate 1; = 30
packets/s. Black packets arrive according to a Poisson process with
rate 1o = 10 packets/s. Assume the streams are merged into one
stream. Suppose we are told that 60 packets arrived during one second.
What is the probability that exactly 40 of those were red?

Uniformity
Packets arrive according to a Poisson process with rate A. You are told

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

226 12 The Poisson Process

that by time 30 seconds, 100 packets have arrived. What is the probability
that 20 packets arrived during the first 10 seconds?

12.7 Poisson process products
Suppose customers arrive to a store according to a Poisson process with
rate A customers per second. Let N(¢) denote the number of arrivals by
time . What is E [N(s)N(¢)], where s < ¢?

12.8 Number of Poisson arrivals during S
Let As denote the number of arrivals of a Poisson process with rate
A during S, where S is a continuous non-negative r.v., and the Poisson
process is independent of S. You will derive Var(Ags) in two different
ways:
(a) Do it without transforms.
(b) Derive the z-transform of Ag and differentiate it appropriately.

12.9 Malware and honeypots

A new malware is out in the Internet! We want to estimate its spread

by time ¢. Internet hosts get infected by this malware according to a

Poisson process with parameter A, where A is not known. Thrasyvoulos

installs a honeypot security system to detect whether hosts are infected.

Unfortunately there is a lag time between when a computer is infected and

the honeypot detects the damage. Assume that this lag time is distributed

Exp(u). Suppose that the honeypot system has detected N(¢) infected

hosts by time ¢. Thrasyvoulos worries that, because of the lag, the number

of infected hosts is actually much higher than N{(¢). We ask: How many

additional hosts, N;(t), are expected to also be infected at time 7.

(a) Suppose that an infection happens at time s, where 0 < s < t. What
is the probability that the infection is detected by time ¢?

(b) Consider an arbitrary infection that happens before time f. What is
the (unconditional) probability, p, that the infection is detected by the
honeypot by time #?

(c) How can we use our knowledge of Nj(¢) to estimate A as a function
of Ny (1)?

(d) Use your estimate of A to determine the expected value of N»(7) as a
function of Ny (7).

12.10 Sum of Geometric number of Exponentials
Let N ~ Geometric(p). Let X; ~ Exp(u). Let Sy = Zf\il X;.
(a) What is the distribution of Sn ? Prove this using a -step argument.
(b) Based on what you learned in (a), whatis P {Sy > 1}?
(c) ForaPoisson process with rate A, where packets are colored “red” with
probability ¢, what is the variance of the time between red packets?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

12.9 Exercises 227

12.11

12.12

12.13

12.14

Reliability theory: max of two Exponentials

Redundancy is often built into systems so that if a disk fails there is no

catastrophe. The idea is to have the data on two disks, so that a catastrophe

only occurs if both disks fail. The time until a catastrophe occurs can be

viewed as the “max” of two random variables.

(a) Let X; ~ Exp(41). Let X, ~ Exp(4). Suppose X; L X,. What is
E [max(X1, X2)]?

(b) Let X; ~ Exp(4;). Let X, ~ Exp(42). Suppose X; L Xp. What is
E [max(X1, X2)]?

Exponential downloads

You need to download two files: file 1 and file 2. File 1 is available via
source A or source B. File 2 is available only via source C. The time to
download file 1 from source A is Exp(1). The time to download file 1
from source B is Exp(2). The time to download file 2 from source C is
Exp(3). You decide to download from all three sources simultaneously,
in the hope that you get both file 1 and file 2 as soon as possible. Let T
denote the time until you get both files.

(a) Whatis E [T]?

(b) Whatis P{T < t}?

Reliability theory: max of many Exponentials
Let X1, X3, ..., X, be i.i.d. with distribution Exp(1). Let

Z =max(X;, Xo,...,X,).

(a) Whatis E [Z]?

(b) Roughly, what does E [Z] look like as a function of n and A when n
is reasonably high?

(c) Derive the distribution of Z.

Conditional distribution
Let X ~ Exp(4dx) and Y ~ Exp(dy), where X L Y. Let Z = min(X,Y).
Prove that

(X|X<Y)~Z.

That is, show that P{X >t | X <Y} =P{Z > t}.

Before you start, take a minute to think about what this problem is saying:
Suppose for simplicity that X and Y are both drawn from Exp(1). Say I
put X in one hand and Y in the other, without looking. If you ask to see a
random hand, the value you get is distributed Exp(1). However, if you ask
me to look inside my hands and hand over the smaller of the two values,
then the value that I give you will no longer be distributed Exp(1).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

228 12 The Poisson Process

12.15 Two two-stage jobs
We have two jobs, X and Y, where each has two stages, as shown in
Figure 12.6. Both stages of a job must be completed in order. That is, to
complete job X, we need to first run X; and then run X,. Similarly, to
complete job Y we must run Y; followed by Y,. Assume that X, Xp, Y1,
and Y, are i.i.d. with distribution Exp(u). Suppose that job X and job ¥
start running at the same time.

Job X JobY

Figure 12.6 Figure for Exercise 12.15.

(a) What is the expected time until the first of these jobs completes?
(b) What is the expected time until the last of these jobs completes?

12.16 Population modeling

Naveen is interested in modeling population growth over time. He figures

it is reasonable to model the birth process as a Poisson process with some

average rate A. He also assumes that a person’s lifespan follows some

distribution, T, with c.d.f. Fr(¢) and tail F7(r) = 1 — Fr(t), where he

assumes that lifespans of individuals are independent. Let N(¢) denote

the population (number of people who are alive) at time ¢.

(a) Prove that E[N(1)] = A [,_ Fr(r — k)dk.

(b) Naveen reads that approximately A = 4 million people are born in the
United States per year. He can’t find a good distribution for lifespan,
T, but he notes that the average life expectancy is E [T] = 75 years. He
decides to approximate lifespan by the Uniform(50, 100) distribution.
Given these numbers, what can Naveen say about E [N (¢)]? Provide
formulas for the three cases: t < 50; 50 < ¢t < 100; and ¢ > 100.

(c) What does Naveen’s model say about E [N(f)] as t — oo, meaning
we're in steady state.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

13 Generating Random
Variables for Simulation

At this point, we have discussed many discrete and continuous distributions.
This chapter shows how we can generate instances of these distributions and
others. This is helpful when performing simulations of computer systems, as in
Chapter 14. For example, we might have a computer system where the inter-
arrival times of jobs are well modeled by an Exponential distribution and the
job sizes (service requirements) are well modeled by a Pareto distribution. To
simulate the system, we need to be able to generate instances of Exponential and
Pareto random variables. This chapter presents the two basic methods used for
generating instances of random variables. Both of these methods assume that we
already have a generator of Uniform(0, 1) random variables, as is provided by
most operating systems.?

13.1 Inverse Transform Method

To generate instances of a random variable (r.v.), X, this method assumes that:

1. We know the cumulative distribution function (c.d.f.) of X, that is, we know
Fx(x) =P{X < x}.
2. We can easily invert Fx(x), that is, we can get x from Fx(x).

The high-level plan is that we will generate a random instance of Uniform(0, 1)
(this is already available from our operating system), and then find a way to
translate that to an instance of X.

Actually, most operating systems provide a random integer between 1 and N = 232 — 1. This is
easy to convert into a Uniform (0, 1) by just dividing by N.

One cannot always trust the random number generator provided by one’s operating system. It is
worth reading the literature on what guarantees different random number generators provide and
on how to “seed” the random number generator [10].

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

230 13 Generating Random Variables for Simulation

13.1.1 The Continuous Case

We assume without loss of generality that X ranges from 0 to co. The method
works just as well when X has some finite upper bound.

Idea: Let u be our random instance from U(0, 1). We want to map u to x, where
x is an instance of the r.v. X. The key point is that the x that we output needs to
be consistent with the distribution of X.

Let’s suppose there is some mapping which takes each u and assigns it a unique
x. Such a mapping is illustrated by g~!(-) in Figure 13.1. Here, the y-axis shows
u, between 0 and 1, being mapped to an x on the x-axis between 0 and co.

Figure 13.1 [llustration of mapping g(-).

Question: Can you figure out what the mapping, g~'(+), should be?

Hint: Think about what property we want for our output. What should be the
probability of outputting a value between 0 and x?

Answer: A value in (0, x) should be output with probability Fx (x).
Question: What is the actual probability that g~!(-) outputs a value in (0, x)?

Answer: Because g~!(-) only maps values in (0,x) to values in (0,x), the
probability of outputting a value in (0,x) is the probability that the uniform
instance is in (0, u).

Question: And what is the probability that the uniform instance is in (0, «)?
Answer: u.

So we want that

u=P{0<U<u}=P{0< X <x}=Fxx).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

13.1 Inverse Transform Method 231

That is, we want

u=Fx(x) orequivalently x= F;l(u). (13.1)

Question: So what was the g(-) function in Figure 13.1?

Answer: g(-) = Fx(-), the c.d.f. of X.

Algorithm 13.1 (Inverse Transform method to generate continuous r.v. X)

1. Generateu € U(0, 1).
2. Return x = F}}l (u). That is, return x such that Fx(x) = u.

Example 13.2 Generate X ~ Exp(Q):

For the Exp (1) distribution,

F(x)=1-e .
So, by (13.1) we want,
x=F'(u)
F(x)=u
l-e ™=y
—Ax =1In(1 —u)
1
x= 3 In(1 — u). (13.2)

Givenu € U(0, 1), setting x = —% In(1—u) produces an instance of X ~ Exp(2).

13.1.2 The Discrete Case

The discrete case follows the same basic idea as the continuous case (see Fig-
ure 13.2). This time, we want to generate a discrete r.v., X, with the following
probability mass function (p.m.f.):
X0 w/prob pg
X = X1 w/prob p;

X wiprob py

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

232 13 Generating Random Variables for Simulation

T

prol

Po [;
0 X()Xl xj X3'X

Figure 13.2 Generating a discrete r.v. with four values.

Algorithm 13.3 (Inverse Transform method to generate discrete r.v. X)

1. Arrange xy, . . ., X, the possible values of X, s.t. xo < x1 < ... < Xg.
2. Generateu € U(0, 1).
3. If 0 < u < po, then output xy.

If po < u < po + p1, then output xy.

If po+ p1 < u < po+ p1 + pa, then output x;.

Ifoz_Ol pi <u< Zf:o Pi, then output x¢, where 0 < € < k.

Notice that again our g(-) function, shown in blue in Figure 13.2, is Fx(-), the
c.df.

This sounds easy enough, but it is not always practical. If X can take on many
values, then we have to compute many partial sums: Zf:o piforall 0 < ¢ < k.
For this method to be practical, we therefore need closed-form expressions for
Zfzo p; for all £. Equivalently, we need a closed form for Fx(x) = P{X < x} for
any x. Then we could do the same thing as in the continuous case, as in (13.1):
generate u € U(0, 1), and set x = F}}l (u), where a ceiling may be necessary
since x is discrete. Thus, as in the continuous case, we need to both have a
closed-form expression for the c.d.f. and also know how to invert this function.

13.2 Accept-Reject Method

The Inverse Transform method required both knowing the c.d.f., Fx(x), of the
r.v. X that we’re trying to generate, and also being able to invert Fx (x). However,
there are many cases where we aren’t able to satisfy both of these requirements.

The Accept—Reject method has easier requirements:

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

13.2 Accept—Reject Method 233

1. We need the p.d.f., fx(¢) (or p.m.f.) of the r.v. X that we’re trying to generate.
2. We need to know how to generate some other r.v. Y, where Y and X take on
the same set of values, that is,

fx(@®) >0 < fy(r) >0.

The Accept—Reject method is very simple. We generate an instance of Y. Then
with some probability we return that value as our instance of X, and otherwise
we reject that value and try again.

13.2.1 Discrete Case
Here’s the algorithm for a discrete r.v. X, with p.m.f. px(i) = P{X =i}.

Algorithm 13.4 (Accept-Reject algorithm to generate discrete r.v. X)
1. Find a discrete r.v. Y, which we already know how to generate, where

py (i) >0 = px(i) > 0.
2. Let ¢ > 1 be the smallest constant such that
PX(I:) <
py (i)
3. Generate an instance of Y. Call this instance i.

4. With probability Accept-Ratio(i) = (f; XY ((il.)), accept i and return X = i.

Else, reject i and return to step 3.

, Vist px(i) > 0.

Question: In Step 4 of the Accept—Reject algorithm, how do we implement
accepting i with probability Accept-Ratio(7)?

Answer: We generate a Uniform(0, 1) r.v. and accept if the generated Uniform
is smaller than Accept-Ratio(i).

Question: What’s the intuition behind Accept-Ratio(7) in Step 4?

Answer: We can think of

Accept-Ratio(i) = px_(z)
cpy (i)

as representing the relative likelihood of i being an instance of X versus Y. If
this likelihood is high, then we are more likely to trust i as a reasonable instance
of X. If the likelihood is low, then even if i is a common instance for Y, it is not
a common instance for X and hence we are more likely to reject i as an instance
of X.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

234 13 Generating Random Variables for Simulation

Question: What role does ¢ play in the accept ratio?

Answer: c is just a normalizing constant which is needed to ensure that the
accept ratio is a probability (< 1).

Formally, we have the following argument:

Fraction of time i is generated and accepted

= P {i is generated} - P {i is accepted given i is generated}

_ o px()
TG
- pXC(’). (13.3)

Fraction of time any value is accepted

= Z Fraction of time i is generated and is accepted
i

_ Z px (i)
- C
L

_1 (13.4)
C

Combining (13.3) and (13.4), we have:
px (i)
i = px (i),

. Frac. time 7 is generated and accepted
P{Xissettoi} = g pled _

Frac. time any value is accepted

as desired.

Question: On average, how many values of Y are generated before one is ac-
cepted?

Answer: c. Because the fraction of time any value is accepted is %

13.2.2 Continuous Case

The Accept—Reject method works the same way for continuous random variables,
except that we now use the p.d.f. instead of the p.m.f.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

13.2 Accept—Reject Method 235

Algorithm 13.5 (Accept-Reject algorithm to generate continuous r.v. X)

1. Find a continuous r.v. Y, which we already know how to generate, where

fr(t) > 0 = fx(r) > 0.
2. Let ¢ > 1 be the smallest constant such that
fx (1) <e
fr(t)
3. Generate an instance of Y. Call this instance t.

4. With probability Accept-Ratio(t) = Cf ;Y(Z), accept t and return X = t.
Else, reject t and return to step 3.

Vt s.t. fx(t) > 0.

Similarly to the Accept—Reject algorithm for the discrete case, we can show that:

Density of returning ¢ on an iteration = Density of generating ¢ - P {accept ¢}

_ fx (1)
= fy (1) - m

= fx(1) -

| =

Hence,
. . 1 1
P {Return some value on a given iteration} = [fx(¢) - —dt = —,
p c c

so the expected number of iterations needed to get an instance of X is c.
Example 13.6 Generate r.v. X with p.d.f. fx(t) =20t(1 -1)3, 0<t< 1.

If you plot fx(¢), it looks like Figure 13.3. Observe that X has positive p.d.f.
only in the interval (0, 1). Thus we want to choose a Y that is easy to generate
and also has positive p.d.f. only in (0, 1).

Question: Any ideas for what fy (¢) should be?
Answer: Consider simply fy(f) = 1, where 0 < ¢ < 1.
Question: Suppose we now apply the Accept—Reject method. What will ¢ be?

Answer: Based on the plot, ¢ should not be too bad — just over 2. To determine
¢ precisely, we want to determine

S0 e
max {fy(t)} = max {20t(1 1) } .

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

236 13 Generating Random Variables for Simulation

7
~

0 02 04 06 08 1.

Figure 13.3 Plot of fx(t).

Taking the derivative with respect to ¢, and setting it equal to zero, we have

d s 1
—(20t(1-1)") =0 t=-.
S (01 -0 =0 = 1=

So the maximum value is obtained when ¢t = %:

1

Ix (z) 1\ (3\> 135

Cc =) =20 = a
#(3)

Observe how easy it was to make a good guess for fy (¢) just by looking at the

plot of fx(t).

4

1 (13.5)

Question: Could we have used the Inverse Transform method to generate X ?

Answer: No. While it is easy to get Fx(x), unfortunately Fx(x) is not easy to
invert. Thus we won’t be able to solve u = Fx(x) for x.

Example 13.7 (Generating a Normal r.v.)

‘We now turn to generating the Normal distribution. By the Linear Transformation
Property (Theorem 9.5), it suffices to generate a standard Normal. Here it’s clearly
impossible to use the Inverse Transform method since we don’t know the c.d.f.

Goal: Generate N ~ Normal(0, 1).

Idea: It suffices to generate X = |N| and then multiply X by —1 with probability
0.5.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

13.2 Accept—Reject Method 237

So how do we generate such an X? A plot of X is shown in Figure 13.4.

2 2
fx(t)=—e 72, 0<t<oo.

V2r

Question: What is a good choice for ar.v. Y that we know how to generate, such
that fy(r) fits fx(t) reasonably well?

Answer: Let Y ~ Exp(1).
fr)=e", 0<t<oo.

Observe that fx(¢) is not too much higher than fy(z), according to Figure 13.4.

A
1
0.8
06 Jx(@®
04 fr(@) ----
02
>

Figure 13.4 Solid line shows fx(t). Dashed line shows proposed fy (t).

Question: How many iterations are needed on average?

Answer: We need to determine c.
fe) - 2 2y, \ﬁ -t
(@) ar ys

. 2, ..
So, the maximum value occurs when t — ’7 18 maximized.

d 12
0 E(_E)_l_t = tr=1
So,
c= x(1) = % ~ 1.3.
fr(1) n

Thus we only need 1.3 iterations on average!

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

238 13 Generating Random Variables for Simulation

13.2.3 A Harder Problem

Consider X ~ Poisson(1), with px (i) = %ﬂ,’ll

Question: Can we use the Inverse Transform method to generate an instance of
a Poisson r.v.?

Answer: There is no closed form for F(x) = P {X < x} so the Inverse Transform
method will not work.

Question: Can we use the Accept—Reject method?

Answer: It looks like we should be able to apply the Accept—Reject method, but
it is hard to find the right Y distribution to match up to (see [48, p. 503]).

We will show a different way to generate X ~ Poisson(4) in Exercise 13.5 by
relating X to a Poisson process with rate A.

13.3 Readings

A lot more is known about generating random variables than we have described
in this chapter. Some particularly well-written texts are [63] and [48].

13.4 Exercises

13.1 Generating random variables for simulation — (from [63])
Give an algorithm for generating X with p.d.f. fx(x) = 30(x> — 2x3 + x*)
where 0 < x < 1.

13.2 Inverse Transform method
Provide a simple algorithm for generating values from a continuous distri-
bution with p.d.f. f(t) = 2t72, where | < < 5.

13.3 Generating a Geometric distribution
Give a simple and efficient algorithm for generating values from a
Geometric(p) distribution. Now use your algorithm to generate 50 in-
stances of Geometric(0.2). Determine the sample mean (the average of
the 50 generated instances). Compare the sample mean with the desired
answer.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

13.4 Exercises 239

13.4 Simulation of heavy-tailed distributions

13.5

Write a short program to generate 100 instances of
X ~ BoundedPareto(k = 332.067, p = 10'°, 0 = 1.1),

as defined in Definition 10.5. Take their average. Record your answer. Now
generate 1000 instances of this distribution, and again take their average
and record your answer. Keep going. This time, generate 10,000 instances
of this distribution and take their average and record it. Next, generate
100,000 instances. Keep going until you run out of patience. Create a plot
where your x-axis shows the number of instances and your y-axis shows the
sample average. You should find that your sample averages are well below
the true average (compute this!). Explain why this is. What trend do you
see in your sample averages?

Generating a Poisson r.v.

Describe an efficient algorithm for generating instances of a Poisson r.v.
with mean 1. It will be helpful to start by recalling what you learned in
Chapter 12 about the Poisson process and where the Poisson distribution
comes up in the context of a Poisson process.

13.6 Simulating jointly distributed random variables

Let X and Y be non-negative, continuous random variables whose joint
density is given by:

Sxy(x,y) = AePxe ™, x>0, y>0.

Provide a simple algorithm, using the Inverse Transform method, that
generates a point (x,y) drawn from the above joint p.d.f. Explain your
reasoning.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

14 Event-Driven Simulation

Having covered how to generate random variables in the previous chapter, we are
now in good shape to move on to the topic of creating an event-driven simulation.
The goal of simulation is to predict the performance of a computer system under
various workloads. A big part of simulation is modeling the computer system as
a queueing network. Queueing networks will be revisited in much more detail in
Chapter 27, where we analytically address questions of performance and stability
(analysis is easier to do after covering Markov chains and hence is deferred until
later).

For now, we only explain as much as we need to about queueing networks to
enable simulation. We will start by discussing how to simulate a single queue.

14.1 Some Queueing Definitions

Figure 14.1 depicts a queue. The circle represents the server (you can think
of this as a CPU). The red rectangles represent jobs. You can see that one of
the jobs is currently being served (it is in the circle) and three other jobs are
queueing, waiting to be served, while three more jobs have yet to arrive to the
system. The red rectangles have different heights. The height of the rectangle
is meant to represent the size of a job, where size indicates the job’s service
requirement (number of seconds needed to process the job). You can see that
some jobs are large, while others are small. Once the job finishes serving (being
processed) at the server, it leaves the system, and the next job starts serving. We
assume that new jobs arrive over time. The time between arrivals is called the
interarrival time. Unless otherwise stated, we assume that jobs are served in
first-come-first-served (FCFS) order.

Question: If the arrival process to a queue is a Poisson process, what can we say
about the interarrival times?

Answer: The interarrival times are independent and identically-distributed (i.i.d.)
~ Exp(Q) where /ll represents the mean interarrival time and A can be viewed as
the rate of arrivals in jobs/s.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

14.1 Some Queueing Definitions 241

I
II I |

—F—l-—t»
Future arrival times FCFS

Figure 14.1 Single queue with arrivals.

We will generally assume a stochastic setting where all quantities are i.i.d.
random variables. We will denote a job’s size by the random variable (r.v.) S.
For example, if S ~ Uniform(0, 10), then jobs each require independent service
times ranging between 0 and 10 seconds. The interval times between jobs is
denoted by the r.v. I, where again we assume that these are independent. For
example, if 7 ~ Exp(A1), where A = 0.1, then the average time between arrivals
is 10 seconds. When running a simulation based on distributions for interarrival
times and job sizes, we are assuming that these distributions are reasonable
approximations of the observed workloads in the actual computer system being
simulated.

However, it is also possible to assume that job sizes and interarrival times are
taken from a trace. In that case, the simulation is often referred to as a trace-
driven simulation. The trace typically includes information collected about the
system over a long period of time, say a few months or a year.

Question: What are some advantages of using a trace to drive the simulation as
opposed to generating inputs from distributions?

Answer: The trace captures correlations between successive interarrival times
and/or successive job sizes. For example, it might be the case that a small job is
more likely to be followed by another small job, or that arrivals tend to occur in
bursts. This is harder to capture with independent random variables, although one
can certainly try to create more complex probabilistic models of the workload
[33].

We define the response time of job, typically denoted by r.v. 7, to be the time
from when the job first arrives until it completes service. We can also talk about
the waiting time (a.k.a. delay) of a job, denoted by r.v. T, which is the time from
when the job first arrives until it first receives service. We define the number of
jobs in system, denoted by r.v. N, to be the total number of jobs in the system.
We define the server utilization, denoted by p, as the long-run fraction of time
that the server is busy.

The goal of a simulation is typically to understand some aspect of the system
performance. As an example, suppose that we are interested in the mean response
time, E [T]. We can think of this as follows. Let 7] denote the response time of

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

242 14 Event-Driven Simulation

the first job, 75 the response time of the second job, etc. Then,

1 n
E[T]=—-)Tk
i=1

where it is assumed that n is sufficiently large that the mean response time is
not changing very much. Thus, to get the mean response time, we can imagine
having each of the first n jobs record its response time, where we then average
over all of these.

14.2 How to Run a Simulation

Imagine that we want to simulate the queue shown in Figure 14.1, where the
interarrival times are i.i.d. instances of r.v. I and the job sizes (service require-
ments) are i.i.d. instances of some r.v. S. Assume that we know how to generate
instances of / and S using the techniques described in Chapter 13.

Question: Do we run this system in real time?
Answer: No, that would take forever.

The whole point is to be able to process millions of arrivals in just a few hours. To
do this, we use an event-driven simulation. The idea is to maintain the system
state at all times and also maintain a global clock. Then we ask,

“What is the next event that will cause a change in the system state?”

We then increase the time on the global clock by the time until this next event,
and we update the system state to reflect the next event. We also update the times
until the next events. We then repeat this process, stepping through events in
near-zero time.

For example, let’s consider an event-driven simulation of the queue in Figure 14.1.
Question: What is the system state?

Answer: The state is the current number of jobs in the system.

Question: What are events that change the state?

Hint: There are only two such events.

Answer: A new arrival or a job completion.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

14.2 How to Run a Simulation 243

The interarrival times will need to be generated according to r.v. I. The job sizes
(service requirements) will need to be generated according to r.v. S.

Question: Do we generate all the arrival times and all the job sizes for the whole
simulation in advance and store these in a large array?

Answer: No, it’s much simpler to generate these as we need them.

Let’s run through how this works. We are going to maintain four variables:

1. Clock: represents the time;

2. State: represents the current number of jobs in the system;
3. Time-to-next-completion;

4. Time-to-next-arrival.

The simulation starts here: State is 0 jobs. Clock = 0. There’s no job serving,
so Time-to-next-completion = co. To determine the time to the next arrival, we
generate an instance of 7, let’s say I = 5.3, and set Time-to-next-arrival = 5.3.

We ask which event will happen first. Since min(co,5.3) = 5.3, we know the
next event is an arrival.

We now update everything as follows: State is 1 job. Note that this job starts
serving immediately. Clock = 5.3. To determine the time to the next completion,
we generate an instance of S representing the service time of the job in service,
say S = 10, and set Time-to-next completion = 10. To determine the next arrival
we generate an instance of /, say I = 2, and set Time-to-next-arrival = 2.

We again ask which event will happen first. Since min(10,2) = 2, we know the
next event is an arrival.

We now update everything as follows: State is 2 jobs. Clock = 5.3 +2 = 7.3.
Time-to-next-completion = 10 — 2 = §, because the job that was serving has
completed 2 seconds out of its 10 second requirement. To determine the next
arrival we generate an instance of /, say I = 9.5, and set Time-to-next-arrival
=9.5.

We again ask which event will happen first. Since min(8,9.5) = 8, we know the
next event is a completion.

We now update everything as follows: State is 1 job. Clock = 7.3 + 8 = 15.3.
To determine the time to the next completion, we generate an instance of S, say
S = 1, and set Time-to-next-completion = 1. Time-to-next-arrival= 9.5-8 = 1.5
because 8 seconds have already passed since the last arrival, decreasing the
previous time from 9.5 down to 1.5.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

244 14 Event-Driven Simulation

We continue in this manner, with updates to the state happening only at job
arrival times or completions. Note that we only generate new instances of / or §
as needed.

Question: When exactly do we generate a new instance of 1?7

Answer: There are two times: The main time we generate a new instance of [is
immediately after a new job arrives. However, we also generate a new instance
of I at the very start of the simulation when there are O jobs.

Question: When exactly do we generate a new instance of S?

Answer: The main time we generate a new instance of S is immediately after a
job completes service. However, there is an exception to this rule, which occurs
when the system moves from State 1 (one job) to State O (zero jobs). At that
time, the Time-to-next-completion is set to co. Additionally, we generate a new
instance of S at the time when the system moves from State O to State 1.

Question: What changes if a trace is used to provide interarrival times and/or
job sizes — that is, we run a trace-driven simulation?

Answer: Nothing, really. The same approach is used, except that rather than
generating a new instance of / or § when we need it, we just read the next value
from the trace.

14.3 How to Get Performance Metrics from Your Simulation

So now you have your simulation running. How do you figure out the mean
response time? We propose two methods, the first of which we already discussed
briefly.

Method I: Every job records the clock time when it arrives and then records the
clock time when it completes. Taking the difference of these gives us the job’s
response time. We now just need to average the response time over all the jobs.

Question: Should we write each job’s response time into a file and then take the
average at the end of our simulation?

Answer: No, the writing wastes time in our simulation. You should be able to
maintain a running average. Let T, denote the average over the first n jobs:

Tn:%ZT,-.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

14.3 How to Get Performance Metrics from Your Simulation 245

Then 7,41 can easily be determined from T, as follows:
- 1

n+l =

. (Tn’n+Tn+l).
n+1

Method 2: We perform several runs of the simulation. A single run involves
running the simulation, without bothering to have jobs record their response
time, until we get to the 10,000th job (we’ve picked this number arbitrarily). We
then record the response time of that 10,000th job. We now start the simulation
from scratch, repeating this process for, say, 1000 runs. Each run provides us
with just a single number. We now take the average of all 1000 numbers to obtain
the mean response time.

Question: What are some benefits to Method 1?

Answer: Method 1 is simpler because we don’t have to keep restarting the
simulation from scratch.

Question: What are some benefits to Method 27

Answer: Method 2 provides independent measurements of response time. Notice
that Method 1 does not provide independent measurements, because if a job has
high response time then it is likely that the subsequent job also has high response
time (the queue is currently long). Having independent measurements has the
advantage that we can create a confidence interval around our measured mean
response time. We defer discussion of how to obtain confidence intervals to
Chapter 19.

If one runs a simulation for long enough, it really doesn’t matter whether one
uses Method 1 or Method 2, assuming that your system is well behaved.! This
brings us to another question.

Question: How long is “long enough” to run a simulation?

Answer: We want to run the simulation until the metric of interest, in this case
mean response time, appears to have stabilized (it’s not going up or down sub-
stantially). There are many factors that increase the time it takes for a simulation
to converge. These include load, number of servers, and any type of variability,
either in the arrival process or the job service times. It is not uncommon to need
to run a simulation with a billion arrivals before results stabilize.

Now suppose the goal is not the mean response time, but rather the mean number
of jobs in the system, E [N]. Specifically, we define the mean number as a time-

! Technically, by well behaved we mean that the system is “ergodic.” It suffices that the system
empties infinitely often. For a more detailed discussion of ergodicity, see Chapter 25 and
Section 27.7.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

246 14 Event-Driven Simulation

average, as follows: Let M (s) denote the number of jobs in the system at time s.
Then,

s=t d
E[N] = lim M‘

t—o00 t

(14.1)

Think of this as summing the number of jobs in the system over every moment of
time s from s = 0 to s = ¢ and then dividing by to create an average. Obviously
we’re not really going to take ¢ to infinity in our simulation, but rather just some
high enough number that the mean number of jobs stabilizes.

Question: But how do we get E [N] from our simulation? We’re not going to
look at the number at every single time s. Which times do we use? Can we simply
measure the number of jobs in the system as seen by each arrival and average all
of those?

Answer: This is an interesting question. It turns out that if the arrival process
is a Poisson process, then we can simply record the number of jobs as seen by
each arrival. This is due to a property called PASTA (Poisson arrivals see time
averages), explained in [35, section 13.3]. Basically this works because of the
memoryless property of a Poisson process, which says that the next arrival can
come at any time, which can’t in any way be predicted. Thus the arrival times of
a Poisson process are good “random” points for sampling the current number of
jobs.

Unfortunately, if the arrival process is not a Poisson process, then having each
arrival track the number of jobs that it sees can lead to very wrong results.

Question: Can you provide an example for what goes wrong when we average
over what arrivals see?

Answer: Suppose that I ~ Uniform(1, 2). Suppose that S = 1. Then every arrival
finds an empty system and thus we would conclude that the mean number of jobs
is 0, when in reality the mean number of jobs is: % -1+ % 0= %

Question: So how do we measure the mean number of jobs in the system if the
arrival process is not a Poisson process?

Answer: The easiest solution is to simulate a Poisson process (independent of
the arrival process) and sample the number of jobs at the times of that simulated
Poisson process. This adds more events since we now have arrivals, completions,
and Poisson events.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

14.4 More Complex Examples 247

14.4 More Complex Examples

‘We now turn to some more complex examples of queueing networks.
Example 14.1 (Router with finite buffer)

Figure 14.2 shows a router with finite (bounded) buffer space. There is room for
n = 6 packets, one in service (being transmitted) and the others waiting to be
transmitted. Note that all the packets are purposely depicted as having the same
size, as is typical for packets. When a packet arrives and doesn’t find space, it is
dropped.

FCFS
Arrivals that don’t
) — 00 HHD
fit are dropped

Figure 14.2 Queue with finite buffer space.

In terms of running the simulation, nothing changes. The system state is still
the number of packets in the system. As before we generate packet sizes and
interarrival times as needed. One of the common reasons to simulate a router
with finite buffer space is to understand how the buffer space affects the fraction
of packets that are dropped. We will investigate this in Exercise 14.4.

Question: Suppose we are trying to understand mean response time in the case
of the router with finite buffer space. What do we do with the dropped packets?

Answer: Only the response times of packets that enter the system are counted.
Example 14.2 (Packet-routing network)

Figure 14.3 shows a network of three queues, where all queues are unbounded
(infinite buffer space). A packet may enter either from queue 1 or from queue
2. If the packet enters at queue 2, it will serve at queue 2 and leave without
joining any other queues. A packet entering at queue 1 will serve at queue 1 and
then move to either queue 2 or queue 3, each with probability 0.5. We might
be interested here in the response time of a packet entering at queue 1, where
response time is the time from when the packet arrives at queue 1 until it leaves
the network (either at server 2 or at server 3).

Question: What is the state space for Figure 14.3?

Answer: The system state is the number of packets at each of the three queues.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

248 14 Event-Driven Simulation

Queue 2
External
arrivals > O-»
Queue 1 05
External
: o
arrivals Queue 3

Figure 14.3 Network of queues.

Question: How many possible events do we need to watch for now?

Answer: We need to track five possible events. For queue 1, we need to track
Time-to-next-arrival and Time-to-next-completion. For queue 3, we only need
to track Time-to-next-completion. The arrival times at queue 3 are determined
by flipping a fair coin after each completion at queue 1. Likewise, for queue
2, the internal arrival times at queue 2 are determined by flipping a fair coin
after each completion at queue 1. However, queue 2 also has external arrivals.
These external arrivals need to be tracked. Thus, for queue 2 we need to track
the Time-to-next-external-arrival and Time-to-next-completion.

Example 14.3 (Call center)

Figure 14.4 shows an example of a call center, as might be operated by a company
like Verizon. There is an arrival stream of incoming calls. There are k servers
(operators) ready to accept calls. When a call comes in, it goes to any operator
who is free (we imagine that all operators are homogeneous). If no operators are
free, the call has to queue. Whenever an operator frees up, it takes the call at
the head of the queue (i.e., calls are served in FCFS order). We assume that the
service times of calls are i.i.d., represented by r.v. S. Here we might be interested
in the average or variance of the queueing time experienced by calls.

Question: Do calls leave in the order that they arrived?

Answer: No. Calls enter service in the order that they arrived, but some calls
might be shorter than others, and hence may leave sooner, even though they
entered later.

Question: What is the state space for Figure 14.4?

Answer: The system state is the total number of jobs in the system (we do
not need to differentiate between those in service and those queued), plus the
remaining service time for each of the jobs in service.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

14.5 Exercises 249

External
arrivals ’ ”u”ﬂ

FCFS

DICICAS

Figure 14.4 Call center with k = 4 servers.

Question: What are the events that we need to track?

Answer: We need to track k + 1 events. These are the Time-to-next-completion
at each of the k servers and the Time-to-next-arrival for the system.

We will explore additional examples in the exercises.

14.5 Exercises

14.1

14.2

14.3

Mean response time in an M/M/1 queue

In this problem you will simulate a queue, as shown in Figure 14.1, and
measure its mean job response time, E [T]. Job sizes are i.i.d. instances of
S ~ Exp(u), where u = 1. The arrival process is a Poisson process with rate
A. The queue is called an M/M/1 to indicate that both interarrival times and
job sizes are memoryless (M). For each value of 1 = 0.5,0.6,0.7,0.8, 0.9,
record both E [T] and E [N]. Draw curves showing what happens to E [T']
and E [N] as you increase A. To check that your simulation is correct, it
helps to verify that Little’s Law (E [N] = A4 - E [T]) holds. Little’s Law will
be covered in Chapter 27.

Server utilization of an M/M/1 queue

Repeat Exercise 14.1, but this time measure the server utilization, p, which
is the long-run fraction of time that the server is busy. To get p, you will
sample the server at the times of job arrivals to determine the average
fraction of arrivals that see a busy server.

Doubling the arrival rate and the service rate
Repeat Exercises 14.1 and 14.2, but this time double each of the original

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

250 14 Event-Driven Simulation

arrival rates and simultaneously double the service rate. Specifically, in
these “new” runs, our arrival rates will be: 1 = 1.0,1.2,1.4,1.6,1.8, and
our job sizes will be i.i.d. instances of S ~ Exp(u), where u = 2.

(a) How does ppew compare with porig?

(b) How does E [Nyew] compare with E [Norig] ?

(c) How does E [T},ew] compare with E [Torig] ?

Try to provide intuition for your findings. [Hint: Think about how doubling
the arrival rate and service rate affects time scales.]

14.4 Effect on loss probability of various improvements
As in Exercise 14.1, we have a queue whose arrivals are a Poisson process
with rate A, and whose job sizes are i.i.d. instances of r.v. S ~ Exp(u). Let
p=1and A =0.9. Now suppose that the queue is bounded so that at most
n =5 jobs can be in the system (one serving and the other four queueing).
(a) Simulate the system to determine the loss probability, namely the frac-
tion of arriving jobs that are dropped because they don’t fit.
(b) That loss probability is deemed too high, and you are told that you must
lower it. You are considering two possible improvements:
(i) Double the capacity of your system by setting n = 10.
(i) Double the speed of your server (double u) to u = 2.
Which is more effective at reducing loss probability? Simulate and find
out.
(c) Conjecture on why you got the answer that you got for part (b). Do you
think that your answer to part (b) is always true? If you can’t decide,
run some more simulations with different values of A.

14.5 Effect of variability of job size on response time
In this problem, we will study the effect of variability of job sizes on
response time by using a DegenerateHyperexponential (i, p) distribution,
which will allow us to increase the variability in job size, S, by playing with
u and p parameters. The Degenerate Hyperexponential with parameters
u and p is defined as follows:

g . | Exp(pp) wiprob p
0 w/prob 1 —p °

(a) What is E [S]? Is this affected by p?

(b) What is the squared coefficient of variation of S, namely Cg?

(c) What is the range of possible values for CZ, over 0 < p < 1?

(d) Create a simulation to determine mean queueing time, E [TQ], in
a single queue. The arrival process to the queue is a Poisson
process with rate 4 = 0.8. The job sizes are denoted by S ~
DegenerateHyperexponential(u = 1, p). You will run multiple sim-
ulations, each with the appropriate value of p to create the cases of
Cg, =1,3,5,7,9. Draw a graph with E [TQ] on the y-axis and Cé on

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

14.5 Exercises 251

the x-axis. Note that a job of size 0 may still experience a queueing
time, even though its service time is 0.

(e) What happens when Cg increases? Why do you think this is? Think
about it from the perspective of the time that the average job waits.

14.6 Favoring short jobs over long ones

14.7

Consider a queue with a Poisson arrival process and mean interarrival time
of 110. Job sizes are drawn i.i.d. from

s 1 w/prob 0.5
200 w/prob 0.5 °

(a) Simulate the queue where the jobs are served in FCFS order. What is
the mean response time, E [T]?

(b) Now consider a different scheduling policy, called Non-Preemptive
Shortest Job First (NP-SJF). Like FCFS, NP-SJF is non-preemptive,
meaning that once we start running a job, we always finish it. However,
in NP-SJF the jobs of size 1 always have priority over the jobs of size
200. Specifically, NP-SJF maintains two FCFS queues, one with jobs
of size 1 and the other with jobs of size 200, where, whenever the server
is free, it picks to run the job at the head of the queue of jobs of size 1.
Only if there is no job of size 1 does the server run a job of size 200.
Note that among jobs of a given size, the service order is still FCFS.
Simulate NP-SJF and report E [T]. Try to use as little state as you can
get away with.

(¢) You should find that E [T] is much lower under NP-SJF scheduling
than under FCFS scheduling. Why do you think this is?

SRPT queue versus FCFS queue

The Shortest Remaining Processing Time (SRPT) scheduling policy min-

imizes mean response time, E [T] [66, 67]. Under SRPT, at all times the

server is working on that job with the shortest remaining processing time.

The SRPT policy is preemptive, meaning that jobs can be stopped and

restarted with no overhead. Under SRPT, a new arrival will preempt the

current job serving if and only if the new arrival has size which is smaller
than the remaining time on the job in service.

(a) Suppose we have an SRPT queue and job j is currently running. Can
job j be preempted by any of the other jobs currently in the queue?

(b) In an SRPT queue, can there be multiple jobs which have each received
partial service so far?

(c) Simulate an SRPT queue, with Poisson arrival process with rate 1 =
0.45. Assume that the job sizes are S ~ BoundedPareto(k = 0.004, p =
1000, @ = 0.5) (see Definition 10.5). What is E [T]5}°T?

(d) Perform the same simulation but for a FCFS queue. What is E [T] FCES9

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

252 14 Event-Driven Simulation

0.5
Incomin FCFS
jobs € 3 Random
0.5
ol
FCFS

(a) Random Task Assignment

Short
= I u\ N JObS

FCFS

Incoming
jObS —> SITA

Long
jobs

FCFS

(b) Size-Interval Task Assignment

Figure 14.5 Random dispatching versus SITA dispatching.

14.8 Size-Interval Task Assignment versus Random

Figure 14.5 illustrates a server farm with two identical FCFS queues. In

Figure 14.5(a), every incoming arrival is dispatched (assigned) with prob-

ability 0.5 to the first queue and probability 0.5 to the second queue. This

is called Random task assignment (Random). In Figure 14.5(b), if the in-

coming arrival is “small” then it is dispatched to the top queue, and if it

is “large” it is dispatched to the bottom queue. This is called Size-Interval

Task Assignment (SITA) [36, 34]. Suppose that arrivals occur according

to a Poisson process with rate 4 = 0.5. Assume that job sizes are i.i.d. and

follow a BoundedPareto(k = 0.004, p = 1000, @ = 0.5) distribution (see

Definition 10.5) with mean E [S] = 2.

(a) Simulate Random assignment and report the mean queueing time
E [Tp].

(b) Simulate SITA. Use a size cutoff of 58.3, where jobs smaller than this
cutoff are deemed “small.” Report E [TQ].

(c) Which was better? Why do you think this is?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Part V

Statistical Inference

The focus until now in the book has been on probability. We can think of
probability as defined by a probabilistic model, or distribution, which governs
an “experiment,” through which one gemnerates samples, or events, from this
distribution. One might ask questions about the probability of a certain event
occurring, under the known probabilistic model.

We now turn our attention to statistics. In statistics, we go the other direction. We
are given some data, and our goal is to infer the underlying probabilistic model
that generated this data.

PROBABILITY

generate

Probabilistic
Model

STATISTICS

The figure above illustrates the difference in direction. While statistics and prob-
ability may sound different, they are actually closely linked. In particular, when a
statistician is trying to “infer” (estimate) the underlying probabilistic model that
generated some data, they might start by computing the probability that certain
candidate models produced that data.

Because the data that we see is limited, either in quantity (there may only be
a few samples) or in accuracy (the data may be somewhat noisy or corrupted),
there is often some subjectivity involved in determining the best estimator for
the underlying probabilistic model. In this sense, statistics is sometimes viewed
as more of an art, where statisticians might argue with each other over which
estimator is more “correct.” We will see several examples of this in our study of
statistical inference.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

254

We start in Chapter 15 by discussing the most commonly used estimators, namely
those for mean and variance. In Chapter 16 we move on to parameter estimation
following the classical inference approach of maximum likelihood estimation.
In Chapter 17 we continue looking at parameter estimation, but this time via the
Bayesian inference approach, where we discuss maximum a posteriori estimators
and minimum mean square error estimators. Along the way, we also touch on a
few related topics like linear regression (see Section 16.7).

Although this is the main statistics part of the book, statistical topics come up
throughout the book. In particular, the important topic of confidence intervals
on estimators is deferred to Chapter 19, since it is better treated after a more
in-depth discussion of tail probabilities.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

15 Estimators for Mean and
Variance

The general setting in statistics is that we observe some data and then try to infer
some property of the underlying distribution behind this data. The underlying
distribution behind the data is unknown and represented by random variable (r.v.)
X. This chapter will briefly introduce the general concept of estimators, focusing
on estimators for the mean and variance.

15.1 Point Estimation

Point estimation is an estimation method which outputs a single value. As an
example of a point estimation, suppose we are trying to estimate the number of
books that the average person reads each year. We sample n people at random
from the pool of all people and ask them how many books they read annually.
Let X1, Xs, ..., X, represent the responses of the n people. We can assume that
the pool of people is sufficiently large that it’s reasonable to think of the X;’s as
being independent and identically distributed (i.i.d.), where X; ~ X for all i. We
would like to estimate § = E [X]. A reasonable point estimator for 6 is simply
the average of the X;’s sampled.

Definition 15.1 We write
é(Xl, XZ’ 0noog Xn)

to indicate an estimator of the unknown value 6. Here X1, ..., X, represent
the sampled data and our estimator is a function of this data. Importantly,
é(Xl,Xz, ..., X,) is a random variable, since it is a function of random
variables. We sometimes write 0 for short when the sample data is understood.
We write

é(Xl :kl’X2:k29~~~7Xn :kn)

to indicate the constant which represents our estimation of 6 based on a specific
instantiation of the data where X| = k1, X = ko, ..., X, = ky.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

256 15 Estimators for Mean and Variance

15.2 Sample Mean

While 6 is the notation most commonly used for an estimator of 6, there are
certain estimators, like the “sample mean,” that come up so frequently that they
have their own name.

Definition 15.2 (Mean estimator) Let X, X», ..., X, be i.i.d. samples of r.v.
X with unknown mean. The sample mean is a point estimator of 6 = E [X]. It
is denoted by X or by M,,, and defined by:

Xi+Xo+ -+ X,

0(X1,Xa,....Xn) =M, =X = . (15.1)
n

The notation M,, is attractive because it specifies the number of samples, while
the notation X is attractive because it specifies the underlying distribution
whose mean we are estimating.

15.3 Desirable Properties of a Point Estimator

For any unknown parameter 6 that we wish to estimate, there are often many
possible estimators.

As arunning example, throughout this section, let X1, X», . . ., Xj, be i.i.d. random

samples from a distribution represented by r.v. X, with finite mean E [X] and

finite variance o-2.

In estimating 6 = E [X], consider two possible estimators:
Xi+Xo+--+ X,
n

X =

D>

A

D>

B = X>.

What makes one estimator better than another? In this section we define some
desirable properties of a point estimator.

Definition 15.3 Let (X, X», . . . X)) be a point estimator for 0. Then we define
the bias of § by

B(d) =E[4] - o.

If B(é) = 0, we say that 0 is an unbiased estimator of 6.
Clearly we would like our estimator to have zero bias.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

15.3 Desirable Properties of a Point Estimator 257

Question: How do 6,4 and 6 compare with respect to bias?
Answer: They are both unbiased estimators.
Question: Nevertheless, why do you favor 04 over O5?

Answer: 4 feels less variable. This brings us to the second desirable property
of an estimator, which is low mean squared error.
Definition 15.4 The mean squared error (MSE) of an estimator

é(Xl, X,...,X,) is defined as:
MSE(0) =E|(0-0)’|.

Lemma 15.5 If 9(X1, X, ..., Xy,) is an unbiased estimator, then

MSE(d) = Var(6).

Proof:
MSE(0) =E |(6-0)°| =E[(6 - E [])’] = Var(). -

Question: How do 6,4 and 8z compare with respect to their MSE?
Answer: Using Lemma 15.5,

A A 1 X
MSE(94) = Var(04) = 3 -nVar(X) = Val’;(>.

By contrast,
MSE (d3) = Var(dp) = Var(X,) = Var(X).

Thus 64 has much lower MSE.

Finally, it is desirable that our estimator has the property that it becomes more
accurate (closer to 6) as the sample size increases. We refer to this property as
consistency.

Definition 15.6 Let él(Xl), ég(Xl, X5), é3(X1,X2,X3), ... be a sequence of
point estimators of 6, where 8,(X1, Xa, . .., X,,) is a function of n i.i.d. samples.
We say that r.v. 8,, is a consistent estimator of 6 if, Ve > 0,

lim P {|0, - 6] > €} = 0.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

258 15 Estimators for Mean and Variance

Lemma 15.7 Ler 6, (X1), éz(Xl, X5), 93(X1, X5, X3),... be a sequence of
point estimators of 6, where 8,(X1, Xa, . . ., X,,) is a function of n i.i.d. samples.
Assume that all the estimators have finite mean and variance. If

lim MSE(4,) =0,

n—oo

then 0,, is a consistent estimator.

Proof: For any constant € > 0,
P {6, 0] > ¢} = P{6, - o] = &}

_E 10, - 6’|

5 by Markov’s inequality (Theorem 5.16)
€

E | (60 -0)"]
_ MSE(EHAn).

€2

Taking limits of both sides as n — oo, we have:

lim P{|0, - 6] > €} = lim MSE(0.)

n—oo n—oo 62

=0. []

Question: In the proof of Lemma 15.7, why didn’t we apply Chebyshev’s in-
equality (Theorem 5.17)?

Answer: We don’t know that @ = E [d,], so we can’t say that MSE(d,,) =
Var(d,).

Question: Is 4 = X = M,, a consistent estimator of E [X]?

Answer: Yes. By Lemma 15.7, it suffices to show that
lim MSE(M,,) = 0.

Given that we know that M,, is an unbiased estimator of E [X], Lemma 15.5 tells
us that it suffices to show that

lim Var(M,) = 0.

n—oo
But this latter fact is obviously true because Var(X) is finite and thus
Var(X)

— 0 asn — oo,

Var(M,,) =

Hence, M,, is a consistent estimator.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

15.4 An Estimator for Variance 259

15.4 An Estimator for Variance

Again let X1, X»,..., X, denote n i.i.d. samples of an unknown distribution

denoted by r.v. X, where X; ~ X, and where E [X] = u and Var(X) = 0')2(

are finite. We have seen that X = M is a good estimator for E [X],

satisfying all three desirable properties. We now turn to the question of a good
estimator for Var(X).

There are two distinct cases to consider:

1. The case where we already know the mean and want to estimate 6 = Var(X).
2. The case where we do not know the mean and want to estimate § = Var(X).

It turns out that the best estimator is different for these two cases.

15.4.1 Estimating the Variance when the Mean is Known

Starting with the first case, suppose that y is known. We can then define an
estimator which computes the squared distance of each sample from u and takes
the average of these squared distances:

. — 1y
(X1, Xa,....Xp) =82 = - Z (X; —)2 (15.2)
n F—

Question: Is $2 as defined in (15.2) an unbiased estimator for § = Var(X)?

Answer: Yes!

E [ﬁ] Z E[(X: -)] Z Var(X;) = Var(X).

15.4.2 Estimating the Variance when the Mean is Unknown

Now consider the second case, where u is not known. This case is way more
common but also trickier.

Question: Given that we don’t know y = E [X], how can we replace y in our
definition of the estimator?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

260 15 Estimators for Mean and Variance

X1+ X0+ +X,
n

Answer: We can replace u by X = , which we already saw was a

good estimator for E [X].

This leads us to an updated definition of our estimator, which now computes the
squared distance of each sample from X and takes the average of these squared

distances:
n

é(xl,xz,...,xn):ﬁz%Z(x,.—f)z (15.3)
i=1

Question: Is S2 as defined in (15.3) an unbiased estimator for § = Var(X)?

Answer: Unfortunately, and surprisingly, the answer is no. In Exercise 15.4, you
will prove that

n—1

E [?] - - Var(X). (15.4)

Question: Given (15.4), what is an unbiased estimator for 6 = Var(X) in the
case where we don’t know E [X]?

Answer: We need to multiply 52 by -“5. The sample variance, defined next,
does this.

Definition 15.8 (Variance Estimator) Let X, Xo, ..., X, be i.i.d. samples of
r.v. X with unknown mean and variance. The sample variance is a point
estimator of § = Var(X). It is denoted by S* and defined by:

6(X1, Xa, ..., X)) = 8% = ﬁ Z:‘ (Xl- —7)2 (15.5)

Lemma 15.9 The sample variance, S*, from Definition 15.8 is an unbiased
estimator of Var(X).

Proof:

_ —1 s, -1
B[s} " e[S s varo < v

Question: The difference between the estimators $2in (15.3) and $? in (15.5) is
very slight. Does it really matter which we use?

Answer: Assuming that the number of samples, n, is large, in practice it shouldn’t
matter which of these two estimators we use.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

15.5 Estimators Based on the Sample Mean 261

15.5 Estimators Based on the Sample Mean

Simple estimators, like the sample mean, can sometimes be useful in estimating
other, more complex quantities. We provide one example here and another in
Exercise 15.6.

Example 15.10 (Estimating the number of tanks)

In World War II, the Allies were trying to estimate the number of German tanks.
Each tank was assigned a serial number when it was created. When the Allies
captured a tank, they would record its serial number.

Question: If the Allies captured the tanks with serial numbers shown in Fig-
ure 15.1, what is a good estimate for the total number of German tanks?

IS FEPGa FIPa ¥ FIPa

Figure 15.1 Captured tanks with serial numbers shown.

We are trying to estimate a maximum, call it 6, based on seeing n samples,
X1, Xs, ..., X,, each of which are randomly picked without replacement from
the integers 1,2, ..., 0. Our goal is to determine é(Xl , X2, ., Xp).

Question: Are the n samples independent?
Answer: No. Once serial number £ is seen, it will never be seen again.

There are many ways to estimate the max, 6. We will use the sample mean to
estimate 6, by expressing the expectation of the sample mean as a function of 6.

Y:l(X1+X2+-~+Xn)
[x] S(E[X]+E[X] +---+E[X,]).

Although the X;’s are not 1ndependent, they all have the same marginal distribu-
tion:

1
P{X;=k}=-, wherel <k<6.
0

Hence,

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

262 15 Estimators for Mean and Variance

But this implies

E [Y] - 0%1. (15.6)

Equivalently, we can write
6 = 2E [Y] _1
Hence, a reasonable estimator for € could be

0(X1,Xs,...,X%X,) =2X — 1. (15.7)

Question: Is 4 from (15.7) an unbiased estimator?

Answer: Yes, by (15.6), we see that E [é] =2E [Y] -1=6.

Question: Is 4 from (15.7) a good estimator of 6?

Answer: Not necessarily. If the number of samples, n, is small, we could end
up in the perverse situation where there is one very high sample, while most of
the samples are far below the mean. In this case, our sample mean, X, would be
particularly low, so = 2X — 1 might actually be smaller than the largest sample.

Now suppose we want to determine MSE(@). Since 6 is an unbiased estimator,
by Lemma 15.5, MSE () = Var(d). Thus,

MSE(0) = Var(§) = Var(2X - 1)
= iZVar(Xl + X0+ -+ Xp)
n

=%' ZVar(Xi)+2 Z Cov(X;, X;)| (by (5.11))
i=1

1<i<j<n
4
= (Var(Xy) + (n— 1)Cov(X1, X3)),

where the last line follows from the fact that all the X;’s have the same distribution,
and all the pairs (X;, X;) have the same distribution.

From (5.13) and (5.14), we know that:

Var(Xl) = w and COV(Xl,Xz) _ _E'
12 12
Hence,
4 ((0-1(@E+D) 641\ 1
MSE(0) = — B (n=1): =] = 5-(0+ 1) - n).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

15.6 Exercises 263

So we see that the MSE of our estimate increases with the square of the highest
value, 8, and decreases linearly with the number of samples, 7.

15.6 Exercises

15.1

15.2

15.3

154

Practice computing sample mean and sample variance
The following 10 job size_s are measured: 5,2,6,9,1.5,2.3,7,15,8,8.3.
What is the sample mean, X? What is the sample variance, S>?

Accuracy of sample mean and sample variance

Generate 30 instances of each of the following distributions — recall (13.2):
(i) X ~Exp(1)

(i) X ~ Exp(.01)

(iii)

_ | Exp(1) wi/prob 0.99
Exp(.01) w/prob 0.01 °

For each distribution, answer the following questions:

(a) What is the sample mean? Compare this with the true mean, E [X].

(b) What is the sample variance? Compare this with Var(X).

(c) For which distribution was the sample mean most (least) accurate?
How about the sample variance? Provide some thoughts on why.

Now repeat the problem, generating 100 instances of each distribution.

Variance-bias decomposition
Given an estimator (X1, ..., X,), prove that

MSE () = Var(6) + (B(d))%, (15.8)
where B(d) = E [§] — 6 is the bias of 4.
Estimating variance is tricky

Let X1, Xo, ..., X, bei.i.d. samples of r.v. X with unknown finite mean and
variance. Let X denote the sample mean. Define

$2 = lzn:(Xi—Y)z.
=
Prove that S2 is not an unbiased estimator of Var(X). Follow these steps:
(a) Prove that E [?] = % =l Var(Xl- - Y).
(b) Show that Var(x,- _ Y) = 2=Lvar(X).
(c) Combine (a) and (b) to show that E [E] = "T_lVar(X).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

264 15 Estimators for Mean and Variance

15.5 Sample standard deviation
Let X1, X, ..., X, bei.i.d. samples of r.v. X with unknown finite mean and
variance. Define the sample standard deviation, S, as

s =+/s2,

where S? is the sample variance, given by (15.5). Is S an unbiased estimator
of std(X)? Prove your answer. [Hint 1: S is not a constant, so Var(S) > 0.]
[Hint 2: Use the fact that E [Sz] = Var(X).]

15.6 Arrivals at a web server: two estimators
The arrival process of requests to a web server is well-modeled by a Poisson
process with some average rate A requests/minute. We're interested in

po = Fraction of minutes during which there are 0 requests.

If we know A, then we know from Chapter 12 that py = e~ But how can
we estimate pg if we don’t know A7 Let’s suppose that we have sampled n
minutes and let X;, X5, . .., X}, denote the number of arrivals during each
of the n minutes.

(a) One idea is to first define an estimator for A, namely

A - 1
AXy,. ., X)) =X=-(X1+ X2+ -+ X)),
n

and then define our estimator for pg to be

Po(X1,...,Xy) = e t=eX
Prove that py is a biased estimator of pg. Follow these steps:
(i) Whatdoes Jensen’s inequality (Theorem 5.23) tell us about E [po]
as compared to pg?
(ii) Prove that E [py] = e~nAl=e7llm) [Hint: Recall X; ~ Poisson(A).
What does this say about the distribution of X; + X + - - + X, 7]
(iii) Show that E [py] converges to po from above as n — oo.
(b) An alternative idea is to look at the average fraction of minutes with 0
arrivals and use that as our estimator. That is,

o number of X; equal to 0
Bo™ (X1, .. Xy) = A .

n

Prove that o™ is an unbiased estimator of py.

15.7 Acknowledgment

This chapter was written in collaboration with Weina Wang, who was a major
contributor to the chapter contents and the exercises.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

16 Classical Statistical
Inference

In Chapter 15, we focused on estimating the mean and variance of a distribution
given observed samples. In this chapter and the next, we look at the more
general question of statistical inference, where this time we are estimating the
parameter(s) of a distribution or some other quantity. We will continue to use
the notation for estimators given in Definition 15.1.

16.1 Towards More General Estimators

We start the chapter with another example of point estimation.
Example 16.1 (Estimating the number of pink jelly beans)

Consider the jar of jelly beans shown in Figure 16.1. Suppose that we know that
the jar has 1000 jelly beans. Our goal is to estimate the number of pink jelly
beans. Let

6 = Number of pink jelly beans in the jar.

To estimate 6, we randomly sample n = 20 jelly beans with replacement.

Figure 16.1 This jar has 1000 jelly beans. How many of them are pink?

Let X be the number of pink jelly beans that we observe in our sample of n = 20.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

266 16 Classical Statistical Inference

Observe that X is a random variable (r.v.) since the experiment is random. X can
take on values from O to n. We use r.v. 6(X) to denote our estimator of 6.

Question: What is a reasonable guess for what 6(X) might look like?

Hint: Itis easier to think about a specific instantiation of X. For example, suppose
we observe X = x pink jelly beans.

Answer: If we observe x jelly beans in our sample, then a reasonable estimate
for the fraction of pink jelly beans is 7. Hence we estimate the number of pink
jelly beans is

O(X = x) = (%) 1000, O<x<n (16.1)

Now, since (16.1) holds for every value of x, it follows that we can define

0(X) = (%) - 1000. (16.2)

Question: Is 6(X), as defined in (16.2), an unbiased estimator of 6?
Hint: It helps to start by considering the distribution of X.

Answer: Let us define

to be the true fraction of pink jelly beans. Then,

X ~ Binomial(n, p),

and hence

From this it follows that

1000
. n

6 1000
"7 1000 n
0. v

E[6(X)] =E [% - 1000] =E[X]

Thus, §(X) is an unbiased estimator of 6.

Question: Is d(x) a consistent estimator of 6?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

16.2 Maximum Likelihood Estimation 267

Answer: Yes! To see this, we will show that MSE(é) — 0, as n — oo. Note that
n can be arbitrarily high because we’re sampling with replacement.

We start by observing that MSE(d) = Var(d), by Lemma 15.5. Hence,

MSE(d) = Var(4 (1) -np(l-p)
(1000) 0 (0)
= n- 1- ——
1000 " 1000
(1000 o)

Clearly, MSE(@) — 0asn — oo, 50 is a consistent estimator, by Lemma 15.7.

16.2 Maximum Likelihood Estimation

In the previous section, we came up with what seemed like a reasonable estima-
tor. However, there was no specific method for coming up with this estimator,
nor the estimators in the prior chapter. In this section we describe a specific
methodology for deriving an estimator. The methodology is called maximum
likelihood estimation (MLE). It is the classical inference methodology adopted
by statisticians who consider themselves to be frequentists. In the next chapter
we will investigate a different methodology for coming up with estimators which
is preferred by the Bayesian statisticians.

In explaining the MLE method, to simplify notation we will assume that the
sample data is just a single r.v., X, but in general it can be Xi, X5, ..., X,,. For
now we will assume that we have a single unknown, 6, that we are trying to
estimate; we will later consider multiple unknowns. The goal is to derive 8(X),
which is a maximum likelihood estimator of 6 based on the sample data X; we
refer to this as an ML estimator. To create an ML estimator, we first consider
an arbitrary specific value of the sample data, X = x, and ask,

“What is the value of & which maximizes the likelihood of seeing X = x?”

The expression that we derive will be a function of x. Since x is chosen arbitrarily,
this allow us to define 6 as a function of the r.v. X.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

268 16 Classical Statistical Inference

Algorithm 16.2 (Creating an ML estimator) Our goal is to estimate an un-
known value, 0, given sample data represented by r.v. X.
1. Define
0, (X =x) = argmaxP{X =x | 6}.
6

P{X = x | 8} is called the likelihood function and represents the proba-
bility that X = x, given a particular 6. The value of 6 which maximizes the
likelihood function is denoted by 8,,(X = x).

2. Convert 8,,(X = x), which is a function of x, for any arbitrary x, into r.v.
0,,.(X), which is a function of a r.v., by replacing x with X.

The MLE method is best illustrated via an example. Returning to Example 16.1,
suppose that in our sample of n = 20 jelly beans we observe X = 3 jelly beans.

Question: Whatis P{X =3 | 6}?

Answer: If we’re given that there are 6 pink jelly beans, then the fraction of

pink jelly beans is p = 1 &. Hence, given n = 20, we have

200(6 \° g \"
p{x:3|e}:(3)(m) '(l‘m) |

Figure 16.2 shows the probability that X = 3 under all possible values of 6 from
0 to 1000, assuming n = 20.

P{X =316}
A

0251 e P

0.20 L 0=150

0.15| b
0.10 |- TS S
.d‘

0.05
0

0 200 400 600 800 1000

Figure 16.2 P {X =3 | 0} as a function of 6, assuming n = 20.

Question: Based on Figure 16.2, what value of # maximizes P{X =3 | 6}?

Answer: 6 = 150. So
Oy (X =3) = argmax P{X =3 | 6} = 150.
0

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

16.2 Maximum Likelihood Estimation 269

Question: What is the likelihood function, P {X = x | 6}?

n 0 X 9 n—x
o1 = () (o) (- o)

Question: What is 0, (X = x) = argmax P {X = x | 6}?
0

Answer:

Answer: To answer this, we’ll need to solve for the value of § which maximizes
the likelihood function:

d
0=—P{X=x|6
P (X =x0)

ol (o) (o)

df\x/] \ 1000 1000

n 0 X 0 n—-x—1 ~1
=(J'(W)*"‘”'(“m) 1000

n o *' 1 o \""
: - - .
" (x) * (1000) 1000 (1000)

If we divide both sides by (7) - (#‘(’)O)x_1 (1= ﬁ)n_l_x, we are left with:

0= =X 0 [x (_L)
1000 1000 1000 1000
0=—-(n-x)0+x(1000 — 0)
1000x

n

It is easily shown that the second derivative of the likelihood function is negative,
and thus
0= 1000x

n

is in fact the value of 0 that maximizes the likelihood function. Hence,

R 1000
b (X =x) = ——. (16.3)

Question: Given that

A 1000x
O (X =x) =

, forall0 < x < n,

what does this say about 8, (X)?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

270 16 Classical Statistical Inference

Answer:

A 1000X
One (X) = N

Notice that this is the same estimator that we arrived at in (16.2); however, this
time we followed a specific method (MLE) for coming up with the estimator.

16.3 More Examples of ML Estimators

Example 16.3 (Submissions to the Pittsburgh Supercomputing Center)

The number of jobs submitted daily to the Pittsburgh Supercomputing Center
(PSC) follows a Poisson distribution with unknown parameter A. Suppose that
the numbers of job submissions on different days are independent. We observe
the number of job submissions each day for a month, and denote these by
X1,X5,...,X30. Our goal is to derive Aw (X1, Xa, ..., X30), the ML estimator
for A.

Question: Before we do the computation, ask yourself: What do you expect the
answer to be?

Hint: Recall that the parameter A represents the mean of the Poisson distribution.

Answer: We are being asked to estimate the unknown parameter A, which is
the mean number of arrivals. It would make sense if this was simply the sample
mean. That is:
Xi+Xo+ -+ X3

30 ’
We now proceed to follow the MLE method, which will lead us to find that our
intuition is in fact correct.

/}iML(X1$X2’ e ,X30) =

We write

A (X1 = x1, X2 = x2,. .., X30 = X30)
=argmax P {X; =x1,X> = x2,...,X30 = x30 | 4}
2

A=t et r0e=a
= argmax . ce
1 X1 ! X2! X30!

/IX| +X2+- - +X30 6—30/1

= argmax P T
2 X1: X2+ X30-

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

16.4 Log Likelihood 271

To find the maximizing A4, we set the derivative of the likelihood function to O:

d /lxl+~~~+X3oe—30/l
[I —
dA \ xilxp!---x30!
(xl Foees +X3()) /lx1+-~-+x30—1 . e—30/l 4+ QX0 e—30/l . (_30)
xp!e-x30!

Dividing both sides by the appropriate constants leaves us with

0=(x;+---+x3) +1-(-30). (16.4)

Solving (16.4), and verifying that the second derivative is negative, yields
X1 +---+X30

A=
30

as the value of A which maximizes the likelihood function.

Hence,
Xy +---+ X3

Ce, > 0.
30 . Vxi, x30 >0

(X1 =x1,X2 =x2,...,X30 = X30) =

So
X1+ Xo+... X3

30 ’

A (X1, Xa, ..., X30) =

as predicted.

16.4 Log Likelihood

Sometimes, rather than finding the value of § that maximizes some probability,
it is more convenient to maximize the log of that probability. Lemma 16.4 makes
this clear.

Lemma 16.4 (Maximizing the log likelihood) Given an unknown value, 6,
that we are trying to estimate, suppose that we have sample data represented
by r.v. X. Then,

0,.(X = x) = argmax P {X = x | 0} = argmax logP {X = x | 6} .
0 0

Here, logP {X = x | 8} is referred to as the log likelihood function.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

272 16 Classical Statistical Inference

Proof: Maximizing the log likelihood is equivalent to maximizing the likelihood
since log is a strictly increasing function. |

Example 16.5 (Submissions to the PSC, revisited!)

Let’s revisit Example 16.3, where the goal is to estimate A. This time, however,
we derive the estimator that maximizes the log likelihood:

A (X1 =x1,X2 = x2,. .., X30 = X30)

=argmax In (P{X; =x1,Xo =x2,...,X30 =x30 | 1})
P!

=argmax In (P{X; =x; |1} - P{Xa=x2 | A} ---P{X30 =x30 | 1}) .
A

Hence,

A (X1 =x1, X0 = x2,...,X30 = x30)
30

= argmax Z InP{X; =x; | 1}
A=

30 e —A/lx,-
= argmax Z In ‘
= i

30 30
= argmax (—30/1 + Z x; In(Q) — Z In(x; !))
=1 i=1

a
30

Xi ln(/l)) .
a i—

= argmax (—30/1 +
i=1

To find the maximizing A, we set the derivative of the log likelihood function to

0:
d 30 30 1
0=— (—301 + lZ‘xi ln(/l)) =-30+ (Z}:x) 5t
Hence,
/l:x1+x2+---+x30‘
30
Thus again,
a X1 +X2+---+X30
A (X1 = x1, X2 = x2,..., X30 = X30) = — .

30

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

16.5 MLE with Data Modeled by Continuous Random Variables 273

16.5 MLE with Data Modeled by Continuous Random
Variables

When data is modeled by continuous random variables, we replace the probability
mass function (p.m.f.) with the probability density function (p.d.f.) in expressing
the likelihood. Definitions 16.6 and 16.7 provide a summary.

Definition 16.6 (MLE summary: single variable) Given an unknown value,
0, that we wish to estimate:
If the sample data is represented by discrete r.v. X, then we define

0,.(X =x) = argmaxP{X =x | 6}.
0

If the sample data is represented by continuous r.v. X, we instead define

0,.(X = x) = argmax fxjo(x).
0

Definition 16.7 (MLE summary: multiple variables) Given an unknown
value, 0, that we wish to estimate:

Ifthe sample data is represented by discrete random variables X1, X, . . ., X,
we define

O (X1 =x1,X2 =x2, ..., Xn =xp) = argmax P{X; =x1,...,Xn =xn | 0}.
0

If the sample data is represented by continuous random variables

X1, X2, ..., X, we define

Ovi(X1 =x1, X2 =x2,..., X = X,) = argmax fx, x,,...x,|0(X1,%2, ..., Xp).
0

Example 16.8 (Time students spend on their probability homework)

Students often ask, “How long can I expect to spend on homework if I take the PnC
probability class?” It turns out that the distribution of the time that students spend
on homework is approximately distributed as Uniform(0, b), where students can
be viewed as independent in the time that they spend doing the homework. To
get a feel for what b is, we survey three students. Let X, X», X3 denote the times
reported by the three students.

What is the ML estimator I3ML(X1 , X, X3) for b?

by (X1 = x1, X5 = x2, X3 = x3) = argmax fx, x,,x;|b(X1,%2,X3).
b

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

274 16 Classical Statistical Inference

if0<xy,x,x3<b

X1,X2, X = :
Jx1.X0.X51b (X1, X2, X3) { otherwise

|

To maximize fx, x, x;|»(X1,X2,Xx3), we want to make b as small as possible,
while still ensuring that x1,x3,x3 < b, so that the density doesn’t become 0.
Hence we want b = max{xy, x», x3}. Therefore,

if b > max{xy,x,x3}
otherwise ’

OTJ.— o%-

b (X1 =x1, X = x2, X3 = x3) = max{xy, x2,x3}
and

by (X1, X2, X3) = max{Xy, X2, X3}.

Question: Does EML feel like a good estimator of b? Is it what you would have
expected?

Answer: Clearly, our estimate for » must be at least equal to the maximum of
the samples. But it’s not clear that our estimate shouldn’t be higher than the
maximum observed. In fact, if we’ve only made a few observations, one would
expect b to be higher than the highest observation so far.

Question: Is b,; an unbiased estimator?

Answer: This will be explored in Exercise 16.5, where you will show that by, is
not an unbiased estimator, but can be made into one pretty easily.

We now turn to one more example involving continuous random variables.
Example 16.9 (Estimating the standard deviation of temperature)

The high temperature in Pittsburgh in June is (approximately) Normally dis-
tributed with a mean of u = 79 F. Suppose we would like to estimate the
standard deviation, o, of temperature. To do this, we observe the temperature on
n randomly sampled independent June days, denoted by X1, X», ..., X;,. Derive
éML(Xl , X2,...,X,), the ML estimator of o .

We will use the log likelihood formulation:

a-ML(Xl =X1,X2 =X2,... ,X,l :xn) = argmax In (le,X2 _____ Xn|o-(x1,xz,. .. ,xn)) .
o

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

16.5 MLE with Data Modeled by Continuous Random Variables 275

where

1n (fX[..... ano'(-xla"'$xn))

=In (ﬁ fX,—|cr(xi))

i=1

= > In (1o (x2))
i=1

il (1 _(Xi‘;)z)
= n e 20
: V2o

_ Z(Lo p) e~ 1n V37|
= 20-22(xl w?—nlno —nlnV2r. (16.5)

To find the maximizing o, we set the derivative of (16.5) to 0:
1
%(—Z—Z(x,)2—nln0'—nln\/2ﬂ)

n

L3 m-wr-t

n
Z) —-n (multiplying both sides by o).
=1
This yields
_ icy (xi = N)2
B
Hence,
5 T (- p)?
O'ML(Xlle,Xz :xZ’.”,Xn:xn): %’

and thus it follows that

/ n(X; - p)?
&ML(X15X29 e 7Xn) = Zl_l(% (166)

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

276 16 Classical Statistical Inference

Question: How does 6y, (X1, X2, ..., X,) in (16.6) compare with V $2 from
(15.2)?

Answer: These are the same.

16.6 When Estimating More than One Parameter

Sometimes we want to estimate more than one parameter of a distribution. This
is done by defining an MLE that jointly optimizes over multiple parameters.

To see how this works, let’s return to Example 16.9. Suppose this time we
need to estimate both the mean, u, and the standard deviation, o, of the Nor-
mal distribution of temperature. Again we have n randomly sampled temper-
atures: X1, X, ..., X,. This time, we wish to derive a pair of ML estimators:
Ay (X1, X5, ..., X,) and 6, (X1, X5, ..., X,,), where

X1 =x1,..., X, =x,)

R = argmax In .
O (Xi=x1,.... X, =xp) r%,o-x (Xl (31)

Our likelihood function, g(u, o), now depends on two parameters:

g,) = fx, %0, Xulpo (X1, X2, ., Xp).

To find the pair (u, o) that maximizes g(u, o), we set both of the partial deriva-
tives below to 0:

omg(uo) o dng(uo)

0.
ou oo

From (16.5), we know that

1 n
In(g(u,0)) = ~352 Z (xi —w)* =nlno —nlnV2r.
i=1

Taking partial derivatives, we have that:

dlng(u,o) 1 -

ga—: =52,). (16.7)
i=1

Oln , O 1 & n

- DI (16.8)
i=1

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

16.7 Linear Regression 277

Setting Z£U47) = 0 in (16.7) and ZET) = 0 in (16.8) yields

o R I v
[= X1 +x2 Xn and o= —Z(Xi—,u)z-
n nizl

X1+X0++Xp
n

Substituting the expression u =
Jl = X1 +x2+ - +x,)\2
o = - Z (x,' -) .

n 4 n

Hence we have that

/j(X] le,...,Xn Z)Cn)

into the expression for o, we get

n
and
1 < FX2 X2
6'(X1=x1,...,Xn=xn)=J— (xi—xl 2 x").
n 4 n
i=1
Since these hold for all values of xq, ..., x,, we have that:
. X1+ X+ -+ X
AXy,..., X,) = L
n
and

16.7 Linear Regression

We now turn to a different kind of estimation optimization problem, which is very
common in data analysis. We are given n data points generated through some
experiment. We can think of the ith data point as a pair of random variables,
(X;,Y;) with value (X; = x;,Y; = y;). We want to find the line that best fits the
specific values: (x1,y1), (x2,¥2),. .., (Xn, Yn), as shown in Figure 16.3. This is
called linear regression.

As a concrete example, a company might be trying to understand how advertising
is related to revenue. The company has data showing different periods where
advertising was lower or higher, and the corresponding revenue during those

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

278 16 Classical Statistical Inference

periods. The company would like to use this data to create a linear approximation
of the relationship between advertising (x value) and revenue (y value).

Best fit
line

»
L

> X
Figure 16.3 An example of linear regression.

Recall that a line in the x—y plane is determined by two parameters a and b,
where

y=ax+b.

Our goal is to determine the values of @ and b which define a line that best fits
our data, where “best” is defined in Definition 16.10.

Definition 16.10 (Linear regression) Ler {(X1,Y1),(X2,Y2),...,(Xu,Yy)}
be a set of data sample points. Suppose that & and b are estimators for the
a and b parameters of a line fitting the sample points. For the purpose of
estimation, Y; is viewed as the dependent r.v. and X; as the independent r.v.
The estimated dependent r.v. is Y;, where

Y; = aX; +b.

The point-wise error is defined as the difference between the value of the
estimated dependent r.v. and the true value for the ith point:

Err; =Y, - Y,

The sample average squared error (SASE) is then:
A N 1 z 2 1 & AND
SASE(Y1,....Y,) =~ Z (Err;)’ = Z Y -%)>. (169
i=1 i=1

A

The goal of linear regression is o find estimates @ and b that minimize
SASE(Y1,...,Yy).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

16.7 Linear Regression 279

Our plan is to derive estimators
a (X1, Y1), ... (X, Y) and b((X1,71),...(XnYn)),
which are functions of the data and which minimize SASE(Y}, . .., Y,) in (16.9).!
Question: What goes wrong if we try to set up @ and b as ML estimators?
Answer: Observe that the likelihood function doesn’t make sense here. There is
no probability:
P{(Xi=x,Y1=y1),.... Xn=x0,Yn=yn) | a,b}

because once the X;’s are specified and a and b are specified, then the Y;’s are
immediately specified.

The point is that we are not trying to maximize a likelihood function, but rather
we're finding the @ and b estimators that minimize the SASE. Other than that
change in objective, however, the optimization setup is very similar to what we
do under MLE, which is why we’ve included the topic in this chapter.

Question: How do we set up the optimization problem, replacing the likelihood
function by the SASE?

Answer: For a given set of specific points, (x1,y1), ..., (xn, yn), and a given
choice of a and b, we define

1 n
g(a,b) = SASE = — 3" (y; = (ax; + b))*.
n i=1

Then,

= argmin g(a, b)

&((X] =x19Y1 =y1)7""(X}'L=xn’Yn=yn)))
a,b

b((Xi=x1,Y1=y1) s (Xn =20, Yy = Y1)

1< 2
= - E i—(ax;+b
ar%flr)nn(n 2 (yi — (ax; + b)))
= i § i — (ax; +b))?|. 16.10
ar%flrjnn(i:] (yi — (ax; + b))) ()

Question: How do we find the minimizing (a, b)?

! The SASE is reminiscent of the MSE that we define in Chapters 15 and 17, and in fact many
books write MSE here. The main difference is that SASE is a sample average of squares, while
MSE is an expectation of squares.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

280 16 Classical Statistical Inference

Answer: To find the pair (a, b) that minimizes g(a, b), we set both of the partial
derivatives below to O:

dg(a,b) ogla,b)
Ep =0 and b =0.

We start with finding the minimizing b. By (16.10),

0

0= Z 3 (vi — (ax; + b))

S

S

=-2) (yi—(ax; +b))

= > (yi—(ax;+b)) (divide both sides by ~2)

b= Z?:l)’i _aZl_lxz
n n
=y —ax, (16.11)
where we define
_ +xp+---+ _ +yy 4+
X = nr n and y = A y".
n n

We next find the minimizing a. By (16.10),

0
OZZI:%(yi—(axi+b))2

=23 (yi = (axi +b)) - x;
i=1

n n
= > yixi—b Y xi—a Y x}. (divide both sides by ~2)
i=1 i=1

i=1

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

16.7 Linear Regression 281

To solve for a, it helps to first substitute in our optimizing b from (16.11):

n n n
0= Z)’ixi - (y—a)_c)in —ale2
i=1 i=1 i=1
n n

in i-y)=a (anxlz —anxif)'

i=1

Hence,
ey Xi (X = X)
_Z?:lxi(yi_y)—Z?zl)_C(yi—y) . n N n)
= Yxi (i —X) - XL, X (x; = X) since ; (yi=-y)=0= ; (x; = X)

_Zin i =X) (Yi_y)‘ (16.12)

>0 (kg —X)?

Hence, from (16.11) and (16.12), and substituting in d for a in (16.11), we have
that

b ((x1,91), s (Xnsyn)) = — 4%
Y (i =%) (i =)
(-1

d((xl’)’ﬂw HER) (xm)’n)) =

As these estimators are defined for all values of (x1, y1),..., (X, yn), it follows
that
b((X1,Y1),. .., (Xn,Yp)) =Y —aX (16.13)
)07

a((X, 1), ..., (Xn, Yn)) = (16.14)

R 2
i=1 (Xi - X)

Using @ and b from (16.13) and (16.14) guarantees our linear fit has minimal
SASE.

Question: There’s a natural interpretation for b in (16.13). What is it?

Answer: We can rearrange (16.13) to say

Y =4X + b,

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

282 16 Classical Statistical Inference

which makes perfect sense since we want ¥; = aX; +b, and Y is the sample mean
of the ¥;’s and X is the sample mean of the X;’s.

Question: There’s also a natural interpretation for d in (16.14) if we multiply
the numerator and denominator by ﬁ What is it?

Answer:

Ly (X,- - Y) (Yi - 7) _ Cov(X.,Y)

—)2 ~ Var(X)

a((Xi, 1),y (Xn, Yn)) =
T 2 (Xi -X

. (16.15)

Specifically, the denominator of (16.15) is the (unbiased) sample variance of the
X;’s, from Definition 15.8, and the numerator is the (unbiased) sample covariance
between the X;’s and Y;’s.

Question: What can we say about the sign of d based on (16.15)?

Answer: When the covariance is positive, @ will also be positive, meaning that
the slope of the line is positive. This makes sense because it says that X and
Y are positively correlated, meaning that when X goes up, Y goes up as well.
Likewise, when the covariance is negative, the slope of the line is negative.

When doing regression, the goodness of fit of the line is denoted by a quantity
called R?, where higher R? is better.

Definition 16.11 (R? goodness of fit) Consider the set of data sample points
{(X1=x1,Y1 =y1),...,(Xn = xn, Yy, = yn)} with estimated linear fit:

y =dx+b. (16.16)
Define
Vi =dax;+b
to be the estimated dependent value for the ith point. Let
X1 +x2+ - +x,

- —_Yity2+---+yn
X = and y= .
n n
Then we define the goodness of fit of the line (16.16) by
n w2
RZ:I—M, where 0 < R* < 1.
iz Vi =)

The R? metric is also called the coefficient of determination.

Question: How can we interpret R>?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

16.8 Exercises 283

Answer: The subtracted term
Zimg (i = ¥i)? _ % Zimg (i =)71‘)2 _ sample avg. squared error
PN CTES y)? % > (i - y)? sample variance

(16.17)

can be viewed as the sample average squared error in the estimators normalized
by the sample variance of the data set. This term is thus sometimes referred to
as “the fraction of unexplained variance.” The hope is that (16.17) is a small
fraction, which means that R? is close to 1.

Question: Why is (16.17) always less than 1?

Answer: Recall that ¥; = dx; + b is by definition the estimator that minimizes
the SASE. Hence the error in the numerator of (16.17) is by definition lower than
that in the denominator.

16.8 Exercises

16.1 Estimating the bias of a coin
A coin comes up heads with probability p and tails with probability 1 — p.
We do not know p. We flip the coin 100 times and observe X heads. Derive
Pw (X), the ML estimator for p.

16.2 Battery lifetimes
We have a bunch of batteries whose lifetimes are i.i.d. ~ Exp(41). Our goal
is to determine A. To do this, we sample the lifetimes of 10 batteries, whose
lifetimes we represent by X1, Xz, . .., Xj9. Derive /iML(Xl, X, ..., X10), the
ML estimator for A.

16.3 How many balls are blue?
Suppose that you have a bin with four balls. Each ball is either yellow or
blue (you don’t know which). Your goal is to estimate the number of blue
balls in the bin, which we’ll refer to as 6.
To obtain your estimate, you sample three balls with replacement from the
bin and note their colors. We let X; denote the color of the ith ball, where we
say that X; = 1 if the ball is blue and X; = 0 otherwise. Let éML(Xl , X7, X3)
denote the ML estimator for 6.
Suppose we observed the specific sequence of colors: 1,1,0. What is
O (X1 =1,X=1,X3=0)?

16.4 Job CPU requirements follow a Pareto distribution
After reading Chapter 10, you are well aware that job CPU requirements
follow a Pareto(«) distribution. But for which value of «@? To answer this
question, we sample the CPU requirements of 10 jobs picked independently

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

284

16 Classical Statistical Inference

16.5

16.6

16.7

16.8

at random. Let X|, X», ..., Xjo represent the CPU requirements of these
jobs. Derive &y (X1, X, . .., X10), the ML estimator for a.

Estimating the max of a distribution

In Example 16.8, we saw that the time that students spend on their probabil-
ity homework is distributed as ~ Uniform(0, b). To estimate the maximum
of this distribution, b, we surveyed three students independently at ran-
dom, whose times we represented by X, X, X3. We then derived the ML
estimator 5ML(X 1, X2, X3) for b, showing that

by (X1, X2, X3) = max{Xy, X2, X3}.

(a) Is BML(Xl, X>, X3) an unbiased estimator of b?

(b) To make the estimator more accurate, we decide to generate more data
samples. Suppose we sample n students. What is the ML estimator
EML(Xl, X5,...,X,)?Is it biased when n is large?

(c) Can you think of an estimator 5(Xj, . . ., X,) that is not the ML estima-
tor, but is an unbiased estimator for all n? [Hint: You’re going to want
to scale up 5ML(X1, cen X))

Estimating the winning probability

Team A has probability p of beating team B. We do not know p, but we
can see that in the last 10 games played between A and B, team A won
seven games and team B won three games. Assume that every game has a
unique winner and that games are independent. Based on this information,
formulate and compute the ML estimator for p.

Disk failure probability estimation

Suppose that every disk has probability p of failing each year. Assume that
disks fail independently of each other. We sample n disks. Let X; denote
the number of years until disk ¢ fails. Our goal is to estimate p. Derive
Pw (X1, X5, ..., X,), the ML estimator for p.

Practice with linear regression

You are given five points: (0, 5), (1, 3), (2, 1.5), (3.5,0), (5, —3). Determine
the best linear fit to these points and compute the R?> goodness of fit for
your estimate.

16.9 Acknowledgment

This chapter was written in collaboration with Weina Wang, who was a major
contributor to the chapter contents and the exercises.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

17 Bayesian Statistical
Inference

In Chapter 16, we defined an estimator of some unknown quantity, 8, based on
experimentally sampled data, X. This estimator, denoted by 8, (X), is called a
maximum likelihood (ML) estimator, because it returns that value of 6 that pro-
duces the highest likelihood of witnessing the particular sampled data. Specifi-
cally,

Oy (X =x) = argmax P{X = x | 6}. (17.1)
0

The ML estimator makes a lot of sense in situations where we have no a priori
knowledge of 6. However, what do we do in situations where we have some
knowledge about 6 — for example, we know that @ is likely to be high? 8, (X = x)
asdefined in (17.1) doesn’t have any way of incorporating this a priori knowledge.

In this chapter, we therefore introduce a new kind of estimator, called a maximum
a posteriori (MAP) estimator. Like the ML estimator, the MAP estimator is again
an estimator of an unknown quantity, 8, based on experimentally sampled data,
X. However, the MAP estimator starts with a distribution ® on the possible
values of 6, allowing us to specify that some values are more likely than others.
The MAP estimator then incorporates the joint distribution of ® and the sampled
data X to estimate 6.

Because it assumes a prior distribution, ®, the MAP estimator is a Bayesian
estimator, as compared with the ML estimator which is a classical estimator.
We will start with a motivating example that sheds some light on how the MAP
estimator and the ML estimator are related.

17.1 A Motivating Example

Example 17.1 (Gold or silver coin?)

In this example, you are given a coin that you can’t see. The coin is either gold
or silver. If the coin is gold, then it has bias p = 0.6 (chance p = 0.6 of heads).
If the coin is silver, then it has bias p = 0.4.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

286 17 Bayesian Statistical Inference

We wish to determine whether p = 0.6 or p = 0.4. To do this, we flip the coin
nine times. Let X denote the number of heads observed.

Question: Define the ML estimator to determine whether p = 0.6 or p = 0.4.

Answer:

Pw(X =x) = argmax P{X =x|p}. (17.2)
pe{0.4,0.6}

Question: Consider these two expressions: P{X =x|p =04} versus
P{X =x | p = 0.6}. Which is bigger?

Answer: The answer depends on x.

P{X=x|p=04})= (i) (0.4)*(0.6)°~~

P{X=x|p=06}= (2) (0.6)%(0.4)°7~.

SoP{X =x|p=04}islarger if x < 5, and P{X =x | p = 0.6} is larger if
x >5.

Thus, we have that

o[04 ifxe{0,1,2,3,4}
Pu(X =) ‘{ 0.6 ifxe{56,7,89}" a7.3)

Example 17.2 (Gold or silver coin with added information)

Now suppose we are in the same setting as Example 17.1, but we are given the
additional information that gold coins are four times more common than silver
ones. So, absent any samples, with probability 80% our coin is gold.

To capture this, define a random variable (r.v.) P, where P represents the bias of
the coin:
o .| 04 w/prob 20%
P = bias of coin = { 0.6 w/prob 80%
Question: How can we incorporate this distributional information about the bias
into our ML estimator?

Answer: Our ML estimator, as defined in (17.2), does not have a way of incor-
porating the distributional information represented by P.

Question: Intuitively, how do you imagine that knowing that the bias is modeled
by P might change the result in (17.3)?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

17.2 The MAP Estimator 287

Answer: It seems like the output of p = 0.6 should be more likely, given the fact
that most coins are gold. Thus, even when the sampled data is X = x < 5, it may
still be true that the best estimate for p is p = 0.6.

As an idea for how to incorporate the distributional information embodied by P,
consider the weighted ML estimator, given in (17.4). This new estimator starts
with the ML estimator given in (17.2), but multiplies the likelihood function by
the prior:

ﬁweightedML(X =)C) = argmax P{X =X | p} ' P{P = p} . (174)
pe{04,0.6} | V4——rn—/m—— ———
likelihood prior

This “weighted ML estimator clearly puts more weight on the output p = 0.6
as compared to p = 0.4. We will soon see that this weighted ML estimator in
(17.4) is equivalent to the MAP estimator, which we define next!

17.2 The MAP Estimator

We will first define the MAP estimator in the context of Example 17.2 and then
define it more generally a little later.

Definition 17.3 (MAP estimator for Example 17.2) Our goal is to estimate
p € {0.4,0.6}. We are given a prior distribution on the possible values for p,
denoted by r.v. P (we intentionally use the capitalized form of p). We also have
experimental data, denoted by r.v. X.

We say that P,,.(X) is the MAP estimator of p. We use a capital P to denote
that the estimator takes into account both the prior distribution P and the data
X to create an estimate of p:
P,..(X=x)= argmax P{P=p| X =x}. (17.5)
p<€{0.4,0.6}
Note that P,,,,(X) is a function of a r.v. X and thus is a r.v., while P,,,(X = x)
is a constant.

Let us compare Pow(X = x) in (17.5) with py, (X = x) in (17.2). Both of these
are estimates of p based on data sample X = x. Both involve finding the value of
p which maximizes some expression. However, (17.5) uses the prior distribution
P and has swapped the order of the conditional as compared to (17.2).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

288 17 Bayesian Statistical Inference

Question: Argue that ISMAP(X = x) from (17.5) is equal to P zmean (X = x) from
(17.4).

Answer: Starting with P,,,,(X = x), and applying Bayes’ Rule, observe that we

are looking for the p that maximizes:

P{P=p&X=x} P{X=x|P=p} P{P=p}
P{X =x} B P{X =x} '

P{P=p|X=x}=

But the P {X = x} term doesn’t affect this maximization, so we’re really looking
for the p that maximizes

P{X=x|P=p} -P{P=p}. (17.6)
N————
likelihood prior

But this in turn is exactly the expression that we’re maximizing in (17.4).
Question: Is there any situation where Py = Pw?

Answer: Yes, this happens when the prior, P, provides no additional information,
in that all possible values of p are equally likely. For our current example, this
would mean that the gold and silver coins are equally likely. In the case of a
continuous setting, P would follow a Uniform distribution.

We now proceed to evaluate

PMAP(X :X) = argmax P{P:p | X :x}.
pe{0.4,06}

Given that there are only two possible values of p, we simply need to compare
the following two expressions:

() - 0.4% - 0.6°7% - 20%

P{P=04|X=x}= PIX = (17.7)
PP 06| X () -0.6*- 0477 - 80% 78
{P=06]|X=x}= P (X =) (17.8)

Question: How do we determine which of (17.7) and (17.8) is higher?

Answer: It’s easiest to look at their ratio and see when the ratio exceeds 1:

P{P=06]X=x} (3*
P{P=04|X=x} (_)

2

But

3 2x-9
4(5) > 1 — x> 3.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

17.2 The MAP Estimator 289

Thus, p = 0.6 is the maximizing value when x > 3. So

R . [04 ifxe{0,1,2}
Pu(X = x) ‘{ 06 ifxe{3,4,56,7,8,9} " 7.9
Thus,
5 04 ifX<3
P (X) ={ 06 ifX>3" (17.10)

Intuitively, this makes sense, since we are starting out with a coin that is gold
with probability 80%.

We end this section by defining the MAP estimator in general settings, beyond
the context of Example 17.2.

Definition 17.4 Our goal is to estimate some unknown 6. We are given a prior
distribution on the possible values for 6, denoted by r.v. ©. We also have
experimental data, denoted by r.v. X.

We say that ©,,,(X) is our MAP estimator of 6. We use a capital ® in
our estimator to denote that the estimator takes into account both the prior
distribution © and the data X to create an estimate of 6.

In the case where O is a discrete r.v., the MAP estimator is defined by:

Opr(X =x) = argmaxP{® =0 | X = x}
0

argmaxP{X =x|0=0}-P{O® =0} if X is discrete
0

argmax fxje=¢(x) - P{® = 6} if X is continuous
0

In the case where O is a continuous r.v., the MAP estimator is defined by:
®MAP(X =x)= argmax f@IX:x(e)
0

argmaxP{X =x | ® =86} fo(0) if X is discrete
0

argmax fxje=e(x) - fo(6) if X is continuous
0

Note that 8,,,,(X) is a function of a rv. X and thus is a r.v., while ©,,,,(X = x)
is a constant.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

290 17 Bayesian Statistical Inference

Definition 17.5 While the r.v. © represents the prior distribution, the con-
ditional rv., [® | X = x|, represents the posterior distribution since it
represents the updated version of the prior distribution, given the value of the
data. Likewise, P{® = 0 | X = x} is called the posterior probability (where
we write fo|x=x(6) for the continuous case). Thus O, (X = x) represents the
value of 0 that maximizes the posterior probability.

Remark: While ©,,,, (X) in Definition 17.4 depends on both the prior distribution
® and also on X, we note that ©,.,,(X) is a function of just X. Specifically, once
we specify the value of X, say X = x, then ©,,,,(X) becomes a constant.

17.3 More Examples of MAP Estimators

Example 17.6 (Estimating voting probability)

Suppose we want to estimate the fraction of people who will vote in the next
election. Let’s call this quantity p. To estimate p, we sample 100 people inde-
pendently at random. Suppose that 80 of the sampled people say that they plan
to vote. This feels high, so we go back to look at prior elections and how many
people voted in prior elections. We find that the fraction of people who voted in
prior elections is well modeled by the r.v. P, with density function:

fr(p)=3(1-p)*>, where0<p<1,

shown in Figure 17.1. Given this prior, P, and the sample X = 80, how can we
estimate the true fraction of people, p, who will actually vote?

Jp(®)

Figure 17.1 llustration of fp(p).

In order to formulate this question in terms of Definition 17.4, we start with a
few questions.

Question: If X denotes the number of people sampled, how is X distributed?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

17.3 More Examples of MAP Estimators 291

Answer: X ~ Binomial (100, p).
Question: Which of the cases of Definition 17.4 should we be looking at?

Answer: ® = P is continuous, and X is discrete. Thus,

Py (X = 80) = argmax fp|x=so(p) = argmax P{X =80 | P = p} - fr(p).
p 4

Since X ~ Binomial(100, p), we know that

1
P{X:80|P:p}:(oo

80 20
1-p)2,
20)p (I-p)

Our posterior probability is thus:

P(X=80|P=p} folp)= (18000

_ (100
180

)p8°(1 -p)*-3(1-p)*

) . 3p80(1 _ p)22.

To find the maximizing p, we differentiate the posterior with respect to p,
ignoring the constant unrelated to p, and set the derivative equal to 0, yielding:

0=p%-22-(1-p)*-(-1)+80p™ - (1 -p)*.

This in turn is easily solved by dividing both sides by (1 — p)?! - p”°, yielding:

_ 80
P=q02°
Thus,
N 80
PMAP(X = 80) = @ ~ 78070

Question: This may still feel off to you. Shouldn’t the prior matter more?

Answer: The answer lies in the number of people sampled. The fact that we
sampled 100 people (picked uniformly at random) makes the prior distribution
not so meaningful. Had we sampled a smaller number of people, then the prior
distribution would matter much more.

Question: Repeat the voting example, where now we sample five people, uni-
formly at random and X = 4 report that they will vote. What is our estimate for
p now?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

292 17 Bayesian Statistical Inference

Answer: You should get

Puw(X =4) = = ~ 57%.

| &~

Observe that the prior distribution has much more of an effect now.
Another example of where estimation comes up has to do with signals that are
(partially) corrupted by noise.

Example 17.7 (Deducing original signal in a noisy environment)

When sending a signal, 6, some random noise gets added to the signal, where the
noise is represented by r.v. N ~ Normal (0, 0'12\,). What is received is the sum of
the original signal, 8, and the random noise, N. We represent the data received
by r.v. X, where

X=0+N. (17.11)

Suppose that we receive X = x. Based on that, we’d like to estimate the original
signal, 6.

We will consider two situations: In the first, we have no prior information about
the original signal. In the second, we have a prior distribution on the original
signal.

Question: What is ,, (X = x)?
Since X is continuous, by Definition 16.6 we have that
Ou.(X = x) = argmax fx|g(x)
6

= argmax fn(x — 6), by (17.11).
0

Question: Now, where does N have its highest density?

Answer: Since N ~ Normal(0, U,ZV), we know that it achieves its highest density
at 0. Thus, fy (x — 0) is highest when 6 = x. So

Oy (X =x) = x. (17.12)
Since this holds for all x, we have that 8,, (X) = X.
Question: Why does (17.12) make sense?

Answer: We are trying to estimate the original signal, 6. We know that the noise

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

17.3 More Examples of MAP Estimators 293

is symmetric, meaning that it is equally likely to add or subtract from the original
signal. Thus, when we receive x, our best guess for the original signal is x.

Now consider that we have additional information in the form of a prior distri-
bution on the original signal, represented by r.v. ® ~ Normal(u, o2). Thus we
can think of X as a sum of two independent random variables:

X=0+N.

Again, we are trying to estimate the original signal, 8, given that we have received
data X = x. To do this, we use a MAP estimator.

Question: What is C:)MAP(X =x)?
Answer: By Definition 17.4,
Ouar (X = x) = argmax fy|e-0(x) - fo(6).
0

Now, since X = ® + N and ® L N, we know that
[X | ®=6] ~Normal(#0, 0',2\,).

Hence,
1 - 12 (X_H)z
fxje=0(x) = N (17.13)
| V2rnon
So
(:)MAP(X =x) = argmax fXI@zH(x) : f@(g)
0
1 _ﬁ(x_g)z 1 _1(9_,“)2)
= argmax e N . e 2072
0 (V2ron \V2ro
— 5 (x=0) =55 (0-p)°)
=argmax (e "N (can ignore constants)
0

1 1
= argmax (__2(x 07— >0~ mz) ,
0 20'N 200

where the last line follows since it suffices to maximize the exponent. Let

e Loy
8(6) = =3 (=0 = 55 (0= "

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

294 17 Bayesian Statistical Inference

To find the maximizing 6, we take the derivative and set it equal to 0, obtaining

, 1 1
0=g/(6) =——— (-2)(x - 6) — — - 2(6 -),
207, 20
which easily solves to
u
ate o ok
0= R R a
e O +oy a2 +oy,
Thus,
A 2 o2
Oue(X =x) = —— x4 — Ny (17.14)
a2 +oy, a2 +oy,

Question: What is the meaning behind the fact that the MAP estimate of 6 in
(17.14) looks like a weighted average?

Answer: Observe that (17.14) represents a weighted average of the received data,
x, and the prior mean u. So the MAP takes into account both the received data
and also the prior distribution. Looking at the weights, we see that they depend
on the variance of the original signal, o2, and also the variance of the noise, o2,
If the variance of the noise is (relatively) low, then we weigh the received data,
x, more highly in our estimate. If the variance of the noise is (relatively) high,

then we weigh the mean of the prior, u, more highly in our estimate.

17.4 Minimum Mean Square Error Estimator

This chapter has been devoted to coming up with an estimator, in the case where
we have a prior distribution, denoted by r.v. ®, and also data, denoted by r.v. X.
The idea has been to create a posterior distribution, denoted by

[6] X =x].
Then, from Definition 17.4,
Ounr(X =x) =argmax P{® =60 | X =x}.
0

We can view (:)MAP as the mode of the posterior distribution. In the case of a
discrete distribution, this represents the value, 6, that comes up most frequently in
the posterior distribution. In the case of a continuous distribution, this represents
the value with highest density.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

17.4 Minimum Mean Square Error Estimator 295

One could alternatively define a different Bayesian estimator for 6 that is the
mean of the posterior distribution. We do this now.

Definition 17.8 Our goal is to estimate some unknown 6. We are given a prior
distribution © on the possible values for 6. We also have experimental data,
denoted by r.v. X.

We say that (:)MMSE(X) is the minimum mean squared error (MMSE) estima-
tor of 6, where

éMMSE(X) =E [® | X] .
This is shorthand for saying that, for any x,
C:)MMSE(X:x) :E[® | XZX] .

Note that 8,,,5.(X) is a function of a r.v. X and thus is a r.v., while ©,,,5:(X = x)
is a constant.

The estimator @MMSE(X = x) gets its name from the fact that this estimator in fact
produces the minimum possible mean squared error of any estimator. We will
prove this fact in Theorem 17.12. For now, let’s consider a few examples of this
new estimator to better understand how it compares with the MAP estimator.

Example 17.9 (Coin with unknown probability: revisited)

We revisit Example 7.14, where there is a coin with some unknown bias, where
the “bias” of the coin is its probability of coming up heads. We are given that
the coin’s bias is drawn from distribution P ~ Uniform(0, 1). We are also given
that the coin has resulted in X = 10 heads out of the first 10 flips. Based on this,
we would like to estimate the coin’s bias.

Question: What is Pyys:(X = 10)?

Answer:

Pus:(X =10)=E[P| X = 10].

To derive this, we need to first derive the conditional probability density function
(p.d.f.) of P given X = 10:

P{X=10|P=p}- fr(p)

fP|x=1o(P) = P{X = 10}
10.1 .
0 otherwise

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

296 17 Bayesian Statistical Inference

Here,
1
P{X:m}:/o P{X=10|P=p}- fp(p)dp
: 10
=/ p dp
0
1
o
So,
f ()zP{X=10|P=p}-fp(p)
P|x=10{p P{X =10}
[11p!? ifo<p<1
_{ 0 otherwise (17.15)
Hence,
5 : 0 11
PMMSE(XZIO):E[P|X=10]: pllp dP:E.
0

Question: How does PMMSE(X = 10) compare with PMAP(X =10)?

Answer: The prior P is continuous and X is discrete, so using Definition 17.4
and (17.15), we have:

Py (X = 10) = argmax fpix=10(p) = argmax (llplo) =1.
p P

Question: Which is the more believable estimator?

Answer: This is a matter of opinion, but it feels like the MMSE estimator does
a better job of capturing the prior distribution than the MAP estimator.

Let’s consider one more example comparing the MMSE estimator and the MAP
estimator.

Example 17.10 (Supercomputing: estimating the true job size)

In supercomputing centers, users are asked to provide an upper bound on their
job’s size (running time). The upper bound provided by the user is typically
several times larger than the job’s actual size [49]. We can think of the upper
bound provided as a scalar multiple of the original job size. The relationship
between the original job and upper bound provided can be represented by:

X=5-0,

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

17.4 Minimum Mean Square Error Estimator 297

where © is a r.v. denoting the original job size, S is a scalar multiple where
S > 1, and X is the reported upper bound. We will assume that § L ©. Given
a value on the upper bound, X = x, how do we estimate the original job size,
© = 6, from this? Specifically, we will be interested in deriving O (X = x)
and @)MMSE(X =X).

To keep the computations from getting too messy, we assume: ® ~ Pareto(a = 3)
and S ~ Pareto(a = 2). Hence,

fo(0) =3674, ifo > 1
fs(s) =257, if s > 1.

Both estimators will require deriving fo|x=x(6). To get there, we will have to
start with the other direction, namely fx|e=¢(X).

Question: Given that X = S - ©, what is fx|e-g(x)?
Hint: Is it fs (5)?
Answer: The correct answer is

fX\e):a(x)=é'fs (g), x>6>1.

To see why, recall that we need to make the arguments over probabilities, not
densities:

P{Xsﬂ@):@}:P{Ss%}

[;‘&@ﬂuMni[;”ﬁUMr

d t=x d t:%
| eoar= 5 [pswar
dx =0 dx =0

1
frio=0() = = fs (g) by FTC, see (1.6) and (1.7) .

We use our conditional density to get the joint density as follows:

-3
fro(x.0) = fxio-0() - fo(0) = 5 -2 (F) 307 = 2

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

298 17 Bayesian Statistical Inference

We can integrate the joint density to get fx(x), as follows:

O=x
fx(x) = fxoe(x,0)do
0=1
O=x
6
= — a9
</0:1 92x3
=6xC —6xt, x>

We are finally ready to obtain fg|x-.(6):
fxe(x,0)

fx(x)
6

_ 92x3
C6x 3 —6x4
3 X
62 - 62
B 1 X
62 x-1

f@lX:x(H) =

x>0>1.

Question: So what is O, (X = x)?
Answer:

A 1
Ouar (X = x) = argmax fo|x=x(0) = argmax — - —— = 1.
P o 0% x-—1

Question: What is C:)MMSE(X =x)?

Answer:

®MMSE(X =x)=E[O| X =x]

O=x
- / 0 forxer(6)d

O=x

1
S / —do
x—1 0=1 6

xInx

T x-1
Inx

=Ilnx+

Question: Which is the more believable estimator?

Answer: The MAP estimator is pretty useless, given that it simply returns an

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

17.5 Measuring Accuracy in Bayesian Estimators 299

answer of & = 1. The problem is that the density of the prior is maximized at
6 = 1, and somehow this isn’t improved when we look at the conditional density.

The MMSE estimator returns a more reasonable answer of § ~ In x. This makes
more sense given that the upper bound on job size is x.

Question: You might wonder if the answers change if we make the problem a
little more symmetric, where ® and S have the same distribution. For example,
what do you think might happen if ® ~ Pareto(«@ = 2) and S ~ Pareto(a = 2)?

A

Answer: We find that, disappointingly, ®,,,(X = x) remains at 1. However, now

x—1

(:)MMSE(X =x)= Inx

17.5 Measuring Accuracy in Bayesian Estimators

We have seen different estimators, producing different results. It is helpful to have
some metrics for evaluating the accuracy of our estimators. One common metric
for measuring the accuracy of estimators is the mean squared error (MSE).

Recall the MSE as given by Definition 15.4, when we were looking at non-
Bayesian estimators. Here, 6 was an unknown constant, X represented the sample
data, and §(X) was our estimator for §. Under this setting we defined:

MSE(A(X)) =E [(é(X) - 9)2]. (17.16)

For Bayesian estimators we need an adaptation of the definition in (17.16)
because 6 is no longer a constant, but rather is drawn from a prior distribution,
0. For Bayesian estimators, we use Definition 17.11 for the MSE.

Definition 17.11 Let ©(X) be an estimator where © represents the prior dis-
tribution and X the sample data. Then the mean squared error (MSE) of
O(X) is defined by

MSE(@(X)) -E [(@(X) - @)2] : (17.17)

Question: How should one interpret Definition 17.11? What is the expectation
over?

Answer: Both terms within the expectation in (17.17) are random variables.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

300 17 Bayesian Statistical Inference

The first term is a r.v. which is a function of just X (once a value of X is specified,
O(X) becomes a constant). The second term is the r.v. ®. The expectation in
(17.17) is over the joint distribution of ® and X (that is, it’s a double sum).

At first, Definition 17.11 may seem a little strange. However, it’s actually very
similar to our definition in (17.16) except that now the value of 6 is picked from
the prior distribution. To see this, we condition on 8:

MSE(@(X)) -E [(@)(X) - @)2]
:/HE[((:)(X)—(B)Z |®:9
:/HE[((C)(X)—G)2|®:9

fo(0)db

fo(0)do.

Observe that the integrand looks very similar to (17.16). The point is, whatever
our chosen value, 6, we want to say that our estimator, ®(X), is close to that
value in expectation.

Now recall the estimator (:)MMSE(X). Theorem 17.12 says that this estimator has
the lowest MSE compared to all other estimators.

Theorem 17.12 8,,,,.(X) minimizes the MSE over all estimators ©(X).

Proof: We start by defining:

MSE(@(sz)) :E[(@(X) —@)2|X:x]. (17.18)

We will show that @MMSE(X = x) minimizes MSE(C:)(X = x)) for all values of x.
It then follows that Oy (X) minimizes the MSE over all estimators ©(X).

MSE(@(X - x)) -E

. 2
(@(X) - @) | X :x]
=E [6(X)* - 20(X)0 + 0| X =x]

=0(X=x)>-20X=x)E[O| X =x]
+E[0* | X =x]. (17.19)

We now want to find the minimizing ®(X = x) in (17.19). Recall that (X = x)
is a constant function of x. We’ll denote this by ¢ (x) and replace ©(X = x) with

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

17.6 Exercises 301

c(x) throughout, obtaining:
MSE(@(X - x)) = c(x)2—2c(0)E[O | X =x] +E [0% | X =2x]
=(c(x)-E[®| X =x])*+E[0% | X =x|
~E[0|X=x],
which is clearly minimized when the first term is 0, namely when

c(x) =E[O | X =x] = Oy (X = x). [

17.6 Exercises

17.1 Deducing original signal in a noisy environment
We have an original signal, represented by r.v. ®, where ® ~ Normal(0, 1).
We also have noise, represented by r.v. N, where N ~ Normal(0, 1). The
received signal, represented by r.v. X, is then:

X=0+N.

Derive the MMSE estimator, @)MMSE(X = x). How does your answer com-
pare to Oy,,(X = x) under the same setting?

17.2 Mean squared error of the MMSE estimator
In Theorem 17.12, we saw that ©:(X) minimizes the MSE. But what

exactly is this error? Prove that MSE ((:)MMSE(X = x)) is the variance of the
posterior distribution.

17.3 MMSE estimator for gold vs. silver coin problem
For the Bayesian coin problem from Example 17.2, derive the MMSE
estimator, f’MMSE(X).

17.4 Hypothesis testing for COVID: MLE vs. MAP

To determine whether you have COVID, you take an antigen self-test.
Rather than outputting “yes” or “no,” the test outputs a number, L, from the
set {0, 1,2, 3}, where L indicates the level of antigen detected. The level L
is not a perfect indicator. Table 17.1, called a “likelihood matrix,” shows
the probability distribution over the level output by the test, depending on
whether you have COVID or not. For example, if you don’t have COVID,
then the test outputs L = 0 with probability 0.6 and L = 1 with probability
0.3, etc. By contrast, if you have COVID, the probability distribution is
more biased toward higher levels.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

302 17 Bayesian Statistical Inference

L=0 L=1 L=2 L=3

Hy: Don’t have COVID 0.6 0.3 0.1 0.0
H|: Have COVID 0.1 0.2 0.3 0.4

Table 17.1 Likelihood matrix.

Consider two hypotheses: Hy that you don’t have COVID and H; that you

do.

(a) For each possible reading of L, determine which hypothesis is returned
by the MLE, which returns the hypothesis with highest likelihood.

(b) For each possible reading of L, determine which hypothesis is returned
by the MAP decision rule. Assume that P {Hp} = 0.8 and P {H,} = 0.2.

17.5 Estimating the minimum: MLE vs. MAP
You observe 10 i.i.d. data samples, X1, X5, ..., Xj9 ~ Uniform(a, 1). You
know that a > 0 but not the exact value of a. Your goal is to estimate a.
(a) Determine d, (X, Xo, ..., Xi10), the ML estimator of a.
(b) Suppose that we have a prior on a, denoted by r.v. A, with p.d.f.:
W0 if0<as<1

i@ = 57

0 otherwise

Determine AMAP(X 1, X2,...,X10), the MAP estimator of a.

17.6 Interaction graph
Annie, Ben, and Caroline are three CMU students. CMU has only two
clubs: PnC club and Buggy club. Each student must join one and only one
club. Suppose that you (as an outsider) know that Annie has joined the PnC
club, but you cannot see which clubs Ben and Caroline join. However, you
can see the interaction graph in Figure 17.2. The interaction graph tells us
something about which students at CMU interact with other students. But

Club: PnC

Annie
Ben Caroline

Club:?? Club:??

Figure 17.2 Interaction graph for Exercise 17.6.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

17.6 Exercises 303

17.7

the interaction graph is not perfect: An edge between two people exists

with probability % if the two people are in the same club and exists with

probability é if the two people are in different clubs.

(a) What is your ML estimate of the clubs Ben and Caroline each joins?

(b) Suppose that you know Ben and Caroline well enough to have the
following prior: Ben joins PnC with probability % and joins Buggy with
probability % Caroline joins PnC with probability % and joins Buggy
with probability %. They make their choices independently. What is
your MAP estimate of the clubs Ben and Caroline each joins?

Error correcting codes
Suppose you want to transmit a message to your friend through a wireless
channel. Your message, denoted as M, has three possible values with this
distribution:
PM—O—1 PM—l—7 PM—2—1

M=0}=3, PM=1}=—. P{M=2}=—.
You have decided to use a 5-bit string, U = U U,U3U4Us to encode message
M as follows:

M =0 = U = 00000,
M=1= U=11110,
M =2 = U =10101.

Here, the leftmost two bits, Uy, U;, are used to differentiate among the
values of M, and the remaining three bits, Us, U4, Us are redundant bits
for error correcting — that is, the remaining bits reinforce the information
in the first two bits. This coding scheme sets Us = U; , Uy = U;, and
Us=U,+U, mod 2.
When you transmit the string U, each bit U; gets flipped with probability € =
0.2, and Uy, U, ..., Us get flipped independently. Let X = X1 X, X3X4X5
denote the string that your friend receives. Your friend must estimate the
value of M based on the received string. For two binary strings with
the same length, the Hamming distance between the strings, denoted by
dg (-,), is defined to be the number of bits on which the two strings differ.
(a) Suppose your friend decodes X by comparing X with the three strings
{00000, 11110, 10101} and selecting the string that has the smallest
Hamming distance to X. Then she declares that the value of M that
corresponds to the selected string is the value transmitted. When there is
a tie, she declares the smaller value for M. For example, if she receives
X = 10100, then 10101 is the string from {00000, 11110, 10101} that
is the closest to X. So she declares that M = 2 is the value transmitted.
If she receives X = 11000, then dg (X, 00000) = 2, dy (X, 11110) = 2,
and dgy (X, 10101) = 3. So she breaks the tie and declares that M = 0.
(1) What type of estimation is your friend doing?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

304 17 Bayesian Statistical Inference

(ii) Suppose that the received stringis X = k = kjkokskqks. How does
your friend determine whether M equals O or 1 or 2?7 (Write down
the probabilities involved using expressions involving dg (k, -).).

(b) If your friend uses a MAP decoder to estimate M, what will she declare

when she receives X = 10100?

17.8 MMSE estimator of temperature given noise

There is a heat source with temperature 7 ~ Normal(100, 16). You want
to know the value of the temperature, T = ¢, but you cannot directly
access the source. You are, however, able to approximately measure the
temperatures at two nearby locations: Let X4 denote your measurement of
the temperature at location A, which is 1 mile away and known to have
temperature % Let Xp denote your measurement at location B, which is 2
miles away with temperature %. Unfortunately, X4 and Xp are both affected
by noise, and hence what you actually read is:

T
X4 = 5 + Wy, W4 ~ Normal(0, 1),

T
Xp = n + Wg, Wpg ~ Normal(0, 1),

where the noises W4, Wg, and T are independent.
(a) What is the conditional p.d.f. of T given that you observe X4 = x4 and

XB = XB?
(b) What distribution does T follow given you observe X4 = x4 and
XB =)CB?

(c) Whatis TMMSE(XA, XB)?
[Hint: If ar.v. ¥ has a p.d.f. of the form fy (y) = C - e~2(@¥*+b¥+¢) \here

C,a, b, c are constants, independent of y, then Y ~ Normal (—% 1).]

’a

17.9 The MMSE is an unbiased estimator
Prove that the MMSE estimator is unbiased. Thatis, E [(:)MMSE(X)] =E [0].

17.7 Acknowledgment

This chapter was written in collaboration with Weina Wang, who was a major
contributor to the chapter contents and the exercises.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Part VI

Tail Bounds and
Applications

In this part of the book we delve deeply into understanding the tail of a random
variable, namely the probability that the random variable exceeds some value.
While we briefly touched on this topic in Section 5.9, in Chapter 18 we derive
much more sophisticated tail bounds, including Chernoff bounds and Hoeftding
bounds.

Tail bounds are important in providing guarantees on the probability of some
bad outcome. In Chapters 19 and 20, we study some common applications of
tail bounds.

First, in Chapter 19, we look at how tail bounds allow us to create confidence
intervals on a statistical estimate. We also study a popular problem in theoretical
computer science, called the balls-and-bins problem, where balls are distributed
independently at random among bins, and we prove bounds on the bin occupancy.

Next, in Chapter 20, we turn to the problem of designing and evaluating hashing
algorithms. Here we show how our tail bounds and the balls-and-bins analyses
from Chapter 19 give us bounds on the number of items in a hash bucket and the
probability of a hash collision.

Tail bounds are extremely important in the analysis of many randomized algo-
rithms. Randomized algorithms are covered in depth in Part VII of the book.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

18 Tail Bounds

Until now, we have typically talked about the mean, variance, or higher moments
of a random variable (r.v.). In this chapter, we will be concerned with the tail
probability of ar.v. X, specifically,

P{X > x} or P{X > x}.

The tail behavior is very important for offering quality of service (QoS) guaran-
tees. For example, we might have to pay a penalty if the response time exceeds
1 second, and thus we want to know the fraction of jobs whose response time
exceeds 1 second. Equivalently, we might want to be able to formulate a service
level objective (SLO), like “99% of jobs should experience response time less
than 1 second.” There are many other examples of tail behavior in computer sci-
ence. For example, router buffers in a network need to be provisioned so that the
probability of overflow is low. Likewise, when designing a hash table, we care
not only about keeping the expected number of items in a bucket low, but also
about ensuring that no bucket has a huge number of items. All these examples
require deriving tail behavior.

While the variance of a r.v. tells us something about its deviation from its mean,
the tail of the r.v. gives us a lot more information. Unfortunately, it is often not
easy to reason about the tail behavior of even very simple random variables.
Consider, for example, X ~ Binomial(n, p):
n
P{X2k}=) (’7)pf(1 —)i (18.1)
i

i=k

We do not have a closed-form representation of the tail probability in (18.1).
Specifically, we don’t have a sense of what this tail probability looks like as
a simple function of k, n, and p. The tail probability in (18.1) comes up in
many applications. Suppose, for example, that you are distributing n jobs among
n machines by assigning each job to a random machine. In expectation each
machine should get one job. You would like to know the probability that a
particular machine gets > k jobs. This probability is represented by (18.1) in the
case where p = %

As another example, consider X ~ Poisson(1). Here, X is representative of the

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

18.1 Markov’s Inequality 307

number of arrivals to a website during 1 hour, where arrivals come from many
different sources at an average total rate of A arrivals per hour (see Chapter 12).
To understand the probability that there are > k arrivals during the hour, we
need:

i
A
i

P{X >k} = Ze (18.2)
i=k

Again, we do not have a closed-form expression for the tail probability in (18.2).

The purpose of this chapter is to investigate upper bounds on these tail probabil-
ities. These upper bounds are generally called tail bounds. Sometimes the goal
is to upper bound a tail probability of the form P {X > k} . Other times, our goal
is to upper bound the tail of the distance of a r.v. from its mean, i.e., we’re trying
to upper bound:

P{|X — u| > k}, where u = E [X].

In this latter case, our tail bound is more specifically referred to as a con-
centration bound or concentration inequality, because we’re looking at the
concentration of X around its mean.

We will start by reviewing the Markov bound and the Chebyshev bound before
moving on to the much more powerful Chernoff bound.

Note: This chapter and the next few will require knowing asymptotic notation well.
Before you continue, you should review Section 1.6. You will need to understand
the definitions of O (n), o(n), o(1), Q(n), w(n) and their significance for high n.

18.1 Markov’s Inequality

Theorem 18.1 (Markov’s inequality) Let X be a non-negative r.v., with finite
mean u = E [X]. Then, Ya > 0,

P{XZa}SE.
a

Proof: This was proved earlier as Theorem 5.16. []

Markov’s bound is extremely weak.
Question: Suppose we flip a fair coin n times. Using Markov’s inequality, what

is an upper bound on the probability of getting at least %n heads?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

308 18 Tail Bounds

Answer: Let X denote the number of heads. Then X ~ Binomial (n, %)

3n Jri 7 2
P{XZZ}_£=£=§. (18.3)
4 4

This is clearly a terrible bound because it doesn’t even involve .

Question: Intuitively, as n gets higher, would you expect that the tail probability
should get higher or lower?

Answer: Lower. As n gets higher, we would expect that we’re unlikely to be so
far from the mean.

The reason why Markov’s inequality is so poor is that it only takes into account
the mean of the r.v. Nevertheless, this is an important inequality because we will
derive all our other inequalities from this one.

18.2 Chebyshev’s Inequality

Chebyshev’s inequality is a lot stronger than Markov’s inequality because it
takes into account the variability of the r.v. Chebyshev’s inequality is derived by
applying Markov’s inequality to the deviation of a r.v. from its mean.

Theorem 18.2 (Chebyshev’s inequality) Let X be a r.v. with finite mean y =
E [X] and finite variance Var(X). Then, Ya > 0,

Var(X)

P{|X —pu| >a} < R
a

Proof: This was proved earlier as Theorem 5.17. [

Using the notation ok to denote the standard deviation of X, where 0'}2(= Var(X),

and using C)Z(= \;a[l)'((]g)

obtain a few additional interpretations of Chebyshev’s inequality:

to denote the squared coefficient of variation of X, we
1

P{|X -yl >aox} < — (18.4)
a

C2
P{|X —u| >daE[X]} < a—;‘ (18.5)

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

18.3 Chernoff Bound 309

Now let’s go back to the coin flipping example.

Question: Suppose we flip a fair coin n times. Using Chebyshev’s inequality,
what is an upper bound on the probability of getting at least %n heads?

Answer: Again letting X denote the number of heads:

P{XZ 3_n}
4

[
o
>

|

[

v
s

Il
N = N =
a~)
-
>
|
IS
\Y
S
——

SN N =

(18.6)

Question: Where did the % in the second line come from?
Answer: Since X ~ Binomial (n, %) X is symmetric around %

Assuming that n > 3, the % bound in (18.6) is much tighter than the % bound
that we got from Markov’s inequality. Furthermore, % at least decreases with n.

18.3 Chernoff Bound

We derived the Chebyshev bound by squaring the r.v. X — u and then applying
Markov’s inequality. To derive the Chernoff bound, we will first exponentiate the
r.v. X and then apply Markov’s inequality.

For any ¢ > 0,
P{X >a} =P{tX > ta}
:P{etX Zeta}
E tX
_E[l]

(18.7)

eta
Question: Why were we allowed to apply Markov’s inequality?

Answer: For any X and any ¢, we know that e’X is a non-negative r.v.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

310 18 Tail Bounds

Since (18.7) is true for all ¢, it follows that:

E [etX

P{X > a} < min
t>0

Bounds on specific distributions are obtained by choosing the appropriate value
of t. Even if a minimizing ¢ cannot be found, it is still true that any ¢ provides a
tail bound.

Theorem 18.3 (Chernoff bound) Ler X be a r.v. and a be a constant. Then

eta

. {E elX]}
P{X > a} < min . (18.8)

Question: Why should we expect that the Chernoff bound is stronger than the
Chebyshev bound?

Hint: The Chebyshev bound got its strength by invoking the second moment of
the r.v. What moments of the r.v. does the Chernoff bound invoke?

Answer: Notice the E [etx] in the Chernoff bound expression. This is a type
of moment-generating function. It looks very similar to the Laplace transform,
E [e“‘x] In fact, the nth derivative of E [e’x] , when evaluated at t = 0, yields
the nth moment of X. Hence E [e’X] encapsulates a/l moments of X.

Question: What do we do if we want to upper bound the other side of the tail,
P{X < a}?

Hint: Think about using ¢ < 0.

Answer: Forany s <0,
P{X <a} =P{tX > ta}
— P{elX > et(l}
E [etX]

eta

(by Markov’s inequality).

Hence,
E [er]

eta

P{X < a} < min . (18.9)
t<0

The Chernoff bound originated in this statistics paper [14], but it is widely used
in theoretical computer science. We now consider several applications of the
Chernoff bound to different distributions.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

18.4 Chernoff Bound for Poisson Tail 311

18.4 Chernoff Bound for Poisson Tail

We start by illustrating how the Chernoff bound can be used to bound the tail of
X where X ~ Poisson(A), as in (18.2).

Let X ~ Poisson(A1). Fort > 0,

E [etx] = ieti . e

i=0
o (e
—e 1. Z g
i=0
=e 1.t by (1.11)
— e/l(et—l)‘
Let a > A. Using the above, we have:
Pix . E [etX]
>a} <
Xza}< Izn>1(1)l eta
pAle=1) }
= min
>0 etd

It suffices to minimize the exponent of the above expression, A(e’ — 1) — ta,
which is minimized at

t=1In (E) ,
A
which is positive, since a > A.
This yields
P{X 2 a} S e/l(et—l)—ta
(%)
= A(G-1)-amn(%)
/1 a
= e 1. (—) : (18.10)
a

Question: What is a bound on the probability that X is at least twice its mean?

Answer: From (18.10), we have P {X > 24} < (%)’l.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

312 18 Tail Bounds

18.5 Chernoff Bound for Binomial

Chernoff bounds are most commonly applied to a sum of independent random
variables, as in the case of a Binomial. In this section, we derive the Chernoff
bound on the tail of X where X ~ Binomial(n, p). There are many generalizations
and variants of this result; see, for example, Exercises 18.15 and 18.20.

Theorem 18.4 (Pretty Chernoff bound for Binomial) Let random variable
X ~ Binomial(n, p), where u = E [X]| = np. Then, for any 6 > 0,

P{X —np>d} <e29/n (18.11)
P{X —np < -6} < e 29"/n, (18.12)

Observe that the bounds in Theorem 18.4 decrease with higher ¢, as expected.

Question: One would likewise expect that the bounds in Theorem 18.4 decrease
with higher #. Is this true?

Answer: This is a bit subtle:

e If 0 is ©(n), like the 6 = % that we saw earlier, then the bound is of the form
e~ ®M which does in fact decrease with n, as we would expect. This is the
strongest case of the bound. This is the appropriate regime for using the pretty
Chernoff bound.

e If § is ©(+/n), then the bound appears to be constant in n. This makes sense
because now we’re looking at the probability of deviating from the mean by
some number of standard deviations (again assuming p is a constant), which
should become independent of n for high n and should just converge to a
constant by the Central Limit Theorem (CLT).

e If §is aconstant, like 10, then the bound sadly grows with n. This is because the
variance of Binomial(n, p) is np(1—p), which grows with higher n (assuming
that p is a constant), so the probability of exceeding a constant ¢ increases as
n gets bigger. This is the weakest case of the bound.

We will prove Theorem 18.4 in Section 18.7. But first we consider an example
of its use.

Question: Suppose we flip a fair coin n times. Using the Chernoff bound, what
is an upper bound on the probability of getting at least %n heads?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

18.6 Comparing the Different Bounds and Approximations 313

Answer: Again letting X denote the number of heads:
3n n_n
Pix>=1=plx-2>21
{ 4 } 274
< e—2(n/4)2/n

= e 8, (18.13)

The bound in (18.13) goes to zero exponentially fast in #» and is much tighter
than the bound of % that we obtained in (18.6) via Chebyshev’s inequality.

18.6 Comparing the Different Bounds and Approximations

At this point, it is useful to step back and compare the bounds that we’ve seen
(Markov, Chebyshev, Chernoff) with both the exact answer and the approximation
given by CLT (Theorem 9.8). We focus on our usual question.

Question: What is the exact answer for the probability of getting at least %n
heads with a fair coin?

SO0 5 o

The exact answer has no closed form (which is why we’ve been looking for
bounds), but we will evaluate it soon numerically so that we can see how it
compares with the bounds that we’ve already computed.

CLT offers an approximate solution for the problem. Notice that all of our coin
flips are independent, with probability p = % If the number of these coin flips,
n, is large, then the total number of heads, X, converges to a Normal distribution
by the CLT.

Question: What is the mean and standard deviation of this Normal?

Answer: E[X] = 4. Since X ~ Binomial(n, 5), we know Var(X) = %, so
gx = \/?

We now apply the CLT approximation by first formulating our question in terms

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

314 18 Tail Bounds

of a standard Normal:

P{Normal(O, 1) > \/g}
n
= l—q)(Z)

Figure 18.1 compares the different approximations and bounds that we’ve seen,
along with the exact result. As you can see, the Markov and Chebyshev bounds
are both worthless for this example (we didn’t even plot the Markov bound). The
Chernoff bound is reasonable. The Normal approximation from the CLT is not a
bound, but it’s a really good approximation, particularly when 7 is high.

P{X > %n} P{X > %n}
A A
0.03
0.02
0.01
0 20 40 60 80 100" 70 75 80 85 90 95 100
Chebyshev Chernoff ———
Exact _— Normal

Figure 18.1 Evaluation of P {X > %’} via Chebyshev, Chernoff, and Normal (CLT),

where X ~ Binomial(n,0.5). Both graphs show the same comparison, but under
different ranges. The first graph, with range 1 < n < 100, shows that the Chebyshev
bound is poor; the Chernoff bound is better; the Normal approximation from the CLT is
very good. The second graph, with range n > 70, shows that, for higher n, Chebyshev is
so bad that it doesn’t even appear on the graph, and even the Chernoff bound doesn’t
look so great. Notice that the Normal approximation gets better and better with higher n.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

18.7 Proof of Chernoff Bound for Binomial: Theorem 18.4 315

18.7 Proof of Chernoff Bound for Binomial: Theorem 18.4

The proof of Theorem 18.4 relies on Lemma 18.5. In the exercises, we will not
in general have such a cute lemma to simplify our analysis, so the bounds that
we will be able to prove will not always look as cute.

Lemma 18.5 Foranyt > 0and0 < p <1 and g =1 — p, we have that:

_ 2
pe'd +qe”'P < /8,

Proof: The proof only uses calculus and is deferred to Section 18.10. [
Proof: [Theorem 18.4] We will prove (18.11). The proof of (18.12) is left as an

exercise. It will help to view X = 3.\ | X; where X; ~ Bernoulli(p).

For any ¢ > 0,
P{X —-np>6} =P{t(X —np) > 16}
— P{ez(X—np) > eté}
< e—l(5 -E [et(X—np)]

_ 0. E [et«x] —p>+<x2—p>+~~-+<xn—p>>]

I
[N
4
(%)
1=

E [e’ Xi=p)] (because X;’s are independent)

i=1

I
[N
i\
=%
—r

(p ce'7P) 4 (1= p) - e—tp)

i=1

< 6—15

—

(e’z/g) (by Lemma 18.5)
i=1

= o1oHnf8, (18.15)

We now want to find the r > 0 that minimizes this bound. It suffices to minimize
the exponent in (18.15):

%(—t6+m2/8) :—6+%
d—; (—t6+nt2/8) = %n > 0.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

316 18 Tail Bounds

Hence the minimum is obtained by finding that ¢ > 0 which satisfies:

2nt
-0+ — =0.
8
So
45
t=—,
n

which is positive, as desired. Substituting this value of ¢ into (18.15), we have:

P{X -np >6} < o om(3R)

_482 262
= e n n
_ 262
=e n | |

18.8 A (Sometimes) Stronger Chernoff Bound for Binomial

The Chernoft bound that we derived in Theorem 18.4 was very pretty. However,
it’s not always as strong (tight) as possible. We now introduce another bound
for the Binomial. In addition to sometimes being a lot stronger, this new bound
holds for a more general definition of a Binomial, where the coins can have
different probabilities. Specifically, imagine that we are again interested in the
sum of n coin flips (call this X), but this time the ith coin has probability p; of
coming up heads.

Theorem 18.6 (Sometimes stronger Chernoff bound for Binomial) Define
X = Y, X; where the X;’s are independent with X; ~ Bernoulli(p;) and
u=E[X] =", pi Then, Ve > 0,

e€ H
Furthermore, when 0 < € < 1,
e € H
P{X<(1- E)ﬂ} < (m) . (18.17)
Proof: The proof is given in Exercises 18.20 and 18.21. |

To interpret the bound in Theorem 18.6, it helps to consider the inner expression:
fle)=

e

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

18.8 A (Sometimes) Stronger Chernoff Bound for Binomial 317

Figure 18.2 shows a plot of this expression as a function of €.

fie)

Figure 18.2 Plot of expression (18.18). Higher € leads to tighter bound.

We make two observations: First, Ve > 0, f(€) < 1. This implies that the bound
in Theorem 18.6 is exponentially decreasing, as desired. Second, f(€) decreases
very quickly with higher €. This too makes sense, since the Binomial should be
concentrated around its mean. The bound in Theorem 18.6 is particularly strong
when € is high.

It is important to spend some time comparing the pretty bound for the Binomial
in Theorem 18.4 with the (sometimes) stronger bound in Theorem 18.6. The
following questions will help.

Question: Which is the better bound in the case where p; = p = % and where
we are interested in the probability of at least %” heads in » flips?

Answer: By Theorem 18.4, where 6 = %,
P {X > 3—"} - P{
4

1
27

o3 o33

- (€'5)
“ .55
~ (0.89)2

~ (1.54)75.

e

By Theorem 18.6, where € =

23

Thus, Theorem 18.4 produces a tighter bound than Theorem 18.6 in this case,
although both bounds are reasonable. Observe that it should be unsurprising that
Theorem 18.6 is not so great because € is only 0.5 here, which is not a good
value for Theorem 18.6 (see Figure 18.2).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

318 18 Tail Bounds

Question: Which is the better bound, in the case where p; = p = %, and where
we are interested in the probability that X > 21?

Answer: By Theorem 18.4, with ¢ = 20, we have:

P{X>21}=P{X 1220} <e 21 =5 5 asn — co.
The issue here is that, although ¢ is high, it does not increase with n, and
Theorem 18.4 is only really strong when 6 is ®(n).

By contrast, by Theorem 18.6, with € = 20, we have:

20
P{X>21}=P{X>(1+20)-1)} < % ~ 831072,

So Theorem 18.6 yields a far stronger bound for large n (although it is weaker
when 7 is small). Note that € = 20 here, which is in the ideal range for Theo-
rem 18.6, as shown in Figure 18.2.

The above shows clearly that one has to be careful in choosing a good (tight)
Chernoff bound for one’s application.

18.9 Other Tail Bounds

There are many other tail bounds in the literature, which either generalize the
Chernoff bound, or consider a more specialized case, or a little of both. One
important bound is the Hoeffding bound:

Theorem 18.7 (Hoeffding’s inequality) Let X, Xp,..., X, be independent
random variables satisfying a; < X; < b; for all i where a; < b; are real

numbers. Let
n

X = X;.
i=1
Then,
P{X -E[X] = 6} <exp (—2—52) (18.19)
Z?:l(bi - ai)2
P{X —E [X] < -6} <exp (—2—62) . (18.20)
Z?:l(bi - ai)2

Proof: The proof of Hoeffding’s inequality is left to Exercise 18.24. It is similar
to the Chernoff bound proofs, but relies on a convexity argument. []

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

18.10 Appendix: Proof of Lemma 18.5 319

Question: For Hoeffding’s bound, do the X;’s need to be identically distributed?

Answer: Interestingly, the answer is no. The X;’s need to be independent, but
they can each follow a different distribution, and in fact have their own lower and
upper bounds. This makes the Hoeffding bound very general!

Notice that the format of the bounds in Theorem 18.7 is very similar to that in
Theorem 18.4. The difference is that the n in the denominator of the exponent
in Theorem 18.4 is now replaced by Y."" | (b; — a;)*. Notice that the Hoeffding
bound becomes smaller for higher ¢, and becomes larger as b; — a; increases.

18.10 Appendix: Proof of Lemma 18.5

This appendix contains the technical details needed to prove Lemma 18.5. We
start with a basic identity from calculus:

Lemma 18.8 Ifg(0) = h(0) and g’ (k) < W' (k) forall k > 0, then g(t) < h(¢)
forallt > 0.

Proof:
h(1) - g(1) = (h(t) - (1)) — (h(0) - g(0)
:[fm%m—g%mnm
>0, because i (k) — g'(k) > 0. .

Lemma 18.9 Forall0 < p < landt >0,

S}

L

pe'I=P) L (1= p)e P < e, (18.21)
Proof: Multiplying both sides of (18.21) by e? yields
2

f()=pe'+1—-p<ePts, (18.22)

Now taking the natural log of both sides of (18.22) yields

2
ansmuv»=m@a+u—m)s%+mzhm. (18.23)

It suffices to show that g(¢) < h(z), Vt > 0, as defined in (18.23).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

320 18 Tail Bounds

Note that /(1) = f”(t) = pe’ and 0 < f’(t) < f(2),500 < ?((;)) <1

f

Since g(t) = In(f(¢)), we have that g’(¢) =]:((;)). Furthermore, using the fact

that f”'(t) = f’(t), we have
_ SO 0-170 (1_f’ (t)) S 1
S0 fo) f@ ~— 4

g" (1) (18.24)

The last step involving the }L comes from the fact that, for all x, the quantity
1

(1 = x)(x) is maximized at x = 5.
Since g(0) = h(0), by Lemma 18.8 it suffices to show that g’(¢) < h’(¢) for all
t>0.

Since g’(0) = 4’(0), by Lemma 18.8 it suffices to show that g”’(¢) < h”’(z) for
all # > 0. But this latter statement is true because, by (18.24),

g’ @) < i =h"(1).]

18.11 Exercises

18.1 Chebyshev bound
A coin has probability p = % of coming up heads on each flip. You flip the
coin n times. Let X denote the number of heads you get. Use Chebyshev’s
inequality to upper bound the quantity: P {X > %n}

18.2 Test scores: easy bounds
Suppose I know only that the mean test score is 40%.
(a) What can I say about the fraction of the class with test score > 80%?
(b) Suppose I'm given further information that the standard deviation of
test scores is 10%. What can I now say about the fraction of the class
with test score > 80%?

18.3 Reverse Markov inequality
Let Y be a non-negative r.v. which is never greater than value b. Let
0 < a < b. Prove:
E[b-7]
—a :

P{Y <a} <

18.4 The distribution of the average
There are n = 25 students in my class. Their scores are independent

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

18.11 Exercises 321

because they don’t talk to each other, ever! Each student’s score is well
modeled by a r.v. (not necessarily Normal) with mean 40% and standard
deviation of 10% (it’s a hard class). Approximately what’s the chance that
the class average, A,,, exceeds 50%?

(a) What does Chebyshev’s inequality tell us about P {A,, > 50%}?

(b) For large n, what does the CLT tell us about P {A,, > 50%}?

18.5 Sunny Sundays
Sundays are sunny with probability 17—0, while all other days are, indepen-
dently, only sunny with probability %. Upper bound the probability that
in a sequence of n days (where n is a multiple of 7), at least half of the
days are sunny. You’ll want a bound that is exponentially decreasing in n.

18.6 Kurtosis bound
Let X be ar.v. and a > 0 be some constant. Define

Kurt(X) = E[(X - E[X])*].

The Chebyshev bound gives an upper bound on P {|X — E[X] | > a} in
terms of Var(X). Derive an upper boundon P {|X — E [X] | > a} interms
of Kurt(X).

18.7 Coupon collecting
There are n distinct coupon types that you would like to collect. Each
day you are sent a random coupon from among the n types. Let X denote
the number of days needed to collect all n distinct coupons, given that
coupons are chosen randomly with replacement. The following identity is
useful in answering some of the questions below:
$1_w
i=1 26
(a) Whatis E [X]? What does this approach for high n? Write your answer
using O(-).
(b) Derive Var(X). What does this approach for high n? Write your
answer using O(-).
(¢) Derive an asymptotic upper bound on P{X > 2nlnn} for large n
using Markov’s inequality.
(d) Derive an asymptotic upper bound on P{X > 2nlnn} for large n
using Chebyshev’s inequality. Express your answer using ©(-).
Note: For E [X] in (c) and (d), use the asymptotic mean from part (a).

18.8 Getting a job
Jiacheng has independent probability 50% of being hired by each company
at which he interviews. Suppose Jiacheng interviews at 20 companies.
What is the probability that Jiacheng doesn’t get a job?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

322 18 Tail Bounds

(a) Use the Chernoff bound in Theorem 18.4 to upper bound the proba-
bility that Jiacheng doesn’t get a job.

(b) Now use the Chernoff bound in Theorem 18.6 to upper bound the
probability that Jiacheng doesn’t get a job.

(c) Now compute the exact probability that Jiacheng doesn’t get a job.

18.9 Bounding wealth
Keshav’s Robinhood stock trading account loss limit is $1000 dollars.
Thus on any given day Keshav’s account value, V, can range from —$1000
to co. Suppose that all we know about Keshav is that his average Robinhood
account value is $3000 dollars. Can we say anything about the fraction of
time that Keshav’s account value is at least $9000? Find the tightest upper
bound, ¢, such that

P{V > 9000} < ¢.

(a) Find a bound 7 such that P {V > 9000} < r.

(b) Prove that the ¢ that you found in part (a) is tight. Specifically, show that
there exists a distribution, V, such that E [V] = 3000 and V > —1000
and P {V > 9000} = 1.

18.10 The tightness of Markov’s inequality
Markov’s inequality says that, for any non-negative r.v. X,

P{X > kE[X]} < %

After reading this chapter, you likely got the impression that Markov’s
inequality is quite weak. Prove that Markov’s Inequality is “tight” in the
following sense: For any given k > 1, there exists a non-negative r.v. X
such that P {X > kE [X]} = 1.

18.11 Tightness of Chebyshev’s inequality
Chebyshev’s inequality tells us that for all random variables X,

P{X-E[X]|>a) < Va;g’”.

Prove that Chebyshev’s Inequality is “tight” in the following sense: Give
ar.v. X (not equal to a constant) and a value a > 0 for which the above
inequality is met at equality.

18.12 Concentration bounds for pair-wise independent random variables

Let X1, X2, ..., X, be pairwise-independent random variables, satisfying
Var(X;) < 10foralli =1,...,n. Let X = }7, X;. Prove that for all
a >0,

P{X-E[X]|>a)< @
a

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

18.11 Exercises 323

18.13

18.14

18.15

18.16

Weak Law of Large Numbers
Let X1, X2, X3, . .., be i.i.d. with finite mean E [X] and finite variance 2.
Let S, = 2.\, X;. Your goal is to prove the Weak Law of Large Numbers:

>e}:0,

where S, = 2", X;. [Hint: Use Chebyshev’s Inequality.]

Sn B [x]

Ve >0, lim P{
n

n—oo

Comparing bounds on tail of Exponential

Let X ~ Exp(A), where 4 > 0. We will evaluate P {X > %}, the proba-

bility that X is at least a times its mean, where a > 1.

(a) Whatis P {X > /1} exactly?

(b) What does the Markov bound tell us about P {X > 417

(c) What does the Chebyshev bound tell us about P {X

(d) What does the Chernoff bound tell us about P { >
[Hint: Pick 7 s.t. 0 < ¢t < A.]

(e) How far off is the Chernoff bound from the correct answer?

}?

2 4
7

Chernoff bound for Binomial with 1/—1 variables

Let X1, X5, ..., X, beii.d random variables, where
X = 1 w/prob 0.5
"7 -1 wiprob0.5

Let X = 3", X;, where ¢ = E [X] = 0. Assume a > 0. Follow the steps
below to prove from first principles that

a2
P{X >a} <e .

(a) Start by setting up the usual Chernoft-based inequality for P {X > a},
based on exponentiating and then applying the Markov bound.

(b) Prove that E [e’xf] < et/ 2, where ¢ > 0. [Hint: Taylor series]

(c) Form a simple closed-form bound for E [e’x] and use this to get a
simple expression for P {X > a} in terms of ¢.

(d) Find the ¢ that minimizes P {X > a} and use this to get the final result.

(e) What can you say about P {|X| > a}?

Chernoff change of variable

LetYy,Y,,...,Y, beii.d. random variables, where
Y, = 1 w/prob 0.5
"7 15 w/prob0.5 "

LetY = 37", Y;, where u = E[Y] = 3n. For a > 0, derive a bound on
P{Y — u > a}. To do this, you will exploit the result in Exercise 18.15 by
defining a simple linear transformation between the Y;’s in this exercise
and the 1/—1 random variables in Exercise 18.15.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

324 18 Tail Bounds

18.17 Chernoff bound for sum of Exponentials
LetX = 3., X;, where the X;’s arei.i.d. and are Exponentially distributed
with rate 4 > 0. Use Chernoff bounds to derive an upper bound on the
probability that X is at least twice its mean.

18.18 Tail on the sum of Uniforms

Let X = X| +--- + X,, where the X;’s are i.i.d. with X; ~ Uniform(O0, 1).

What is an upper bound on P {X > %’}? Please answer this question in

two different ways:

(a) Derive a Chernoff bound from scratch, following the usual process
involving E [etX] [Hint: You will come across a term of the form
e’ — 1. Please upper bound this by e’ to make your analysis nicer.]

(b) Compute the answer given by the Hoeffding bound (Theorem 18.7).

(c) Which bound do you expect to be better, (a) or (b)? Is that what
happened?

18.19 Chernoff bound on Binomial
Complete the proof of Theorem 18.4 by proving (18.12).

18.20 Chernoff bound for Binomial with different probabilities
Prove (18.16) from Theorem 18.6, with extensions. Let X = }}I" | X;, with
independent X; ~ Bernoulli(p;) and u = E [X] = X", p;.
(a) Prove that Ve > 0,

e€ H
Follow these steps, where ¢t > 0:
(i) Prove E [e'X] < e¢"~D#_ [Hint: Use 1 +x < e* from (1.12).]

(i) Apply the usual Chernoff bound technique to upper bound
P{X > (1 + €)u}. Write your answer as compactly as possible.

(iii) Find a ¢ > 0 that minimizes the answer in the previous step.

(iv) Substitute in that ¢ to yield the desired bound on
P{X > (1+e)u}.

(b) Follow the steps below to prove that, if 0 < € < 1,

52
P{X>(+e)u}<e 7.

(i) Using the result of part (a), write what you need to show as an
inequality where the right-hand side is (1 + €) In(1 + €).

(ii) Derive the Taylor series expansion of In(1 + €¢) where 0 < € < 1.
Then substitute this into your prior expression to prove the needed
result.

(c) From the result in part (b), deduce this immediate corollary:

2

For0 <y <pu P{X-p2y}<e .

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

18.11 Exercises 325

18.21

18.22

18.23

Chernoff bound for Binomial with different probabilities, continued
Prove (18.17) from Theorem 18.6, with extensions. Let X = " | X;, with
independent X; ~ Bernoulli(p;) and u = E [X] = X, p;.

(a) Show that for0 < e < 1,

e € H
(b) Show that for0 < € < 1,

EZ[J

P{X<(-eu}<e 2.
[Hint: start by proving that In ((1 — €)('=€)) > —€ + €2/2 by using a
Taylor series around 0.]

Approximating the tail of the Normal distribution

[Proposed by Arisha Kulshrestha] Recall that we have no closed-form

expression for the tail of the Normal distribution, which must be computed

by numerically evaluating the integral. Let X ~ Normal(0, 1). Your goal

is to produce upper bounds on P {X > a}, where a > 0.

(a) Use Markov’s inequality to bound P {X > a}. Note: This is not as
trivial as it might seem because X is not non-negative. It will help to
observe that:

P{X>a}l=P{X>a|X>0}-P{X>0}.

Now define the non-negative r.v. ¥ = [X | X > 0] and note that
P{X>a|X>0}=P{Y > a}.
(b) Use Chebyshev’s inequality to bound P {X > a}.
(c) Use Chernoff bounds following these steps:
(i) Derive E [e’X].
(ii) Derive the Chernoff bound for P {X > a}.

Negative Binomial tail

Suppose we are flipping a coin that lands on heads with probability p >

0.5. Let X be the number of heads that we see in n flips. Let Y be the

number of flips until we see the kth head. We say that X ~ Binomial(n, p)

and Y ~ NegBinomial(k, p).

(a) Derive E [Y] and Var(Y).

(b) Prove that P{Y > n} = P{X < k}. (Just use words to explain why
each side implies the other.)

(¢) IsP{Y =n} =P{X = k}? Explain.

(d) Use the above results and a Chernoft bound to derive an upper bound
on P{Y > aE [Y]}, where Y ~ NegBinomial(k, p) and a > 1. You
should find that your upper bound decreases as k increases. (Please
don’t worry about the fact that some quantities might not be integers.)

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

326 18 Tail Bounds

(e) Inpart(d) we used the Chernoff bound to derive an upper bound on Y’s
tail. Now instead use CLT. Apply CLT to approximate the probability
that Y is at least twice its mean. You can leave your answers in terms
of ®(-).

18.24 Hoeffding’s inequality
[Proposed by Misha Ivkov] In this problem, you will prove Hoeffding’s
Inequality, Theorem 18.7, which states the following: Let X;, X», ..., X,
be independent random variables satisfying a; < X; < b; for all i where

n
a; < b; are real numbers. Let X = Y X;. Then,
i=1

P{X -E[X] = 6} <exp (—2—52) ,
er'l:](bi _ai)2

P{X - E[X] < -0} <exp (—2—52) .
er'l:](bi _ai)2

(a) Start with the usual Chernoff-based inequality for P{X — E[X] > 6},
based on exponentiating and the Markov bound.

(b) Recall from Definition 5.21 that a real-valued function, g(-), defined
on interval S C R is convex if YA € [0, 1], and Va,B € S,

Agla)+ (1 -D)g(B) = g(Ala+ (1 =)P). (18.25)

Draw a picture of (18.25) where g(x) = e* to illustrate that g(x) = e*
is convex.

(c) Suppose that Y is a r.v. which satisfies 0 < ¥ < 1 and has mean
E [Y] = u. Use the fact that e* is convex to prove that

E[e'Y] < e’ + (1 - p). (18.26)

[Hint: You will start with (18.25), but replace A with the r.v. Y, which
is alsoin [0, 1]. You’ll need to set @ = ¢, 8 = 0.]
(d) Use Lemma 18.5 to go from (18.26) to the expression below:

E[e'Y] < e/H+°/8, (18.27)

(e) Using part (d), derive a bound on E[e’X/] in terms of ¢, a;, b;, and p;,
where y; is the mean of X;. It will help to start by defining

Y = M or, equivalently, X; = (b; —a;)Y +a;.
bl‘ —a;

(f) Form a simple closed-form bound for E[e’X]. Then use this bound to
get a simple bound for P{X — E[X] > 6} in terms of ¢.

(g) Find the ¢ that minimizes P{X — E[X] > ¢} and use this to get the
final result.

(h) Argue that the bound you showed for P{X — E[X] > ¢} also works
for P{X - E[X] < -6}.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

19 Applications of Tail Bounds:
Confidence Intervals and
Balls and Bins

In Chapter 18 we saw several powerful tail bounds, including the Chebyshev
bound and the Chernoff bound. These are particularly useful when bounding the
tail of a sum of independent random variables. We also reviewed the application
of the Central Limit Theorem (CLT) to approximating the tail of a sum of
independent and identically distributed (i.i.d.) random variables.

These tail bounds and approximations have immediate application to the problem
of interval estimation, also known as creating “confidence intervals” around an
estimation. They also are very useful in solving an important class of problems in
theoretical computer science, called “balls and bins” problems, where balls are
thrown at random into bins. Balls-and-bins problems are in turn directly related
to hashing algorithms and load-balancing algorithms. In this chapter, and the
next, we will study these immediate applications of our existing tail bounds and
approximations. In Chapters 21-23, we will move on to the topic of randomized
algorithms, where we will see many more applications of our tail bounds.

19.1 Interval Estimation

In Chapter 15, we discussed estimating the mean, E [X], of a random variable
(r.v.) X. We assume that we’re given n i.i.d. samples of X, which we denote by
X1, Xs, ..., X,. We then define our estimator of E [X] to be

X1+ X+ 4+ X,
- .

X

We call X the sample mean. Importantly, X is a function of random samples
and thus is itself a random variable, not a constant.

What we have not discussed, though, is: How good is X at estimating E [X]?

Clearly, the estimator X gets closer and closer to E [X] as we increase the number
of samples n. But it’s hard to say how good X is because it’s just a single value:
a point estimator. What we really want is an interval around X where we can
say that the true mean, E [X], lies within that interval with high confidence, say
95% probability. That is, we want an “interval estimator.”

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

328 19 Applications of Tail Bounds

Definition 19.1 Let 6 be some parameter of r.v. X that we're trying to estimate,
e.g., E[X]. Let X1,X>,...,X, be i.id samples of X. Then we say that an
interval estimator of 6 with confidence level 1 — a is a pair of estimators, 0,
and éhigh, where

P{élow <6< éhigh} >1-a.

Importantly, the randomness here is due to 010 and éhigh, not 6. Here 0 is a
constant that we’re trying to estimate, while O 1o and éhigh are both functions
of the random data samples X1, . . ., X, and hence are random variables.
Equivalently, we say that

[élow > éhigh]

is a (1 — @) - 100% confidence interval for 6, with width 85, — 01,

For the purpose of our discussion we will be looking at creating 95% confidence
intervals on E [X], which will take the form of

[X —6,X + 6],

where 26 represents the width of our confidence interval and X is the sample
mean. It is generally desirable that the confidence interval has both a high
confidence level (say 95%) and also a low width.

In Section 19.2 we’ll see how to develop confidence intervals with guarantees.
To do this, we will use Chernoff and Chebyshev bounds. Unfortunately, it is not
always possible to develop these “exact” (guaranteed) confidence intervals. In
Section 19.3 we show how to develop approximate confidence intervals. These
rely on the CLT approximation.

19.2 Exact Confidence Intervals

In developing confidence intervals we start with the classical example of polling
to determine the outcome of an election. Our goal here is to develop 95%
confidence intervals, but this can easily be generalized to any confidence level.

19.2.1 Using Chernoff Bounds to Get Exact Confidence
Intervals

Example 19.2 (Polling for election)

Imagine that we are trying to estimate the fraction of people who will vote for

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

19.2 Exact Confidence Intervals 329

Biden in the presidential election. Let p be the true fraction. Our goal is to figure
out p.

To estimate p, we use the following algorithm:

1. Sample n = 1000 people independently at random. Let X; be an indicator r.v.,
which is 1 if the ith person sampled says they’ll vote for Biden.

2. LetS,, =X+ X +---+ X,,.

3. Return the r.v.

¥

n

as our estimate of p.

Question: Why is X; ar.v.? How is it distributed?

Answer: Each individual either votes for Biden or doesn’t, so there’s no random-
ness in a particular individual. The randomness comes from the fact that we’re
picking random individuals. If we let X; be our ith sample, then,

X, = { 1 if person i said yes '

0 otherwise

Here X; ~ Bernoulli(p), because the probability that a randomly chosen person
says “yes” is p.

Question: What do S,, and X represent? How are they distributed?

Answer: S, represents the total number of people sampled who say they’ll vote
for Biden and X represents the fraction of people sampled who say they’ll vote
for Biden. Both are functions of random variables, so both are random variables.

1
S, ~ Binomial(n, p) X ~ — - Binomial(n, p).
n

Our goal is to define a 95% confidence interval on p where:

P{p € [Y—a,fﬂs]} > 95%.
Question: Given that n people are sampled, and we want a 95% confidence
interval on p, how can we frame this as a Chernoff bound problem?

Hint: To use a Chernoff bound, we want to phrase the question as the probability
that a Binomial deviates from its mean by some amount.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

330 19 Applications of Tail Bounds

Answer: We need to find a § such that

P {|Y—p| > 5} < 5%, (19.1)

or equivalently, such that

P{|S, - np| > né} < 5%. (19.2)

We’re thus considering the probability that S,, deviates from its mean, np, by nd.
By using both parts of the Chernoff bound in Theorem 18.4, we have

2(ns)?

P{|S,—E[S,]|>né} <2 =

Hence, we need to find a § such that

2e~21%% £ 0.05,

Equivalently,

10025 [184
5> \/ 1 - \/ . (19.3)
2n n

Question: How does the width of our confidence interval scale with the number
of sampled people?

Answer: Observe that ¢ scales as % The bigger n is, the smaller ¢ can be.

Question: If we sample n = 1000 people, what is our confidence interval?

Answer: For n = 1000, we have § ~ 0.043. Hence [X —0.043, X +0.043] forms
a 95% confidence interval on the true p.

Question: Suppose that we need the width of our confidence interval to be no
more than 1%, while still maintaining a 95% confidence level? How can we
change n to achieve this?

Answer: We now have two constraints:

0> \/ﬁ and 0 < 0.005.
n

—— < 0.005,
n

So,

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

19.2 Exact Confidence Intervals 331

or equivalently,
1.84

n > W = 73,600.

Of course, there are many more issues that come up in polling estimation. For
example, it is not obvious how to get “independent,” equally weighted samples.

19.2.2 Using Chebyshev Bounds to Get Exact Confidence
Intervals

Question: Let’s return to the problem of obtaining a 95% confidence interval on
p given n sampled people, but this time we want to use Chebyshev’s bound. Can
we do it?

Answer: As in (19.2), we again need to find a § such that

P{|S, —np| > né} < 5%.

By Chebyshev’s Inequality (Theorem 18.2),

Var(S,) _np(1-p)
(n6)> ~ n2s?

P{|S, —np| > né} <

So we need to find a § such that

p(l-p)

52 < 0.05. (19.4)
n

But now we’re stuck, because p is the parameter that we want to estimate, so
how can we do this?

Question: What are some ideas for evaluating (19.4), given we don’t know p?

Answer: One idea is to substitute X in for p, given that X is the estimator for
p. However, this only gives us an approximate solution for ¢, and we want a
guaranteed bound. The idea we use instead is to bound p(1 — p).

Question: What is an upper bound on p(1 — p)?

<11 _1
Answer: 3 3 =71

Thus, from (19.4), we are looking for ¢ such that

p(l-p) - 1
né? 4n6?

< 0.05,

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

332 19 Applications of Tail Bounds

or equivalently,
5
o> \/j .
n

Notice that this is slightly larger than the value we got in (19.3) via the Chernoff
bound, which is to be expected since the Chebyshev bound is weaker than
the Chernoff bound and we also upper-bounded the variance. However, like the
resultin (19.3), we still have the property that the width of the confidence interval

shrinks as —= as n grows.

Vi

19.2.3 Using Tail Bounds to Get Exact Confidence Intervals in
General Settings

We now leave polling and return to the general setting of Section 19.1. We have
a r.v. X whose mean, E [X], we are trying to estimate. We are given random
i.i.d. samples of X, denoted by X1, X5, ..., X,,. This time we don’t know that the
X;’s are Bernoulli distributed. In fact, we assume that we know nothing about
the distribution of the X;’s, but we do know Var(X;) = o-2.

Question: How can we derive a 95% confidence interval on E [X]?

Answer: Given that we don’t know the distribution of the X;’s, it’s hard to
imagine how we can use a Chernoff bound. However, we can definitely use
the Chebyshev bound. The process is almost identical to that in Section 19.2.2,
except that we don’t need to bound Var(S,,). Specifically, we again define

S

S,=X1+Xo+--+X, and X ="
n

Our confidence interval on E [X] again takes the form
|X-6.X+5|.
where we’re seeking ¢ such that

PHY—E[X]‘ > 5} < 5%,

or equivalently, such that

P{|S, —nE[X]]| > né} < 5%.

‘We now use the fact that we know that

Var(S,) = no?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

19.2 Exact Confidence Intervals 333

to invoke the Chebyshev bound. So we’re seeking ¢ such that

Var(S,) no?

ey ays < 0.05.

P{|S, - nE[X]]| > né} <

Solving this, we have that

yielding the confidence interval

— 2 — 2
- Vo oVl

N Nk (19.5)

where o refers to oy, .

As a final example, we consider how to generate confidence intervals around a
signal in a noisy environment.

Example 19.3 (Interval estimation of signal with noise)

Suppose that we’re trying to estimate a signal 8 (this is a constant), but the signal
is sent in a noisy environment where a noise, W, is added to it. The noise, W,
has zero mean and variance 0'3‘,. We obtain n samples, X, ..., X,, where

X,'=0+W,',

and where the W;’s are i.i.d. and W; ~ W.

Again,
X1+ Xp+---+ X,
n

X =

serves as a point estimator for 6.
Question: How can we produce a 95% confidence interval around 6?
Hint: Can we say that the X;’s are i.i.d.?

Answer: The X;’s are in fact i.i.d. Furthermore, Var(X;) = Var(W), which is
known. Hence we can directly apply our result from (19.5) to get the following

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

334 19 Applications of Tail Bounds

95% confidence interval for 6:

- VZOO'W - VZOO’W
X - , X+ .
Vi Vi

(19.6)

19.3 Approximate Confidence Intervals

In the previous section, we were able to use the Chernoff or Chebyshev bounds
to derive guaranteed (exact) confidence intervals in many situations, subject to
any desired confidence level. However there are also situations where this is not
possible. Furthermore, there are situations where we might choose to derive an
approximate confidence interval, despite being able to derive an exact confidence
interval.

Question: Why would we ever want an approximate confidence interval when
we can get an exact one?

Answer: Recall from Chapter 18 that, when the number of samples is high, CLT
can offer a much better tail approximation than all existing tail bounds. Thus,
even though CLT is just an approximation, we might prefer it to absolute bounds.

As an example of a situation where we might prefer an approximate confidence
interval, let’s return to the setup in Section 19.2.3. Here, we have a r.v. X whose
mean, E [X], we are trying to estimate. We are given random i.i.d. samples of
X, denoted by Xi, X»,...,X,. All we know about the X;’s is their variance:
Var(X;) = o2. Our point estimate for E [X] is

X1+ X0+ -+ X,

X= ,
n

which is approximately Normally distributed. Our goal is to derive an interval
of the form

[X -6,X +6],

where
PHX—Emﬂ>$<5%

Question: You may recall from Chapter 9 that with probability ~ 95% the
Normal distribution is within 2 standard deviations of its mean. ! Can we therefore

' While it is more precise to write 1.96 standard deviations, we’re going with 2 for easy readability.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

19.3 Approximate Confidence Intervals 335

conclude that an approximate confidence interval for E [X] is

X 20, X+20|?

Answer: No, this is wrong. We need to be using oy rather than o, where
T
ox = —.

v

The derivation of the approximate confidence interval proceeds as usual. Since
X is a sum of i.i.d. random variables, we can write
X-E[X
0= ¢ ~ Normal(0, 1), when n — oo.
o—
X

Hence,

P{-2<0 <2} ~95%
P{—Z < Y_E[X] < 2} ~ 95%

Vi
P{—2% <X-E[X] < 2%} ~ 95%
P{X 2% < E[X]<X+2%}z95%

Thus, our confidence interval for E [X] is

[x 22 X+2—] (19.7)

Question: How does the confidence interval in (19.7) compare with what we
derived earlier in (19.5)?

Answer: Clearly the confidence interval in (19.7) is way tighter, even though it’s
only an approximation.

Because CLT is so often used for confidence intervals, we summarize our results
in Theorem 19.4.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

336 19 Applications of Tail Bounds

Theorem 19.4 (CLT-based approximate confidence interval) Ler X be a
r.v. whose mean, E [X], we are trying to estimate. We are given n random
i.i.d. samples of X, denoted by X1, X2, ..., X,. All we know about the X;’s is
their variance: Var(X;) = 0.

Let

- X1+X+---+X,

x="1"22 :

n
Let ®(-) be the cumulative distribution function (c.d.f.) of the standard Normal,
and let
_ a : o a
(D(Z%) = —E, Uoog Z% =od (I—E)

Then,

[Y—ZQ-i,YH (19.8)

is a (1 —) - 100% approximate confidence interval for E [X].

]

We now very briefly turn to the hardest case. Again X is a r.v. whose mean,
E [X], we are trying to estimate. Again we are given n random i.i.d. samples of
X, denoted by X1, X, ..., X,. However, this time we know absolutely nothing
about the X;’s. We again wish to determine a (1 — @) - 100% confidence interval
around E [X], but we do not know Var(X;) = o2, so we cannot directly use
(19.8).

If we have an upper bound on Var(X;), call it o2, then we can of course
substitute 0,4 in for o in (19.8). However, if we don’t even have a bound on o,
then our best bet is to use the sample standard deviation from (15.5):

n

L Rk

i=1
yielding the following (1 — @) - 100% confidence interval for E [X]:

— - S
[X—Zg-%,X+Zg-%]. (19.9)

Observe that (19.9) is now an approximation on two fronts. First, we’re using
CLT, which is an approximation, and second we’re approximating Var(X;) by
the sample variance, S2. Thus, in using (19.9) it is even more important that n is
high.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

19.4 Balls and Bins 337

19.4 Balls and Bins

We now turn to a very different application of tail bounds, illustrated in Fig-
ure 19.1, where balls are thrown uniformly at random into bins.

@

N
@
% (2
(D BN\ e o
\J‘ S'

Figure 19.1 Throwing balls into bins uniformly at random.

Let’s consider the simplest case where we have exactly n balls, each of which is
thrown uniformly at random into one of n bins.

Question: On average, how many balls should each bin have?
Answer: Each bin should have one ball in expectation.

Question: What's the highest number of balls that a bin can have?
Answer: n.

This kind of problem comes up in many computer science applications. One
example is load balancing of jobs among servers. Each job is routed to a random
server, in the hope that all servers end up with an equal number of jobs. The
reality, however, is that some servers will end up being sent a lot more jobs than
others.

In Exercise 19.8 you will argue that, with high probability, some bin receives

Q (lfllr:’n) balls. In fact, Exercise 19.7 points out that we expect to have several

such “overly full” bins. This says that our attempt at random load balancing is
not as “balanced” as we might think.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

338 19 Applications of Tail Bounds

In Theorem 19.6, we will argue the other side, namely that with high probability

no bin will have more than O (lrlf}—n"n) balls.

Definition 19.5 The term “with high probability” (w.h.p.) generally refers to
something on the order of 1 — % where n is the size of the problem. Sometimes
the term is used a little more loosely to refer to something on the order of 1 — n%,
where ¢ > 0 is some constant. When making w.h.p. probabilistic guarantees,
it is common to require that n is “‘sufficiently large.”

Inn_9
Inlnn *

Question: How should we think about

Answer: If we imagine that n is very large, then

Inn Inn
l<« — <« — <« Inn.
Inlnn 109

Theorem 19.6 If n balls are thrown uniformly at random into n bins, then,
with probability > 1 — %, every bin has < k balls, where

_ 3Inn
" Inlnn

il

assuming sufficiently high n.

Proof: Our approach will use Chernoff bounds. An alternative approach, not
involving Chernoff bounds, is given in Exercise 19.6.

Consider only the jth bin. Let

Bj =) X; = #balls in bin j,
i=1
where
X = 1 if ball i goes in bin j
"7 1 0 ifballidoesn’t goinbin j

Question: What is the distribution of B;?
Answer: B; ~ Binomial(n, %), where E [Bj] =1.

Question: We want to show that w.h.p. every bin has < k balls. How can we do
this? We’d like to reduce the problem to looking at an individual bin.

Hint: At first this seems complex, because the bins are clearly not independent.
But independence is not necessary ...

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

19.4 Balls and Bins 339

Hint: We will invoke the union bound (Lemma 2.6), which says that for any
events E and F,

P{EorF} <P{E}+P{F}.
Answer: We want to show that w.h.p. every bin has < k balls. Equivalently, we
want to show:
P {There exists a bin with > k balls} < %
Equivalently, we want to show:
P{B;y>korBy>kor---orB, >k} < %
But, invoking the union bound, it suffices to show
P{B, >k} +P{By>k}+---+P{B, >k} < %
Thus it suffices to show that:
P{B; >k} < n_12
for every j.
We will now show that:

1
P{B; > k+1} <3

Question: Which Chernoff bound on the Binomial should we use: the pretty
bound (Theorem 18.4) or the sometimes stronger bound (Theorem 18.6)?

Answer: We observe that k£ here (which represents ¢ in Theorem 18.4) grows as
Inn, but not as ®(n). Hence it’s not likely that Theorem 18.4 will give a great
bound. If we look at the Chernoff bound given in Theorem 18.6, we see that the
€ term there is high compared to E [B j] = 1. Thus, it is likely that Theorem 18.6
will produce a good bound.

Observing that € = k and i = 1 in Theorem 18.6, we have:

k
e

Hence, to prove that

P{Bj21+k}<i,
n

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

340 19 Applications of Tail Bounds

it suffices to prove that:

ek

1
(+0)00 = 72"

This latter inequality can be shown to hold by the following argument, which
starts by taking logs of both sides:

ek 1
- < —
(14 k)(+k) = p2
()
k—(1+k)In(l1+k) <-2lnn
()
3lnn 3lnn 3lnn
—1— -1 <-21
Inlnn Inlnn n(lnlnn)_ e
i}
1 |
Shn _,_ 3lnn -(In3+Inlnn—Inlnlnn) < -2Inn
Inlnn Inlnn
()
1
> 1.3 (In3+Inlnn —Inlnlnn) < -2
Inlnn Inn Inlnn
)
3 1 31n3 3_'_31111111nn<)
Inlnn Inn Inlnn Inlnn
i}
o(1)+o(1)+0(1)=3+o0(1) < -2. []

Question: Our proof above requires that n is sufficiently large. Where is this
needed?

Answer: In the last line of the proof, we state that a bunch of terms are o(1).
As explained in Section 1.6, such a statement requires that n is sufficiently
large. Specifically, when we say that each term is o(1), we mean that the term
approaches 0 for sufficiently high 7.

Question: You’ll notice that we wrote each of the o(1) terms with a positive
sign. Does it matter if the o(1) terms are positive or negative?

Answer: The sign of the o(1) terms here doesn’t matter. For high enough n,
each o(1) term is arbitrarily close to 0 (see Corollary 1.18). That is, we can think
of each term as within 0.00001 of zero, so we don’t care whether the terms are
positive or negative.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

19.6 Exercises 341

19.5 Remarks on Balls and Bins

There are many more variants of the balls and bins problem, as this paradigm
relates to many different computer science applications. For example, one might
have m balls and n bins, where m # n. We will see an example of this when we
discuss hashing in Chapter 20. One might have different “colors” of balls, say
red balls and blue balls. The “balls” might represent jobs that arrive over time
and are dispatched to random servers. One might also have reduced randomness
in throwing the balls. For example, in the “power of two choices” version of the
balls-and-bins problem, each ball chooses two random bins and then is thrown
in the lesser-loaded of these two bins; see [60].

19.6 Exercises

19.1 Confidence interval warm-up
You have collected independent samples X1, X», . .., X400 from some un-
known distribution represented by r.v. X. From these samples, you have
derived the sample mean and sample variance:

X =10 §? = 144.

Construct an approximate 99% confidence interval for E [X].

19.2 Confidence interval on mean when variance is known
Suppose we have ar.v. X ~ Normal(u, o2). Assume that we know o2, but
we do not know p. We would like to produce 95% confidence intervals
for u = E [X]. We have a small number n of i.i.d. random samples of X,
denoted by Xi, X», ..., X,. Unfortunately » is small. What is the tightest
(least-width) 95% exact confidence interval that we can produce on E [X]?

19.3 Confidence intervals on vaccine efficacy

[Proposed by Weina Wang] We are testing a new vaccine, and we want

to determine its effectiveness. To do this, we hold a vaccine trial, where

we administer the vaccine to all n of the participants. Two weeks later, we

check to see the number of infected participants. We model infection as

follows:

e With independent known probability z, each person will be exposed to
the pathogen during the two-week post-vaccination period.

o If person i is exposed, then independently with unknown probability p,
the vaccine worked and person i will not get sick.

¢ On the other hand, if the vaccine didn’t work, then person i gets measur-
ably sick upon exposure.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

342 19 Applications of Tail Bounds

e We call z the exposure rate and p the efficacy rate.

Our goal is to estimate the efficacy rate, p. After the two-week period, we
check to see whether each person got sick. Let ¥; be an indicator r.v. which
is 1 if person i got sick. Let Y = % "L Y

(a) Define the following estimator of p:

. Y
p(Yl,...,Yn> =1- E
(i) Explain the logic behind this estimator.
(i1) Argue that p(Yy,...,Y,) is an unbiased estimator of p, meaning
that E [p] = p.
(b) Consider the following interval estimate for p, with € = 0.01:

[p(Yy,....Y,) —€, p(Y1,....Y,) +€].

(1) Using the Chernoff bound, find a study size n which ensures that the
confidence level of the interval estimate exceeds 95%, regardless
of the value of p.

(i1) Withoutusing the Chernoff bound, find a study size n which ensures
that the confidence level of the interval estimate exceeds 95%,
regardless of the value of p.

19.4 Interval estimation

[Proposed by Weina Wang] I have a number, 8 € (0,1). You don’t
know 6, but you're allowed to make n guesses X, Xz, ..., X;;. You make
your guesses independently and uniformly at random from (0, 1), so
X; ~ Uniform(0, 1). Your goal is to get within € of § where € is some
specific value in (0, 1). After you make your n guesses, I label those that
are “below” 6 in blue and those that are “above” in red, as shown in Fig-
ure 19.2. Let Y be the largest of the blue Xi, ..., X;, (if there are no blue
X;,then Y = 0). Let (Y,Y + €) (yellow interval) be an interval estimate of
0. You would like to be able to say that the interval (Y,Y + €) contains 6
with probability > 1 — 6.

® =below 0
® =above 0

0 v 0 1
e~

Figure 19.2 The yellow interval is an interval estimate for Exercise 19.4.

(a) Compute the c.d.f. of Y, denoted by Fy (y). Note the range of y.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

19.6 Exercises 343

19.5

19.6

19.7

(b) How large should n be to ensure that § € (Y,Y + €) with probability
>1-6?

Expected size of fullest bin

In this chapter, we examined throwing n balls uniformly at random at n
bins, and we looked at the fullest of the n bins. We proved that with high
probability, the fullest bin has < k balls, where k = 1?111% — 1, assuming

that » is sufficiently high. Explain why it follows that the expected size of
the fullest bin is O (Inn)

Inlnn |*

High-probability upper bound on number of balls in max bin
Consider throwing n balls into n bins, uniformly at random. As usual
assume that » is sufficiently large. Let k = 1?111% In this problem we will
prove that the “max bin” (the one with the most balls) has < k balls with
high probability. Unlike the chapter, the proof will not use Chernoff bounds.
Instead simpler bounds like the union bound will be useful. We will need
several helping steps.

(a) First prove the following lemma, which you will need for later steps: If

1 <i < n,then
(7) < (E) (19.10)
l l

[Hint: It helps to start by proving that (’:) < ’l’—,l]
(b) Prove the following lemma, which you will need for later steps:
3lnn

If k = ——, then k¥ > n>%.
Inlnn

[Hint: The argument here resembles that used at the end of this chapter.]
(c) Given that k = 3 prove that

Inlnn

1
P{Bin j has > k balls} < —.
n
[Hint: Start by using a union bound over subsets to argue that

1
P {Bin j has > k balls} < o
k] nk
Then use part (a) and then part (b).]
(d) Prove that w.h.p. the maximum bin has < k balls.

Lots of bins have lots of balls
Consider throwing 7 balls into n bins, uniformly at random. Let k = 1~ 11?1’:;
where ¢ = % Prove that the expected number of bins with at least k balls

is Q(n?/3), for n sufficiently large. We recommend the following steps:

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

344 19 Applications of Tail Bounds

(a) Prove that, for sufficiently high n,

1
P {Bin j has > k balls} > .
{Bin j has alls} okt

[Hint: It will suffice to lower bound the probability that bin j has

n
exactly k balls. You will also use the fact that the function (1 - %)

is increasing with n, and thus exceeds half its limit for high n. It also
helps to recall from (1.19) that (7) > (2)*.]
(b) Prove the following lemma, which you will need in the next part:

clnn

If k = then k* < n€.

Inlnn
(c) Using parts (a) and (b), show that

E [Number of bins with > k balls] > Q(n'~©).

Specifically, you will show that

1 1
E [Number of bins with > k balls] > —n'~¢ = —n3.
2e 2e

(d) Does part (c) imply that, in expectation, (at least) some constant pro-
portion of the n bins has > k balls? For instance, can we conclude that
1/4 of the bins have > k balls, or some other constant fraction?

19.8 High-probability lower bound on number of balls in max bin

Consider throwing n balls into n bins, uniformly at random. Let k = <z

Inlnn’

where ¢ = % Our goal is to show that with reasonably high probability, at

least some bin has > & balls.

Let X denote the number of bins with at least k balls. Observe that X =
i—1 Xi, where X; is an indicator r.v. equal to 1 if bin i has > k balls, and

0 otherwise. We want to prove that

4 2
P{X =0} <4e’n =2
n3
(a) Use Chebyshev to upper bound P {X =0} in terms of Var(X) and

E [X].
(b) Prove that
Var(X) < n.

In proving the above, you can assume the following fact (without proof):
Var(X) = Z Var(X;) + Z Cov(X;, X;)
i i#]
where

Cov(X;, X;) =E [(X; ~E[X])(X; —E [X;])].

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

19.6 Exercises 345

19.9

The term Cov(Xi, X j) stands for “covariance of X; and X;,” where
positive covariance indicates that the random variables are positively
correlated and negative covariance indicates that they are negatively
correlated. [Hint: As part of your proof, you will need to prove that
Cov(X;,X;) <0.]

(c) Now use the result from Exercise 19.7(c) and your results from (a) and
(b) to finish the proof.

Chernoff bound for real-valued random variables

[Proposed by Vanshika Chowdhary] Suppose that X1, X, .. ., X,, are inde-
pendent random variables with values in [0, 1]. Assume that E [X;] = y;.
Let

X=X+ +X,.

: - _ 3l
You are given that u = E [X] < 1 and that b = ;3.
Show that

1
P{XZb}SnzW

for sufficiently high n. Please follow these steps:
(a) Start with the usual Chernoft bound approach to evaluating P {X > b}.
You will get an expression involving a product of E [e’x"] terms.
(b) Show thatE [e’Xf] < eti€=1) v > (. Here are some helping steps:
(i) Recall from Definition 5.21 that a real-valued function, g(-), de-
fined on interval S C R is convex if VA € [0, 1], and Va, B € S,

Ag(a) + (1 -)g(B) = g(da+(1-)p).

Now use the fact that ¢* is a convex function and the fact that
X; € [0, 1] to show that: ¢'Xi < X;e! + (1 - X;)e.
(ii) Show that E [e'Xi] < eri(¢'=D),
(c) Substituting the result from (b) into (a), prove P {X > b} < ¢P~PInb,
(d) Now plug in b = 3112 o get the final result.

Inlnn

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

20 Hashing Algorithms

In the last two chapters we studied many tail bounds, including those from
Markov, Chebyshev, Chernoff and Hoeffding. We also studied a tail approx-
imation based on the Central Limit Theorem (CLT). In this chapter we will
apply these bounds and approximations to an important problem in computer
science: the design of hashing algorithms. In fact, hashing is closely related to
the balls-and-bins problem that we recently studied in Chapter 19.

20.1 What is Hashing?

What exactly is hashing? Let’s start with a simple example. Suppose you are
the CMU student dean, in charge of maintaining a system that stores academic
information on each student, such as the student’s name, major, and GPA. You
use social security numbers (SSNs) to identify students, so that not anybody can
access the information. A student’s SSN is called a key. When the student’s SSN
is entered, the system returns the student’s academic information.

SSN Academic Info

123456789 Mark Stein, Senior, GPA: 4.0
658372934 Tom Chen, Junior, GPA: 3.5
529842934 David Kosh, Freshman, GPA: 2.7
623498008 Divia Kana, Sophomore, GPA: 3.7

The main feature of the system is that search needs to be fast. Additionally, when
new freshmen arrive, you need to insert their information into the system, and
when seniors graduate, you need to delete their information from the system.

Suppose there are m = 20,000 students. How would you store this collection of
student info? One solution is to use a linked list or unsorted array. Then insert
is fast, but search and delete need to linearly scan the whole list, which takes
O(m) time. A better solution is to use a sorted data structure, such as a binary

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

20.1 What is Hashing? 347

search tree that sorts student info by SSN. Then search, insert, and delete all take
O (log m) time on average. None of these solutions is ideal.

Question: If space were not a consideration at all, is there a solution with O (1)
worst-case time for search, insert, and delete?

Answer: If space is not a consideration, one could use a huge array, A, where the
SSN is the index in the array. For example, if Mark’s SSN is 123456789, then
his information will be stored in A[123456789]. The time for search, insert, and
delete is O(1). However, since there are 10° possible SSNs, the size of A needs
to be 10°. This is a waste of space for storing the info of only 20,000 students.

Question: Suppose that we’re willing to give up on worst-case guarantees. Is
there a solution with O (1) average time for search, insert, and delete that uses
just O (m) space?

Hint: Here’s an idea: Suppose we divide the students into n = 10 buckets
according to the last digit of their SSN. Thus all students with SSN ending with
0 go into bucket 0, all students with SSN ending with 1 go into bucket 1, and
so on. Then, if we want to search for Mark, we know that his SSN belongs to
bucket 9, so we need only look within bucket 9. Assuming all bucket sizes are
approximately equal, each bucket has about 2000 students, and our search time
is 10 times faster than the single linked list. Can we take this idea further?

Answer: We can increase the number of buckets, n, to further improve the search
time. For example, we can use the last four digits of the SSN. Then we will have
10,000 buckets, with ending digits 0000 to 9999. So, to search for Mark, we need

only look within bucket 6789, which, assuming all bucket sizes are approximately

equal, has only %8888 = 2 students in expectation.

The solution is to use n = O (m) buckets, which allows us to achieve O (1) search
time with O (m) space!

This method is called bucket hashing. It makes searching, insertion, and deletion
fast in expectation, because we need only search within a single small bucket.

Definition 20.1 A bucket hash function . : U — B maps keys to buckets.
For a key k, we call h(k) the hash of k. The domain of h is U, the universe
of all possible keys. The range of h is B, which is a subset of the non-negative
integers, denoting the buckets. K C U is the actual set of keys that we are
hashing, where typically |K| < |U|. Let |K| = m and |B| = n. We use r.v. B; to
denote the number of keys that hash to bucket i, also called the “size” of bucket
i. The data structure which maps the m keys into n buckets using such a hash
function is called a hash table.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

348 20 Hashing Algorithms

In the above example, U is all possible nine-digit SSNs (|U| = 10°), K is the set
of the SSNss of the 20,000 students, and B is the 10,000 buckets. As is typical,
m = |K| < |U|, which allows us to get away with a small hash table.

When we adjusted the number of buckets above, we were trading off between
space and search time. The ratio of keys to buckets is called the load factor, a.

Definition 20.2 A hash table that stores m keys within n buckets is said to have
a load factor of
Number keys ~ m

B Ty

It is typical to aim for a load factor that is a small constant above 1.

In general, we assume that hash functions have two desirable properties: (1) they
are efficient to compute, and (2) they are balanced in that the keys are uniformly
distributed between the buckets. If we’re lucky and the keys are themselves
uniformly distributed numbers, then a simple hash function like 4(k) = k mod n
can work well. However, if the keys come from a more skewed distribution, it
can be much harder to find a “balanced” hash function. Finding balanced and
efficient hash functions is usually scenario-specific, so we won’t dwell on this.
For the purposes of analysis we will simply assume that our hash function is
efficient and has a “balanced” property known as the simple uniform hashing
assumption, defined next.

20.2 Simple Uniform Hashing Assumption

Definition 20.3 A bucket hash function h satisfies the simple uniform hashing
assumption (SUHA) if each key k has probability % of mapping to any bucket
b € B, where |B| = n. Moreover, the hash values of different keys are indepen-
dent, so for any subset of keys ki, ka,...,k; € K, where k1 # ko + -+ # k;
andbl,bg,...,bi € B,

P {h(k)) = by & h(ks) = by & -+ & h(ki) = bi} = —

nt

SUHA is a lovely analytical convenience, but it may seem unattainable. Given
that h(k), the hash value of key k, is deterministic, how can we say that h(k) = b
with probability %? This is achieved by using a universal family of hash functions
hi, hy, ..., h,. The hash function to be used for a particular hash table is drawn,
uniformly at random, from this universal family. Once a hash function, #;, is

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

20.3 Bucket Hashing with Separate Chaining 349

picked, then that same hash function is used for all the keys of the table. In this
way, the hash function is deterministic, but has appropriate random properties.
We ignore questions on how to create universal families' and instead show how
SUHA is used.

Question: Let B; denote the number of keys which map to bucket i. Assuming
SUHA, and assuming a load factor of @, what is E [B;]?

Answer: Assume that there are n buckets and m keys, and let & = “%. Let I be
the indicator random variable that key k& maps to bucket i. Then, by Linearity of

Expectation,
< 1l m
E[B;] = kE—l E[[;] = kE—l PR

So all buckets have the same size, a, in expectation.

Searching for a student involves hashing their SSN to some bucket i, and then
searching through all the keys that mapped to that bucket. Traditionally, the keys
that map to a single bucket are stored in a linked list at that bucket. This is called
“bucket hashing with separate chaining,” and will be the topic of Section 20.3.
In Section 20.4, we will analyze a different way of storing keys that hash to the
same bucket, called “bucket hashing with linear probing.”

In both Sections 20.3 and 20.4, the goal is to use hashing to store information
in a way that allows for fast search, insert, and delete, both on average and with
high probability (w.h.p.). In Section 20.5 we will look at an entirely different
use of hashing: how to verify the identity of a key without exposing the key
(think here of the “key” as being a password that you want to ensure is correct
without exposing it to an adversary). This will involve “cryptographic signature
hash functions,” where our goal will be to prove that, w.h.p., the hashing will not
expose the identity of the key.

20.3 Bucket Hashing with Separate Chaining

In bucket hashing with separate chaining, the hash table is an array of buckets,
where each bucket maintains a linked list of keys. Figure 20.1 shows our previous
example, where the hash function maps an SSN to the last four digits of the SSN.
To search for a key within a bucket, we traverse the linked list. To insert a key to
a bucket, we first search within the linked list, and if the key does not exist, we
append it to the linked list. To delete a key from a bucket, we first search for it

' See [16, p. 267] for a discussion of how number theory can be used to create a universal family
of hash functions.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

350 20 Hashing Algorithms

within the linked list, and delete it from the linked list if we find it. Thus the time
complexity for all operations is dominated by the time complexity for search.

0000
0001

ooo

2934 | —3*/658372934: Tom C, Junior 3.5| ——*529842934: David K, Frosh 2.7 [X|

ooo

6789 [—>1123456789: Mark S, Senior 4.0 [X]

ooo

8008 | ~—1+/623498008: Divia K, Sophomore 3.7

oo

Figure 20.1 Example of bucket hashing with separate chaining.

We already saw that, under SUHA, and assuming a load factor of @, each bucket
has @ keys in expectation. Thus, the expected search time under bucket hashing
with separate chaining is O (). This is great because we typically imagine that
a is a small constant. However, an individual bucket might have way more than
a keys.

Question: What is the distribution on B;, the number of keys in the ith bucket?

Hint: Remember that we’re distributing m keys into n buckets, uniformly at
random.

Answer:
1
B; ~ Binomial (m, —) .
n

Question: Assume that m and n are both high, while « is still a constant. What
do we know about Var(B;)?

Answer:
1 1 1
Var(Bi)=m-—-(1——) =a.(1__) e
n n

n

In the setting when m and n are high, CLT tells us that the distribution of B;
approaches that of a Normal.

Question: So, when m and n are high, what, approximately, can we say is
P{B; > a +2va}?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

20.3 Bucket Hashing with Separate Chaining 351

Answer: This is the probability that B; exceeds its mean by more than 2 standard
deviations. As the distribution of B; approaches a Normal, this is approximately
2%.

So the number of keys in any individual bucket is likely to be small. The mean
is @ and the distribution approaches Normal(a, @) when m and n are high. But
what about the worst bucket? How many keys does it have?

Question: In the case of @ = 1, what can we say with high probability (w.h.p.)
about the fullest bin?

Answer: When @ = 1, we have m = n. In Section 19.4 we showed that if you
throw n balls into n bins, uniformly at random, then w.h.p. the fullest bin will

have O (h:‘l‘fn) balls. This is a w.h.p. bound on the cost of search when o = 1.

We can imagine proving similar w.h.p. bounds on the cost of search for the case
when @ = 2 or @ = 3. But what happens if « is high, say Inn? One could
imagine that the number of keys in the fullest bucket could be quite high now.
Theorem 20.4 shows that this is not the case. Both the mean search cost and the
w.h.p. search cost are O(«), for high a. Thus for the case where @ = Inn, our
w.h.p. bound on the cost of search is O (Inn), which is not that different than the
case where o = 1.

Theorem 20.4 Under SUHA, for bucket hashing with separate chaining, as-
suming m > 2nlnn keys, and n buckets, then with probability > 1 — % the
largest bucket has size < ea, where a = %

Proof: Our proof follows along the same lines as that in Section 19.4. The idea
will be to first prove that for any B;,
1
P{B; > ea} < —-
n
(We will show below how to do this).
Once we have that result, then by the union bound,
SRR
P {Some bucket has > ea balls} < Z = =-.
—in n
Thus, P {largest bucket has size < ea} > 1 — % as desired.
All that remains is to prove that
1
P{B; > ea} < —.
n

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

352 20 Hashing Algorithms

We start by observing that since m > 2nInn, we know that

o = > 2Inn.

Applying The Chernoft bound from Theorem 18.6, with

e l+e=e(soe=e—1>0),and
e u=a=2lnn,

we have:

P{B; > ea} =P{B; > (1 +e)u}
e€ H

< —_—
(e
e ! a

- ()

— (e—l)(l

< (e—l)Zlnn

- (elnn)—Z

=

20.4 Linear Probing and Open Addressing

In the previous section we studied bucket hashing with separate chaining, where
each of the n buckets has a linked list (“chain”) of keys that have mapped to that
bucket. While chaining is easy to explain, it has some practical disadvantages.
First, storing all those pointers is memory-intensive. More importantly, chaining
is not cache friendly; the items in a given bucket list are typically scattered over the
memory space. This section presents a more practical bucket hashing solution,
called “bucket hashing with linear probing,” that doesn’t require pointers and is
more cache friendly.

The high-level idea behind linear probing is that we store only one key in each
cell of array B. If multiple keys have the same hash value, they are stored in the
first available cell of array B. In this way, when searching for a key, one is always
reading consecutive cells of an array, which are typically in the same cache line.

Here are the specifics: First, linear probing relies on using an array, B, with size

n > m, where m is the number of objects stored. Typically when running linear

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

20.4 Linear Probing and Open Addressing 353

probing, n > 2m, meaning that @ < 0.5, where a represents the load factor;
this is in contrast with bucket hashing with separate chaining, where in general
a > 1. When we hash key &, if cell h(k) of B is empty, then we place the record
for key k into B[h(k)]. Later, if another key, k’, has the same hash value as &,
that is, 2(k”) = h(k), then we cannot place k"’s record into B[/(k)]. We instead
search cell by cell, starting with cell 4(k) + 1, then cell 4(k) +2, and so on, until
we find the first available empty cell. We then insert k”’s record into this first
available cell. The process of probing consecutive cells to check if they’re empty
is called linear probing.

Question: What do you think happens if we get to the last cell of B and it is
occupied?

Answer: The linear probing wraps around to the first cell. So when we talk about
looking at cells h(k), h(k) + 1, etc., we're really looking at cells &(k) mod n,
h(k)+1 mod n, etc. We will leave off the “mod »” in our discussion to minimize
notation.

Question: When searching for a key, k, how do we know £ is not in the table?

Answer: We start by looking at cell i4(k), then (k) + 1, and so on, until we
come to an empty cell. The empty cell is our signal that & is not in the table.

Question: But what if the empty cell was created by a deletion?

Answer: When a key is deleted, we mark its cell with a special character, called
a tombstone. The tombstone lets us know that the cell used to be full, so that
we don’t stop our search early. Thus, cells are never cleared in linear probing.
When the number of tombstones gets too high, we simply recreate the table from
scratch.

For the remainder of this section, we’ll be interested in analyzing the expected
cost of search. The cost of insert and delete can be bounded by the cost of
search. Note that when we say “cost of search” we are referring to the cost of an
unsuccessful search — that is, searching for a key that is not in the array. The cost
of a successful search is upper-bounded by the cost of an unsuccessful search.

Unfortunately, bucket hashing with linear probing can often lead to clustering
(long chains of full cells). Clustering is an artifact of using a linear probe sequence
for inserting key k. When inserting key k, if cell h(k) is already full, we next try
for (k) + 1, and then (k) + 2. Thus, full cells are likely to be followed by more
full cells.

Question: Any idea for how to get around this clustering problem, so that the
full cells can be more uniformly spread out?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

354 20 Hashing Algorithms

Answer: We can instead make the probe sequence for key k be a uniformly
selected sequence of cells (a particular randomly-chosen permutation of cells in
the table). Specifically, we denote the probe sequence for inserting key k by:

(h(k, 1), h(k,2), h(k,3), ..., h(k,n)).

If key k finds a cell full, instead of trying the next consecutive cell in the array,
it now tries the next cell in its probe sequence (its permutation).

In an ideal world, the probe sequence for each key is equally likely to be assigned
any one of the n! permutations of (1,2, ...,n). (Obviously the probe sequence
corresponding to any particular key & is fixed.) This idea is called open address-
ing with uniform probe sequences. It leads to lower search times than linear
probing. While open addressing does require skipping to different locations, at
least all of these locations are within the same array, which keeps the pointer
cost more reasonable.

Theorem 20.5 Assume that m keys have been inserted into a table with n
cells via open addressing with uniform probe sequences. The load factor is
a = "t < 1. Then the expected cost of an (unsuccessful) search is at most ﬁ

Proof: Let X denote the search cost. We will try to determine the tail of X and
then sum that to get E [X].

P{X >0} =1 (we always need to probe at least once)
P {X > 1} = P {First cell we look at is occupied} = a.

Let A; denote the event that the ith cell that we look at is occupied. Then,

P {X > 2} = P {First two cells we look at are occupied}

=P{A; N Ay}
=P{A} - P{A> | A1}
-1
—a-Z 1 (m — 1 keys and n — 1 cells remain)
n—
an—1
= -
n—1
an
<a-—
n
= a’.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

20.5 Cryptographic Signature Hashing 355

Using the chain rule from Theorem 2.10, we have:

P{X > i} = P {First i cells we look at are occupied}
=P{A1NAyNn---NA;}
=P{A;} - P{A2 | A1}---P{A; | A1 N A0 - N A1}
m m-1 m-2 m-—i+1

“n n-1 n-=2 n—i+1
< at.

Finally, applying Theorem 4.9, we have:

IA
gk
Q&t.

Theorem 20.5 provides only an upper bound on expected search cost. Exer-
cises 20.4 and 20.5 will provide exact analysis.

20.5 Cryptographic Signature Hashing

Up to now we have only talked about bucket hash functions, whose purpose is to
support fast search speed. In this section we will talk about cryptographic hash
functions. Their purpose has nothing to do with search speed, but rather they
are used to encrypt (hide) information, for example, passwords.

Suppose you are again the CMU student dean, but this time you are managing
services that only CMU students should be able to access. For example, a service
might be course evaluations at CMU. To access the service, the CMU student
enters her ID and password, and then the service becomes available. How do
you design a system that allows you to check if a student’s password is correct
for her ID? We could store the IDs and corresponding passwords in a database.
However, if the database is hacked, then all passwords will be compromised.

For example, let’s say that Mark Stein’s ID is mstein and his password is
ILoveToHelp.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

356 20 Hashing Algorithms

Question: Mark’s ID is public. How can we identify Mark via his ID and
password without ever storing his password?

Answer: The solution is to use a cryptographic hash function to hash passwords
to signatures, and store signatures in the database instead.

Using a cryptographic hash function, we hash ILoveToHelp to a 32-bit signature
0x1b3a4 f52, and store the entry mstein: Ox1b3a4 f52 into the database. Our
database might look like Table 20.1.

ID Signature of password
mstein Ox1b3a4f52
tchen 0x51c2df33
dkosh 0xbb89e27a

dkana 0x2f85ad73

Table 20.1 Database storing signatures.

Note: Table 20.1 is not a hash table. This is our database. Importantly, by looking
at the database, you have no idea what passwords correspond to these IDs. Say
Mark is trying to log into the course evaluations service with his ID mstein and
password ILoveToHelp. To verify that Mark’s password is correct, we apply a
hash function to his entered password, obtaining:

h(ILoveToHelp) = Ox1b3a4f52.

Then we compare Ox1b3a4f52 to the signature stored under mstein in the
database. Since they’re the same, we know that Mark (probably) entered the
correct password. In this way, we can verify passwords without storing the actual
passwords in the database.?

In general, when using cryptographic hash functions, we refer to the passwords
whose identity we’re trying to hide as the keys.

2 1In this section we will not be interested in the time to search our database, just in hiding the
identity of passwords. However, if we were interested in search time, we could apply a bucket
hash to the IDs in Table 20.1 to bring the search time down to O (1). It is thus very reasonable to
use bucket hashing and cryptographic signature hashing in conjunction.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

20.5 Cryptographic Signature Hashing 357

Definition 20.6 A cryptographic hash function 2z : U — B maps keys to
signatures. For a key k, we call h(k) the signature of k. The domain of h is U,
the universe of all possible keys. The range of h is B, denoting all the possible
signatures. K C U is the actual set of keys that we are hashing. Let |K| = m
and |B| = n. Generally,

|U| > n > m,

because U represents a potentially infinite number of strings of any length, and
we want n > m to avoid collisions. Thus, a = % < 1.

Question: Which of n or m represents the number of entries in the database in
Table 20.1?

Answer: The number of entries in the database is m, which is the number of
actual keys (passwords) that we’re hashing and also represents the number of
actual IDs. However, the database is not our hash table. There is no “hash table,”
but rather just a hash function that maps the m passwords to a space of n possible
signatures.

For cryptographic hash functions we typically want n > m, so that there are few
“collisions.” Thus, ¢ < 1.

Definition 20.7 A hash collision occurs when two different keys have the same
hash value. That is, h(k1) = h(ky), where ki # k».

Hash collisions are undesirable. It can be dangerous when multiple passwords
map to the same signature because it increases the likelihood that an attacker can
guess a password by trying multiple passwords with the same ID.

We’d ideally like there to be a one-to-one mapping between keys and signatures.
Of course this is not possible, even with the best hash function, because |U| > n,
and thus by the pigeon-hole principle, there exist keys with the same signature.
The rest of this section is devoted to analyzing how large n needs to be to achieve
a “low” probability of collision, given that m keys are being hashed.

Question: Suppose that an attacker tries m different passwords (keys). Each of
the m keys is hashed, using a cryptographic hash function 4, into a hash space
of size |B| = n, where n > m. Assume SUHA so each key has probability % of
landing in any given bucket. What is the probability p(m,n) that no collisions
occur?

Hint: This should look a lot like the birthday problem from Exercise 2.10.

Answer: In the birthday problem, we had m = 30 people and n = 365 possible

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

358 20 Hashing Algorithms

birthdays, and we looked for the probability of no duplicate birthdays, a.k.a.,
“no collisions.” Repeating that analysis, let A be the event that no collisions
occur, that is, no two keys have the same signature. We imagine that the keys are
ordered, from 1 to m. Let A; be the event that key i has a different signature from
each of the first i — 1 keys. Now observe that

A:ﬂm
i=1
Thus,

m

i—1
NM:NA}HPAiﬂM
j=1

i=2

Now, by (1.14),

X

X
n

l1--<en, (20.1)

n
where this upper bound is close to exact for high n.

This yields the upper bound:

This result is summarized in Theorem 20.8.

Theorem 20.8 (Probability no collisions) Ifwe use a simple uniform hashing
function to hash m keys to a hash space of size n, then the probability that there
are no collisions is denoted by p(m, n), where

m—1 5
p(m,n) = l—[(1 - %)

i=1
This is upper-bounded by:

—-m(m-1)

p(m,n) < e™ 2

Assuming that n > m, the upper bound is very close to exact.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

20.5 Cryptographic Signature Hashing 359

Proof: The only part we have not proven yet is the tightness of the upper bound.
Observe that (20.1) is close to an equality when n > x. In particular, if n > m,
then the “upper bound” in Theorem 20.8 is a good approximation for each of the
m terms in the product of p(m, n). [|

m2
Corollary 20.9 Assuming n > m, P {no collisions} ~ e~ 2.

Corollary 20.9 is interesting because it tells us that we need m = ©(y/n) to ensure
that the probability of no collisions is high. In fact, in Exercise 20.3, we’ll derive
formally that the expected number of keys that we can insert before we get a
collisionis ~ 1 + \/?

We now use Corollary 20.9 to evaluate the effectiveness of the SHA-256 cryp-
tographic hashing algorithm.? All you’ll need to know for the evaluation is that
the hash space, B, of SHA-256 is all 256-bit numbers.

Question: Suppose we are hashing 10 billion keys using SHA-256. Approxi-
mately what is the probability that there are no collisions?

Answer: Here, m = 10'°, so m?> = 10%°, and n = |B| = 2%°® = 10”. Since
n > m, we can use Corollary 20.9. Thus,

2 -1020

.. —_m- _— _10-57
P {no collisions} ~ e 2n = e2107 ~ ¢ 107,

This is very close to 1, as desired.

Question: Approximately how many keys do we need to hash until the probability
that there is a collision exceeds 1%?

Answer: Let

m2
n

p =P {no collisions} ~ e 2",

Then, Inp ~ _2—’:‘12, som =~ /—2nl1n p.
Thus, setting p = 99%, we see that, after hashing

m=v-2-22561n0.99 ~5-10%

keys, we will have a 1% probability of collision.

Question: Suppose a supercomputer can calculate 10'0 hashes a second, and
we have one billion such computers, and a year has about 10’ seconds. How

3 SHA stands for Secure Hash Algorithm.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

360 20 Hashing Algorithms

many years will it take for us to hash enough keys to produce a 1% probability
of collision in SHA-256?

Answer: It will take
5-10%
So it is virtually impossible to find a pair of keys that collides in SHA-256.

=5-10"" = 500 billion years!

20.6 Remarks

This chapter was written in collaboration with Sheng Xu. The chapter presents
only the briefest discussion of hashing, and instead emphasizes the probabilistic
analysis. We have spent no time discussing data structures for implementing
hashing. Our discussion of bucket hashing with open addressing and uniformly
distributed probe sequences allows us to get away with some very simple analysis,
which will be made exact in Exercise 20.5. By contrast, the analysis of search
time under bucket hashing with linear probing is far harder, but is solved exactly
in Knuth’s book [46, section 6.4]. Finally, there are also many more advanced
hashing schemes, including Bloom filters (see Exercise 20.6), cuckoo hashing
[56], consistent hashing [44], and others which we didn’t have room to cover, or
whose analysis is beyond the scope of the book.

20.7 Exercises

20.1 Expected hashes until buckets are full
You are hashing keys, one at a time, into n buckets, where each key has
probability % of landing in each bucket. What is the expected number of
keys hashed until every bucket has at least one key?

20.2 Inspection paradox: the key’s perspective

You are hashing 100 keys into 100 buckets. One bucket ends up with 20

keys, another bucket ends up with 10 keys, and 70 buckets end up with 1

key each. The remaining 28 buckets end up with zero keys.

(a) From the perspective of the buckets, what is the average number of
keys per bucket?

(b) When I search for a random key, on average, how many total keys do I
find in the same bucket as my key (including my own key)?

The difference in your answers is the inspection paradox, see Section 5.11.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

20.7 Exercises 361

20.3

Expected hashes until collision

You are hashing keys, one at a time, into n buckets, where each key has
probability % of landing in each bucket. What is the expected number of
keys hashed until you get a collision? Use this asymptotic result, proved by
Ramanujan [28]:

Zn: n! _ |mn

i nk(n - k)! 27

to show that your answer grows as v/n. Notice that you can think of this
problem in terms of an n-sided die, where you ask how many times you
have to roll the die, in expectation, until you get a number you’ve seen
before. [Hint: You might want to get the mean by summing the tail. This
problem will resemble the birthday paradox.]

20.4 Largest insert cost for open addressing with uniform probe sequences

20.5

Under open addressing with a uniform probe sequence, assume that we
store m keys in a size n array with load factor @ = 0.5. We will prove
that for the m keys that have been inserted, the expected largest insert cost
among the m keys was O (log, m). Note that the insert cost of a key is equal
to the number of cells probed by the key.

(a) Foralli=1,2,...,m,let

p; = P {the ith insertion requires > k probes} .

Show that p; < 27k,

(b) Let X denote the length of the longest probe sequence among all m
keys. Show that the P {X > 2log, m} < %

(c) Show that E [X] = O(log, m). [Hint: Condition via (b).]

Open addressing with uniform probe sequences: exact analysis

In Theorem 20.5, we derived an upper bound on the expected cost of an (un-
successful) search under open addressing with a uniform probe sequence.
In this problem we will derive an exact expression for the expected cost,
which is not far from the upper bound in Theorem 20.5. Use the same setup
as in Theorem 20.5, again assuming that m keys have been hashed into an
array of size n.

(a) First prove two useful lemmas (use counting arguments):

() Lemma 1: (7)) () = (4 2)) (7)-

(i) Lemma 2: 377 (mn—+(lr_—r1)) = (n;ll)
(b) Prove that the probability that an (unsuccessful) search requires exactly
r probes is p, = (””T’“

(c) Let U denote the cost of an (unsuccessful) search in this array of m
keys. Prove E [U] = 2L

n-m+l"°

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

362 20 Hashing Algorithms

20.6 Bloom filter hashing

[Proposed by Priyatham Bollimpalli] Priyatham is creating new software
to check music for copyright violations. For each candidate song, s, if s is
the same as an already existing song, the software should output “copyright
violation” with 100% certainty (all violations need to be reported). On the
other hand, if s is an arbitrary new song, the software should output “new
song” at least 99% of the time (it is okay to have a few false alarms).

(a) To maximize efficiency, Priyatham opts for a hash table implementa-
tion, with b buckets, where every song, i, is mapped to %(i), which
corresponds to one of the b buckets. (Assume that 7 obeys SUHA,
mapping each key i to a uniformly random bucket.) To fill his hash
table, Priyatham scrapes all one billion songs in the Internet and maps
each to a bucket. Given a candidate song, s, Priyatham’s software com-
putes h(s). If h(s) is an empty bucket, the software outputs “new song,”
otherwise it outputs “copyright violation.” Approximately how many
buckets b are needed to achieve the desired correctness for an arbitrary
song s? Hint: It will help to recall from (1.9) that, for large b,

b
1
(1 _Z) —e !

(b) After determining that the above scheme uses too much space, Priy-
atham considers a new approach: He chooses 10 idealized, indepen-
dent hash functions hy, ..., hjo that each map songs to the numbers
1 through 10 billion. He initializes an array A of 10 billion bits,
initially set to 0. For each song s that he encounters, he computes
hi(s), ha(s),. .., hio(s), and sets the corresponding indices of A to
be 1 (that is, he sets A[hi(s)] := 1, A[h2(s)] := 1, etc.). Argue that
after processing the one billion unique songs, we expect ~ e~ ~ 0.37
fraction of the array elements to be 0. [Hint: Linearity of Expectation.]

(c) Now, givenasong s, to check if s already exists, Priyatham computes the
10 hashes of s and checksif A[h(s)] = A[ha(s)] =--- = A[h1o(s)] =
1. If so, he outputs “copyright violation,” otherwise he outputs “new
song.” Prove that, if s is actually in your set of one billion songs,
you will output “copyright violation” with probability 1. Likewise, if
s is not in your set of one billion songs, you output “new song” with
probability =~ 0.99. [Hint: Use part (b).]

(d) In the above, we’ve assumed that the number of buckets (array A’s
size) is b = 10 billion and the number of independent hash functions
is k = 10. Write a general equation that relates b to k, assuming that
the Internet has one billion songs and that we desire no more than 1%
false positives.

Note: This space-efficient probabilistic data structure is called a Bloom

filter. It was conceived by Burton Howard Bloom in 1970 [9].

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Part Vil

Randomized Algorithms

This part of the book is devoted to randomized algorithms. A randomized algo-
rithm is simply an algorithm that uses a source of random bits, allowing it to
make random moves. Randomized algorithms are extremely popular in computer
science because (1) they are highly efficient (have low runtimes) on every input,
and (2) they are often quite simple.

As we’ll see, while randomized algorithms are very simple to state, analyzing
their correctness and runtime will utilize all the probability tools that we have
learned so far, plus some new tools.

Chapter 21 covers randomized algorithms of the Las Vegas variety. These al-
gorithms always produce the correct answer, but their runtime depends on the
random bits.

Next, in Chapters 22 and 23 we cover randomized algorithms of the Monte
Carlo variety. These algorithms are extremely fast, regardless of the random bits.
However, they return the correct answer only some fraction of the time, where
the fraction depends on the random bits.

We only provide the briefest introduction to randomized algorithms in the text.
The exercises offer many more examples and illustrate further directions. There
are also several textbooks that are devoted entirely to randomized algorithms;
see for example [21, 41, 53, 54].

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

21 Las Vegas Randomized
Algorithms

This chapter introduces randomized algorithms. We start with a discussion of
the differences between randomized algorithms and deterministic algorithms.
We then introduce the two primary types of randomized algorithms: Las Vegas
algorithms and Monte Carlo algorithms. This chapter and its exercises will
contain many examples of randomized algorithms, all of the Las Vegas variety.
In Chapter 22 we will turn to examples of the Monte Carlo variety.

21.1 Randomized versus Deterministic Algorithms

In deriving the runtime of an algorithm, we typically assume that there is an
adversary who provides the input, and we consider the runtime of the algorithm
on this input.

A deterministic algorithm always follows the same sequence of steps, and the
adversary knows what steps the algorithm takes. Thus, the adversary can feed
the algorithm a “worst-case input” on which it will take an exceptionally long
time. The runtime of the algorithm is specifically defined as the runtime on that
worst-case input.

By contrast, a randomized algorithm is an algorithm that makes use of arandom
sequence of bits in deciding what to do next. The adversary still gets to choose
which input to feed the algorithm. However, because the randomized algorithm
makes random moves, it is very hard for an adversary to defeat — that is, there
often is no longer a worst-case input.

This brings us to the primary advantage of randomized algorithms: they are
likely to be very efficient (low runtime) on every input. The adversary is powerless
when the algorithm is randomized since the particular steps that the algorithm
will take depends on random numbers. This makes it hard for the adversary to
foil a randomized algorithm with a bad input that takes a long time.

When we say that randomized algorithms are “likely” to be efficient on every
input, we mean that the randomness is over the string of random bits; one could

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

21.1 Randomized versus Deterministic Algorithms 365

always have a very poor choice of random bits which results in inefficiency.
Randomized algorithms are often much faster than deterministic ones because
they don’t have a worst-case input. That said, because the algorithm uses random
bits, the execution time of the algorithm can vary even on the same fixed input;
that is, the execution time on a given input is a random variable (r.v.).

Algorithms

\
Deterministic Algorithms Randomized Algorithms

* Algorithm runs fixed process on * Algorithm makes random moves
each input. (coin flips).

* Runtime depends on the input. * Runtime depends on random bits.

* Adversary picks input. Chooses * Adversary picks input. Hard for
“worst” input, causing the adversary to choose “worst” input,
algorithm to take a long time. because doesn’t know algorithm’s

_ J __ moves. J
) . :
Worst-Case Average-Case Expected Tail Runtime
Analysis Analysis Runtime Analysis
Runtime of the Runtime of the Analysis Runtime of the

Runtime of the
algorithm is the
expected runtime

algorithm is below
some bound for

algorithm is the
runtime on the

algorithm is
the average of

worst-case the runtimes every input, with
input. across all inputs. on the worst-case high probability,
input, where where probability
expectation is over is over the
_) U) (he random bits.) @ndom bits.)

Figure 21.1 Deterministic versus randomized algorithms.

It is important not to confuse randomized algorithms with the average-case
analysis of deterministic algorithms. In average-case analysis, the input is
drawn from a distribution, and the goal is to show that the algorithm is efficient
in expectation over all the inputs. That is, while there may be some bad inputs on
which the deterministic algorithm takes a really long time, if those inputs occur
with low probability, then we can say that the deterministic algorithm performs
well in expectation, where expectation is taken over the space of all inputs. When
we talk about average-case analysis we are no longer talking about an adversary
providing the input, but rather we can think of having a random input.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

366 21 Las Vegas Randomized Algorithms

In the exercises we will see examples of both randomized algorithms and average-
case analysis, so that you can see the difference between the two.

A secondary advantage of randomized algorithms is that they are often much
simpler than deterministic algorithms. In fact, many randomized algorithms
sound impossibly stupid, but work well and are very easy to describe.

21.2 Las Vegas versus Monte Carlo

There are two types of randomized algorithms, which are actually quite different.

A Las Vegas algorithm will always produce the correct answer. However, its
running time on a given input is variable, depending on the sequence of random
bits. Although for some random bits its running time is high, its average running
time is hopefully low (where the average is taken over the sequence of random
bits).

A Monte Carlo algorithm typically runs in a fixed amount of time, which is
very short and is typically independent of the random choices made. However,
it only gives the correct answer some fraction of the time. For example, a Monte
Carlo algorithm may only produce the correct answer half the time. This may
seem really stupid. What’s the point of having an algorithm that gives the wrong
answer? However, it’s not as bad as it seems: The error probability depends on the
particular random bits. Hence, runs are independent of each other and one can
improve the correctness by running the algorithm multiple times (with freshly
drawn random bits).

An example of a Monte Carlo algorithm is the Stochastic Gradient Descent
(SGD) algorithm, used extensively in machine learning for finding the minimum
of a multi-dimensional function. SGD reduces computation time over traditional
Gradient Descent by only doing the needed minimization computations at a
few randomly selected points. While the result may not always be correct, it’s
extremely fast.

We now present some examples of Las Vegas algorithms, which always produce
the correct answer. In the chapter we will concentrate on expected runtime;
however, the exercises will also consider the tail of the runtime distribution.

Our first randomized algorithm is Randomized Quicksort. Before we describe it,
it helps to review Deterministic Quicksort.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

21.3 Review of Deterministic Quicksort 367

21.3 Review of Deterministic Quicksort

Quicksort is an efficient algorithm for sorting a list of n numbers: ay, as, ..., ay,.
Throughout our discussion we will assume for convenience that these numbers
are distinct. The size of the problem is the number of elements in the list being
sorted, namely n. The runtime of the algorithm is the number of comparisons
needed to sort the list. Throughout, we will use

C(n) = number of comparisons needed when the problem size is n.

In Deterministic Quicksort, the first element in the list (a;) is designated as the
pivot. All elements in the list are then compared with the pivot. Those elements
less than the pivot are put into list L1, and those greater than the pivot are put
into list L2, creating the list:

L1, ay, L2.

Quicksort is then recursively applied to list L1 to obtain L1s (sorted version of
L1) and is recursively applied to list L2 to obtain L2s. The list returned is then

Lls, ay, L2s.

Question: What is an example of a bad input list for Deterministic Quicksort?

Answer: In a sorted list, the pivot is always the smallest element in the list. Now
all the elements end up in just one of the sublists, which is bad, because the size
of the problem shrinks too slowly, resulting in high runtime.

Question: How many comparisons are needed in the case of a bad input list?

Answer: In the first step we compare the pivot with n — 1 elements. We then end
up with a sublist of length n — 1, which requires C(n — 1) comparisons to sort.
Hence:

Cn)y=(n-1)+C(n-1),
where C(1) = 0. Consequently C(n) = O(n?) on this bad input list.

Question: What is an example of a good input list for Deterministic Quicksort?

Answer: Ideally, we would like the pivot element to always be the median of the
list. For example, consider the list:
{5,3,2,4,7,6,8},
which splits into:
{3,2,4},5,{7,6,8}

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

368 21 Las Vegas Randomized Algorithms

which further divides into:

{2}.3.{4}.5.{6}.7. {8}.

Question: What is the number of comparisons needed by Deterministic Quick-
sort on a good input list?

Answer: Since the good input splits the list into two even lists at each step, we
have approximately (ignoring rounding up or down):
Cn)=n-1+2C(n/2)
=(n-1)+2((n/2-1+4+2C(n/4))
=(n-1)+(n-2)+4C(n/4)
=(n-1)+n-2)+4(n/4-1+2C(n/8))
=(n-1D+n-2)+(n-4)+8C(n/8).

Continuing in this fashion, we have that:
Cmy=(n-D+n-2)+(n-4H+(n-8) +---
=nlgn- (1+2+4+-~-+g+n)
=nlgn-2n+1
=O0(nlgn).

21.4 Randomized Quicksort

We’d like the running time of Quicksort to be O(nlgn) on every input list. But
how can we achieve this? The adversary can always choose to give us a bad input
list that forces the running time to O (n?).

The solution is to use a randomized algorithm. Our Randomized Quicksort
algorithm is identical to Deterministic Quicksort, except that the pivot position
is chosen at random in each step. This makes it impossible for the adversary to
give us a bad input list, which is the point of using randomness!

We will now prove that the expected running time of Randomized Quicksort is
O(nlgn) on every input. Here, “expectation” is over all sequences of random
pivot positions. In Exercise 21.13 you will invoke the Chernoft bound to show
that with high probability (w.h.p.) the running time of Randomized Quicksort is
O(nlnn) on every input.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

21.4 Randomized Quicksort 369

Theorem 21.1 (Randomized Quicksort runtime) Given any input list of n
distinct elements, Randomized Quicksort will make O(nlgn) comparisons in
expectation.

Proof: Let aj,a»,as,...,a, be an input. Let 51 < 50 < 53 < ... < 5, be the
sorted version of this input. For i < j, let X;; be an indicator random variable
that takes on the value 1 if s; and s; are ever compared during the running of
the algorithm and O otherwise. Note that s; and s; are compared at most once.
Then, invoking Linearity of Expectation, we have:

n-1 n

C(I’l) = Z Z X,'j
i=1 j=i+l
n-1 n

E[Cm]=) > E[x;].

i=1 j=i+l

Question: What is E [X,~ j] , namely the probability that s; and s; are compared?

Hint: Think about the following sorted sublist: S = [s;, i1, Sis2. ..., 5;] and
condition on which element in S is the first to be chosen to be a pivot.

Answer: At any moment of time before one of the elements of S has been chosen
as a pivot, all the elements of S must be in the same sublist. Now consider that
moment when one of the elements of § is first chosen as a pivot. If the pivot
element chosen is s;, then s; will get compared with all the elements in S, and
hence s; and s; will get compared. The argument is the same if the pivot element
chosen is s;. On the other hand, if any element of S other than s; or s; is chosen
as the pivot, then after the pivot operation, s; and s; will end up in different
sublists and will never get compared. Hence,

2
P {si and s; get compared} = m
We thus have:
n-1 n n-1 n 2
E[cm]=Y Y E[X;]=) 1
i=1 j=itl perg s B

:ZZZ% where k = j —i+1

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

370 21 Las Vegas Randomized Algorithms

Now, recalling the fact from (1.16) that

n

Z%<1+lnn,

i=1
we have:

n
22(1+lnn—1):2nlnn.

k=2 i=1

E[C(n)] < Z

We have thus shown that E [C(n)] = O(nlnn) = O(nlgn) as desired. [

W |

Summary: At this point, we have seen that Deterministic Quicksort, where the
pivot is always chosen to be the first element of the list, has a worst-case input
which forces O (n%) comparisons. By contrast, Randomized Quicksort, where the
pivot is chosen randomly, has no worst-case input, and has an average runtime
of O(nlgn), where this average is taken over the random choice of the pivot.

Question: Our analyses of both Deterministic Quicksort and Randomized Quick-
sort were worst-case analyses because the adversary was allowed to pick the worst
possible input. What is meant by average-case analysis of Quicksort?

Answer: In average-case analysis, we are once again running Deterministic
Quicksort, with our pivot always chosen to be the first element in the list, for
example. However, rather than the input being chosen by an adversary, we assume
that we have a random input — that is, a randomly ordered list. We derive the
expected runtime, where the expectation is over the random ordering of the list.

Question: What is the runtime of Deterministic Quicksort under average-case
analysis?

Answer: Because the input is randomly chosen, the adversary has no control over
the first element in each sublist. So in each round, our pivot is effectively arandom
element in the list. Thus the computation of expected runtime is identical to what
we saw for Randomized Quicksort, where we pick the pivot at random. Hence
the expected runtime of the average-case analysis of Deterministic Quicksort is
also O(nlgn).

21.5 Randomized Selection and Median-Finding

In the k-Select problem, we are given an unsorted list and asked to find the
kth smallest element in the list. We’ll assume that the list has n elements:
ai,az,...,a,.Again, for convenience, we assume that these numbers are distinct.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

21.5 Randomized Selection and Median-Finding 371

We will also ignore floors and ceilings in our discussion, so as to keep the notation
from getting out of hand.

Question: What’s an obvious way to solve k-Select in O (nlgn) time?

Answer: Sort the list, using Randomized Quicksort, and then return the kth
element in the sorted list.

Our goal is to solve k-Select in O (n) time.

Question: For certain values of k, it should be obvious how to achieve O(n)
time. What are these values?

Answer: If £ = 1, then we can solve the problem just by walking through the list
and keeping track of the smallest element so far. Similarly for k = n.

When k = % (also known as the Median-Select problem), it is not at all obvious
how to achieve O (n) time.

We will present a very simple Las Vegas randomized algorithm for achieving
O(n) time on every input in expectation. The idea is to use random pivots as
we did in the Randomized Quicksort algorithm. However, unlike the case of
Quicksort, the pivot will allow us to throw away a part of the list.

Imagine that we start with a list of n elements, and our goal is to find the kth
smallest element. We now pick a pivot at random. Suppose that our pivot happens
to be the ith smallest element in the list, s;. In O(n) time, we can subdivide the
list into L1, those i — 1 elements smaller than our pivot, and L2, those n — i
elements bigger than our pivot. Our kth smallest element is either in L1 or L2,
or it is equal to the pivot (if k = 7).

Question: If k < i, then our problem reduces to ...

Answer: Finding the kth element in L1, a list of size i — 1.

Question: If k > i, then our problem reduces to ...

Answer: Finding the (k — i)th element in L2, a list of size n — i.

We refer to the above algorithm as Randomized k-Select.

Before we write up the formal analysis, let’s do a quick thought-experiment.

Question: Suppose that the pivot element always exactly splits the list in half.
How many comparisons, C(n), will be needed by our algorithm?

Answer: We need n — 1 comparisons to split the list. After splitting the list, we’ll

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

372 21 Las Vegas Randomized Algorithms

have reduced the problem to selection in a list of length n/2. Ignoring floors and
ceilings, we have:
Cn)=(n-1)+C(n/2)
=(mn-1)+1n/2-1)+C(n/4)
<n+n/2+n/d4+n/8+---+1

< 2n.
So C(n) = O(n) if the pivot is always picked optimally.

We will now show that, if we pick a random pivot, we can still achieve O (n)
comparisons. Here, expectation is over the choice of the random pivot. Our
derivation is an upper bound because we will assume that we are always reduced
to looking at the longest sublist of the two randomly created sublists. This time we
won’t ignore floors and ceilings, so that you can see how to argue this precisely.

Theorem 21.2 (Randomized k-Select runtime) For any list of n distinct el-
ements, Randomized k-Select makes < cn comparisons in expectation, where
¢ = 4. This holds for any k.

Proof: In general when writing a proof, one does not know exactly what the
constant ¢ will be. Thus, we will write our proof as if we are not given the value
of ¢, and we will show how we can derive c as part of the proof, to get that ¢ = 4.

Since the pivot is chosen randomly, it is equal to the ith smallest element with
probability % Hence we have:

E[Cn)] < (n-1)+ Zn:P{pivot is s;} - E[C (max{i — 1,n —i})]

i=1
- (n- 1)+Zn]%-E[C(max{i— Ln—i})]
i=1

n—1
< (n—1)+% Z E[C()].

i~[%]

We will show that this results in E [C(n)] = O(n). We use induction. We claim
that E [C(i)] < ¢ - i for some small integer ¢ > 1 to be named later, and where
i <n.

Since E [C(1)] = 0 < ¢ - 1, the base case holds. Assuming that the inductive

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

21.6 Exercises 373

hypothesis holds for i < n — 1, we have:
o) n—-1
E[C(n] <(n-1)+= Z i
n.
i=l 5]
2¢ (n=D+]5] n
o2 O g

S(n—1)+2n—c-(n_;)+%-(n—n;1)

c (3n n+1
= —1 —_ __1 .
=D+ (2) 2

— (=D += - Gn=2)-(n+1)
4n

3cn ¢ 2c
:(l’l—l)'l‘T'l‘Z—E. (211)

Our goal is to show that E [C(n)] < cn. From (21.1), we can see that, if we set
¢ = 4, then we have that:

3.4.n 4 2.4
E[C(n)] < (n-1)+ 4" T

2
=(n-1)+3n+1--
n

< 4n.

So
E[C(n)] <4n

is a solution to the original equation. We have thus proven the inductive case. m

Question: Suppose we want to determine the median of a list of length n. How
many comparisons are needed?

Answer: Still O (n). If nis odd, we use Randomized k-Select with k = (n+1)/2.
We refer to the median-finding algorithm as Randomized Median-Select.

21.6 Exercises

21.1 Creating a fair coin
You are given a biased coin that returns heads with probability 0.6 and
tails otherwise. Let Biased-Flip be a routine that flips the biased coin
once and returns the output. Design a Las Vegas algorithm, Fair, which

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

374 21 Las Vegas Randomized Algorithms

outputs heads with probability 0.5 and tails otherwise. Your algorithm,

Fair, should only make calls to Biased-Flip and nothing else.

(a) State your Fair algorithm clearly.

(b) Prove that Fair outputs heads with probability 0.5 and Tails otherwise.

(c) Derive the expected number of calls to Biased-Flip required for Fair
to produce an output.

21.2 Creating a three-way fair coin
Given a function 2WayFair that returns O or 1 with equal probability,
implement a Las Vegas function, 3WayFair, that returns 0, 1, or 2 with
equal probability. Aim to use a minimum number of calls to 2WayFair.
(a) What is the expected number of calls to 2WayFair made by 3WayFair?
(b) Explain why 3WayFair is a Las Vegas algorithm.
(Note: The solution is simple. Do not use any floating point arithmetic.)

21.3 Nuts-and-bolts problem

[Proposed by David Wajc] Imagine that you have n nuts, Ny, N3, ..., N,

with distinct sizes: 1,2,3,...,n. You also have n bolts, By, B»,..., B,

with distinct sizes: 1,2,3,...,n, such that there is exactly one bolt that

fits each nut. You can’t see the nuts or the bolts, but you can perform a

“trial” which consists of comparing one nut with one bolt. The result of

a single trial is that either (a) they’re a perfect fit, or (b) the bolt was too

small, or (c) the bolt was too large. You are not allowed to compare nuts

with nuts or bolts with bolts.

(a) Describe an efficient randomized algorithm for matching all n nuts
to the n bolts in as few trials as you can. (Using ®(n?) trials is too
many!)

(b) Derive the expected asymptotic running time of your algorithm.

21.4 Ropes problem
You have n ropes. Each rope has two ends. Consider the following ran-
domized algorithm: At each step of your algorithm, you pick two random
ends (these may be two ends from the same rope, or one end from one
rope and one end from another rope), and tie these ends together. Keep
going until there are no ends left. What is the expected number of cycles
formed? Express your answer using ©(-).

21.5 Uniform sampling from a stream
[Proposed by David Wajc] Suppose you are walking down a long road,
whose length you don’t know in advance. Along the road are houses,
which you would like to photograph with your very old camera. This
old camera allows you to take as many pictures as you want, but only
has enough memory to store one picture at a time. The street contains
n houses, but you don’t know n before you reach the end of the street.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

21.6 Exercises 375

Your goal is to end up with one photo in your camera, where that photo is
equally likely to show any of the »n houses.
One algorithm for achieving this goal is to walk all the way down the
street, counting houses, so that we can determine n. Then we roll an n-
sided die, where X denotes the roll outcome. Then we walk to the house
numbered X and take its picture. However, you're a busy person and you
don’t want to walk down the street again. Can you achieve your goal by
walking up the street only once? This problem is referred to as uniform
sampling from a stream with unknown length.

(a) Propose a randomized algorithm for uniform sampling from a stream
with unknown length. Your algorithm will involve replacing the item
stored in memory with some probability as you walk (only once) down
the street.

(b) Prove that, for all i, P {ith item is output} = %

21.6 Pruning a path graph

[Proposed by Vanshika Chowdhary] Figure 21.2 shows a path graph of n

edges. At each round, you select a random edge of those remaining and

cut it. Whenever an edge is cut, that edge and everything below that edge
falls off. Let X be the number of edges that you cut until the entire path

disappears (all edges are gone). What is E [X]?

€l €l

€ €2

€3 €3

g >< After cutting

: edge e4
*

€n-1

€n

Original path graph

Figure 21.2 For Exercise 21.6. Path graph with n edges, before and after pruning edge
éey.

21.7 Uniform sampling from a stream — generalized
As in Exercise 21.5, you are walking down a long road with n houses,
where you don’t know n in advance. This time you have a new camera
for photographing houses. This new camera has enough memory to store

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

376 21 Las Vegas Randomized Algorithms

s photos at a time. You walk all the way down the street just once taking

photos. By the end of your walk, you want to have stored a random subset

of s homes. (Assume n > s.)

(a) Provide a randomized algorithm for achieving your goal.

(b) Let S denote the set of houses stored in your camera. Prove that, at
the end of your walk, each of the n houses has an equal probability of
being in S.

21.8 Finding the max — average-case analysis
Given an array A of length n containing distinct integers ay, as, . .., dy,
the FindMax algorithm determines the maximum number in A. Assuming
the inputs are given in a uniformly random order, what is the expected
number of times that currentMax is updated? Provide upper and lower
bounds for this expression.

Algorithm 21.3 (FindMax(a, az, ..., a,))
1. currentMax = —co
2. fori=1,...,ndo
if a; > currentMax then currentMax = a;.
3. return currentMax

21.9 Average-case analysis of Move-to-Front

Suppose you use a linked list to store n items: a1, az, . . ., a,. Then the time
to access the ith stored item in the list is i. If you know that certain items
are accessed more frequently, you would like to store them at the front of
the list, so that their access time is shorter. Unfortunately, you don’t know
the access probabilities of items, so you use the (deterministic) Move-
To-Front (MTF) algorithm: Each time an item is accessed, you append
it to the front of the list, so that its access time is 1 (for now). Assume
that MTF has been running for a long time. Our goal is to understand the
expected time to look up an item in the list, call it E [T'], given that item
a; is accessed with probability p;.

(a) Prove that

n

E[T] :1+Zp,-zp"1"p_. 21.2)
J i

=l j#i

[Hint: Start by conditioning on the item, a;, being accessed. The posi-
tion of a; can be expressed in terms of a sum of X;; indicator random
variables, where E [Xl- j] is the probability that item a ; precedes a;. |
(b) Verify your expression for E [T] in the case p; = %, Vi.
(c¢) Suppose that p; =C -27",i =1,2,...,n, where C is the appropriate
normalizing constant. Compute E [T]M™ from (21.2), where n = 5
(you can write a small program). Now consider the case where we

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

21.6 Exercises 377

21.10

21.11

know the p;’s and we arrange the items according to the best arrange-
ment (BA), namely in order of decreasing p;. How does E [T]®*
compare with E [T]MTF?

How to find a mate — average-case analysis

[This is a repeat of Exercise 3.14, which is a nice example of average-case
analysis.] Imagine that there are n people in the world. You want to find
the best spouse. You date one person at a time. After dating the person,
you need to decide if you want to marry them. If you decide to marry,
then you’re done. If you decide not to marry, then that person will never
again agree to marry you (they’re on the “burn list”), and you move on to
the next person.

Suppose that after dating a person you can accurately rank them in com-
parison with all the other people whom you’ve dated so far. You do not,
however, know their rank relative to people whom you haven’t dated. So,
for example, you might early on date the person who is the best of the n,
but you don’t know that.

Assume that the candidates are randomly ordered. Specifically, assume
that each candidate has a unique score, uniformly distributed between 0
and 1. Our goal is to find the candidate with the highest score.

Algorithm 21.4 (Marriage algorithm)

1. Date r < n people. Rank those r to determine the “best of r.”

2. Now keep dating people until you find a person who is better than
that “best of r” person.

3. As soon as you find such a person, marry them. If you never find such
a person, you'll stay unwed.

What r maximizes P {end up marrying the best of n}? When using that
r, what is the probability that you end up marrying the best person? (In
your analysis, feel free to assume that # is large and H,, =~ In(n).)

Finding the k largest elements

Given an array A of n distinct elements in random order, we will consider

two algorithms which each output the k largest elements in sorted order.

(a) Randomized Algorithm 1 uses Randomized k-Select to find the kth
largest element, x. We then walk through the array, keeping only
those elements > x. Finally, we sort these k largest elements via
Randomized Quicksort. Derive an asymptotic expression for the ex-
pected number of comparisons. Since Algorithm 1 is randomized, the
expectation is over the random bits.

(b) Deterministic Algorithm 2 maintains a sorted list at all times, S =
[s1 > 52 > - -+ > s1], of the top-k-so-far. We start by sorting the first
k elements of A via Deterministic Quicksort and calling that S. We
now take each element, x, of A, starting with the (k + 1)th element,

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

378

21 Las Vegas Randomized Algorithms

21.12

21.13

X = ay+1, and insert it into its place in S. To do this, we compare x
with each element of § starting with s, and then s;_; (if needed), and
then s;_» (if needed) and so on until x finds its place in S. This is the
first run. In the second run, we insert the (k + 2)th element of A into
its proper place in S. There will be n — k runs, many of which will not
change S at all. Prove that the expected number of comparisons made
is O(n+k*logn). Since Algorithm 2 is deterministic, the expectation
is over the randomly ordered input.

Randomized dominating set

A dominating set, D, in a connected undirected graph G = (V,E), is a

set of vertices such that, for each v € V, either v € D or v is adjacent to

some v’ € D (in both cases we say that v is covered by D). Assume that
|V| = n and that G is d-regular, with d > 2, meaning that each vertex has

exactly d neighbors. Our goal is to find the minimum sized D.

(a) Sheng proposes the following randomized algorithm to find a valid
D: Each vertex picks a random number in the range (0, 1). For each
edge, (i, j), we pick the endpoint with the larger number to be in D.
In this way, for every edge (i, j), we are guaranteed that at least one
of i and j are in D. What is E [|D|] found by Sheng’s algorithm?

(b) A better randomized algorithm is Algorithm 21.5. Derive E [|D|] for
Algorithm 21.5. Here are some steps:

(i) Express E [|D]] as a function of the p value in Algorithm 21.5.
(ii) Find the p that minimizes E [|D|]. Express E [|D|] for this p.
(iii) Prove that 0 < E [|D]|] < n. What happens to E [|D|] as d grows

large?
Algorithm 21.5 (Dominating Set)
1. Given G = (V,E), pick a random subset Dy C V where Dy
includes each v € V with probability p.
2. Let D be all vertices in 'V that are not covered by D).
3. Return D = Dy U D;.

Bounding the tail of Randomized Quicksort

Use Chernoft bounds to show that, w.h.p. (1 — %), Randomized Quicksort

requires only O(nlgn) comparisons to sort a list of length n. Here are

some steps to help you:

(a) Consider a particular run of Randomized Quicksort as shown in Fig-
ure 21.3. The tree shows the list L at each stage and then shows the
sublists L and L, under that, separated by the pivot, p. You can imag-
ine drawing such a tree for any instance of Randomized Quicksort.
Let T denote the total number of comparisons made by Randomized
Quicksort. Explain why T is upper-bounded by the sum of the lengths
of all root-to-leaf paths in the ternary tree. Note that pivots count as

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

21.6 Exercises 379

leaves as well, so every element is eventually a leaf. [Hint: For each
leaf, think about the number of comparisons that it’s involved in.]

5 4137 6 2]

Figure 21.3 Randomized Quicksort tree. The randomly selected pivot is in pink.

(b) Now we’ll argue that w.h.p. each root-to-leaf path is of length
O(logn). Note: It’s fine that some quantities are not integers.

(i) Let’s say that a node of the tree is “good” if the randomly chosen
pivot separates the current list at the node into two sublists, each
of size at most % the size of the current list. Otherwise we say that
the node is “bad.” What is the probability that a node is “good”?

(i) Let g denote the maximum number of “good” nodes possible
along a single root-to-leaf path. What is g as a function of n?

(iii)) Consider an arbitrary leaf ;. We want to prove that the root-to-leaf
path ending in 7 is not very long. Specifically, show that

1
P {The root-to-leaf path ending in i has length > 6g} < —.
n

Here you're using the g from part (ii). Note that as soon as we

see the first g “good” nodes, we’ll be down to a single leaf.
(c) We have seen that with probability at least 1 — n—lz a given root-to-
leaf path is no longer than 6g. What probabilistic statement about T

follows from this?

21.14 Randomized AND-OR tree evaluation
Min-max game trees are often represented by an AND—OR tree on binary
inputs, where AND is equivalent to “Min” and OR is equivalent to “Max.”
In an AND-OR tree, there are alternating levels of ANDs and ORs. The
leaves of the tree are all 0’s and 1’s. Recall that AND(a, b) = 1 only if
a =b =1,while OR(qa, b) = 1 ifeithera = 1 or b = 1 or both. Each node
in the tree has a value (computed bottom-up) based on its subtrees; the
value of the entire tree is the value of the root node. T}, denotes a tree with
k AND levels and k OR levels, having height 2k and 2%% = 4 leaves.
Figure 21.4 shows 7>.
(a) How many leaves must be evaluated in determining the value of
T; when a deterministic algorithm is used? What exactly will the
adversary do to force you to evaluate that many leaves? The adversary

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

380 21 Las Vegas Randomized Algorithms

Figure 21.4 This figure shows Ty, where k = 2. This means that there are k =2 AND
levels and k = 2 OR levels. The height of a Ty, tree is 2k. The values are computed
bottom-up and are shown in red at each node. The final value of this tree is 1.

knows the order in which your algorithm evaluates leaves and will
give you the worst-case input.

(b) Consider the following Randomized AND—OR algorithm. This algo-
rithm computes the value of each node in the tree, bottom-up. How-
ever, it randomly considers whether to first look at the left node or the
right node, and then it doesn’t bother looking at the remaining node
unless necessary. Prove that the Randomized AND-OR algorithm re-
quires < 3* leaf evaluations in expectation. Here, expectation is taken
over the random bits used by the algorithm. As always, the adversary
will try to give you the worst-case input; however, it will have a harder
time because your moves are random.

(i) Start with a tree of height 1, consisting of two leaves connected
by an OR. How many leaves on average must be evaluated if the
value of your tree is 1? How about if the value of your tree is 0?

(i1)) Now consider the tree Ty, where k = 1. This tree will have
a single AND with two ORs underneath. How many leaves in
expectation must be evaluated if the value of your tree is 1? What
changes if the value of your tree is 0?

(iii) Prove viainduction that you can determine the value of T} in < 3¥
leaf evaluations in expectation. Do this both when the value of
the tree is 1 and when it is 0.

21.15 Multi-armed chocolate machine
[Proposed by Weina Wang] A chocolate machine has two arms, as shown
in Figure 21.5. If you pull Arm 1, it gives you a chocolate with probability
p1L = %. If you pull Arm 2, it gives you a chocolate with probability
p2 = }l. Unfortunately, you don’t know the values of p; and p», or which
one is bigger.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

21.6 Exercises 381

21.16

Figure 21.5 Chocolate machine with two arms.

Suppose pulling an arm once costs 1 dollar, and you have n dollars in
total. Your goal is always to spend your n dollars to maximize the number
of chocolates you receive in expectation.

(a) If you knew p; and p,, how would you want to spend your n dollars?
Let R* denote the total number of chocolates you get. What is E [R*]?

(b) Since you do not know p; and p», you decide to pull each arm 5
times (assume 7 is an even number). Let R,,q be the total number
of chocolates you get. What is E [Ryanq]? Compare E [R;.nq] with
E[R"].

(c) You figure that you can experiment with the arms a bit and decide
how to use the rest of the money based on what you see. Suppose you
pull each arm once to see which gives you chocolates.

e If one arm gives a chocolate and the other one does not, you use
the remaining n — 2 dollars on the arm that gives a chocolate.

e Otherwise, you pick an arm uniformly at random and use the re-
maining n — 2 dollars on that arm.

Let Rinformea b€ the total number of chocolates you get. What is

E [Rinformed] ? Compare E [Rinformed] with E [R*] .

(d) You decide to experiment further. Suppose you pull each arm m =
8Inn times. Let X and Y be the numbers of chocolates you get from
Arm 1 and Arm 2, respectively. Then you do the following:

o If X > Y, you use the remaining n — 2m dollars on Arm 1.
e Otherwise, you use the remaining n — 2m dollars on Arm 2.
Let Ryellinformed denote the total number of chocolates you get.
Derive a lower bound on E [Ryellinformed]. Show that E [R*] —
E [Ruell-informed] = O(IH I’l)
For more general versions of this problem and more interesting algorithms,
check out the multi-armed bandits literature (e.g. [47]).

Infinite highway problem
Imagine an infinitely long one-lane highway, starting at location 0 and

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

382 21 Las Vegas Randomized Algorithms

mph mph mph mph mph mph

PP PPN PN

“back” “front”
(a) At time O

mph mph mph mph mph mph

& e s

(b) At much later time

Figure 21.6 One example of the infinite highway problem from Exercise 21.16.

extending forever. There are n distinct cars, which start out evenly
spaced. Each of the cars moves at some speed drawn independently from
Uniform(0, 100). The cars will drive forever on this one-lane highway,
unable to pass each other, and faster cars will eventually get stuck behind
slower cars that started in front of them. Over time, the cars will segregate
into clusters. Figure 21.6 shows one particular example. Let X denote the
number of clusters formed for a general instance of this problem.

(a) Whatis E [X]?

(b) What is Var(X)?

(c) Prove that X is less than 3E [X] w.h.p. when # is high.

21.17 Independent set
[Proposed by Misha Ivkov] Let G = (V,E) be a graph with n = |V|
vertices and m = |E| edges. We say that § C V is an independent set if no
pair of vertices in S are connected by an edge. You will prove that G has an
independent set S of size > 7. To do this, you will use the probabilistic
method, which says: To prove that there is an independent set of size
> k in G, find a randomized algorithm which gives you an independent
set of size S, where E [S] > k. (Here S is a r.v. which depends on the
random bits of the randomized algorithm.) Now you know there must be
an independent set of size > k in G.
Use the following Randomized Independent Set algorithm:
1. Pick each vertex of V to be in S with probability p.
2. If there exist two vertices in S that share an edge, randomly delete one.
Show that E [S] > %. Note: You will have to specify p.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

22 Monte Carlo Randomized
Algorithms

In the last chapter we studied randomized algorithms of the Las Vegas variety.
This chapter is devoted to randomized algorithms of the Monte Carlo variety.

A Monte Carlo algorithm typically runs in a fixed amount of time, where
the runtime is typically independent of the random choices made. However, it
only produces the correct answer some fraction of the time (say half the time).
The error probability depends on the particular random bits. Hence, runs are
independent of each other, and one can improve the correctness by running the
algorithm multiple times (with different sequences of random bits).

This definition is very abstract, so let’s turn to some common examples.

22.1 Randomized Matrix-Multiplication Checking

One of the most common uses of randomized algorithms is to verify the cor-
rectness of a program, a.k.a. program checking. The typical scenario is that
one has a program that one doesn’t totally trust. One would like to check the
correctness of the output very quickly — in way less time than it would take to
run the computation from scratch.

As an example, consider the problem of multiplying two matrices.

Question: Using standard matrix multiplication, how many multiplications are
needed to multiply two n X n matrices, A and B?

Answer: O(n°).

Question: How many multiplications are needed using the currently fastest
method for multiplying matrices?

Answer: You've probably heard of Strassen’s algorithm, which uses
O (n'°27+()) ~ 0(n*®) multiplications. Until recently, the fastest algorithm
was due to Coppersmith and Winograd [15], using O (n>37®) multiplications.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

384 22 Monte Carlo Randomized Algorithms

Recently, a CMU PhD student, Virginia Vassilevska, improved this to O (n%>373)
multiplications [79].

The Coppersmith and Winograd (C-W) algorithm is complex to implement,
and the Vassilevska algorithm is even more so. Suppose that someone has an
implementation of the Vassilevska algorithm. You might not trust their code.

You would ideally like to be able to check each output that the Vassilevska
implementation gives you. That is, every time that you input two n X n matrices,
A and B, into the Vassilevska implementation, and it outputs C, you’d like to
check if in fact A - B = C.

Of course we could check that A - B = C using standard matrix multiplication.
But this would take @ (?) time, which would defeat the whole point of using the
®(n*37) implementation.

We now illustrate a randomized algorithm due to Freivalds [29] that allows us to
check whether A - B = C using only ®(n?) multiplications. Hence, we can afford
to run our checker every time that we run the Vassilevska implementation.

Algorithm 22.1 (Freivalds’ matrix multiplication checking algorithm)
Inputs: A, B, C all of dimension n X n, with elements in R.

Choose a random vector ¥ = (r{,r2,73, .. .,ry), where r; € {0, 1}.
Compute BF.

Compute A (BF).

Compute CF.

If A (B¥) # C¥, then return: A - B # C. Otherwise, return A - B = C.

SR o~

Question: How many multiplications are needed by Freivalds’ algorithm?

Answer: Each of steps 2, 3, and 4 only involve multiplication of a matrix by a
vector, and hence use only ©(n?) multiplications.

Question: If Freivalds’ algorithm returns A - B # C, is it correct?
Answer: Yes. Suppose, by contradiction, that A - B = C. Then, V7, it must be

the case that A -B - 7=C - F.

Definition 22.2 When A - B # C, and 7 is a vector such that
A-B-7£C-F,

then we say that ¥ is a witness to the fact that A - B # C, because it provides
us with a proof that A - B # C.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

22.1 Randomized Matrix-Multiplication Checking 385

Thus the only time that Freivalds’ algorithm might be wrong is if it returns

A - B = C, even though A - B # C. This is referred to as one-sided error.

Theorem 22.3 shows that the probability of this type of mistake is < 1, given

that 7 is chosen at random.

Theorem 22.3 (Freivalds error) Let A, B, and C denote n Xn matrices, where
A-B # C, and let ¥ be a vector chosen uniformly at random from {0, 1}". Then,

1

Proof: [Theorem 22.3] Since A - B # C, we know that
D=AB-C=+0,
where O is an n X n matrix of all zeros.
Now suppose that 7 is a vector such that
D7 = AB7 — C7 =0,

as shown here:

dyy dyp dyz ... d3, || r3|=]|0
dnl dnz dn3 v dnn In 0

Since D # O, we know that D must have at least one non-zero entry. For
notational convenience, we will assume that this non-zero entry is dy; (you will
see that this assumption is made without loss of generality).

Since D7 = 0, we know that the product of the first row of D and 7 yields 0, that

1S,
n
Zdlj-rj =0.
J=1

But this implies that

n
diry + Zdljrj =0
Jj=2

n
i dijrj

=>ry=-
dy

(22.1)

Recall that dy; # 0 so the denominator of (22.1) is non-zero.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

386 22 Monte Carlo Randomized Algorithms

Question: Does (22.1) imply that r; is negative?
Answer: No, d|; may be negative.

Now suppose that when choosing the random vector 7, we choose ry,...,r,
before choosing r;. Consider the moment just after we have chosen ry, ..., r,.
At this moment the right-hand side of (22.1) is determined. Thus there is exactly
one choice for ry (call this r}) that will make (22.1) true.

Question: We now flip a 0/1 coin to determine r;. What is P {r1 = ri“}?

Answer: There are two possible values for r; (namely O or 1). They can’t both
be equal to r}. Thus, P {rl = r’f} < % Note this is not an equality because r can
be any element of the Reals and thus is not necessarily € {0, 1}. [

At this point we have proven that Freivalds’ algorithm can check matrix multi-
plication in ®(n?) time with accuracy of at least %

Question: How can we improve the accuracy?
Hint: Repeat Freivalds’ algorithm with additional random vectors, 7 € {0, 1}".

Answer: Suppose we run Freivalds’ algorithm using k randomly chosen 7 vec-
tors. If for any vector 7 we see that A (BF) # Cr, then we output A - B # C;
otherwise we output A - B = C. If in fact A - B = C, then all k runs will output
“equal,” and we will have the correct answer at the end. If A - B # C, then each
run has independent probability > % of discovering (“witnessing”) this fact. Thus
the probability that it is not discovered that A- B # Cis < zlk The k runs require
a total runtime of ®(kn?). If we make k = 100, yielding an extremely low prob-

ability of error, our overall runtime for using the Vassilevska implementation is
still ®(n*37 + 100n?) = ©(n>?7).

Question: Is it a problem if some of the random vectors 7 repeat? Does this
change our confidence in the final answer?

Answer: This is not a problem. All that’s needed is that the vectors are picked
independently. Each time we pick a random 7, that choice will independently
have probability > % of being a witness.

Question: Suppose that the error in Freivalds’ algorithm was not one-sided, but
rather two-sided? Would we still be able to use this scheme?

Answer: The exact scheme we’re using assumes one-sided error. However, we
could use a related scheme in the case of two-sided error, where we take the
“majority” output of several runs.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

22.2 Randomized Polynomial Checking 387

Question: Can we improve our confidence by choosing 7 € {0, 1,2}"?

Answer: Yes, this drops the probability of error to % for each Freivalds check
because, again, there is exactly one value of r| that allows us to mess up, and our

chance of now hitting that value is < %

22.2 Randomized Polynomial Checking

We now apply a very similar idea to the question of multiplication of monomials
over some real-valued variable x. Suppose we have a program that purports to
multiply together monomials. For example, our program might take as input a
string of three monomials:

()C_3), (X_S), (x+7)
and output the third degree polynomial:
G(x) =x* —x* — 41x + 105.

Again, we’d like a way of checking the output of this multiplication program
very quickly, in much less time than the runtime of the program. Here “runtime”
refers to the number of multiplications.

Throughout, let’s define F(x) to be the (true) product of the monomials, that is,
Fx)=x-3)(x=5(x+7),

whereas G (x) represents the output of our untrusted program. The goal of the
checker is to determine whether G (x) is equal to the product (x —3)(x—5)(x+7)
without computing F'(x).

Question: How many multiplications are needed to multiply d monomials?
Answer: O(d?). See Exercise 22.3.

We will now present a randomized checker that determines with high certainty
whether our untrusted program is correct using only ®(d) multiplications. As
before, we start with a simple checker that makes mistakes, and then we improve
the checker to lower its probability of mistakes.

Algorithm 22.4 (Simple Checker for multiplication of d monomials)

1. Pick an integer, r, uniformly at random between 1 and 100d.

2. Evaluate F(r). Evaluate G (r).

3. If F(r) = G(r), then output that the program is correct.
Otherwise, output that it is incorrect.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

388 22 Monte Carlo Randomized Algorithms

Question: What is the runtime of our Simple Checker?
Answer: O(d). Once you replace x by r, there are only d multiplications needed.
Question: Under what condition is the Simple Checker wrong?

Answer: If F(x) = G(x), then the Simple Checker will always be correct. If
F(x) # G(x), then the Simple Checker might make an error if it only picks r
values for which F(r) = G(r). Again, this is a situation of one-sided error.

Question: So what is the probability that the Simple Checker is wrong?

Hint: If F(x) # G(x), and each are polynomials of degree d, what is the
maximum number of values of x on which they can nonetheless agree?

Answer: Assume that F(x) # G(x). Let H(x) = F(x) — G(x). H(x) is at most
a d-degree polynomial. As such, it has at most d roots (assuming H(x) # 0).
Hence, there are at most d possible values of r, s.t. H(r) = 0. Equivalently, there
are at most d possible values of r on which F(x) and G(x) agree. If we now
limit the range of » from 1 to 1004, then there are still at most d values of r for
which F(r) = G(r). Hence, the probability that we have found such an r is at
most ﬁ = ﬁ.

So our Simple Checker accurately tells us whether our program is correct with
99

probability 155 in only ©(d) time.
Question: Suppose we’d like to know that our program is correct with probability

%? How can we modify our Simple Checker to get this higher guarantee?

Answer: One idea is to pick our random r from a bigger range. For example, we
can use a range from 1 to 10%d. However, this may not be feasible for large d.

Answer: A better idea is to repeat our Simple Checker with different values of
r. This will give higher accuracy, but require more time.

Algorithm 22.5 (Superior Checker)

1. Repeat the Simple Checker k times, each time with some r drawn uniformly
at random from the set of integers in [1, 100d].

2. If F(r) = G(r) for all k values of r, then output that the program is correct.
Otherwise, output that the program is wrong.

Question: What is the probability that the Superior Checker is wrong?

Answer: The Superior Checker only fails if F(x) # G(x) and yet F(r) = G(r)
for all k values of r. But each time we draw a random r, that r has probability

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

22.3 Randomized Min-Cut 389

> 22 of resulting in inequality. So the probability that all k values of r result in

= 100
1 999,999

equality is < 1557 Tooo.000 confidence.

With just k = 3, we already have our

Observe that the runtime of the Superior Checker is only ®(kd).

22.3 Randomized Min-Cut

Throughout this section, we assume that we have an undirected graph G = (V, E)
with |V| = n vertices and |E| = m edges.

Definition 22.6 A cut-set of a graph G = (V,E) is a set of edges whose
removal breaks the graph into two or more connected components.

Definition 22.7 A min-cut is a minimum cardinality cut set.

The Min-cut Problem is the problem of finding a min-cut. Observe that there
may be several minimum cardinality cut sets possible — we just want one of them.
The Min-Cut problem has many applications, mostly dealing with reliability. For
example, what is the minimum number of links that can fail before the network
becomes disconnected?

We will now present a randomized algorithm for finding a min-cut that is both
faster and simpler than any deterministic algorithm. Our algorithm is based on
the idea of “contracting edges” until a cut-set results.

Definition 22.8 The contraction of an edge (v, vy) involves merging vertices
vy and vy into a single vertex, v. Any edge (v1,Vv2) is removed. All edges that
had an endpoint at either v or vy (but not both) will now have an endpoint at
the contracted vertex, v. Observe that the new graph may have parallel edges,
but no self-loops.

Algorithm 22.9 (Randomized Min-Cut algorithm)

1. Given a graph, G, repeat until only two vertices, u and v, remain:
i. Pick a random edge from all existing edges in the graph.
ii. Contract that edge.

2. Output the set of edges connecting u and v.

Question: How many iterations are needed by the Randomized Min-Cut algo-
rithm?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

390 22 Monte Carlo Randomized Algorithms

Answer: n — 2.

Figure 22.1 shows one example of Randomized Min-Cut that results in a min-
cut and another that doesn’t. In the example that works, the cut that is output
should be interpreted as the two edges between vertex 5 and other vertices in the
graph (looking at the original graph, we see that vertex 5 is only connected to
vertices 3 and 4). In the example that doesn’t work, the cut that is output should
be interpreted as the three edges between vertex 2 and the other vertices in the
graph (note that vertex 2 is only connected to vertices 1, 3, and 4 in the original

graph).

134 35 35
5 5 5
45 123445
24

1o 134 1o 1345
e
y 24 5 24

(b) Unsuccessful run of Randomized Min-Cut

Figure 22.1 Example of two runs of Randomized Min-Cut. The bold edge is the one
about to be contracted.

Question: Let G = (V, E) refer to the original graph. Which, if any, of the
following statements is true?

(a) Any cut-set of an intermediate graph is also a cut-set of G.
(b) Any cut-set of G is also a cut-set of every intermediate graph.

Answer: The first statement is true. Let C be a cut-set in an intermediate graph
that separates vertices in S from those in V — §. All edges in C are edges from
the original graph, G = (V, E). Now suppose that there were additional edges
between S and V — S in the original graph, G = (V, E). This couldn’t happen
because as soon as one of those was contracted away, then S and V — S couldn’t
be separated. So C still forms a cut-set in G. The second statement is clearly
false, as seen in Figure 22.1. The issue is that some edges of the cut-set of the
original graph may have been contracted away.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

22.3 Randomized Min-Cut 391

So the output of Randomized Min-Cut is always a true cut-set of the original
graph, but not necessarily a minimally sized cut-set.

We now state one more property of Randomized Min-Cut that will be useful in
its analysis.

Lemma 22.10 Let C be a cut-set of graph G = (V, E). Let k be the cardinality
of C. Suppose we run Randomized Min-Cut for the full n — 2 iterations. Then,

C is output by Min-Cut <= None of the k edges of C are contracted.

Proof:
(=) This direction is obvious in that C cannot be output if any of its edges are
contracted.

(&) This direction is much less clear. For one thing, could it be that the cut that
is output includes C plus some additional edge? For another thing, could it be
that the cut that is output is missing some edge, €, of C, because € got removed
when a parallel edge to € got contracted?

We now address both issues. Suppose that C splits the graph into two components,
called A and A, as shown in Figure 222 LetE denote all edges in G. Let E 4, and
E~ denote the set of edges in A, and A, respectively. Hence E = C U E5 U E.

\
cut C
Figure 22.2 By definition of C being a cut, we must have E = Ec UE 4 U E+.

Since cut C already splits graph G into A and A, by definition there cannot be
any “additional edges” beyond C that have one endpoint in A and one in A.
Thus it can’t be the case that the final cut that is output includes C plus some
additional edges. Likewise, since all edges outside of C must be in either A or A,
then contracting an edge outside of set C cannot result in some edge of C getting
removed. |

Theorem 22.11 The Randomized Min-Cut algorithm produces a min-cut with

probability > ﬁ

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

392 22 Monte Carlo Randomized Algorithms

Proof: Let C be one of the min-cuts in the original graph, G = (V, E). Let the
cardinality of C be k. We will show that with probability > ﬁ, C will be
output by our algorithm.

By Lemma 22.10, the probability that C is output at the end of our algorithm
is the probability that none of the k edges of C is contracted during the n — 2
iterations of the Randomized Min-Cut algorithm. To figure out this probability,
it helps to first derive the number of edges in G.

Question: What is the minimum degree of vertices in G?

Answer: The minimum degree is k, because if some vertex had degree < k then
those edges would form a smaller cut-set.

Question: What is a lower bound on the number of edges in G?

Answer: G has at least ”7" edges, from which edges are selected uniformly at
random for contraction.
nk
5 -k k -2k -2
P {no edge of C is selected in the 1st round} > 2 == = .
% nk n

Question: Why did we need a > sign above?
Answer: Recall that % is a lower bound on the number of edges.

Suppose that after the first round, we did not eliminate an edge of C. We are left
with a graph on n — 1 vertices. The graph still has a min-cut of C.

Question: Why does the graph still have a min-cut of C?

Answer: Any cut-set of the contracted graph is also a cut-set of the original
graph. So if the graph has a min-cut smaller than |C|, then the original graph
must have a cut-set smaller than |C|, which is a contradiction.

Since the contracted graph still has a cut-set of C, the graph must have > @

edges. Given this lower bound on the number of edges, we have:

P {no edge of C is selected in the 2nd round | no edge selected in 1st round}

U -k (-Dk-2k n-3
("—Tl)k - (n-Dk n-1

Generalizing, let E; be the event that no edge of C is selected in the ith round. We
want the probability that all of the first n — 2 events happen. By Theorem 2.10,

P{E\NE;N---NE,»} =P{E(} -P{E; | E\}---P{E,» | N'.'E;}.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

22.3 Randomized Min-Cut 393

We have already shown that:

2 3
PEN>2"2 and P{E|E)}>1"2
n n-—1

Via the same argument, we can see that:
-4
P{E; |E\NE)} > —,
n—2

and so on. Hence we have:

P {No edge of C is ever contracted}

=P{ENE;yNn---NE, »}

=P{E} -P{E; | E\} -P{E3 | E\ N Ep}---P{E,» | N} E;}
>n—2 n-3 n—-4 n-5 3 21

n n-1 n-2 n-3 5

n=2 n=3 n—4 n=5 3

n n-1 n=2 n=3 3 4 3
2

G -

Observe that our algorithm has a high probability, 1 — —2—, of returning a

. . n(n-1)°
cut-set that is not a min-cut.
Question: What can we do to reduce the probability that our algorithm is wrong?

Answer: We should run our algorithm many times and return the smallest cut-set
produced by all those runs.

Claim 22.12 If we run Randomized Min-Cut ©(n* Inn) times, and report the
smallest cardinality cut-set returned, then with probability > 1— # our reported
cut-set is a min-cut.

Proof: The probability that our output is not a min-cut is upper-bounded by

) n?lnn 2 n(n-1)Inn
(l_n(n—l)) (1_n(n—l))

) n(n-1) Inn
[
< [_z]lnn

IA

Q

>

3, =

where we’ve used the fact that 1 —x < e, for 0 < x < 1, by (1.14). [|

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

394 22 Monte Carlo Randomized Algorithms

Thus the total runtime of Randomized Min-Cut involves ® (x> In n) contractions,
which is still a very good runtime. Randomized Min-Cut also excels in its
simplicity. There is of course some (tiny) possibility of error. However, here this
error is not fatal in that the algorithm always gives a cut-set.

22.4 Related Readings

The Randomized Min-Cut algorithm is due to David Karger [42] and is famous
for its simplicity. Since then many algorithms have been proposed with improved
runtimes; see, for example, the Karger—Stein algorithm [43], which improves the
runtime to O (n?(log n)?) time.

22.5 Exercises

22.1 From Las Vegas to Monte Carlo and back

In this problem, you will show how to take a Las Vegas randomized

algorithm and make it into a Monte Carlo algorithm, and vice-versa.

(a) GivenalLas Vegas algorithm, Ayy, that solves a problem P in expected
time ¢, describe a Monte Carlo algorithm for problem P that runs in
time at most 50t and outputs the correct answer with probability at
least 98%.

(b) Can you do the reverse? Suppose you have a Monte Carlo algorithm,
Apmc, that runs in time at most tyc and gives the correct answer with
probability p. Suppose that there’s a verification routine, V, that tells
us with perfect accuracy whether Ayyc is correct in time ty. Can you
use this to design a Las Vegas algorithm, Ary? If so, what is the
expected runtime of Ary?

22.2 Freivalds error
In the proof of Theorem 22.3, we defined a matrix D # O, and stated
without loss of generality that dj; # 0. Suppose that instead day # 0.
Rewrite the proof of Theorem 22.3 to show that it holds here as well.

22.3 Multiplication of monomials
Let a “monomial in x” be an expression of the form (x—c), where c is some
constant. Prove that the number of multiplications needed to multiply d
monomials in x is O(d?). Note that the problem is not saying that d>
multiplications suffice. You might need 1042 multiplications. You’ll need
to figure out the appropriate multiplier for 42. [Hint: Use induction.]

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

22.5 Exercises 395

22.4 Randomized polynomial checking with knowledge

Let F(x) = (x —c1)(x —c2)(x —¢3) - - - (x — ¢q) be the true product of d

monomials. Let G (x) be a degree d polynomial which is claimed to equal

F(x). Recall the Simple Randomized Checker from Algorithm 22.4. Now

suppose you know a priori that the coefficients in G (x) for x4, x4, x4=2,
.., x4/2*1 are all correct (say, someone else has checked those for you).

Assume that d is even. Provide an upper bound on the probability of error

of the Simple Randomized Checker.

22.5 Randomized Max-3SAT
You have a bunch of variables: W, X, Y, Z, ... Each variable is allowed to
be either 0 or 1. The term X denotes the negation of X. A clause is the
OR of three distinct variables. For example: (X or Y or Z). A clause is
satisfied if it evaluates to 1. For example, under the assignment: X = 1,
Y=0,Z=0,(XorY or Z) evaluates to 1, and hence is satisfied.
A 3SAT expression is the AND of a bunch of clauses: For example:

(X orY or Z) AND (W or X or Z) AND (Y or X or Z).

The goal of Max-3SAT is to find an assignment of the variables that

maximizes the number of satisfied clauses. For example, if we set W =

X =Y = Z =1 in the above 3SAT expression, then all three clauses will

be satisfied. Max-3SAT is known to be NP-Hard.

(a) Propose a very simple Monte Carlo randomized algorithm for Max-
3SAT. Let N denote the number of clauses satisfied by your algorithm.
Show that E [N] = %m, where m is the number of clauses.

(b) Prove that P {N < 37'"} < % . [Hint: The Markov, Chebyshev, and
Chernoff bounds won’t work here. Look for a different inequality
from Chapter 18 that goes in the right direction.]

(c) Let 6 be an arbitrary small constant, 0 < 6 <« 1. How can we revise
our algorithm to ensure that P {N < 37’"} < 67 [Hint: Your runtime
will be a function of 6.]

22.6 From Monte Carlo to Las Vegas
[Proposed by David Wajc] Let # be a decision problem. Imagine that
one has two Monte Carlo algorithms for deciding #: Algorithm A is
true-biased in that it always returns “true” when the answer is “true,” but
returns “true’” with probability p > 0 when the answer is false (that is, it
has false positives). Algorithm B is false-biased in that it always returns
“false” when the answer is “false,” but returns “false” with probability p
when the answer is true (that is, it has false negatives). Suppose that the
two Monte Carlo algorithms terminate in time n¢ on inputs of size n (here
¢ is a constant). Your goal is to create a Las Vegas algorithm, £, whose
expected runtime is polynomial. What is your Las Vegas algorithm, £,
and what is its expected runtime?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

396

22 Monte Carlo Randomized Algorithms

22.7

Approximating 7
In this exercise, you will devise and analyze a Monte Carlo randomized
algorithm to approximate 7.

v
o

N
%

Figure 22.3 For Exercise 22.7. A circle of radius r embedded within a square.

22.8

22.9

(a) Suppose that you throw n darts uniformly at random within the square
of Figure 22.3. Let X denote the number of darts which land within
the circle. How is X distributed?

(b) Define a random variable Z (related to X) where Z is your “estimator
of n.” Prove that E [Z] = n.

(c) We want to say that, with probability 1 — €, Z is within ¢ of 7. How
high should 7 be to ensure this? Assume 0 < § < 1 and 0 < € < 1.

Number of min-cuts

For any graph G, with n vertices and m edges, let S1, S,,..., Sk denote

the min-cuts of G. We want to prove an upper bound on the value of k.

(a) Let A; denote the event that S; is output by the Randomized Min-Cut
algorithm. We proved a lower bound on P {A;}. What was that?

(b) Now consider the event: [A; U Ay U --- U Ax]. By definition
P{AjUA, U ---UA;} < 1. Use what you learned in part (a) to
prove an upper bound on k.

Randomized Max-Cut

You are given a graph G = (V, E) with n vertices and m edges. You want
to divide the vertices into two disjoint sets, X and X, where XUX =V, so
as to maximize the number of edges between X and X. Rather than trying
all ways of splitting V into two sets, you use this algorithm:

Algorithm 22.13 (Randomized Max-Cut algorithm)
Input: G = (V,E). . _
Output: Disjoint sets, X and X, where X U X =V.

For each vertex x € V, flip a fair coin:
If heads, put x into set X.
If tails, put x into set X.

(a) What is the probability that a given edge ¢ = (x,y) € E is in the
cut-set? What is the expected size of the cut-set produced?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

22.5 Exercises 397

(b) Let

Y, = 1 if edge e is in the cut-set
¢ | 0 otherwise '

Which of the following are true (may be more than one)?
(1) The Y,’s are independent.
(ii) The Y,’s pair-wise independent.
(iii) The Y,’s are three-wise independent.
(iv) None of the above.
For anything you claimed to be true, provide a proof. For anything
you claimed to be false, provide a counter-example.
(c) Use Chebyshev’s inequality to show that with high probability,

(2 1-0 (%)) the size of the cut-set exceeds m /4.
(d) Why couldn’t we use Chernoff bounds in part (c)?

22.10 Amplification of confidence (boosting)

22.11

22.12

We are given a Monte Carlo algorithm, M, which always runs in some
fixed time ¢. Given an input, M returns the correct answer for that input
with probability % (assume that there is a unique correct answer for each
input). With probability % M makes up a value and returns that. Note
that the made-up value might be different each time. You do not know
whether the output of M is correct or not.

(a) Given € > 0, explain how to create a new randomized algorithm, N,

which outputs the correct answer with probability at least 1 — €.

(b) What is the explicit runtime of N (in terms of ¢)?

BogoSort
I'have an array A of length n containing distinct integers a1, as, . . .,a, ina
random order. I decide to sort these using a stupid randomized algorithm:

Algorithm 22.14 (BogoSort(a;, az, ..., a,))

1. Checkifay,as,...,a, are sorted. If so, return the sorted array.
2. Randomly permute a1, ay, . . ., ay,. Then return to step 1.

Determine the expected number of comparisons needed for BogoSort:

(a) Let C be the number of comparisons needed for line 1 (the check
step). What is E [C]? For large n, can you approximate this within 1?

(b) What is the expected number of iterations needed in BogoSort?

(c) What is the expected total number of comparisons needed for Bo-
goSort? (Note: Step 2 doesn’t need comparisons.)

Monte Carlo control groups
In running an experiment, it is often useful to have two “equal” sets of
people, where we run the experiment on one set, and the other set is used

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

398 22 Monte Carlo Randomized Algorithms

as a control group. However, dividing people into two “equal” sets is
non-trivial. Consider the example shown in the table below: We have m
men who are rated on a 0/1 scale in terms of n features. We would like
to divide the m men into two groups so that each group is approximately
equal with respect to each feature.

Looks Brains Personality

Mike 1 1 0
Alan 0 0 1
Richard 1 0 1
Bill 1 1 0

(a) Intuitively, which grouping is better in terms of creating balance be-
tween the groups across each feature:
(i) Group 1: Alan with Richard ~ Group 2: Mike with Bill
(i1) Group 1: Mike with Alan Group 2: Richard with Bill

(b) Mathematically, we express the above table by an m X n matrix A,

where

1 10

0 0 1

A= 1 0 1

1 1 0
Consider an m-dimensional row vector b = (b1,bs,...,by), where
b; € {1,-1}. Let

bh-A=C¢.

Here, the 1’s in b indicate the men in group 1 and the —1’s in b indicate
the men in group 2. Observe that ¢ is an n-dimensional row vector,
where ¢; indicates the total score for group 1 on feature i minus the total
score for group 2 on feature i. Using the above notation, we rephrase
our problem as: How can we find a » which minimizes max; |c;|?
Suppose we choose b randomly: we set b; = 1 with probability % and
set b; = —1 with probability % Prove

2
P{maxlcjl > V4m1nn} < -
J n

[Hint 1: Start by deriving P {|cj| > V4mIn n}.]

[Hint 2: You will want to use the result in Exercise 18.15.]

[Hint 3: Don’t worry about the fact that ¢; might have fewer than m
summands. Your bound for the case of m summands will still work.]

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

22.5 Exercises 399

22.13

22.14

22.15

Fixed-length path

Given a graph G with n vertices, you want to decide whether there exists

a path in G containing ¢ distinct vertices. The naive brute force algorithm

has runtime O (n?). Consider instead this Monte Carlo algorithm:

1. Label each vertex independently and uniformly at random from
{1,...,¢}.

2. Using breadth-first search (or something similar), check if there is a
path (vy,...,ve) suchthatforall 1 <i < ¢, v; haslabel i. If yes, return
true. Otherwise return false.

You may assume that this Monte Carlo algorithm runs in time O (n?).

(a) Show that this algorithm has a one-sided error of at most 1 — g—lf.

(b) How can we lower the error probability to %? What is the runtime

of your new algorithm? [Hint: Recall from (1.12) that 1 + x < €%,
Vx > 0.]

Generating a random permutation

We are given an array A containing distinctintegers ay, as, . . . a,. We want
to perfectly shuffle the array. That is, every one of the n! permutations
should be equally likely to be the result of our shuffle. Below are two
potential algorithms. For each algorithm either prove that it results in a
perfect shuffie, or provide a counter-example. [Hints: Induction is useful
in proofs. Counter-examples shouldn’t need more than three integers.]

Algorithm 22.15 (Shuffle attempt 1)

for i=n,n—-1,...,2do
J = random integer with 1 < j <i
exchange A[j] and A[i]

return A

Algorithm 22.16 (Shuffle attempt 2)

for i=n,n—-1,...,2do
J = random integer with 1 < j < n
exchange A[j] and A[i]

return A

Approximate median

In Chapter 21 we saw how to find the exact median of an unsorted list,
L ={ay,a,...,a,} of n elements in expected O(n) comparisons using
the Median-Select algorithm. Now we present an algorithm to find an

“e-approximation of the median” in only expected O (106#) comparisons.

Specifically, if L’ = {s1, s2,...,5,} denotes a sorted version of L, where
S(n+1)/2 1 the exact median (assume 7 is odd), then our algorithm returns

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

400 22 Monte Carlo Randomized Algorithms

an element of L’ in the sublist S = {siow, - . ., Shign }, Where low = (% —€)n
and high = (% + €)n. See Figure 22.4. For simplicity, assume that low,
high, and (n + 1)/2 are all integers.

[2

2 2en

Sl S2 S3 eoe eee Sped eee eoe S_2 Sl—l S

X X

Slow Shigh

Figure 22.4 For Exercise 22.15. The approximate median is anything in the box.

Our approximate-median algorithm works as follows: We select a random
element from L ¢ times (the same element might get picked more than
once). Let M denote the set of the chosen ¢ elements. Now perform
Median-Select on M and return its median, m, as our approximate-median
(assume ¢ is odd). You will need to find a ¢ that is sufficiently high for
our approximate-median, m, to be within the sublist S = {Siow, - . ., Shigh}
with high probability.

22.16 Knockout tournament

In a knockout tournament, the goal is to determine the “best” of n sports
teams. Teams are paired against each other according to the tree structure
shown in Figure 22.5. Each round starts with some number of “remaining
teams.” These remaining teams are paired up according to the tree struc-
ture. Each pair of teams (A,B) plays k games, where the team with the
majority of the wins (say, A), moves up to the next round, and the other
team (B) is dropped. Assume ties are impossible and k is odd. Assume
also that n = 2™ for some positive integer m. In Figure 22.5, we see that
the number of teams starts at n = 8, but after one round we’re down to four
remaining teams, and after the second round, we’re down to two teams,
and so on.

»

A

Winner moves up each round

Figure 22.5 [llustration of knockout tournament with n = 8 teams and m = 3 rounds.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

22.5 Exercises 401

22.17

Assume that there is a “best” team, b, such that if b is paired against any
team j, b will beat j with probability > %+e, where 0 < € < % Prove that
when k > 46121, team b wins the tournament with high probability (1 — %).
[Hint 1: It will be convenient to use the result from Exercise 18.21(b).]
[Hint 2: The following fact will simplify the algebra: Let N be an integer
random variable and k be odd. Then P {N < %} =P {N < %}]

[Hint 3: You will want to show that the probability that team b loses a
single round is upper-bounded by e~2".]

There is a rich literature on applying Chernoff bounds to tournament
design (e.g., [1, 2, 78]). This problem is based on [2].

Adding n-bit numbers — average-case analysis
Mor is implementing a bitwise adder to add two random n-bit binary
numbers ajas . ..a, and b1 b, . . . b, for her operating system. She notices
that the conventional adder needs to traverse all n bits of the two numbers
from the lowest bit to the highest bit, propagating carry-ins when necessary
(when we add a 1 to a 1, we need to carry-in a 1 to the next highest bit).
To add faster, Mor constructs the following Near Adder whose work
can be parallelized: instead of adding all n-bits sequentially, the Near
Adder divides them into 7 segments of size d-bits each. The Near Adder
then uses the conventional adder to add consecutive overlapping 2d-bit
“blocks” in parallel, as shown in Figure 22.6, where the carry-in to each
block is assumed to be 0. Thus the runtime of the Near Adder is O(2d)
rather than O (n).
Observe that every (blue) 2d-bit block (other than the rightmost one) has
a shaded (pink) part for the least-significant d bits, and an unshaded part
for the most-significant d bits. The Near Adder returns only the most
significant d bits (the unshaded part) of each block as the sum of the two
n-bit numbers. Notice that the 2d-bit blocks purposely overlap. Only the
most significant d bits of each 2d-bit computation are returned, because
they are likely to be uncorrupted. The pink parts are likely wrong because
of the assumed O carry-in.
(a) Does the Near Adder always output the correct final sum? If not, when
does it fail?
(b) Define a propagate pair to be a pair of bits (a;, b;) such that either
a; =1and b; =0, 0r a; = 0and b; = 1. Prove Claim 22.17:

Claim 22.17 The Near Adder is incorrect if and only if the true
carry-in to a 2d-bit block is 1 and all the lower d pairs of bits in that
block are propagate pairs.

(c) Say we want the Near Adder to output the correct sum with probability
1—€. How large should we pick d to be? Does picking a large d increase
or decrease our accuracy? Here are some steps to follow:

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

402

22 Monte Carlo Randomized Algorithms

(i) First prove that the probability that the carry-in bit to a 2d-bit
block is 1 is strictly less than %
(i) Now use step (i) to derive an upper bound on the probability that
an arbitrary 2d-bit block causes an error. Use Claim 22.17.
(iii)) Apply a union bound over all blocks to determine the probability
of error of the Near Adder as a function of d and n.
(iv) What value of d suffices to ensure that the Near Adder provides
the correct answer with probability > 1 — €?
(v) Does picking a larger d decrease or increase the error?

(d) (Optional!) Peter wants an Adder which is 100% accurate. Mor pro-
poses that Peter can build upon her Near Adder to achieve 100%
accuracy with low expected runtime. Propose an algorithm that could
achieve this. You do not have to provide details or analysis, just a
general idea.

This problem is based on a collaboration between Peter and Mor in [31].

n 7d 6d Sd 4d 3d 2d d 0

I|||I|||I|||I|||I|||I|||I|||I|||@

: INPUT
||||||||||||||||||||||||||||||||J
i

— 24— 0 ' The 2d-widh
: © blocks are created
——2d — 0 in parallel.
77774 -
: —2d —t 0
—2d —i 0
20—
: —2d — 0

(OO IIIIIL] outeut

Figure 22.6 Picture of Near Adder from [31].

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

23 Primality Testing

One of the most important problems in the field of computer science is a math
problem as well: How can we determine if an integer n is prime?

This chapter is devoted to primality testing. Primality testing has applications in
many fields, including cryptography (see, for example, the RSA [61] algorithm),
hash function design, pseudo-random number generation, and many others.

23.1 Naive Algorithms

Question: Think for a minute on how you might try to determine if n is prime
or composite.

Answer: Back in grade school, you might have approached this question by
considering every integer k € S = {2,3,4,...,n — 1} and asking whether k
divides n, written k | n.

Definition 23.1 If we find some k € S = {2,3,4,...,n — 1} such that k | n,
then we say that k is a witness to the fact that n is composite. To be specific,
we will say that k is a divisor witness fo n being composite.

You might improve upon this method by only considering divisors up to [vn],
that is, § = {2,3,4,...,|vn]}. You can improve further by eliminating all
multiples of 2 in S, other than 2, and then removing all multiples of 3 in S,
other than 3, and so on. This process of removing all multiples of every prime
in sequence is known as the Sieve of Eratosthenes.

Question: Suppose we’ve winnowed down the set S of potential divisors of n to
just those primes which are smaller than n. It seems our test set should now be
small. How big is our test set?

Answer: It turns out that the number of primes less than n is ® (ﬁ) This result

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

404 23 Primality Testing

is known as the Prime Number Theorem (see [24, 68]). Thus, even the winnowed
down set S still has size which grows quickly with 7.

Our goal in this chapter is to find a constant-time Monte Carlo style test to
determine, with high probability, whether n is prime.

Importantly, this high probability of correctness should apply equally well to
every n.

Question: For example, what’s wrong with an algorithm that checks only if # is
divisible by 2, 3, and 5, returning “probably prime” if none of those are divisors?

Answer: There is a significant fraction of composite numbers whose compos-
iteness would never be detected by the above test. We want every n to have a
high probability of correctly being evaluated, where the probability of error is
exponentially decreasing in the number of random trials.

In Sections 23.2 and 23.3 we introduce the Fermat Primality Test. This test has
the advantage of being very simple. Unfortunately, there is a tiny fraction of
composite numbers, known as Carmichael numbers, for which the Fermat test
will almost always return “prime.” Thus the Fermat Primality Test is not a true
test for primality.

In Section 23.4 we introduce a more complex test, called the Miller—Rabin test.
The Miller—Rabin test works for all numbers, including Carmichael numbers.
The Miller—Rabin test builds upon the Fermat test, so it’s worth going through
the sections in order. The Miller—Rabin test is the most practical and most widely
used primality testing algorithm. It appears in software libraries for encryption
schemes, such as RSA.

23.2 Fermat’s Little Theorem

We normally think of a prime number as a whole number, greater than 1, whose
only positive divisors are 1 and itself. The Fermat test is based on Fermat’s Little
Theorem, which provides an alternative characterization of prime numbers.

Theorem 23.2 (Fermat’s Little Theorem) The number n is prime if and only
if

a" '=1modn

for every integera € S = {1,2,3,...,n—1}.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

23.2 Fermat’s Little Theorem 405

We will prove Theorem 23.2 later in this section. For now, observe that Theo-
rem 23.2 says two things:

e If nn is prime, then a”~! = 1 mod n, for every a € S.
e If n is composite, then a™ ! # 1 mod n, for at least one a € S.

Definition 23.3 Suppose n is composite. Consider
T={a:a<n and a" ' # 1 mod n}.

The elements of T are called Fermat witnesses to the fact that n is composite.

Question: We have talked about two different types of witnesses to n being
composite: divisor witnesses and Fermat witnesses. For a given composite n, are
there more Fermat witnesses, or divisor witnesses?

Answer: It turns out that there are typically way more Fermat witnesses than
divisor witnesses, which makes it much easier to find a Fermat witness. In fact,
every divisor witness is also a Fermat witness.

For example, consider n = 15. The divisor witnesses of n’s compositeness are 3
and 5. However, the set of Fermat witnesses is {2, 3,5,6,7,8,9, 10, 12, 13}.

Theorem 23.4 For every composite number n, every divisor witness of n is
also a Fermat witness.

Proof: Let d > 1 be a divisor of n. We’ll show that d is a Fermat witness for #.

Suppose by contradiction that
d""' =1 mod n.
This means that there’s some integer ¢ such that
A"V =gn+1. (23.1)

But (23.1) can’t be true because d divides the first term and the second term
(since d divides n), but not the third term. Hence we have a contradiction. [|

Before we can prove Fermat’s Little Theorem (Theorem 23.2), we need one quick
fun fact about prime numbers.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

406 23 Primality Testing

Lemma 23.5 (Fun fact about primes) If' p > 2 is prime, then Y integers a, b,

(a+b)P =a” +b” mod p

(a — b)? = a® — bP mod p.

Proof: If we write out the binomial expansion of (a + b)?, it will be the case that
every term in the expansion, other than the first or last term, is divisible by p. To
see this, consider an arbitrary term in the expansion, say one with coefficient

(p)=p(p—1)(p—2)---(p—k+1)‘

k k(k-1)(k-2)---1

Observe that there is a factor p in the numerator, which is prime and thus not
canceled by any terms in the denominator. Hence this term equals 0 mod p. The
case of (a — b)? is similar, but requires that p is odd. [|

We are now ready to prove Fermat’s Little Theorem (Theorem 23.2).

Proof: [Theorem 23.2] Suppose n is composite. We need to show that there’s at
least one integer a < n such that a"~! # 1 mod n. This is easy: We know that n
has some divisor, d. But then, by Theorem 23.4, we know that d is also a Fermat
witness. Thus d"~' # 1 mod .

Suppose now that z is prime. If n = 2, Fermat’s Little Theorem holds trivially.
So assume n > 2. Let’s define set W to be the following set of integers:

W ={x : x" = x mod n}.
Question: Is the integer 1 contained in W?
Answer: Yes.
Question: Once we know that 1 is in W, what does the Fun Fact tell us about 2?
Answer: 2 is also in W.

In fact, the Fun Fact tells us that the set W is closed under addition and subtraction.
To see this, observe that if a,b € W, then (a + b)P = aP + bP = a + b mod p,
so a + b € W as well. The argument is similar for a — b.

So W contains all integers!

Now consider any integer x € S = {1,2,3,...n — 1}, where n is a prime. We
will use the fact that any such x € S is also in W to show that x has the property
that x"~! = 1 mod n.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

23.2 Fermat’s Little Theorem 407

First observe that since x € W, we know that n divides x™ — x, so
n ‘ x (x"—‘ - 1) . (232)

But since x < n, we also know that x is not divisible by n. So, since »n is prime,
and it doesn’t divide the first term in (23.2), it must divide the second term,
x"~! — 1. Thus,

X '-1=0modn

and we’re done. [
Let’s define one more type of witness for compositeness:

Definition 23.6 Given a composite number n, let a € {1,2,...n — 1} have
the property that gcd(a,n) > 1. Then we say that a is a ged witness of n’s
compositeness.

Theorem 23.4 can be made more general, as shown in Theorem 23.7.

Theorem 23.7 For every composite number n, every divisor witness of n’s
compositeness is also a ged witness, and every gcd witness is also a Fermat
witness.

Proof: See Exercise 23.1. []

Fermat witnesses

gcd witnesses

divisor witnesses

Figure 23.1 Illustration of Theorem 23.7.

Again, what’s important is that while the number of divisor witnesses and gcd
witnesses is very small, the number of Fermat witnesses is typically very high,
making them easy to find. As another typical example, consider n = 415,693.
There are only two divisor witnesses of n, namely 593 and 701. While there
are more gcd witnesses, the proportion of gcd witnesses is still less than 1%
(most numbers are relatively prime to n). By contrast, the proportion of Fermat
witnesses is over 99%.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

408 23 Primality Testing

23.3 Fermat Primality Test

The Fermat Primality Test is motivated by the fact that there are typically so
many Fermat witnesses. Given an integer n, the test considers a random number
less than n and checks whether that number is a Fermat witness.

Algorithm 23.8 (Fermat Primality Test)
We are given an integer n which we wish to classify as prime or composite.
Repeat the following for k rounds:

1. Choosea € S ={1,2,3,...,n— 1} uniformly at random.
2. If a" ! £ 1 mod n, return COMPOSITE and stop.

If we haven'’t stopped after k rounds, then return PROBABLY PRIME.

The Fermat Primality Test has one-sided error. If the test returns “composite”
then n is provably composite (since a Fermat witness of compositeness was
found). On the other hand, if the test returns “probably prime” then n might be
prime, or we might simply have gotten unlucky and not found a Fermat witness.

So mistakes happen when n is composite but a Fermat witness is not found. What
is the probability of a mistake?

We know, by Theorem 23.4, that every composite number, n, has at least two
Fermat witness (the divisors of n are Fermat witnesses). To understand the
probability of a mistake, we need to understand:

Given that n is composite, how many Fermat witnesses does n have?

Question: Suppose that we could say that for every composite number 7, at least
half the a € S = {1,2,3,...,n — 1} are Fermat witnesses. What would be the
accuracy of the Fermat Primality Test?

Answer: In the case where n is composite, the Fermat Primality Test would
return “composite’” with probability at least 1 — 27X, Note that there’s never any
error in the case where 7 is prime.

Unfortunately, while the proportion of Fermat witnesses is typically very high,
it is not always true that at least half the a € S are Fermat witnesses. Here is
what we do know: Consider the set # of Fermat witnesses of some composite
number #, as shown in Figure 23.2. By Theorem 23.7, all gcd witnesses of n are
automatically included in 7; we refer to these gcd witnesses as trivial Fermat
witnesses. Unfortunately, there are typically very few gcd witnesses, and thus
very few trivial Fermat witnesses. Suppose now that there is a non-trivial Fermat

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

23.3 Fermat Primality Test 409

witness for n, that is, some a € {1,2,...,n — 1} where a is relatively prime to
n and is a Fermat witness. Theorem 23.9 tells us that as soon as there is a single
non-trivial Fermat witness, then we know that the total proportion of Fermat
witness is at least half.

Fermat Witnesses

all a < n such that

a™'z 1 modn

Trivial Fermat Witnesses Non-Trivial Fermat Witnesses
all a < n such that all a < n such that
ged (a,n)>1 1. ged(a,n)=1,and
(ged witnesses) 2. a™'# 1 modn

Figure 23.2 Two types of Fermat witnesses for composite number n.

Theorem 23.9 For composite number n, suppose that there is at least one a in
S={1,2,3,...,n—1} suchthat a is a Fermat witness for n and gcd(a,n) = 1.
Then at least half the elements of S are Fermat witnesses for n.

Proof: We defer the proof to Section 23.6. [

So it seems that if there’s even just one non-trivial Fermat witness for n, then
it follows that there are plenty of Fermat witnesses for n. Unfortunately, there
exists a very small set of composite numbers for which there are zero non-trivial
Fermat witnesses. These numbers are called Carmichael numbers.

Definition 23.10 A Carmichael number is a composite integer n such that,
YaeS={1,2,3,...,n—1}:

if ged(a,n) =1, then a"'=1modn.

Because this holds for all a, the Carmichael numbers have zero non-trivial
Fermat witnesses.

The Carmichael numbers are named after Robert Carmichael [12, 13]. The first
few numbers are:

561 1105 1729

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

410 23 Primality Testing

Carmichael numbers are still a topic of current study by number theorists. The
Carmichael numbers have several interesting properties (see [30]). They are
odd, each having at least three distinct prime factors. They are square free (not
divisible by the square of any prime), and for every Carmichael number n with
prime factor p, it holds that p — 1 divides n — 1. In 1994 it was proved that,
although Carmichael numbers are very rare, there are an infinite number of them

[3].

From the perspective of primality testing, a Carmichael number, 7, is likely to
fail the Fermat Primality Test, because n has only trivial Fermat witnesses, and
the number of trivial witnesses is small compared to #, so it is unlikely that we’ll
find a Fermat witness to n’s compositeness, even when the test is run for many
rounds.

Summary: The Fermat Primality Test is a classic Monte Carlo algorithm, requir-
ing k rounds, however, there are a few integers n for which it doesn’t work well.
Given an integer n, if we run the Fermat Primality Test on n for k£ rounds and no
Fermat witness is found, then either n is one of the rare Carmichael numbers, or
n is prime with probability > 1 — 2%,

23.4 Miller—Rabin Primality Test

Unlike the Fermat Primality Test, the Miller—Rabin Primality Test works on every
number 7. Like the Fermat Primality Test, the Miller—Rabin test always returns
“prime” if n is prime. For every composite n (including Carmichael numbers), it
returns “composite” with probability > % in each round. Thus with probability
> 1 — 4% a composite number will be witnessed in & rounds.

23.4.1 A New Witness of Compositeness

The Miller—Rabin test is based on using a new witness of compositeness. We’ve
seen that finding a divisor witness proves n is composite. We’ve also seen that
finding a Fermat witness proves that n is composite. A third way to prove that n
is composite is to find a non-trivial square root of 1 mod n. The idea is based on
the following theorem.

Theorem 23.11 If p is prime, then all integer roots of
x> =1mod p

satisfyx = 1 mod p or x = —1 mod p.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

23.4 Miller-Rabin Primality Test 411

Proof:
xzzlmodp=p’ (xz—l)
:p’(x— D(x+1).

Hence, since p is prime, either p | (x = 1) or p | (x + 1) or both.! But this says
that either x — 1 = O mod p or x + 1 = 0 mod p, or both.

This says that the only possible roots are x = 1 mod p and x = —1 mod p. To
complete the proof, we note that both these potential roots in fact satisfy the
equation x> = 1 mod p.]

Corollary 23.12 Given integers n and x, such that x2 =1 mod n.
If x # =1 mod n, then n must be composite.

Suppose that
x> =1 mod n. (23.3)

We say that x = =1 mod n are trivial roots of (23.3). By contrast, if x # +1 mod n
satisfies (23.3), then we say that x is a non-trivial root of (23.3).

Definition 23.13 Given a composite number n, we say that x is a root witness
of n’s compositeness if x> = 1 mod n and x # +1 mod n. A root witness is by
definition a non-trivial root.

23.4.2 Logic Behind the Miller—Rabin Test

The Miller—Rabin Primality Test is unintuitive when you hear it, so, rather
than just stating it, we will develop it ourselves from scratch. The test attempts
to determine that n is composite by looking for one of two different types of
witnesses, either a Fermat witness or a root witness. It is thus much more
powerful than the Fermat Primality Test.

We assume n > 2, and choose a randomly from S = {1,2,...,n — 1}. We also
assume that n is odd, because if n is even we immediately output “composite.”
! This follows from the Unique Prime Factorization Theorem (UPFT). UPFT states that every
integer n > 1 can be written as a unique product of primes:
n:pfl .pzcz ..-pzk,
where the p;’s are distinct primes and the ¢;’s are non-negative integers. From UPFT, it follows

that if p|ab, then either p|a or p|b, since either a or b (or both) must contain p in its unique
factorization.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

412 23 Primality Testing

Given that » is odd, we will consider n — 1, which must be even.

Since n — 1 is even, it contains at least one factor of 2. Let’s peel off all the factors
of 2 in n — 1. We are left with

n—-1=2".d, (23.4)
where r > 0 is the number of factors of 2 in n — 1, and d is by definition odd.
The Fermat test tells us that if

a"' £ 1 mod n, (23.5)

then a is a Fermat witness of compositeness. By contrast if a”~! = 1 mod n,
then we haven’t learned anything, that is, n might still be prime.

We can rewrite (23.5) in terms of » and d, via (23.4), to say that if
a4 £ 1 mod n,

then we have a Fermat witness of compositeness, so we return “composite’” and
we’re done.

Now suppose instead that:

a® % =1 mod n. (23.6)

Question: We haven’t found a Fermat witness, but is there a test that we can do
to look for a root witness?

Hint: Think about (23.6) as a square equation. What is its root?
Answer: Let’s rewrite (23.6) as follows:

(az”'”’)2 = 1 mod n. (23.7)
Now we can ask whether (23.7) has a non-trivial root.

It
a® " 2 {1,-1) mod n,

then we have found a root witness of compositeness, so we return “composite”
and we’re again done.

Now suppose instead that:

¥ = {1,-1} mod n.

Question: Do we get another chance to try to find a root witness?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

23.4 Miller-Rabin Primality Test 413

Answer: If

a4 = 1 modn, (23.8)

there’s nothing we can do. In this case we’re done testing. Given that we haven’t
found any witness, we should return “probably prime,” and we’re done. However,
if

a4 =1 modn, (23.9)

and » — 1 > 0, then we do in fact get another chance to find a root witness of
compositeness.

Question: Back in (23.8) we said that if > ¢ = —1 mod #, then we’re done.
How do we not know that some lower exponent (some future square root) won’t
give us another opportunity to find a non-trivial square root of 1?

Answer: To witness a non-trivial square root of 1, we need to again experience
an equation of the form x> = 1 mod 7, where x is some lower power of a obtained
by taking future square roots. However, this can’t happen. Observe that once we
see that some power of a is equivalent to 1 mod n, then all future squares will
also be congruent to 1 mod n. So given that a? "4 = —1 mod n, itis impossible
that some future square root will be congruent to 1 mod .

23.4.3 Miller—-Rabin Primality Test

Algorithm 23.14 shows a version of the Miller—Rabin algorithm based on our
arguments in Section 23.4.2. For simplicity, this is shown for only a single round,
that is, a single choice of a € {1,2,...,n — 1}. In practice, Algorithm 23.14
would be repeated with & different randomly chosen a values. Only if no witness
is found in all k iterations do we return a final “probably prime.” Otherwise we
return “composite.”

Algorithm 23.14 (Miller-Rabin Primality Test: Single Round — Take 1)
Given: Integer n > 2, where n is odd:

1. Expressn—1="2"-d for some odd d.
2. Choose a € {1,2,...,n— 1} uniformly at random.
3. If a? 4 mod n # 1, return COMPOSITE-Fermat, and stop.
4. Fory=r—-1toy=0:
e Ifa” 4 modn # {1,—1}, return COMPOSITE-Root, and stop.
e Ifa” 4 mod n = -1, return PROBABLY PRIME, and stop.
o (Ifwe get here then we know that a%" "4 mod n = 1, so we have another chance to
find a non-trivial root, assuming y > 0.)

5. Return PROBABLY PRIME.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

414 23 Primality Testing

While Algorithm 23.14 is entirely correct, it is more computationally expensive
than needed, because it requires first computing @ “?. This is achieved by starting
with a? and then repeatedly squaring that quantity r times. It is possible to restate
Algorithm 23.14 where we compute only those powers of a that are needed.
Algorithm 23.15 shows the more efficient version.

Algorithm 23.15 (Miller-Rabin Primality Test: Single Round — Take 2)
Given: Integer n > 2, where n is odd:

1. Expressn—1=2"-d for some odd d.
2. Choose a € {1,2,...,n— 1} uniformly at random.
3. Lety=0.
o If a® 4 mod n = 1, return PROBABLY PRIME, and stop.
(Notice all future squares will be 1, so there will be no root witnesses. When we
reach y = r, the Fermat test will also output probably prime.)
e Ifa¥ 4 mod n = -1, return PROBABLY PRIME, and stop.
(Notice that all future squares will be 1 so there will be no root witnesses. When
we reach y = r, the Fermat test will also output probably prime.)
o (If we get here then we still have hope of returning COMPOSITE-Root, if
azl'd modn = 1.)
4. Fory=1toy=r—1:
e Ifa” 4 mod n = 1, return COMPOSITE-Root, and stop.
e Ifa” 4 mod n = -1, return PROBABLY PRIME, and stop.
(Notice that all future squares will be 1, so there will be no root witnesses and the
Fermat test will return 1 when'y =r.)
o (If we get here then we have the potential for witnessing a root witness if the next
round yields a 1.)
5. Return COMPOSITE.

Observe that Algorithm 23.15 will often stop before having to compute all the
powers of a.

Question: Why in Algorithm 23.15 did we only goup to y = r — 1. Don’t we
need to check y = r as well? Also, why does the algorithm end by returning
“composite”?

Answer: Suppose that we haven’t stopped after y = »— 1. Then it must be the case
that 2 "4 % {1, -1} mod n. Now, if a? 1 = 1 mod n we have a root witness,
so we should return COMPOSITE-Root. If, on the other hand, a? ¢ # 1 mod n,
then we have a Fermat witness and should return COMPOSITE-Fermat. Either
way, n is provably composite, so there is no need to check the result of the rth
power.

What’s shown in Algorithm 23.15 is a single round of the Miller—Rabin Primality

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

23.6 Appendix: Proof of Theorem 23.9 415

Test. In reality this test is run for k rounds (k instances of a), where the test stops
if any round finds a witness of compositeness. If no witness of compositeness is
found after k rounds, then the test outputs “probably prime.”

As in the case of the Fermat Primality Test, if # is prime, then the Miller—Rabin
Primality Test will always output “prime.” It can be proven that if n is composite,
the Miller—Rabin Primality Test will output composite on a randomly chosen a
with probability > %, for every composite n. This result is due to Michael Rabin
and is non-trivial to prove; see [57]. We have chosen to omit the proof because
the focus of this book is not on number theory.

Question: If the Miller—Rabin Primality Test is run for £ rounds on a composite
n, what is the probability that a witness of compositeness is found?

k
Answer: > 1 — (;1‘) .

Summary: Recall that the Fermat Primality Test failed on certain composite
numbers, the Carmichael numbers, for which very few Fermat witnesses exist. By
including a test for a root witnesses, in addition to Fermat witnesses, the Miller—
Rabin test improves the probability of witnessing any composite »n (including
the case where n is Carmichael) all the way to %. This probability can then be
improved with independent runs. Like the Fermat test, the Miller—Rabin test
always outputs the correct result when 7 is prime. Thus there are no numbers on
which the Miller—Rabin Primality Test fails to yield a correct result with high
probability.

23.5 Readings

For the reader who is interested in reading more on primality testing, with com-
plete proofs, we recommend [30]. In particular, [30, proposition 5.8] provides a
proof for why the Miller—Rabin Primality Test is able to detect the compositeness
of Carmichael numbers. The proof makes use of some of the unique properties
of Carmichael numbers, mentioned earlier.

23.6 Appendix: Proof of Theorem 23.9

Restatement of Theorem 23.9: Let n be composite. Let S = {1,2,...,n— 1}.
Suppose that there exists at least one a € S such that a is a Fermat witness for n

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

416 23 Primality Testing

and gcd(a, n) = 1. Then at least half the elements of S are Fermat witnesses for
n.

Proof: [Theorem 23.9] We partition the set S into four disjoint subsets: A, B, C,
and D, where

A={aeSsuchthata”'=1modn and gecd(a,n) =1}
B={beSsuchthat "' # Imodn and gcd(b,n) =1}
C={ceSsuchthat¢"' #1modn and gcd(c,n) > 1}

D={deSsuchthatd" ' =1modn and gcd(d,n) > 1}.

S
*

Question: We claim set D is empty. Why is this?

Answer: To see why, suppose integer k = gcd(d,n) > 1. Now suppose also that
d"!''= 1 mod n.

Then, there is some integer g such that
d"'-1=¢q-n

But this is impossible because k divides the term "' and also divides the gn
term, but k does not divide —1.

Question: Which set is the trivial Fermat witnesses?
Answer: C.
Question: What does set B represent?

Answer: Set B is the non-trivial Fermat witnesses. We're trying to show there
are lots of these.

Question: Do we know that sets A, B, and C are all non-empty?

Answer: Yes. Set A must at least contain the number 1. The theorem statement
tells us that there is at least one element in B. Set C is non-empty because 7 is
composite.

Restating the theorem statement in terms of these sets, we are trying to show that

1
Given3b € B, then |BUC|2§|S|.

Let’s assume, by contradiction, that |B U C| < %|S|. Then |A| > %|S|.

We will refer to the elements of A as {aj,as,...,ar}, where k > %|S|.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

23.7 Exercises 417

Now let’s take our b € B and multiply it by all the elements in A, creating the
set Ab, which we define as follows:

Ab={a1bmodn, abmodn, ..., aibmodn}.
We will now show two properties of the set Ab:

1. Ab C B.

To see this, note that every element j € Ab obeys the three properties needed to be in
B. Specifically, if we assume without loss of generality that j = a;b mod n, then we
have that:
i. /771 # 1 modn.
(This follows because: j*~! = (a,-b)”_1
ii. ged(j,n) =1
(This follows because ged(a;,n) = 1 and ged(b,n) = 1, so ged(a;b,n) = 1.)
iii. jeS§S.
(By definition j is an integer from O to n — 1. Furthermore, since gcd(j,n) = 1,
we known that j # 0 mod n.)

a;’_l " =1.p""1 £ 1 mod n.)

2. The elements of Ab are distinct.
To see this, suppose by contradiction that
aibmodn=ajb modn, where a;#aj.

Then (a; —aj) b = 0 mod n. So n|(a; — a;) b. But ged(n, b) = 1, so it must be the
case that

nl(ai —aj). (23.10)

Buta; <nanda; < nimplies that —n < a; —a; < n, s0 (23.10) is false, yielding the
contradiction.

Properties 1 and 2 together imply that there are at least k elements in B where
k > %|S|. But this is a contradiction. [

23.7 Exercises

23.1 Witnesses of compositeness
Let n be a composite number. Prove that every divisor witness for 7 is also
a gcd witness. Prove that every gcd witness is also a Fermat witness.

23.2 Fermat test error
Suppose that n < 561, and we are trying to determine whether # is prime
or composite. Upper bound the probability of error in the k-round Fermat
Primality Test.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

418 23 Primality Testing

23.3 Number theory reduction
Prove the following lemma that applies to many statements in this chapter:
Let a, b, ¢, n be positive integers.
Ifab=acmodn and gcd(a,n)=1, thenb =c modn.

23.4 Miller-Rabin
In the Miller—Rabin algorithm, we are given a number n > 2, where 7 is
odd. We express n — 1 in the form:

n—-1=2"-d.

We then pick arandom a € {1,2,3,...,n— 1}.

Suppose that we know that a* ¢ # 1 mod n and a® ¢ % —1 mod n.
What does this tell us about n? Choose one answer and explain.

(a) nis prime.

(b) n is composite.

(c) nis composite type Fermat witness.

(d) n is composite type Root witness.

(e) There is insufficient information to deduce any of these.

23.5 Generating a random prime number
How can we generate a random prime of value smaller than n with proba-
bility larger than 1 — €? Consider the following algorithm:

Algorithm 23.16 (Random prime)

1. Choose an integer r from {1,2,...,n — 1} uniformly at random.
2. Run the Miller—Rabin test on r for k runs.
o [f the test outputs “probably prime” for all k runs, output r as the
generated prime and stop.
o [fthe test outputs “composite” (of any type) in any of the k runs, go
back to Step 1.

In Algorithm 23.16 we say that we are starting a new “round” every time

we call Step 1. Assume throughout that r is large.

(a) Find an approximate value for £ such that the algorithm succeeds with
probability larger than 1 — €.

(b) Explain why Algorithm 23.16 is not a Las Vegas algorithm.

(c) Explain why Algorithm 23.16 is not a typical Monte Carlo algorithm.

(d) Analyze the expected number of rounds of Algorithm 23.16.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Part VI

Discrete-Time Markov
Chains

This final part of the book is devoted to the topic of Markov chains. Markov
chains are an extremely powerful tool used to model problems in computer sci-
ence, statistics, physics, biology, and business — you name it! They are used
extensively in Al/machine learning, computer science theory, and in all areas of
computer system modeling (analysis of networking protocols, memory manage-
ment protocols, server performance, capacity provisioning, disk protocols, etc.).
Markov chains are also very common in operations research, including supply
chain, call center, and inventory management.

Our goal in discussing Markov chains is two-fold. On the one hand, as always,
we are interested in applications and particularly applications to computing. On
the other hand, Markov chains are a core area of probability theory and thus we
have chosen to cover the theory of Markov chains in some depth here.

In Chapter 24, we introduce finite-state Markov chains, limiting distributions,
and stationary distributions.

In Chapter 25, we delve into the theory of finite-state Markov chains, discussing
whether the limiting distribution exists and whether the stationary distribution
is unique. We also introduce time reversibility, time averages, and mean passage
times. A more elementary class might choose to skip this chapter, but it is my
experience that undergraduates are fully capable of understanding this material
if they proceed slowly and focus on examples to help illustrate the concepts.

In Chapter 26, we turn to infinite-state Markov chains. These are great for
modeling the number of packets queued at a router, or the number of jobs at a data
center. Although we skip the hardest proofs here, there is still a lot of intuition to
be gained just in understanding definitions like transient and positive-recurrent.

All these chapters are full of examples of the application of Markov chains for
modeling and solving problems. However, it is the final chapter, Chapter 27 on
queueing theory, which really ties it all together. Through queueing theory, we
see a real-world application of all the abstract concepts introduced in the Markov
chain chapters.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

24 Discrete-Time Markov
Chains: Finite-State

This chapter begins our study of Markov chains, specifically discrete-time
Markov chains. In this chapter and the next, we limit our discussion to Markov
chains with a finite number of states. Our focus in this chapter will be on under-
standing how to obtain the limiting distribution for a Markov chain.

Markov chains come up in almost every field. As we study Markov chains, be
on the lookout for Markov chains in your own work and the world around you.
They are everywhere!

24.1 Our First Discrete-Time Markov Chain

Love is complicated. Figure 24.1 depicts the day-by-day relationship status of
CMU students.

Figure 24.1 The states of love, according to Facebook.

There are three possible states for the relationship status. We assume that the
relationship status can change only at the end of each day, according to the
probabilities shown. For example, if we’re “single” today, with probability 0.95
we will still be single tomorrow. When entering the “relationship” state, we stay
there on average for five days (note the Geometric distribution), after which we

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

24.2 Formal Definition of a DTMC 421

move into the “it’s complicated” state. From the “it’s complicated” state, we’re
equally likely to return to the single state or the relationship state.

For such a Markov chain, we will ask questions like: What fraction of time does
one spend in the “relationship” state, as opposed to the “single” state?

24.2 Formal Definition of a DTMC

Definition 24.1 A discrete-time Markov chain (DTMC) is a stochastic pro-
cess {X,,n=0,1,2,...}, where X,, denotes the state at (discrete) time step n
and such that Vn > 0, Vi, j, and Vi, . . .,i,—1 € Z,

P{Xp1 = j | Xp =i, Xp-1 = in-1,..., Xo = io}
=P {Xn+1 =j | X, = i} (Markovian property)
= P;; (stationary property),

where P;; is independent of the time step and of past history.

Let’s try to understand this definition line-by-line.
Question: First, what is a “stochastic process”?

Answer: A stochastic process is simply a sequence of random variables. In the
case of Markov chain, this is a sequence of the states at each time step.

Question: What is being stated in the equality in marked ‘“Markovian property”
in the definition?

Answer: In a nutshell, past states don’t matter. Only the current state matters.

Definition 24.2 The Markovian property states that the conditional distri-
bution of any future state X1, given past states Xy, X1,...,Xn—1, and the
present state X,,, is independent of past states and depends only on the present
state X,,.

Question: What is being stated in the equality marked “‘stationary property” in
the definition?

Answer: The stationary property indicates that the transition probability, P;;,
is independent of the time step, n.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

422 24 Discrete-Time Markov Chains: Finite-State

Definition 24.3 The transition probability matrix associated with any
DTMC is a matrix, P, whose (i, j)th entry, P;j, represents the probability
of moving to state j on the next transition, given that the current state is i.

Observe that, by definition,), j P;j =1, Vi, because, given that the DTMC is in
state 7, it must next transition to some state j.

Finite state versus infinite state: This chapter and the next will focus on DTMCs
with a finite number of states, M. In Chapter 26, we will generalize to DTMCs
with an infinite (but still countable) number of states.

DTMC:s versus CTMCs: In a DTMC, the state can only change at synchronized
(discrete) time steps. This book focuses on DTMC:s. In a continuous-time Markov
chain (CTMC) the state can change at any moment of time. CTMCs are outside
the scope of this book, but we refer the interested reader to [35].

Ergodicity issues: In working with Markov chains, we will often be trying to
understand the “limiting probability” of being in one state as opposed to another
(limiting probabilities will be defined very soon). In this chapter, we will not dwell
on the question of whether such limiting probabilities exist (called ergodicity
issues). Instead we simply assume that there exists some limiting probability
of being in each state of the chain. We defer all discussion of ergodicity to
Chapter 25.

The three Ms: Solving Markov chains typically requires solving large systems of
simultaneous equations. We therefore recommend taking the time to familiarize
yourself with tools like Matlab [52], Mathematica [80], or Maple [50].

24.3 Examples of Finite-State DTMCs

We start with a few examples of simple Markov chains to illustrate the key
concepts.

24.3.1 Repair Facility Problem

A machine is either working or is in the repair center. If it is working today,
then there is a 95% chance that it will be working tomorrow. If it is in the repair
center today, then there is a 40% chance that it will be working tomorrow. We
are interested in questions like, “What fraction of time does my machine spend
in the repair shop?”

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

24.3 Examples of Finite-State DTMCs 423

Question: Describe the DTMC for the repair facility problem.

Answer: There are two states, “Working” and “Broken,” where “Broken” denotes
that the machine is in repair. The transition probability matrix is

w B
p_ [095 005
= 21040 0.60|

The Markov chain diagram is shown in Figure 24.2.

0.05

0.95 ‘Working‘

04

Broken ’ 0.6

Figure 24.2 Markov chain for the repair facility problem.
Question: Now suppose that after the machine remains broken for four days, the
machine is replaced with a new machine. How does the DTMC diagram change?
Answer: The revised DTMC is shown in Figure 24.3.

0.05 0.6 0.6 0.6

0.95 .Working.

Figure 24.3 Markov chain for the repair facility problem with a four-day limit.

24.3.2 Umbrella Problem

An absent-minded professor has two umbrellas that she uses when commuting
from home to office and back. If it rains and an umbrella is available in her
location, she takes it. If it is not raining, she always forgets to take an umbrella.
Suppose that it rains with probability p each time she commutes, independently
of prior commutes. Our goal is to determine the fraction of commutes during
which the professor gets wet.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

424 24 Discrete-Time Markov Chains: Finite-State

Question: What is the state space?
Hint: Try to use as few states as possible!

Answer: We only need three states. The states track the number of umbrellas
available at the current location, regardless of what this current location is. The
DTMC is shown in Figure 24.4.

Figure 24.4 DTMC for the umbrella problem.

0 I 2
|0 0 1

The transition probability matrixisP = 1| 0 1-p p|.
211-p)4 0

The probability of getting wet is the probability that it rains during a commute
from a location with zero umbrellas.

24.3.3 Program Analysis Problem

A program has three types of instructions: CPU (C), memory (M), and user
interaction (U). In analyzing the program, we note that a C instruction with
probability 0.7 is followed by another C instruction, with probability 0.2 is fol-
lowed by an M instruction and with probability 0.1 is followed by a U instruction.
An M instruction with probability 0.1 is followed by another M instruction, with
probability 0.8 is followed by a C instruction, and with probability 0.1 is followed
by a U instruction. Finally, a U instruction with probability 0.9 is followed by a
C instruction, and with probability 0.1 is followed by an M instruction.

In the exercises for this chapter and the next, we answer questions like, “What is
the fraction of C instructions?” and “How many instructions are there on average
between consecutive M instructions?” For now, we simply note that the program
can be represented as a Markov chain with the transition probability matrix:

c M U
c 107 02 0.1
P=»]08 01 0.1].
vif{09 01 O

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

24.4 Powers of P: n-Step Transition Probabilities 425

24.4 Powers of P: n-Step Transition Probabilities

Definition 24.4 Let P" = P - P-- - P, multiplied n times. Then (P");; denotes
the (i, j)th entry of matrix P". Occasionally, we will use the shorthand:

Question: What does (P");; represent?
Answer: To answer this, we first consider two examples.
Example 24.5 (Back to the umbrellas)

Consider the umbrella problem from before, where the chance of rain on any
given day is p = 0.4. We then have:

0 0 1 06 30 .64 230 385 .385
P=|0 6 4 P=| .18 38 .44 PO =| 230 .385 .385
6 4 0 38 44 .18 230 385 .385

Observe that all the rows become the same! Note also that, for all the above
powers, each row sums to 1.

Example 24.6 (Back to the repair facility)

Now, consider again the simple repair facility problem, with general transition
probability matrix P:

1-a a
P_l b l—b]’ O<a<1l,0<b< 1.

You should be able to prove by induction that

n o_ +b +b
PY=| v @@0-byn arn(a-b)n

a+b a+b

b+a(l-a—b)" a—a(l—a—b)"l

b _a
lim P" = l azb a+b }
a .
n—eo a+b a+b

Question: Again, all rows are the same. Why? What is the meaning of the row?

Hint: Consider a DTMC in state i. Suppose we want to know the probability that
it will be in state j two steps from now. To go from state i to state j in two steps,

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

426 24 Discrete-Time Markov Chains: Finite-State

the DTMC must have passed through some state k after the first step. Below we
condition on this intermediate state k.

For an M-state DTMC, as shown in Figure 24.5,

M-1
), - S reon
Yo k=0

= Probability of being in state j in two steps, given we’re in state i now.

Figure 24.5 (PZ)

ij
Likewise, the n-wise product can be viewed by conditioning on the state k after

n — 1 time steps:

M-1

P = () Py

k=0
Probability of being in state j in n steps, given we are in state i now.

24.5 Limiting Probabilities

‘We now move on to looking at the limit. Consider the (i, j)th entry of the power
matrix P" for large n:

lim (P");; = (lim P") .
n—oo n—oo ij

This quantity represents the limiting probability of being in state j infinitely far
into the future, given that we started in state i.

Question: So what is the limiting probability of having zero umbrellas?
Answer: According to P it is 0.23.

Question: The fact that the rows of lim,_,., P" are all the same is interesting
because it says what?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

24.5 Limiting Probabilities 427

Answer: The fact that (P");; is the same for all values of i says that the starting
state, 7, does not matter.

Definition 24.7 Let
7Tj = nh—l;lgo (Pn)lj .

n; represents the limiting probability that the chain is in state j, independent

of the starting state i. For an M-state DTMC, with states 0, 1, ..., M — 1,
M-1
7= (mg,m1,...,Tp1-1), Where Z =1,
=

represents the limiting distribution of being in each state.

Important note: As defined, xr; is a limit. Yet it is not at all obvious that the
limit 7r; exists! It is also not obvious that 77 represents a distribution (that is,
>.; m; = 1), although this latter part turns out to be easy to see (Exercise 24.2).
For the rest of this chapter, we will assume that the limiting probabilities exist.
In Chapter 25 we look at the existence question in detail.

Question: So what is the limiting probability that the professor gets wet?

Answer: The professor gets wet if both (1) the state is 0, that is, there are zero
umbrellas in the current location (mp); and (2) it is raining (p = 0.4). So the
limiting probability that the professor gets wet is g - p = (0.23)(0.4) = 0.092.

Question: Can you see why the limiting probability of having one umbrella is
equal to the limiting probability of having two umbrellas?

Answer: Let’s go back to Figure 24.4. Suppose now that we’re only trying to
determine the fraction of time that we’re in a location with one umbrella versus
the fraction of time that we’re in a location with two umbrellas. In that case, all
that matters is the number of visits to state 1 versus the number of visits to state
2. But, over a long period of time, the number of visits to state 1 and the number
to state 2 are equal. To see this, if one considers only those two options of 1 and
2, then the chain from Figure 24.4 collapses to that shown in Figure 24.6. But
the chain in Figure 24.6 is symmetric, hence the equal limiting probabilities.

p
G G-
p

Figure 24.6 Compressed umbrella problem.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

428 24 Discrete-Time Markov Chains: Finite-State

24.6 Stationary Equations

Question: Based only on what we have learned so far, how do we determine

Answer: We take the transition probability matrix P and raise it to the nth power

for some large n and look at the jth column, any row.

Question: Multiplying P by itself many times sounds quite onerous. Also, it
seems one might need to perform a very large number of multiplications if the

Markov chain is large. Is there a more efficient way?

Answer: Yes, by solving stationary equations, given in Definition 24.8.

Definition 24.8 A probability distribution 1 = (ng, w1, ..., Tpr-1) is said to

be stationary for the Markov chain with transition matrix P if

Figure 24.7 provides an illustration of 7 - P = 7.

[”0 & ”2] Py Py Por | = [”0 T ”2]
Py Py Py
P P P

Figure 24.7 Visualization of it - P = 7 for the case of M = 3 states.

Doing the row-by-column multiplication in Figure 24.7 results in the following

stationary equations:

mo - Poo+m - Pro+m - Py =mg

mo-Por+m - Pri+m- Py =m
mo-Pop+m - Prp+m-Pyp=m

7T0+7T1+7T2=1.

These stationary equations can be written more compactly as follows:

M-1

M-1
Zﬂ'ipij:ﬂj, V] and Zﬂ'iz
i=0

i=0

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

(24.1)

24.7 The Stationary Distribution Equals the Limiting Distribution 429

Question: What does the left-hand side of the first equation in (24.1) represent?

Answer: The left-hand side represents the probability of being in state j one
transition from now, given that the current probability distribution on the states
is 77. So (24.1) says that if we start out distributed according to 7, then one step
later our probability of being in each state will still follow distribution 7. Thus,
from then on we will always have the same probability distribution on the states.
Hence, we call the distribution “stationary,” which connotes the fact that we stay
there forever.

24.7 The Stationary Distribution Equals the Limiting
Distribution

The following theorem relates the limiting distribution to the stationary distribu-
tion for a finite-state DTMC. Specifically, the theorem says that for a finite-state
DTMC, the stationary distribution obtained by solving (24.1) is unique and rep-
resents the limiting probabilities of being in each state, assuming these limiting
probabilities exist.

Theorem 24.9 (Stationary distribution = limiting distribution) In a finite-
state DTMC with M states, let
i = nh_r}go (P");;

be the limiting probability of being in state j (independent of the starting state
i) and let

M-1
7= (ng,m1,...,Tp0-1), Where Z =1,
.=0

be the limiting distribution. Assuming that 7t exists, then 7 is also a stationary
distribution and no other stationary distribution exists.

Question: What’s the intuition behind Theorem 24.9?

Answer: Intuitively, given that the limiting distribution, 7, exists, it makes sense
that this limiting distribution should be stationary, because we’re not leaving
the limit once we get there. It’s not as immediately obvious that this limiting
distribution should be the only stationary distribution.

Question: What’s the impact of Theorem 24.9?
Answer: Assuming that the limiting distribution exists, Theorem 24.9 tells us

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

430 24 Discrete-Time Markov Chains: Finite-State

that to get the limiting distribution we don’t need to raise the transition matrix to
a high power, but rather we can just solve the stationary equations.

Proof: [Theorem 24.9] We prove two things about the limiting distribution 7:

1. We will prove that 7@ = (g, 71,72, ...,Tar—1) is a stationary distribution.
Hence, at least one stationary distribution exists.

2. We will prove that any stationary distribution must be equal to the limiting
distribution.

Important: Throughout the proof, & = (7o, 711,72, ..., p—1) is used to refer to
the limiting distribution.

Part 1: Proof that 7 = (m, 71, 72,...,m)p_1) is a stationary distribution:

Intuitively, this should make a lot of sense. If we have some limiting distribution,
then once you get there, you should stay there forever.

7j = lim (P””) = lim Z (P") e - Py

n—oo n—oo

M-1

D, lim (P"); Py
k=0

M-1
= Z TPy
k=0

Hence 7 satisfies the stationary equations, so it’s also a stationary distribution.

Part 2: Proof that any stationary distribution, 7/, must equal the limiting
distribution, 7:

Let 7’ be any stationary probability distribution. As usual, 7 represents the
limiting probability distribution. We will prove that 7’ = 7, and specifically that

, .
7rj:7rj,\7’].

Suppose we start at time O with stationary distribution 7’ = (n(, 7}, ..., 7},).
After one step, we will still be in distribution 7”:

a-P=x
But this implies that after n steps, we will still be in distribution 7”:

7 oPt=7. (24.2)

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

24.7 The Stationary Distribution Equals the Limiting Distribution 431

Looking at the jth entry of 7’ in (24.2), we have:

M-1

PIEACINETA

k=0

Taking the limit as n goes to infinity of both sides, we have:
M-1

lim Zn' P, . = lim , = 7.
n—co £ k(P nooo 4 i

We are now ready to prove that n;. =n;,Vj:

M-1 M-1
’ : ’ n — ’ . n
= Jim, 0 7 (P =), Jim, (P

M-1
— 4 .
=), T
k=0
M,
— . [.
=7 Z T =T]

k=0

—_

Note that we were allowed to pull the limit into the summation sign in both parts
because we had finite sums (M is finite).

One more thing: In the literature you often see the phrase “consider a stationary
Markov chain,” or “consider the following Markov chain in steady state ...”

Definition 24.10 A Markov chain for which the limiting probabilities exist is
said to be stationary or in steady state if the initial state is chosen according
to the stationary probabilities.

Summary: Finding the limiting probabilities in a finite-state DTMC:

By Theorem 24.9, provided the limiting distribution 7 = (7o, 71, 72, ..., Tpr—1)
exists, we can obtain it by solving the stationary equations:

M-1
7-P=7 and Znizl,
i=0

where 7 = (71'0,71'1,. . .,7TM_1).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

432 24 Discrete-Time Markov Chains: Finite-State

24.8 Examples of Solving Stationary Equations

Example 24.11 (Repair facility problem with cost)

Consider again the repair facility problem represented by the finite-state DTMC
shown again in Figure 24.8.

0.05

0.95 .Working.

04

Broken ‘ 0.6

Figure 24.8 Markov chain for the repair facility problem.

We are interested in the following type of question.

Question: The help desk is trying to figure out how much to charge me for
maintaining my machine. They figure that it costs them $300 every day that my
machine is in repair. What will be my annual repair bill?

To answer this question, we first derive the limiting distribution 7 = (7w, 7p)
for this chain. We solve the stationary equations to get 77 as follows:

7=n-P, where P = (0.950.05)

04 0.6
aw +nag = 1.
This translates to the following equations:

aw =nw -095+m5-04
7Z'B=7TW'0.05+7TB'O.6

w+nag = 1.

Question: What do you notice about the first two equations above?

Answer: They are identical! In general, if 7 = 7 - P results in M equations, only
M — 1 of these will be linearly independent (this is because the rows of P all sum
to 1). Fortunately, the last equation above (the normalization condition) is there
1

to help us out. Solving, we get Ty = % and g = j.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

24.9 Exercises 433

By Theorem 24.9, the stationary distribution also represents the limiting prob-
ability distribution. Thus my machine is broken one out of every nine days on
average. The expected daily cost is % -300 = $33.33 (with an annual cost of more
than $12,000).

Example 24.12 (Umbrella problem)

Consider again the umbrella problem depicted in Figure 24.9.

1 P

Figure 24.9 DTMC for the umbrella problem.
Rather than raising the transition matrix P to a high power, this time we use the
stationary equations to obtain the limiting probabilities for general p:

mo=m-(1-p)

m=m-(1-p)+m-p

my=mng-l+m-p
71'()+7T1+7T2=1.

Their solution is

)= —— m=-— Ty =—.
Question: Suppose the professor lives in Pittsburgh, where the daily probability
of rain is p = 0.6. What fraction of days does the professor get soaked?

Answer: The professor gets soaked if she has zero umbrellas and it is raining:
mo-p= % -0.6 = 0.1. Not too bad. No wonder I never learn!

24.9 Exercises

24.1 Solving for limiting distribution
For the program analysis problem from Section 24.3.3, solve the stationary
equations to determine the limiting distribution, (7¢, 7as, 7y).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

434 24 Discrete-Time Markov Chains: Finite-State

24.2 Powers of transition matrix
Given any finite-state transition matrix, P, prove that for any positive
integer n, P" maintains the property that each row sums to 1.

24.3 Random walk on clique
You are given a clique on n > 1 nodes (a clique is a graph where there is
an edge between every pair of nodes). At every time step, you move to a
uniformly random node other than the node you’re in. You start at node
v. Let T denote the time (number of hops) until you first return to v.
(a) Whatis E [T]?
(b) What is Var(T)?

24.4 Card shuffling
You have n distinct cards, arranged in an ordered list: 1,2, 3, ..., n. Every
minute, you pick a card at random and move it to the front of the ordered
list. We can model this process as a DTMC, where the state is the ordered
list. Derive a stationary distribution for the DTMC. [Hint: Make a guess
and then prove it.]

24.5 Doubly stochastic matrix
A doubly stochastic matrix is one in which the entries in each row sum
up to 1, and the entries in each column sum up to 1. Suppose you have
a finite-state Markov chain whose limiting probabilities exist and whose
transition matrix is doubly stochastic. What can you prove about the
stationary distribution of this Markov chain? [Hint: Start by writing some
examples of doubly stochastic transition matrices.]

24.6 Randomized chess

In chess, arook can move either horizontally within its row (left or right) or
vertically within its column (up or down) any number of squares. Imagine
arook that starts at the lower left corner of an 8 x 8 chess board. At each
move, a bored child decides to move the rook to a random legal location
(assume that the “move” cannot involve staying still). Let 7' denote the
time until the rook first lands in the upper right corner of the board.
Compute E [T] and Var(T).

24.7 Tennis match
[Proposed by William Liu] Abinaya and Misha are playing tennis. They’re
currently tied at deuce, meaning that the next person to lead by two points
wins the game. Suppose that Misha wins each point independently with
probability % (where Abinaya wins with probability %).
(a) What is the probability that Misha wins the game?
(b) Whatis the expected number of remaining points played until someone
wins?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

24.9 Exercises 435

24.8 Markovopoly

[Proposed by Tai Yasuda] Suppose you are playing a board game where
the board has 28 locations arranged as shown in Figure 24.10. You start
at the “Go” square, and, at each turn, you roll a six-sided die and move
forward in the clockwise direction whatever number you roll. However,
the dark squares in the corners are jail states, and once you land there, you
must sit out for the next three turns (for the next three turns, you stay in
jail instead of rolling a die and moving). On the fourth turn, you can roll
the die again and move. Your goal is to figure out the fraction of the turns
that you are in jail. (You are “in jail” if you are in a jail square at the end
of your turn.) Write stationary equations to determine this fraction.

Figure 24.10 Markovopoly for Exercise 24.8.

24.9 Axis & Allies

In the game Axis & Allies, the outcome of a two-sided naval battle is
decided by repeated rolling of dice. Until all ships on at least one side
are destroyed, each side rolls one six-sided die for each of its existing
ships. The die rolls determine casualties inflicted on the opponent; these
casualties are removed from play and cannot fire (roll) in subsequent
rounds.

There are two types of ships: battleships and destroyers. For a battleship,
a die roll of four or lower is scored as a “hit” on the opponent. For a
destroyer, a die roll of three or lower is scored as a “hit” on the opponent.
It takes two hits (not necessarily in the same round) to destroy a battleship
and only one hit to destroy a destroyer. (Note: Battleships are twice as
expensive as destroyers.)

For example: Suppose side A has two destroyers and one battleship.
Suppose side B has one destroyer and three battleships. Side A rolls two
dice for its destroyers (rolling, say, 3 and 6) and one die for its battleship
(rolling, say, 5). This means that side A generates one hit against side B.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

436 24 Discrete-Time Markov Chains: Finite-State

At the same time, side B rolls one die for its destroyer (rolling, say 5) and
three dice for its battleships (rolling, say, 1, 4, and 6). This means that
side B generates two hits against side A.

The defender gets to decide to which ship to allocate the hit; we assume
that the defender chooses intelligently. In the above example, side A will
choose to be left with one destroyer and one weakened battleship. Side
B will choose to be left with one destroyer, one weakened battleship and
two undamaged battleships.

If two destroyers (side A) engage a battleship (side B) in a battle, what is
the probability that the destroyers win? What is the probability that the
battleship wins? [Hint: Raise a matrix to a large power.] [Note: A tie is
also possible.]

24.10 The SIR epidemic model

The SIR model is commonly used to predict the spread of epidemic

diseases. We have a population of n people. The state of the system is

(ns,ny,ng), where

e 75 is the number of people who are susceptible (healthy/uninfected);

e 7y is the number of people who are infected;

e ng is the number of people who are recovered. In the SIR model,
“recovered” includes both those recovered and deceased. The point is
that “recovered” people are no longer susceptible to the disease.

Clearly ng + ny + ng = n.

Each individual of the population independently follows this transmission

model:

o [f the individual is susceptible, then:

— with probability p - 2L, the individual will be infected tomorrow;
— with probability 1 — p - 7L, the individual will stay susceptible to-
MOITow.
e If the individual is infected, then:
— with probability % the individual will be recovered,;
— with probability %, the individual will stay infected.

o If the individual is recovered, then with probability 1 the individual
stays recovered.

The goal of the SIR model is to predict what fraction of people are in

the “susceptible” state when the epidemic ends (that is, n; = 0). These

are the people who never got sick and thus have the potential to get sick
if the disease resurfaces. You will determine this fraction as a function
of the parameter p. You will do this by first determining the appropriate
probability transition matrix and then raising this matrix to a very high
power. For both steps you’ll want to use a computer program like Matlab.

For the sake of this problem, please assume n = 3 (but feel free to try out

higher values of n as well).

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

24.9 Exercises 437

(a) How many states are there in this system?

(b) How many absorbing states are there in this system, and what are
they? Absorbing states are states that you never leave once you enter
them. [Hint: What is n; for an absorbing state?]

(c) Derive the transition probability from state (2,1,0) to (1,1,1). Be
careful to think about all the ways that this transition can happen.
Plug in the values of n; and n and use p = 0.5 so that your final
answer is a constant.

(d) Use a computer program to generate the entire transition matrix P.
Assume that p = 0.5. Print out the row corresponding to state (2, 1, 0).
Now raise P to some very high power and watch what happens to row
(2,1,0). You’ll want a high enough power that most of your entries
are smaller than 0.01. What is the meaning of the row corresponding
to state (2,1,0)?

(e) The parameter p can be thought of as a social distancing parameter,
where lower p represents better social distancing practices. Consider
values of p between 0 and 1. For each value of p, determine the
expected fraction of the population who are left in the susceptible
state when the outbreak is over (you will do this by conditioning on
the probability of ending up in each absorbing state). Assume that you
start in state (2, 1,0). Your final output will be a graph with p on the
x-axis, but you can alternatively create a table with values of p spaced
out by 0.05.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

25 Ergodicity for Finite-State
Discrete-Time Markov
Chains

At this point in our discussion of discrete-time Markov chains (DTMCs) with M
states, we have defined the notion of a limiting probability of being in state j:

7j = lim (P"),;,

where the limiting distribution is

M-1
7= (mo, 1,72, ..., Tp—1), Where Z m=1.
i=0

We have also defined the notion of a stationary distribution, 7, as a distribution
that satisfies

M-1
7-P=7 and Z m=1,
i=0
or, equivalently,
M-1 M-1
TT;= Z?T,'Pij and Zﬂ,':l.
i=0 i=0

We also proved Theorem 24.9 for finite-state chains that says that, assuming the
limiting distribution exists, the limiting distribution is a stationary distribution
and no other stationary distribution exists. This theorem is important because it
allows us to simply solve the stationary equations to get the limiting distribution.

In Chapter 24, we did not spend time on questions like the following:

1. Under what conditions does the limiting distribution exist?

2. How does 7, the limiting probability of being in state j, compare with p;,
the long-run time-average fraction of time spent in state j?

3. What can we say about m ;, the mean time between visits to state j, and how
is this related to 7;?

This entire chapter is devoted to these and other theoretical questions, all related
to the notion of ergodicity, to be defined soon. This chapter will only address

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

25.1 Some Examples on Whether the Limiting Distribution Exists 439

ergodicity questions for finite-state chains. Infinite-state chains are deferred to
Chapter 26.

25.1 Some Examples on Whether the Limiting Distribution
Exists

We dive right into the question of existence of the limiting distribution, with a
few examples.

Question: What is an example of a valid two-state transition matrix for which
7 does not exist?

Answer: Figure 25.1 shows an example of a chain with transition matrix

p[0 1]
o0

Figure 25.1 Limiting distribution does not exist.

The problem is that the chain P is periodic; specifically, a given state is only
visited every other time step (we will formally define the term “periodic” soon).
Observe that 77 = lim, e (P") ;; does not exist, although lim,, e (P*") ; does
exist.

)jj

Question: Does this chain have a stationary distribution?

Answer: Yes, the stationary distribution does exist. To see this, let’s set up the
stationary equations 7 - P = 7:

o =71
Ty = o
mo+m = 1.

Solving these, we get 7 = (%, %).

Question: If you walk along the Markov chain for a long time, what fraction of
time, p;, do you spend in state j?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

440 25 Ergodicity for Finite-State Discrete-Time Markov Chains

Answer: pg = p; = % These match the stationary probabilities. This is no
coincidence. We will see that for any Markov chain, the p;’s satisfy the stationary
equations and thus form a stationary distribution.

Question: Is there another two-state example for which the limiting distribution
does not exist?

Answer: Consider the transition matrix Q:

Q=[(1)‘1’].

The corresponding chain is shown in Figure 25.2.
1 1
Figure 25.2 Limiting distribution does not exist.

The chain Q has the problem that the limiting state depends on where you
start. Recall that the limiting probability of being in state j is supposed to be
independent of the start state, 7, that is, for transition matrix Q we want

n—oo

to be independent of i.

However, in our example, if you start in state 1, then you stay there forever, and
if you start in state 0, then you stay there forever. Similarly, p;, the long-run
time-average fraction of time spent in state 1, isn’t well defined, since it depends
on the start state.

Question: What is the stationary distribution of chain Q?
Answer: Chain Q has an infinite number of stationary distributions!

Examples like these illustrate why we need to differentiate between the stationary
probability of being in state j, the limiting probability of being in state j, and
the long-run fraction of time spent in state j.

Question: As a final example, does chain R have limiting probabilities?

00 1/2 1/2
10 0 0
R=101 0 o
01 0 0

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

25.2 Aperiodicity 441

Answer: No, chain R is also periodic — it is just a little harder to see.

25.2 Aperiodicity

Definition 25.1 The period of state j is the greatest common divisor (gcd) of
the set of integers n, such that (P");; > 0. A state is aperiodic if its period is
1. A chain is said to be aperiodic if all of its states are aperiodic.

To understand the reasoning behind the definition of aperiodic, we recall the
Chicken McNugget theorem. Once upon a time, a mathematician walked into
McDonald’s, hoping to buy food for all his n friends. He wanted to feed them
each one chicken nugget (now you know why mathematicians are so skinny).
Unfortunately the chicken nugget boxes only came in sizes of 4 nuggets/box or
9 nuggets/box. The mathematician (who was not just skinny but also thrifty)
started to wonder if he could express n as a linear combination of 4 and 9, so
that no nuggets would go to waste. As often happens, all this thinking led to a
theorem, which is called the Chicken McNugget Theorem.

Theorem 25.2 (Chicken McNugget Theorem) There exists a positive integer
no, such that, for all integers n, where n > ng, we can express n as a non-negative
linear combination of 4 and 9. Specifically, we can write:

n=a-4+b-9,

where a and b are non-negative integer coefficients.

The Euclidean Number Property extends the Chicken McNugget Theorem to
other-sized nugget boxes.

Theorem 25.3 (Euclidean Number Property) Suppose we’re given k posi-

tive integers, i1,iz, .. .,ix, where gcd(iy,is,...,ix) = 1. Then there exists a
positive integer ng, such that for all integers n, where n > ng, we can express
n as a non-negative linear combination of iy, 1o, . . .,ix. Specifically, we can
write:

n=ap-ij+ay-ip+---+ag-ix
where the a;’s are non-negative integer coefficients.
Question: Returning to Markov chains, suppose there’s a j to j path of length 4

and also one of length 3, as shown in Figure 25.3. Since gcd(3,4) = 1, state j
by definition has period 1. But why intuitively does state j have period 1?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

442 25 Ergodicity for Finite-State Discrete-Time Markov Chains

Figure 25.3 There’s a j-to-j path of length 3 and 4.

Answer: By the Euclidean Number Property we know that for every integer n,
greater than some 7(, we can express 7 as a linear combination of 3 and 4, with
non-negative integer coeflicients. Thus, there exists a j-to-j path of length ny, as
well as a j-to-j path of length ng + 1, as well as a j-to-j path of length ng + 2,
and so on. Since there’s a j-to-j path of length k for every sufficiently large &,
we say that the period of j is 1.

Question: Why is it necessary that j be aperiodic for the limiting probability 7 ;
to exist?

Answer: If j has period d > 1, then we can’t say that there’s a j-to-j path of
length k& for every sufficiently large k (in fact, it turns out we will only end up
visiting j once every d steps). But this means that we can’t talk about a limiting
probability of being in state j independent of the time step n.

25.3 Irreducibility

We’ve seen that aperiodicity is necessary for the limiting probabilities to exist.
Even when a DTMC is aperiodic, there’s another problem that could come up: it
is possible that the limiting probabilities could depend on the start state, whereas
we want

n; = lim (P")l-j

n—oo

to be the same for all start states i.

If we also want the limiting probabilities to be independent of the start state, we
need one more condition, known as irreducibility, which says that from any state
one can get to any other state.

Definition 25.4 State j is accessible from state i if (P");; > 0 for some n > 0.
States i and j communicate if i is accessible from j and vice-versa.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

25.4 Aperiodicity plus Irreducibility Implies Limiting Distribution 443

Definition 25.5 A Markov chain is irreducible if all its states communicate
with each other.

Question: Why is irreducibility important for the limiting probabilities to exist?

Answer: The chain might consist of two disconnected components, as in Fig-
ure 25.4(a). Here the limiting probability of being in state j depends on the
starting state, which is not allowed. Note, however, that irreducibility is not al-
ways necessary for the existence of the limiting probability. Consider for example
Figure 25.4(b), which is also not irreducible, yet the limiting probabilities are all
well defined.

0.5 0.5 1.0
0.5
6 0,0
0.8
0.5

(a) No limiting distribution (b) Limiting distribution exists

Figure 25.4 Both (a) and (b) show chains which are not irreducible. In (a) the limiting
distribution does not exist, because it depends on the start state. In (b) the limiting
distribution is © = (0, 1).

Question: Do you think that aperiodicity and irreducibility are enough to guar-
antee the existence of the limiting distribution?

Answer: As we see in Theorem 25.6, for a finite-state DTMC, aperiodicity and
irreducibility are all that are needed to ensure that the limiting probabilities
exist, are positive, sum to 1, and are independent of the starting state. This is
convenient, as it is often easy to argue that a DTMC is aperiodic and irreducible.

25.4 Aperiodicity plus Irreducibility Implies Limiting
Distribution

Theorem 25.6 (Aperiodicity + irreducibility implies limiting distribution)
Given an aperiodic, irreducible, finite-state DTMC with transition matrix P,
as n — oo, P" — L, where L is a limiting matrix all of whose rows are the
same vector, ©t. The vector 7t has all positive components, summing to 1.

Question: What does L;; represent?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

444 25 Ergodicity for Finite-State Discrete-Time Markov Chains

Answer: The (i, j)th element of L represents lim,, ., (P"); ;, namely the limiting

probability of being in state j given we started in state i.

ij

Question: What does the ith row of L represent?

Answer: The ith row of L is the vector of limiting probabilities
(mo, 1, ..., mpm—1), where mr; = lim, o (P");;, and M is the number of states
in the DTMC.

ij»

Question: Why is it important that the rows of L are the same?

Answer: The fact that row i and row k are the same says that

lim (P");; = nh_f)glo P

n—oo

which says that the starting state does not affect the limiting probability of being
in state j.

As a concrete example of Theorem 25.6, suppose that

12 1/3 1/6
P=|1/3 1/3 1/3
1/8 3/4 1/8

Then Theorem 25.6 is saying that P"* converges to a matrix L all of whose rows
are the same. That is,

0.34 043 0.23
P"— | 034 043 023 [=L.
0.34 0.43 0.23

Proof: [Theorem 25.6] The remainder of this section is devoted to the proof of
Theorem 25.6. This is a long proof and will require introducing a couple claims
along the way. We are trying to show that P" converges to a matrix where all
rows are the same. Equivalently, we are trying to show that, for any j, the jth
column of P"* converges to a vector whose components are all the same.

Let € represent the column vector of dimension matching P, whose jth compo-
nent is 1 and whose remaining components are all 0. That is,

0

oy
Il
—_

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

25.4 Aperiodicity plus Irreducibility Implies Limiting Distribution 445

We are trying to show that
P".¢
converges to a vector all of whose components are the same. The idea is to view

P'e =P(--- (P(P(P?)))).

Consider the innermost product Pe. Because P is a matrix of probabilities,
where each row sums to 1, the effect of multiplying € by P is to replace each
component of € by a value that is a weighted average of all the components. In
particular, the effect is to bring all the components of € closer together. That is,
the difference between the maximum component and the minimum component
should decrease.

Here is an example of the effect of successive multiplications by P:

[1/2 1/3 1/6] [0 1/3

Pe=|1/3 1/3 1/3|-| 1 |=]|1/3

| 1/8 3/4 1/8 | |0 3/4
[1/2 13 1/6] [1/3 0.40
PPe)=| 1/3 1/3 1/3 |-| 1/3 | =] 047
| 1/8 3/4 1/8 | | 3/4 0.39

Observe that after just two successive multiplications by P, the components are
already quite close!

We now claim that the difference between the maximum and minimum compo-
nents of P"¢ shrinks as we increase 7.

Claim 25.7 Let M,, denote the maximum component of P"'€ and let m,, denote
the minimum component of P"é. Then

My —my, < (1 =2s)(My—1 —mp-1), (25.1)

where s is the smallest element in P.

Proof: [Claim 25.7] To see intuitively why Claim 25.7 is true, consider the vector
y = P""!2. By our definition, the maximum component of ¥ is M,_; and the
minimum is m,_1. Now, if we multiply y by P (obtaining Py = P"¢), we are
replacing each component of ¥ by a weighted average of all the components of
y.

Question: More formally, what is an upper bound on the largest possible com-

ponent, M, inP-5 =P (P""1¢)?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

446 25 Ergodicity for Finite-State Discrete-Time Markov Chains

Answer: The largest possible M, value is obtained when P is multiplied by y
where all but one of the elements of y are M,,_;, with the remaining one being
m,,_1, that is, ¥ has only one small component.

To maximize M,,, we now want to make sure that the small m,_; component
of y is multiplied by the smallest possible value of P, namely s. To do this, we
consider the row, i, of P that contains s. Suppose s occurs in the jth column of P.
Then we make sure that m,,_ is likewise in the jth component of y. This forces
my—1 to be multiplied by s. The remaining total weight in row i of Pis 1 — s,
which gets multiplied by only M,,_; terms in y. Thus an upper bound on M,, is
given by:

My <s-mp1+(1—5s) My_,. (25.2)

Question: What is a lower bound on the smallest possible component, m,, in
P.-5=P-(P"1¢)?

Answer: Similarly, the smallest possible m,, value is obtained if all but one of
the elements of y are m,,_;, with the remaining one being M,,_;. This time we
want to make sure that the M,,_; component of y is weighted by the smallest
possible value of P, namely s. This allows the biggest possible remaining row
weight of 1 — s to be applied to m,,_;. Thus a lower bound on m,,, the smallest
component of P - y, is:

my = (1=s) -my_1+s-M,_. (25.3)

Thus,

IA

(25.2) - (25.3)
s mp 1+ (1 =8) My —(1=5) -mu_1—5 My
(1 =28)(Mp-1 — my-1). n

M, —m,

From Claim 25.7, it seems that the difference between the maximum and min-
imum elements of P"¢ continues to decrease as we continue to multiply by P,
until eventually all elements are the same, so we’re done with the proof. This is
true, except for a small hole ...

Question: Can you see the hole in the argument?

Answer: If P contains a zero element, then s = 0. In this case Claim 25.7 does
not result in convergence, because (1 — 2s) = 1.

Question: How can this be fixed?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

25.4 Aperiodicity plus Irreducibility Implies Limiting Distribution 447

Hint: Even if P contains some zero elements, what do we know about P" for
high enough n, given that P is aperiodic and irreducible?

Answer: When P is aperiodic and irreducible, we will now show that even if P
contains some zero elements, for all n beyond some point, P"* has all positive
elements.

Claim 25.8 Given P is aperiodic and irreducible, there exists some ng, such
that Vn > ng, P" has all positive elements.

Proof: [Claim 25.8] The proof is a consequence of the Euclidean Number Prop-
erty (Theorem 25.3), as follows: Consider an arbitrary (j, j) entry of P.

Question: If P;; > 0, can we conclude that (P");; > 0, VYn?

Answer: Yes. The fact that there’s a path of length 1 from j to j implies that
there’s a path of length n from j to j.

So suppose that P;; = 0. By irreducibility, there exist paths from j to j. By
aperiodicity, the gcd of these j-to-j paths is 1. Suppose, for example, the j-to-j
paths have lengths x, y, and z, where gcd(x, y,z) = 1. Hence, by the Euclidean
Number Property, 3ng(J, j), s.t., ¥n = no(J, j), n can be expressed as a linear
combination of x and y and z with non-negative integer coefficients; hence,
Vn > ng(J, j), there is a path of length n from j to j, and thus the (j, j)th entry
of P" is positive.

Now repeat this argument for all (i, 7) pairs (there are only a finite number).

Next, consider two arbitrary states, i and j, where i # j. By irreducibility, there
is some x s.t. there is a path from i to j of length x. However, since we also
know that Vn > ng(i,i) there is a path of length n from i to i, it follows that
Vn > no(i,i)+x there’s a path of length n from i to j. Define ny (i, j) = no(i, i) +x.
Finally, define

ng = rrl_lajl,x{no(i, N}

Now, for all n > ng, P" has all positive elements.]

To complete the proof of Theorem 25.6, we now define P’ = P, Then,
P = (Pno)n/no — (P/)n/no_
Now repeat the argument in Claim 25.7, except that rather than the decrease by a

factor of (1 —2s) < 1 occurring with each multiplication of P, this decrease only
happens every ny multiplications of P. However, because n/ny — o0 as n — oo,

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

448 25 Ergodicity for Finite-State Discrete-Time Markov Chains

we still have an infinite number of these decreases, meaning that
(P)Y™ S L, asn— oo.

Note that this argument still works even if n/ng is a fraction. In that case we
define n = m - ng + r, where r < ng and use m in place of n/ng in our argument.
Here,

Pn — Pr . (Pno)m ,

where the rightmost term converges to L as m — oo, and the P” term doesn’t
affect this limit.

To finish off the proof of Theorem 25.6, we note that by Exercise 24.2, all powers
of P have the property that the components of each row sum to 1. Furthermore,
because P™ has all positive elements, and because multiplying by P only creates
weighted averages of already positive values, then P - P still has all positive
elements and so forth as we continue to multiply by P. Hence the limiting
matrix L will still have all positive elements and will have the property that the
components of each row sum to 1. [|

Summary: We have proven that for any aperiodic, irreducible, finite-state
Markov chain, the limiting probabilities exist and are all positive.

Definition 25.9 We say that a finite-state DTMC is ergodic if it has both
desirable properties: aperiodicity and irreducibility. For the case of an infinite-
state DTMC, ergodicity requires one more property (see Chapter 26).

25.5 Mean Time Between Visits to a State

Consider the mean time between visits to state j, which we’ll call m ;. It seems
that m ;; should be related to n;, the limiting probability of being in state j.
Theorem 25.12 shows that m j; and 7; are in fact reciprocals.

Definition 25.10 Let m;; denote the expected number of time steps needed to
first get to state j, given we are currently at state i. Likewise, let m j; denote the
expected number of steps between visits to state j.

Theorem 25.11 For an irreducible finite-state DTMC, m;; is finite, for all i, j.
Proof: See Exercise 25.19.]

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

25.5 Mean Time Between Visits to a State 449

Theorem 25.12 For an irreducible, aperiodic finite-state Markov chain with
transition matrix P,

1
7Tj=—>0,
mjj

where m ; is the mean time between visits to state j and rr; = lim,_,. (P"); e

Proof: We derive m;; by conditioning on the first step, as follows:

m,-j:P,-j-1+ZP,-k(1+mkj)
k#j

=1 +ZPikmkj. (25.4)
k#j
Likewise,

mJJ:P“1+ZPJk(1+mk])
k#j
=1+ Pjimy;. (25.5)
k#j

We will now express (25.4) and (25.5) using matrix notation. All the matrices
in this proof are of the same dimension as P. Let M be a matrix whose (7, j)th
entry is m; ;. For purposes of the proof, it will be convenient to express M as a
sum of two matrices,

M=D+N\,

where D is a matrix whose entries are all zero, except for its diagonal entries:
djj = mj;, and N is a matrix whose diagonal entries are all zero, but where
N;ij = m;j, Vi # j. Finally, let E be a matrix with all entries 1. Then we can
express (25.4) and (25.5) as:

M =E +PN. (25.6)
Rewriting (25.6), we have

N+D=E +PN
(I-P)-N=E-D.

From Theorem 25.6, since we have aperiodicity and irreducibility, we know that
the limiting distribution, 77, exists. Multiplying both sides by 7, we have:

7-(I-P)-N=7(E-D). (25.7)

Question: What do we know about the left-hand side of (25.7)?

Hint: Remember that 7 is also a stationary distribution, by Theorem 25.6.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

450 25 Ergodicity for Finite-State Discrete-Time Markov Chains

Answer:

-

AP =7
= 7#(I-P) =0
= #(1-P)N =0.

Thus, from (25.7) we have:

0=#E-D)
7E = 7D
(L 1,...,1) = (momoo, T1M11, .o s AM—1MM-1.M~1)
amy;; =1, Vi
;= L >0, Vi,
mi;

where the last line follows from the fact that m;; is finite by Theorem 25.11. m

Corollary 25.13 For an irreducible, periodic finite-state Markov chain,

; 1
stationar;
e = — >0,
m JJj
stationary

where mj; is the mean time between visits to state j and 7; is the

stationary probability of being in state j.

Proof: This is an easy consequence of the proof of Theorem 25.12 and is shown
in Exercise 25.5. |

25.6 Long-Run Time Averages

For the purpose of this section, we imagine that we have an ergodic, finite-state
DTMC, such as that shown in Figure 25.5.

A random walk is a walk through a Markov chain, where we move indefinitely
between the states of the Markov chain according to the probabilities of the chain.
For example, we might start at some state like Blah, and next move to Tired and
then to Wasted and from there maybe back to Blah, and so on. Of course, you
might take a different random walk through the chain, where you again start at
state Blah, but this time next move to state Achy and from there back to state
Blah and so on. Each random walk is often referred to as a sample path in that

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

25.6 Long-Run Time Averages 451

Wasted

Figure 25.5 The moods of students in the aftermath of Carnival festivities.

it depends on the random coin flips. We say sample path rather than a sample
point, because the walk is infinitely long.

Let N;(t) be the number of visits to state j by time # on our random walk. Our
goal is to formally define p ;, the long-run proportion of time that a random walk
spends in state j.

Question: How might we define p; using N, (t)?

Definition 25.14 Given an irreducible DTMC, we define the long-run time-
average fraction of time that a random walk on the DTMC spends in state j
as:
N;(t
p; = lim i),

t—o0 t

where N(t) is the number of times that the random walk enters state j by time
t (in the first t time steps).

Question: Why does Definition 25.14 start by specifying that the DTMC is
irreducible?

Answer: If the DTMC were not irreducible, then the time-average fraction of
time spent in state j might depend on where we start, which would make it
undefined.

In this section we ask: How does p ; compare to r?
Recall the definition of 7 ;, the limiting probability of being in state j:

While p; is an average over a single sample path, 7; is an average over many

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

452 25 Ergodicity for Finite-State Discrete-Time Markov Chains

sample paths. To see this, let’s consider the quantity
(P
This represents the probability of being in state j after n steps, given that we
started in state i. If we consider n = 1, (Pl)ij = P;j, namely the probability that
in the first step we move to state j. On the other hand, (Pz)ij is the weighted
average over M two-step sample paths (the intermediate state could be any of the
M states). Similarly, (P3) i is the weighted average over M? three-step sample
paths, and so on. We refer to
mj = lim (P");;

n—oo

as an ensemble average, meaning that it is an average over many sample paths,
in fact an infinite number.

— o
Question: Does p; = 7"

Answer: It is not at all obvious that p ;, the time-average fraction of time spent in
state j on a single sample path, should equal ;, the ensemble average fraction of
time spent in state j, averaged over all sample paths. The purpose of this section
is to prove that, when 7 ; exists, then, on “almost all” sample paths, p; = ;. We
will spend the rest of this section making this claim precise and proving it.

Before we get into it, we note one important way in which 7; and p; differ.

Question: Recall that aperiodicity was required for 7; to exist. Is aperiodicity
required for p; to exist?

Answer: No. Irreducibility is all that is needed to ensure p; is well defined.

To prove our claim that p; = 7;, we will need to first understand the Strong Law
of Large Numbers and then to learn a little renewal theory.

25.6.1 Strong Law of Large Numbers

The Strong Law of Large Numbers (SLLN) is an extremely important result in
probability theory, but it is difficult to prove. We refer the interested reader to
[22].

Theorem 25.15 (SLLN) Let X|, X, ... be a sequence of independent, iden-
tically distributed (i.i.d.) random variables each with finite mean E [X]. Let
Sy = Xty Xi. Then, with probability 1,

lim 2% = E[X].

n—oo n

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

25.6 Long-Run Time Averages 453

While we omit the proof in this book, we will spend time discussing the meaning
of the result. Let’s consider, for example, that

X; ~ Bernoulli (0.5),

that is X; represents the ith flip of a fair coin. Here, S, represents the sum of the
first n coinflips, and 87” represents the average over the first n coinflips. SLLN
says that, when n gets large, this average should converge to 0.5.

At first this sounds entirely obvious. After all, what else could the average be?

Looking a little closer, we note that SLLN says this happens “with probability
1.” The term “with probability 1" is roughly saying that the statement is true on
almost every sample path. A sample path here refers to a sequence of instances
of X1, X», X3, ... Each sample path is infinitely long, and there are infinitely
many sample paths (there are two values possible for each X;). More precisely,
the statement “with probability 17 says that if we consider the number of “bad”
sample paths on which the convergence doesn’t happen and divide that by the
total number of sample paths, then:

Number bad sample paths up to length
umber bad sample patis up to length n — 0 asn — oo,

Total number sample paths up to length n

Let’s consider whether this makes sense.

Question: What’s an example of a “bad” sample path?

Answer: 00000...or 11111...

Question: Are there a finite or infinite number of bad sample paths?
Answer: Infinite.

Question: Is the number of bad sample paths countably infinite or uncountably
infinite?

Answer: Uncountably infinite. Here’s how to see this. Let’s refer to the sequence
110 as a “red car” and to the sequence 101 as a “blue car” (Figure 25.6). Now
any sequence made up of red and blue cars is clearly bad, because it has twice as
many 1’s as 0’s. However, there are an uncountable number of possible sequences
of red and blue cars (by Cantor’s diagonalization argument [11])

SN SUIND. SUINY. SETR.

Figure 25.6 Any sequence of red and blue cars is a bad sample path.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

454 25 Ergodicity for Finite-State Discrete-Time Markov Chains

Given that there are an uncountably infinite number of bad sample paths, it
should be a little clearer why it’s not so obvious that the fraction of bad sample

paths goes to 0. This explains the power of SLLN.

25.6.2 A Bit of Renewal Theory

Definition 25.16 A renewal process is any process for which the times between
events are i.i.d. random variables, with a non-negative distribution X.

Events

» Time

— X — e XpPpe—Xz3——p
Figure 25.7 A renewal process. X; ~ X, for all i.

An example of a renewal process is shown in Figure 25.7. Let N(¢) denote the
number of renewal events by time ¢. Then, we have the following theorem:

Theorem 25.17 (Renewal Theorem) For a renewal process, if E [X] > 0 is
the mean time between renewals, where E [X] is finite, we have

NG 1 .
;lgl(}o — = m with probability 1. (25.8)

Proof: The basic idea in this proof is to apply SLLN, which gives us the conver-
gence on all sample paths with probability 1 (abbreviated, w.p.1). Let S,, be the
time of the nth event. Then we have, Vt,

SNy £t < Sni+

SN (r)+1

SN t
3 No S No o

N(t)

IA

Looking at the leftmost term, we have:
N(t)
Sniy _ 2o Xi
= — E[X t .p.1 (SLLN).
NG NG — E[X] ast > 00 w.p.1 ()

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

25.6 Long-Run Time Averages 455

Looking at the rightmost term, we have:

SN+ _ SN@+1 N() +1
N(t) ~ N@+1 N@)

— S E[X]-last— o wp.l (SLLN).

So, by the sandwich theorem, the center term likewise converges to E [X],
namely:

— E [X] w.p.1,
NGO [X] w.p
which implies that
N(1) 1
5 — —
t E [X]

ast — oo w.p.1l. [|

25.6.3 Equality of the Time Average and Ensemble Average

We are finally ready to relate p;, the time-average fraction of time that a DTMC
spends in state j, to xr;, the limiting probability of being in state j.

Theorem 25.18 For a finite-state irreducible DTMC, with probability 1,
1
Pj= m_”
For a finite-state, irreducible, and aperiodic DTMC, with probability 1,

pj=mj.

Proof: By Theorem 25.11, we know that m;; is finite. Thus we can apply the
Renewal Theorem (Theorem 25.17) to say that
Nj(l‘) _ 1

;= lim — w.p.1l,
Prmiss mjj P

where N (t) is the number of visits to state j by time .

Now, if we have both irreducibility and aperiodicity, we can invoke Theo-
rem 25.12 which says that

mj=—.
J m
JJ

Thus, n; = pj, wp.1. []

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

456 25 Ergodicity for Finite-State Discrete-Time Markov Chains

25.7 Summary of Results for Ergodic Finite-State DTMCs

So far we’ve seen that for a finite-state DTMC which is both aperiodic and
irreducible, the limiting distribution, 7 exists. This 7 is also the unique stationary
distribution and furthermore represents the time-average probabilities of being
in each state. In Theorem 25.19 we summarize all the results we’ve seen about
ergodic finite-state DTMC:s.

Theorem 25.19 (Summary theorem for ergodic, finite-state DTMCs) In a
finite-state DTMC, the word ergodic refers to two properties: aperiodic and
irreducible. Given an ergodic finite-state chain, the following results hold:

o (Theorem 25.6) The limiting distribution exists and has all-positive compo-
nents. -

o (Theorem 25.12) ﬂ?mm”g =-L

o (Theorem 24.9) The stationary distribution is unique and is equal to the
limiting distribution.

o (Theorem 25.18) Time-average p j = #, w.p.1.

e Putting it all together, we have that:

1
0<—=nm

limiting __ ﬂ_stationary
. J R
mjj

=pj, wp.l.

25.8 What If My DTMC Is Irreducible but Periodic?

So life is great when your DTMC is ergodic. But suppose instead you have a
finite-state DTMC that is irreducible but periodic.

For any periodic chain, the limiting distribution does not exist (because the
probability of being in a state depends on the time step).

However, it turns out that if the finite-state DTMC is irreducible, that alone
suffices to ensure that the stationary distribution exists and is unique [35, section
9.8]. We saw an example of such an irreducible periodic chain in Figure 25.1.
For such chains, the stationary distribution represents the long-run time-average
proportion of time spent in each state, that is, the p;’s.

Very roughly the proof in [35, section 9.8] starts with the observation that when
a chain is irreducible, all states have the same period d (see Exercise 25.17).
Thus, it turns out that we can divide all the states into d residue classes, where
some states are visited at times 0 mod d, some at times 1 mod d, . . ., and some

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

25.9 When the DTMC Is Not Irreducible 457

are visited at times d — 1 mod d. Thus, while lim,_,o (P");; does not exist,
lim,, 00 (P”d) ij does exist, where d is the period of the chain. Thus we can think
of the limiting distribution as existing if we only observe the chain every dth
time step; and when the limiting distribution exists, we get a unique stationary
distribution.

Since the case of irreducible, periodic finite-state DTMCs comes up quite a bit,
we provide another summary theorem with everything you need to know about
this case.

Theorem 25.20 (Summary for irreducible, periodic, finite-state DTMCs)
For a finite-state DTMC that is irreducible, but periodic:

The limiting distribution does not exist (it depends on the time step).
The stationary distribution exists and is unique [35].

(Theorem 25.11) For every state j, mjj is finite.

(Corollary 25.13) nj.m'ionary =L

Zo

o (Theorem 25.18) Time-average p j = m%-,-’ w.p.1.
e Putting it all together, we have that:
0 < L — ﬂs.tationary =pj, Wpl
mjj

25.9 When the DTMC Is Not Irreducible

In the case of a finite-state DTMC that is not irreducible, the limiting distribution
may or may not exist.

For examples of chains which are not irreducible and the limiting distribution
does not exist, see Figure 25.2 and Figure 25.4(a). Generally, a lack of existence
happens if the DTMC consists of two completely disconnected components. In
such situations, the limiting probability of being in state j is not independent
of the starting state i. Note that while the limiting distribution doesn’t exist,
in Exercise 25.20 we prove that (at least one) stationary always exists for any
finite-state chain.

An example of a chain which is not irreducible, yet the limiting distribution
nevertheless exists, is given in Figure 25.4(b), where the limiting distribution is
7 = (0, 1), even though the chain is not irreducible and the period is undefined.
In cases when the limiting distribution does exist, it is no longer the case that
the limiting probability of every state j is positive, as we had in Theorem 25.12,

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

458 25 Ergodicity for Finite-State Discrete-Time Markov Chains

since some states may not be reachable, or there may be an “absorbing” state (or
states), from which one never leaves, as is the case in Figure 25.4(b).

Even if the entire chain is not irreducible, the chain can still be subdivided
into irreducible components (sometimes individual states), where an irreducible
component may function as its own ergodic chain.

In the next section, we will encounter some examples of chains that are not
irreducible and illustrate the above points.

25.10 An Application: PageRank

We now consider an application of finite-state DTMCs and some of the ergodicity
concepts that we’ve been studying.

Question: How many web search engines can you name?

Answer: Here are a few: W3Catalog (1993), WebCrawler (1994), Lycos (1994),
AltaVista (1995), Excite (1995), Yahoo! (1995), Google (1998), Bing (2009).

The goal of a web search engine is not just to find a page that contains the item
that you're searching for, but to find the best page that contains that item. For
example, your name might appear on a lot of web pages: chess tournaments,
swim competitions, theater productions, etc. Every search engine will show all
these different pages. However what makes a search engine good is its ability
to rank the pages, showing the most important pages first, so that someone
searching for you will first see your Homepage or Linked In page, rather than
that picture of you as a third grader.

Of course, how can a search engine know exactly which of the thousand pages
is the most relevant one?

A common solution is to rank the pages in order of the number of links to that
page (often called backlinks of the page), starting with the page that has the
highest number of pointers into it. We refer to this strategy as citation counting.

Citation counting is a very commonly used measure of importance. For example,
many tenure decisions are determined not by your number of publications, but
by the number of citations to your publications.

Question: Suppose that we could determine the number of backlinks of each
page (number of links pointing to the page). Why would that not necessarily be
a good measure of the importance of the page?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

25.10 An Application: PageRank 459

Answer:

(1) Not all links are equal. If a page is pointed to from cnn.com, that link should
be counted much more than if a page is pointed to from Joe Schmo’s page.

(2) The citation counting scheme is easily tricked. Suppose I want my web page
to have a high rank. I simply create a thousand pages that each point to my
web page. Now my web page has a thousand pointers into it, so it should be
ranked highly. (Hmmm ... not a bad way to handle the tenure citation issue
too).

Okay, so citation counting is not the best of schemes. While it is insufficient to
just count the number of pages pointing into a page p, we might do better by
weighting each pointer by the number of pages pointing into it.

Question: Why is this system also easy to fool?

Answer: I can again create a thousand dummy web pages and have them all point
to each other, in a clique, as well as pointing to my page. Now my web page has
a high number of backlinks, all of which also have a high number of backlinks.

Google’s PageRank Solution: Google’s solution is to define PageRank recur-
sively: “A page has high rank if the sum of the ranks of its backlinks is high.”
Observe that this covers both the case when a page has many backlinks and when
a page has a few highly ranked backlinks.

Question: It is easy to say that “a page has high rank if the sum of the ranks of
its backlinks is high,” but how does that help us figure out the rank of a page?

Answer: The “aha” that the Google founders made was to realize that the recur-
sive definition is actually saying

n
mj= Zﬂipij,
i=1

where 7 is the number of pages.

That is, the only way for page j to have high limiting probability is if the pages
i pointing into j have high limiting probability. Remind you of anything?

The rank of a page is thus just its stationary probability in a Markov chain!

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

460 25 Ergodicity for Finite-State Discrete-Time Markov Chains

Algorithm 25.21 (Google’s PageRank algorithm)

1. Create a DTMC transition diagram where there is one state for each web
page and there is an arrow from state i to state j if and only if page i has a
link to page j.

2. Ifpagei has k > 0 outgoing links, then set the probability on each outgoing
arrow from state i to be 1/k.

3. Solvethe DTMC to determine stationary probabilities. Pages are then ranked
based on their stationary probabilities (higher probability first).

This simple algorithm was the original basis behind the entire Google company.
Today, Google has incorporated additional heuristics.

Example 25.22 (Well-behaved web graph)

Suppose the entire web consists of the three pages shown in Figure 25.8(a). Then
the corresponding DTMC transition diagram is shown in Figure 25.8(b).

%3
Bl | w»
@ 1 @
1
(a) (b)

Figure 25.8 (a) Links between web pages. (b) Corresponding DTMC transition diagram.

We now solve the stationary equations:

TA==<TIN +7Tp

2

1 1
7TN=§7TA+§7TN

1
7TM=§7TA

1=7TA+7TM +TN.

This results in: 74 = 7y = 3; 7y = 1.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

25.10 An Application: PageRank 461

Intuition behind the PageRank algorithm: Imagine that each page initially has
one unit of importance. At each round, each page shares whatever importance it
has among its successors. Pages with a lot of incoming links will receive lots of
importance (will be visited frequently in the DTMC).

25.10.1 Problems with Real Web Graphs

Unfortunately, PageRank does not work well on all web graphs. Consider the
following two examples.

Example 25.23 (Dead end or spider trap)

Consider Figure 25.8(a), where this time there is either no outgoing link from
page M (in this case M is called a “dead end”) or there is a self-loop at state M
(in this case M is called a “spider trap”). In either case, Figure 25.9 shows the
corresponding DTMC transition diagram.

Figure 25.9 DTMC for a web graph with a dead end or spider trap at M.

The stationary equations are:

1 1
7TN=§7TA+E7TN
7Z'M=§7TA+7TM

1
7TA=§7Z'N

Ta+nan+mpy = 1.

The solution to these equations is mp; = 1, 1y = 0 = m4. These are also the
limiting probabilities (note that the start state does not matter). Somehow this
solution is very unsatisfying. Just because person M chooses to be anti-social and
not link to anyone else, it should not follow that person M is the only important

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

462 25 Ergodicity for Finite-State Discrete-Time Markov Chains

person on the web. Our solution does not match our intuitive view of surfing a
web graph.

Example 25.24 (Two spider traps)

Now imagine that both M and N are anti-social and link only to themselves. The
resulting DTMC transition diagram is shown in Figure 25.10.

1

o
° o

Figure 25.10 DTMC for a web graph with two spider traps.

The corresponding stationary equations are:

1
TN =="'"TTA+7TN

2

1
7TM:§‘7TA+7TM
ma=0

Ta+nan+mpy = 1.

Again our graph is not irreducible. Observe that there are now an infinite number
of possible stationary solutions. This is because the limiting probabilities depend
on the start state. Again the solution is very unsatisfying.

25.10.2 Google’s Solution to Dead Ends and Spider Traps

Google’s initial solution to dead ends and spider traps is to “tax” each page some
fraction of its “importance” and then distribute that taxed importance equally
among all pages in the web graph. This “tax” keeps the DTMC from getting
trapped in a dead end or spider trap.

Figure 25.11 shows the effect of applying a 30% tax on the DTMC of Figure 25.9.

First, every original transition is multiplied by 70%. Then, for each state s in an

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

25.10 An Application: PageRank 463

M -state chain, we add a transition of weight % from state s to every other state,
including itself. Thus in the three-state chain in Figure 25.9, we add a transition
of weight 10% from each state to every other state.

0.7-%2+0.1

Figure 25.11 Corresponding DTMC transition diagram.

Observe that the spider trap is now no longer a problem, and we can easily solve
for the limiting probabilities:

ma =0.19 iy = 0.55 mn = 0.26.

The problem now is that these limiting probabilities are highly dependent on the
amount of tax!

25.10.3 Evaluation of the PageRank Algorithm and Practical
Considerations

PageRank is intended to give an indication of the popularity of a page. This works
well when the graph is irreducible, but it is problematic when there are spider
traps or dead ends. The taxation solution for solving the spider trap problem
seems ad hoc. If the tax is too small, then we still end up with too high a limiting
probability at the spider trap state (as in wps = 0.55 in Section 25.10.2). Thus we
need to use a high tax. Yet a high tax seems totally unrealistic, because it leads
to every state being of equal weight.

There’s also the practical consideration: How does Google go about solving the
DTMC for the stationary probabilities, given that it is a huge (finite) DTMC?
Solving such a large number of simultaneous equations seems difficult.

Question: Is there another approach to obtain the limiting probabilities?

Answer: Yes, we can take powers of P, the transition probability matrix. This
turns out to be faster when P is large and sparse and only an approximate solution
is needed. This is the approach employed by Google.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

464 25 Ergodicity for Finite-State Discrete-Time Markov Chains

25.11 From Stationary Equations to Time-Reversibility
Equations

Thus far, to derive the limiting distribution of a DTMC, we solve the stationary
equations. The purpose of this section is to consider a few alternative systems of
equations. We will introduce “balance equations,” which are only a small twist
on stationary equations, and then introduce “time-reversibility equations,” which
are entirely different and sometimes greatly simplify the process.

All this is best illustrated via an example. Consider the DTMC in Figure 25.12
and its corresponding stationary equations.

1-r-s 1-r-s 1-r-s
r r r r r
1-r X o::@() 1-s
w__
K s s s s

Figure 25.12 A finite-state DTMC. Assume that 0 <r,s < 1.

Stationary equations for DTMC in Figure 25.12:
mg = mo(l=r)+mys
m = nor+n(1—r—s)+ms
my = mr+m(l—r—ys)+n3s

ni = mi_qr+ni(l—r—s)+mys

799 = mogr + mog(1 —5)

99
Zﬂj = 1.
Jj=0

These stationary equations are solvable (see Exercise 25.6), but are cumbersome.

Now consider an alternative to stationary equations, called balance equations.

Definition 25.25 The balance equations for a Markov chain equate the total
rate of leaving each state with the total rate of entering the state.

Question: For a DTMC with transition probability matrix P, what is the rate of
leaving state i?

This may be hard to think about, so let’s start with an easier question:

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

25.11 From Stationary Equations to Time-Reversibility Equations 465

Question: For a DTMC with transition probability matrix P, what is the rate of
transitions from state i to state j?

Answer:

7; P;j = rate of transitions from state i to state j.

To see this, note that the “rate” of transitions from state i to state j is defined
as the number of transitions per time step that have their start point in 7 and end
point in j. To understand this quantity, observe that the DTMC is in state i for
n; fraction of all time steps. For P;; fraction of those time steps, the DTMC will
next move to state j. Hence, for xr; P;; fraction of all time steps, the DTMC is
in state i and will move to state j in the next transition. Thus, if we look over ¢
time steps (let 7 be large), then 7r; P; ;¢ total transitions will have their start point
in 7 and their end point in j. Dividing by ¢, we see that the rate of transitions
(number of transitions per time step) that go directly from i to j is m; P;;.

Question: So what is the total rate of transitions out of state i?

Answer: The expression };; m; P;; represents the total rate of transitions out of
state 7, including possibly returning right back to state i (if there are self-loops
in the chain). If we want the total rate of transitions out of state i not including
returning back to 7, then we write: Zj# miPij.

Definition 25.26 The balance equations for a DTMC with transition matrix
P is the set of equations

Y omiPiy=Y 7Py and Y m=1. (25.9)
j#i j#i i
These hold for every state i. They equate (balance) the rate that we leave state

i to go to a state other than i, with the rate that we enter state i from a state
other than i.

Balance equations for DTMC in Figure 25.12:

Tor = ms
m(r+s)
mo(r+s) = myr+n3s

wor + mps

mi(r+s) = mi_1r+miss

799 (s) = mogr

99
Zﬂj = 1.
Jj=0

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

466 25 Ergodicity for Finite-State Discrete-Time Markov Chains

It is easy to see that the balance equations for Figure 25.12 are equivalent to the
stationary equations (we’ve basically just ignored the self-loops in the chain to
create simpler equations). Intuitively, the balance equations make sense because
every time we leave state i, we cannot again leave state i until we first return to
state i.

Theorem 25.27 Given a DTMC with transition matrix P, the balance equa-
tions for the DTMC are equivalent to the stationary equations. Thus, satisfying
either set of equations is equally good.

Proof: Recall the stationary equation for state i:

T =Z7Z'iji. (2510)
J
We also know that
7T,‘=7T,'ZPU=Z7Z','PU. (2511)
J J
Combining (25.10) and (25.11), we have:
=) mPij=) mPji (25.12)
J J

We now subtract x; P;; from both sides of (25.12):

Z niPij —niPij = Zﬂiji — ;P
J J
Z niPij = Z?ijji-

J#i J#

Hence we obtain the balance equations. |

Balance equations can also be applied to a set of states as well as to a single state.
For example, if a Markov chain is divided into two sets of states — call these S and
S¢ (here S¢ denotes the complement of S) — then we can write equations equating
the rate of transitions (the “flux’) from S to S¢ with the rate of transitions from
S€to S.

Question: Why does it make sense that the total flux from § to S¢ should equal
that from S¢ to §?

Answer: The argument is identical to what we observed for a single state. Every
time a transition takes us from S to S¢, we have left the states in S. We therefore
cannot have another transition from S to S¢ until we reenter the states in S, but
this requires a transition from S¢ to S.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

25.11 From Stationary Equations to Time-Reversibility Equations 467

We now return to the DTMC in Figure 25.12, and try to write even simpler
equations. Such equations are referred to as time-reversibility equations.

Definition 25.28 The time-reversibility equations for a DTMC with transi-
tion matrix P is the set of equations

xiPy=miPy, Vij and Y m=1. (25.13)
i

These equations apply to every pair of states, i, j. Specifically, there is one
equation written for each pair of state, i, j. They equate the rate of transitions
from i to j with the rate of transitions from j to i.

Time-reversibility equations for DTMC in Figure 25.12:

Tor = ms
mr = ms
Tr = 738
Tr o= Ti+lS
Togr = T99S

99
Zﬂ'j = 1.
Jj=0

The time-reversibility equations are much simpler than the stationary equations.

Question: Are the time-reversibility equations above equivalent to the stationary
equations or balance equations that we’ve seen?

Answer: No!

While the time-reversibility equations look very different from the stationary and
balance equations, it turns out that they do yield the correct stationary distribution
for the chain in Figure 25.12. This seems impossible, but try it!

Question: Given an aperiodic, irreducible DTMC, are the time-reversibility
equations always satisfied?

Answer: No.

Question: What’s an example of a chain where the time-reversibility equations
are not satisfied?

Answer: Imagine a chain which is irreducible, but where there is an edge from

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

468 25 Ergodicity for Finite-State Discrete-Time Markov Chains

i to j, but no edge from j to i. Then the rate of transitions from j to i is by
definition 0, although the rate of transitions from i to j is non-zero.

In Theorem 25.29, we prove that if we can find x;’s that satisfy the time-
reversibility equations, then those 7;’s are the stationary probabilities. In that
case, we say that the chain is called “time-reversible.” If we can’t find x;’s that
satisfy the time-reversibility equations, this does not imply that there’s no sta-
tionary distribution. It just means that we have to start from scratch with the
(more complicated) stationary equations.

Theorem 25.29 (Time-reversibility implies stationarity) For a DTMC with
transition matrix P, suppose we can find xg,x1, X2, . . . such that, Vi, j:

xiP,'j =)Ciji and in =1. (2514)
i
Then the vector X = (xg,X1,X2,...) is a stationary distribution, and we say
that the DTMC is time-reversible.

Proof:
XiPij =x;Pji, Vi,j
= Z)Cipij = ZXiji
i i
= Z)Cipij :ijPji
i i
= inpij =Xj.
i
Hence, together with }’; x; = 1, the x;’s satisfy the stationary equations. [

Remark 1: In some books, the definition of “time-reversible” requires additionally
that the chain be ergodic, but we won’t be making ergodicity a requirement.
Remark 2: Theorem 25.29 does not require that the number of states is finite.

Question: The time-reversibility equations are much simpler than the stationary
or balance equations, but they aren’t always solvable. For the chain in Fig-
ure 25.12, the time-reversibility equations had a solution. What was special
about this chain?

Answer: The chain in Figure 25.12 has the property that the rate of transitions
from state i to state j is always equal to the rate of transitions from state j to
state 7. To see this, notice first that if j is anything other than i + 1 or i — 1, then
the rate of transitions from 7 to j is zero, and, likewise, the rate of transitions
from j to i is zero. Now suppose j =i + 1. The number of transitions from i to

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

25.12 Exercises 469

i + 1 during time ¢ is the same (within 1) of the number of transitions from i + 1
to i. This is because every time we go from state i to i + 1, we can’t repeat that
transition until we first go from i + 1 to i. This translates to the rates being the
same when we divide by time.

As we’ll see in the exercises (see, for example, Exercises 25.9 and 25.18) there
are plenty of Markov chains that are time-reversible, but it is not always easy
to guess in advance which chains will have this beautiful property. When trying
to determine the stationary solution, you first try to solve the time-reversibility
equations. If those yield a solution, then you’re done (your solution also satisfies
the stationary equations). If the time-reversibility equations are not solvable, then
you’ll need to try solving the stationary or balance equations.

Question: A final reminder: Solving the stationary equations, or balance equa-
tions, or time-reversibility equations, yields a stationary distribution. What does
that tell us about the limiting distribution?

Answer: The fact that we have a stationary distribution, 7, does not tell us
anything about whether a limiting distribution exists. However, if we have a
finite-state, irreducible, aperiodic DTMC, then, by Theorem 25.19, 7 is also the
limiting distribution.

25.12 Exercises
25.1 Two finite-state chains

Figure 25.13 depicts two finite-state chains. For each chain, answer the
questions below.

%)

Chain 1 Chain 2

Figure 25.13 Tiwo finite-state chains for Exercise 25.1.

(a) Is the DTMC irreducible?
(b) Is the DTMC aperiodic?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

470 25 Ergodicity for Finite-State Discrete-Time Markov Chains

(c) Does the DTMC have a limiting distribution? If so, what is it? If not,
why not?

(d) Does the DTMC have a stationary distribution? If so, what is it? If
not, why not?

Explain each answer by citing the appropriate theorems.

25.2 Passing around a ball

[Proposed by Sam Yeom] In answering these questions, cite the theorems

that you use in making your claims.

(a) Five people stand in a circle, passing a ball around. Suppose that
each person either passes the ball right or left with 50% probability
each. What is the stationary distribution? Is this also the limiting
distribution?

(b) Five people stand in a circle, passing a ball around. Suppose that each
person passes the ball to their right with probability 1. What is the
stationary distribution? Is this also the limiting distribution?

(c) Now suppose that the five people are standing in a line. Each person
passes the ball to their right or left with 50% probability each, ex-
cept for the two people at the ends who always pass it to their one
neighbor. What is the stationary distribution? Is this also the limiting
distribution?

(d) Again the five people are standing in a line. Again each person passes
the ball to their right or left with 50% probability each, except for
the two people at the ends who always hold on to the ball instead of
passing it. What is the stationary distribution? Is this also the limiting
distribution?

25.3 Multiple stationary distributions
Ishani’s finite-state DTMC has multiple stationary distributions. We do
not know whether the chain is aperiodic or irreducible. What can we
conclude?
(a) Ishani’s DTMC has multiple limiting distributions.
(b) Ishani’s DTMC has no limiting distribution.
(c) Ishani’s DTMC has exactly one limiting distribution.
(d) We can’t conclude any of these for sure.
Provide full justification for your answer by citing the appropriate theo-
rems.

25.4 Practice with the definitions
Consider each of the two simple DTMCs shown in Figure 25.14. For
each chain, please answer the following questions. Justify your answers
by citing theorems.
(a) Is the chain aperiodic?
(b) Is the chain irreducible?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

25.12 Exercises 471

(c) Is the chain ergodic?

(d) Does the limiting distribution exist? If so, what is it? If not, why not?

(e) Does one or more stationary distributions exist? If so, what are the
stationary distribution(s)?

(f) Is p, the time-average fraction of time spent in state ¢, well defined?
If so, what is it?

(g) Consider m.., the mean time until we again visit state ¢, given we are
in state c. Is m.. well-defined? If so, what is it?

Chain 1 Chain 2

Figure 25.14 Chains for Exercise 25.4.

25.5 Proof of Corollary 25.13
Prove Corollary 25.13.

25.6 A simple finite-state chain
For the DTMC shown in Figure 25.15, explain how we know that the
limiting distribution exists by citing theorems from the chapter. Then

1-r-s 1-r-s 1-r-s

r r r r r
1-r oo o::@:) 1-s
N N N N N
Figure 25.15 Chain for Exercise 25.6.
solve for the limiting distribution via these steps:
(a) From the stationary equations, express 7 in terms of y. Then express
75 in terms of 7.
(b) You will notice a pattern that will help you make a guess for how to
express 7; in terms of g for any i.

(c) Determine my by using >; 7; = 1 and verify the correctness of your
guess.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

472 25 Ergodicity for Finite-State Discrete-Time Markov Chains

25.7 Some example DTMCs
For each chain shown in Figure 25.16, answer the following questions:
(a) Is the chain irreducible?
(b) Is the chain aperiodic?
(c) Does a stationary distribution exist?
(d) Does the limiting distribution exist?
Provide a one-line explanation for your answer, citing theorems.

1

% 1 AN
%)
Chain 1
1
Chain 2 1 A
Chain 3

Figure 25.16 Markov chains for Exercise 25.7.

25.8 Caching
If you think about it, web browsing is basically a Markov chain — the page
you will go to next depends on the page you are currently at. Suppose
our web server has three pages, and we have the following transition

probabilities:
P1,1=O PLQ =X P1,3:1—x
Pyi=y Py =0 Pyz=1-y
P31 =0 P3p=1 P33 =0,

where P; ; represents the probability that I will next request page j, given
that I last requested page i. Assume that 0 < x <y < %
Recall that web browsers cache pages so that they can be quickly retrieved
later. We will assume that the cache has enough memory to store two
pages. Whenever a request comes in for a page that is not cached, the

browser will store that page in the cache, replacing the page least likely to

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

25.12 Exercises 473

be referenced next based on the current request. For example, if my cache

contained pages {2,3} and I requested page 1, the cache would now store

{1,3} (because x < 1 —x).

(a) Find the proportion of time that the cache contains the following
pages: (i) {1,2} (i) {2,3} (iii) {1,3}. [Hint 1: You will need to
think carefully about what information you need in your states to
create the appropriate DTMC.] [Hint 2: When solving your DTMC,
you will find that two of the states are only visited a finite number of
times, with probability 1, so the long-run fraction of time spent there
is 0. You can thus ignore these states and just solve for the stationary
probabilities of the remaining states.]

(b) Find the proportion of requests that are for cached pages.

25.9 Practice with balance equations and time-reversibility equations
Consider the following Markov chains:

0 2/3 0 1/3
1/3 0 2/3 0

P =
0o 1/3 0 2/3
2/3 0 1/3 0
1/3 2/3 0 0
P — /3 0 2/3 0

0 1/3 0 2/3
0 0 1/3 2/3

(a) Draw the corresponding Markov chains for P(") and P(?).

(b) Solve for the time-average fraction of time spent in each state for both
P and P, First try to use the time-reversibility equations, and if
they do not work, then use the balance equations.

(c) Was P time-reversible? Was P(?) time-reversible?

(d) For those chain(s) that were time-reversible, explain why it makes
sense that for all states i, j in the chain, the rate of transitions from i
to j should equal the rate of transitions from j to i.

25.10 Data centers, backhoes, and bugs
Our data center alternates between “working” and “down.” There are two
reasons why our data center can be down: (1) a backhoe accidentally dug
up some cable, or (2) a software bug crashed the machines. Suppose that if
the data center is working today, it will be down tomorrow due to backhoe
reasons with probability é or will be down tomorrow due to a software
bug with probability %. A data center that is down today due to backhoe
reasons will be up tomorrow with probability 1. A data center that is down
today due to a software bug will be up tomorrow with probability %.
(a) Draw a DTMC for this problem.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

474 25 Ergodicity for Finite-State Discrete-Time Markov Chains

(b) Is your DTMC ergodic? Why or why not?

(c) Is your DTMC time-reversible? Why or why not?

(d) What fraction of time is the data center working?

(e) What is the expected number of days between backhoe failures?

25.11 CLT versus SLLN
Consider a sequence of i.i.d. random variables X1, X, . . . with finite mean
E [X] and finite variance 0. Let S, = 3.1, X;. Now consider the quantity:

S, — nE [X]

-
What does the Strong Law of Large Numbers (SLLN) say about this
quantity as n — oo? What does the Central Limit Theorem (CLT) say
about this quantity as n — oo? Are they in contradiction?

25.12 Walks on undirected weighted graphs
This problem comes up in many areas. Consider any undirected connected
graph with weights: w;; = w; is the weight on edge (i, j) where w;; >
0, Vi, j. See for example Figure 25.17. A particle moves between nodes in
a weighted graph as follows: A particle residing at node i will next move
to node j with probability P;;, where

W,'j

Pij =

ijij

Figure 25.17 A weighted graph with M = 4 nodes describing a particle’s motion.

Your goal is to determine the long-run proportion of time that the particle

is in state i.

(a) Play around with the example in Figure 25.17. Which node do you
think is visited most often?

(b) You’ll now need to guess a solution for a general weighted graph and
show that your solution satisfies the stationary equations. It will help
a lot, both in making your guess and in verifying your guess, if you
write out the time-reversibility equations rather than the stationary
equations.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

25.12 Exercises 475

25.13 Finite-state chain with equal weights
Consider the finite-state chain in Figure 25.18.

Figure 25.18 Markov chain for Exercise 25.13.

(a) Is the chain ergodic?
(b) Is the chain time-reversible?
(c) What is the limiting probability of being in each state?
(d) The finite-state chain in Figure 25.18 has two properties:
(i) Balanced weights: This is the property that the probabilities on
each of the arrows leaving a state are equal.
(ii) Bidirectional edges: This is the property that if there’s an edge
from i to j, then there’s also an edge from j to i.
Look at the structure of the limiting probabilities that you obtained
for Figure 25.18. To see the structure, it will help to write these over
the same common denominator. Now imagine an arbitrary ergodic
finite-state chain with n states that has both the “balanced weights”
property and the “bidirectional edges” property. What can you say
about 7 ;, the limiting probability of being in state j? Make a guess
and verify it.

25.14 Gas migration

You have a box with n gas molecules, with a divider in the middle that

the molecules can pass through. As shown in Figure 25.19, there is an A

side and a B side to the box. Assume that 7 is even.

All the molecules start out on the A side. Every second, we pick a random

gas molecule out of the n molecules and transfer it to the other side.

(a) Determine the proportion of time that the box has the same number
of molecules on the A side and the B side. Start by drawing a Markov
chain!

(b) Let N denote the number of molecules in the B side of the box.

(i) Whatis E [Ng]?
(ii)) What is Var(Ng)?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

476 25 Ergodicity for Finite-State Discrete-Time Markov Chains

Figure 25.19 Box of gas molecules for Exercise 25.14.

[Hint: What do you know about Npg’s distribution over a long time?]

25.15 Randomized chess

This problem concerns the behavior of various chess pieces as they move
randomly around the board. Chess is played on an 8 x 8 board divided
into 64 squares that alternate from white to black. The king can move one
square in any direction (including the diagonal). The bishop can move any
number of squares, but only in the diagonal directions. The knight moves
in an L-shape. That is, the knight moves two squares to either side (left
or right) and one square up or down. Or, the knight can move two squares
up or down and one square to the side (left or right).

(a) You are given an empty chessboard with a lone king placed in one
corner. At each time step, the king will make a uniformly random legal
move. Is the corresponding Markov chain for this process irreducible?
Is it aperiodic?

(b) What if a bishop is used instead?

(c) What if a knight is used instead?

(d) Now take advantage of Exercise 25.12 on undirected weighted graphs
and time-reversibility to calculate the expected time for the king to
return to the corner. Think about how hard this would be without
time-reversibility. [Hint: The calculation should be very simple.]

(e) Do the same for the bishop.

(f) Do the same for the knight.

25.16 Interpreting the stationary probabilities as fractions of time
Assume that you have an irreducible, finite-state DTMC with M states

(numbered 0,1, ..., M — 1) and transition matrix P.
Define
T opi(i
o= fim ZELVIE

where p (i) is the probability that the chain is in state j at time step i.
(a) What is the meaning of ¢ ;? Please follow these steps:
(i) What does }}"" , p;(i) mean?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

25.12 Exercises 477

(i1)) What does M mean?
(iii) What does ¢; = lim;, M mean?
(b) Prove that the distribution ¢ = (¢o, P1,...,dn—1) is a stationary
distribution. Please follow these steps:
(i) Express p;(i) in terms of a sum involving py (i — 1).
(i1) Show that ¢; satisfies the stationary equations.
(iii) Don’t forget to prove the needed condition on Zj”i{) ! ¢;.

25.17 In an irreducible DTMC, do all states have the same period?
Given an irreducible DTMC, either prove that all states have the same
period, or find a counter-example.

25.18 How rare are time-reversible DTMCs?

Edward feels that time-reversible chains are very rare. Erica disagrees.

Erica claims that it’s easy to create time-reversible chains, via the idea of

Exercise 25.12.

(a) Consider the DTMC in Figure 25.20 whose transitions are unlabeled.
Use what you’ve learned in Exercise 25.12 to label each edge (i, j)
of the DTMC with a transition probability p;; such that 0 < p;; <1
and such that the DTMC is time-reversible. Then write the limiting
distribution of your chain.

Figure 25.20 Markov chain for Exercise 25.18.

(b) How many possible answers are there to question (a)? That is, how
many choices of transition probabilities are there that create a time-
reversible DTMC? Pick the correct answer and give a one-line expla-
nation:

(i) exactly one

(i1) a finite number
(iii) countably infinite
(iv) uncountably infinite

25.19 Irreducible finite-state chains have finite mean time to return
Prove Theorem 25.11: For a finite-state, irreducible DTMC, m;; is finite,
forevery i, j.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

478 25 Ergodicity for Finite-State Discrete-Time Markov Chains

25.20 Every finite DTMC has at least one stationary distribution
[Proposed by Misha Ivkov] In this problem we will prove that every finite-
state DTMC has at least one stationary distribution. Note, we are not
making any assumptions about the DTMC.

(a) First, prove that a finite DTMC must have at least one recurrent state.
(i) Leti be a state in the Markov chain. Argue that there exists some
state j such that 3" ; (P");; = co.
(ii) Now argue that 3, (P");; = co.
(b) Let j be the recurrent state identified above, and let S be the set of
states that are accessible from j. Show that S is an irreducible DTMC.
(c) As explained in Theorem 25.20, since S is irreducible, we know that
it has a stationary distribution; let’s call that 7*. We now define 7 as

o= 71'; ifieS
71 0 otherwise

Prove that 7 is a stationary distribution for the original DTMC.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

26 Discrete-Time Markov
Chains: Infinite-State

So far we have only talked about finite-state discrete-time Markov chains
(DTMCs) with M states. Now we move on to infinite-state DTMCs. For a
Markov chain with an infinite number of states, one can still imagine a transition
probability matrix, P, but the matrix has infinite dimension.

For an infinite-state DTMC, we denote the limiting probability distribution on
the states by

7t = (mo,m1,72,...) where ;= lim (P");; and an=1.

n—0oo

We say that distribution 7 is stationary if

[ee)

ﬂj:;ﬂ-kpkj and Zﬂj:l'

J=0

Infinite-state Markov chains are common in modeling systems where the num-
ber of customers or number of jobs is unbounded, and thus the state space is
unbounded. The typical example is a queue of jobs or packets, where the queue
can grow arbitrarily long.

This chapter will introduce infinite-state DTMCs. We will see that many of the
definitions, solution techniques, and theorems from finite-state DTMCs carry
over to infinite-state DTMCs. However, there is one crucial difference, which
comes up in the definition of ergodicity and the existence of a limiting distribu-
tion. This difference will be discussed starting in Section 26.4.

26.1 Stationary = Limiting

We have seen that for a finite-state DTMC, if the limiting distribution exists,
then the limiting distribution and stationary distribution are equivalent (Theo-
rem 24.9). The same result holds for infinite-state DTMCs.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

480 26 Discrete-Time Markov Chains: Infinite-State

Theorem 26.1 (Stationary distribution = limiting distribution) Given an
infinite-state DTMC, let

n—0oo

be the limiting probability of being in state j and let
ﬁ:(n()’ﬂ-l’ﬂz,---), where Zﬂi:l’
i=0

be the limiting distribution. Assuming that the limiting distribution exists, then
7t is also a stationary distribution and no other stationary distribution exists.

Proof: The proof follows along the lines of the proof of Theorem 24.9; however,
it is a little more technical because we can’t simply interchange the limit and the
summation as we did in that proof, because we have an infinite sum over states.
Fortunately, one can get around this difficulty by lower-bounding the infinite sum
by a finite sum, which allows us to exchange the limit and the summation. After
the exchange, we then consider the limit as the number of items in the finite sum
approaches infinity. The details of this trickery are given in [35, section 8.9]. m

26.2 Solving Stationary Equations in Infinite-State DTMCs

So we can obtain the limiting distribution, 7, by solving the stationary equations.
Yet there are an infinite number of stationary equations! How do we solve them?

Consider an example of a router that has infinite capacity for packets, called an
unbounded queue (Figure 26.1). Packets arrive at the router and queue up there.
We think of the router as a “server” since it serves packets. The server processes
the packet at the head of the queue, and when it finishes processing that packet,
it moves on to the next packet.

Figure 26.1 Illustration of a server with unbounded buffer.

Suppose at every time step, with probability p = % one packet arrives, and
independently, with probability g = % one packet departs. Note that during a
time step we might have both an arrival and a transmission, or neither. That is, a
packet can “arrive” and “depart” within the same time step, leaving the system
in the same state.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

26.2 Solving Stationary Equations in Infinite-State DTMCs 481

We will be interested in answering questions like: What is the average number
of packets in the system?

To answer this question, we model the problem as a DTMC with an infinite
number of states: 0, 1, 2, ..., representing the number of packets at the router.
Letr=p(l-¢q)= % ands=¢q(1—-p) = ;11, where r < 5. Figure 26.2 shows the
Markov chain for our problem.

1-r-s 1-r-s 1-r-s

Figure 26.2 DTMC for a server with unbounded queue.

Here the transition probability matrix is infinite!

1-r r 0 0
S l—-r—s r 0
- 0 s 1—-r—s r
0 0 s l-r—s

The stationary equations look like this:

mo=nmo(l —r) +mys

mo=nor +m(l —r—s)+ms
m =mr+m(l —r—s)+mnr3s
my=mr +m3(l —r —)+ mys

Il
—

mo+my+my+mw3 -

Question: How are we going to solve this infinite number of equations?

Answer: It might be easier to write the time-reversibility equations (Theo-
rem 25.29):

Ty =7 S

M r=my-S

My F=m3-8

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

482 26 Discrete-Time Markov Chains: Infinite-State

which yield

Question: How do we verify that this guess is correct?

Answer: To verify your guess, you need to show that it satisfies the stationary
equations:

mi=mir+mi (1 —r—s)+ TS
r i r i—1 r i r i+l
(—) T = (—) 7r0r+(—) 7r0(1—r—s)+(—) mos.
s s s s
Question: Okay, but we still do not know . How can we determine my?

Answer: To determine 7, we make use of the fact that) ; m; = 1.

This says that

So,

Question: What is the average number of packets in the system?

Answer: Let N denote the number of packets in the system. Then

E[N]:7T0'O+7T1'1+7T2-2+7T3-3+...

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

26.3 A Harder Example of Solving Stationary Equations in Infinite-State DTMCs

Question: Can we get a closed-form expression for E [N]?
Answer: Yes! It will help to define

’

p=-

s

for shorthand. Then,
mi=p'(1-p).
So,
E[N]=1p(1-p)+20°(1-p) +3p°(1 = p) +---
:(l—p)-p-(1+2p+3p2+4p3+---)

1
=(l-p)-p- 57— by(d4d
(1-p)?
N (26.1)
l-p
1
Wow! Equation (26.1) is a really simple formula. For our example, p = ? = %

2

and E [N] = =5 = 2. So on average there are two packets in the system.
3

—

26.3 A Harder Example of Solving Stationary Equations in
Infinite-State DTMCs

Of course not all infinite-state DTMCs are as easy to solve as the one in the
previous section. Consider the DTMC shown in Figure 26.3.

Figure 26.3 DTMC for processor with failures.

This kind of chain is often used to model a processor with failures. The chain
tracks the number of jobs in the system. At any time step, either the number of
jobs increases by 1 (with probability p), or decreases by 1 (with probability g),
or a processor failure occurs (with probability 7), where p + g + r = 1. In the
case of a processor failure, all jobs in the system are lost.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

483

484 26 Discrete-Time Markov Chains: Infinite-State

To derive the limiting distribution for this chain, simply writing stationary equa-
tions will not lead us to the solution. In this case, the z-transform approach
(generating functions) from Chapter 6 is very useful. Exercise 26.24 walks you
through the steps.

26.4 Ergodicity Questions

We now turn to ergodicity questions.

Recall that in Chapter 25 we asked the following questions for finite-state
DTMCs:

1. Under what conditions does the limiting distribution exist?

2. How does 7, the limiting probability of being in state j, compare with p;,
the long-run time-average fraction of time spent in state j?

3. What can we say about m ;, the mean time between visits to state j, and how
is this related to 7;?

Recall that in the case of an ergodic (aperiodic and irreducible) finite-state
DTMC with M states, everything behaves as we would like. Specifically, by
Theorem 25.19,

1 limiting — stationary

O0<—=m T =pj, wp.l.
mjj !

When the finite-state chain is periodic but irreducible, then the limiting distri-
bution doesn’t exist but there’s a unique stationary distribution. Specifically, by
Theorem 25.20,

1 stationar
0<F:ﬂj y:pj, Wpl
JJ

For the case of an infinite-state DTMC, we will see that the story is the same when
the chain is ergodic. However, the definition of ergodic needs to be strengthened.
The remainder of this chapter is devoted to understanding how to strengthen the
definition of ergodic. We will figure this out together!

Infinite-state chains are infinitely more complex than finite-state chains. For
example, for infinite-state chains, unlike their finite-state counterparts, we will
see that when the DTMC is not ergodic, even the stationary distribution might
not exist. Because of the added complexity inherent in infinite-state chains, we

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

26.4 Ergodicity Questions 485

will have to omit some of the proofs in this text. We refer the interested reader
to [35] for the omitted proofs.

Consider the three infinite-state DTMCs shown in Figure 26.4.

04 0.4 04 04

0.6 0.6 0.6 0.6

(a) Positive recurrent chain

0.6 0.6 0.6 0.6

04 04 04 04

(b) Transient chain

0.5 0.5 0.5 05

0.5 0.5 0.5 0.5

(c) Null recurrent chain

Figure 26.4 Examples of three chains.

Question: Which of these chains are aperiodic and irreducible?
Answer: All of them.

Question: For finite-state DTMCs that are aperiodic and irreducible, does a
limiting distribution always exist?

Answer: Yes, by Theorem 25.6.
Question: Does a limiting distribution exist for all the chains in Figure 26.4?

Answer: We will see that a limiting distribution exists only for chain (a). For
chain (a), we saw in Section 26.2 that there is a well-defined stationary probability
of being in each state, and these stationary probabilities sum to 1. For the other
two chains, we will show that the limiting probability of being in each state is
0, and the limiting probabilities do not sum to 1; hence there does not exist a
limiting distribution. Chain (a) has a property called “positive recurrent.” Chain
(b) is what we call “transient,” and chain (c) is “null recurrent.” We explain

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

486 26 Discrete-Time Markov Chains: Infinite-State

all these terms in this chapter and how they relate to the existence of limiting
distributions.

Question: Intuitively, what is the problem with chains (b) and (c¢) in Figure 26.4?

Will I return
to shore?

Figure 26.5 Will the fish return to shore?

Answer: To get some intuition, it helps to think about 7, the limiting probability
of being in state 0.

Chain (b) can be viewed as an ocean, where the shore is at state 0. Imagine you're
a little fish swimming in the ocean. There is a drift away from shore. Think of
this as a strong tide, pulling you deeper and deeper into the ocean. Given this
drift, it is not obvious that you will keep returning to shore. In fact, we will show
that after some point you never return to the shore. Thus, 7y = 0. But this same
argument holds for any state k that we call the “shore,” so m; = O for all k.

Chain (c) is the most confusing. It’s not obvious whether the fish keeps returning
to shore. We will show that the fish does in fact always return to shore. However,
we will see that the time it takes for the fish to return is infinite. This ends up
again resulting in g = O for all states k.

To formalize all of this, it helps to first understand the difference between a
“recurrent” chain and a “transient” one.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

26.5 Recurrent versus Transient: Will the Fish Return to Shore? 487

26.5 Recurrent versus Transient: Will the Fish Return to
Shore?

Definition 26.2 We define f; = probability that a chain starting in state j ever
returns to state j.

Definition 26.3 A state j is either recurrent or transient:

e If f; =1, then j is a recurrent state.
o If f; < 1, then j is a transient state.

Question: What is the distribution of the number of visits to a transient state j?

Answer: Every time we visit state j we have probability 1 — f; of never visiting
it again. Hence the number of visits is a Geometric random variable (r.v.) with

mean 1/(1 - f;).

Theorem 26.4 With probability 1, the number of visits to a recurrent state is
infinite. With probability 1, the number of visits to a transient state is finite.

Proof: If a state j is recurrent, then starting in state j, with probability 1 (w.p.1)
we will visit j again. Thus, repeating this argument, we see that w.p.1 state j
will be visited an infinite number of times. In contrast, if state j is transient, then
every time we visit state j, there is some probability (1 — f;) that we will never
again visit j. With probability 1, that 1 — f; probability event will eventually
happen. That is, w.p.1, after some point we will never again revisit state j. =

Theorem 26.5 Let P?j = (P");; denote the probability that the chain will be
in state j after n steps, given that the chain is in state i now.

e If state i is recurrent, then 3", (P");; = co.
e If state i is transient, then Y, o (P");; < oo.

Proof: Observe that 3> ; (P");; = E [Number visits to state i].

To see this, note that if N is the number of visits to state i, then we can write
N211+12+]3+'-' ,

where [, is an indicator r.v. which equals 1 if we’re in state i at the nth time step.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

488 26 Discrete-Time Markov Chains: Infinite-State

Thus:
E[N]=E[L]|+E[L]+E[:]+--- (Linearity of Expectation)

= (P1), (), + (%), -
= i (P")ii -
n=0

Finally, by Theorem 26.4, for a recurrent state E [N] = co, while for a transient
one, E [N] < oo. [|

Theorem 26.6 (Recurrence class property) If state i is recurrent and i com-
municates with j, (written i «— j), then j is recurrent.

We start with the intuition for Theorem 26.6. Consider Figure 26.6. We know that
we come back to i infinitely many times. By the definition of “communicates,”
every time we are in i, we have some probability of taking the road to j, and
once we are in j, we have some probability of taking the road to i. So, for every
visit to i, there’s some non-zero probability that we’ll also visit j. Therefore the
number of visits to j is proportional to the number of visits to i. Because the
number of visits to 7 is infinite, so is the number of visits to j.

Road to j

Always come back

Road to i

Figure 26.6 Proof of Theorem 26.6.
Now for the formal proof.

Proof: We know that i communicates with j. Thus, there exists an m such
that (P™);; > 0 and there exists n such that (P");; > 0. We also know that
Yiero (P%);; = oo, because state i is recurrent.

What we want to show is that 37> (P’)jj = 0.

Now

[ee]

(P);; > D (P (26.2)
=0 s=0

t s

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

26.5 Recurrent versus Transient: Will the Fish Return to Shore? 489

since the left-hand side of (26.2) considers all j-to-j paths, while the right-hand
side considers only those of length at least m + n.

We can now further constrain our j-to-j paths by insisting that we must use the
first m steps of our path to go from j to i and the last n steps to go from i to j.
Specifically:

[Se]

4 (Pt)jj

\%

D 1D

(Pm+s+n)jj
t

2 (P™)j; (P*);; (P"),;

1l
(=]

S

(P™);; (P");; Z (P*);; (pulling out positive constants)
s=0

00 (because state i is recurrent).

We have thus proven that state j is recurrent. |

Theorem 26.7 (Transience class property) If state i is transient and i com-
municates with j, (i < j), then j is transient.

Proof: This follows directly from the previous Theorem 26.6. Suppose by contra-
diction that state j is recurrent. Then because j and i communicate, i is recurrent
as well, which is a contradiction to the assumption.]

We have thus seen that in an irreducible Markov chain, either all states are
transient, or all are recurrent!

Theorem 26.8 For a transient Markov chain,

n—o00

Hence, the limiting distribution does not exist.

Proof: As we have seen, in a transient Markov chain there is some point after
which we never visit state j again. So the probability of being in state j after n
steps is zero as n — oo, that is,

n—oo

and this holds for every state j.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

490 26 Discrete-Time Markov Chains: Infinite-State

Now
Z 7rj =0
j=0

because the sum of a countable number of 0’s is still 0. Thus the limiting
distribution does not exist. [

Theorem 26.9 For Markov chains where the limiting probabilities are all zero,
no stationary distribution exists.

Proof: The fact that no stationary distribution exists follows from an argument
similar to that in the proof of Theorem 26.1. For details, see [35]. [|

26.6 Infinite Random Walk Example

It’s not so obvious how to argue whether a chain is transient or recurrent. The
following example illustrates how this is done.

Consider the random walk shown in Figure 26.7, where at each step a gambler
either gains a dollar (with probability p) or loses a dollar (with probability
q =1 - p). We’d like to determine whether the chain is transient or recurrent.

p p p p p p
q q q q q q

Figure 26.7 Gambler’s walk.

Because all states communicate, it follows from Theorems 26.6 and 26.7 that
either all states are transient or all are recurrent. Hence to determine whether the
chain is recurrent or transient, it suffices to look at state 0.

To determine whether state O is transient or recurrent, we invoke Theorem 26.5.
Let

(]
V= Z (P")oo
n=1
denote the expected number of visits to state 0. If V is finite, then state O is

transient. Otherwise it is recurrent.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

26.6 Infinite Random Walk Example 491

Since one cannot get from 0 to 0 in an odd number of steps, it follows that

V= i (P")go = i (Pzn)oo - i (znn)pnqn' (26.3)
n=1 n=1

n=1

We now simplify this equation using Lavrov’s lemma.

Lemma 26.10 (Due to Misha Lavrov) Forn > 1,
4n 2n
<
2n+1

) < 4", (26.4)
n

Proof: By simple binomial expansion,

2n m
Z(k)=(1+1)2"=22"=4".
k=0

Since (2;) is the largest term in the sum, it follows that it is bigger than the
average term, 4" /(2n + 1). However, it is also smaller than the total sum, 4. m

Substituting (26.4) into (26.3), we get that

- 4" n_n - n_n_n
;2n+1pq <V<n2=;4pq. (26.5)

If we substitute p = g = % into the left-hand side of (26.5), we get that

[ee)

4n 1 1
V>Zzn+1'4_n_;2n+1_°°' (26.6)

If instead we assume p # g and consider the right-hand side of (26.5), we get
that

V< Z(4pq)" <o (sincedpg <1). (26.7)

n=1

Thus by (26.6) and (26.7) we see that V = 3, | (P") is infinite if and only if
p= % So the chain is recurrent if and only if p = %

We have thus proven Theorem 26.11.

Theorem 26.11 The Gambler’s walk shown in Figure 26.7 is recurrent only
when p = % and is transient otherwise.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

492 26 Discrete-Time Markov Chains: Infinite-State

26.7 Back to the Three Chains and the Ergodicity Question

Let’s return to the three infinite-state chains in Figure 26.4, repeated in Fig-
ure 26.8:

04 04 04 04

0.6 0.6 0.6 0.6

(a) Positive recurrent chain

0.6 0.6 0.6 0.6

04 04 04 04

(b) Transient chain

0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5

(c) Null-recurrent chain

Figure 26.8 Three chains of Figure 26.4.

26.7.1 Figure 26.8(a) is Recurrent

From what we’ve learned, chain (a) is recurrent, simply by virtue of the fact that
we know that it has a stationary distribution (recall from Theorem 26.9 that, for
a transient chain, no stationary distribution exists).

26.7.2 Figure 26.8(b) is Transient

Chain (b) is transient. Intuitively, imagine that j is very high. If you’re in state j,
the world looks very much like a 2D-infinite Gambler’s walk where the drift goes
to the right. However, this is not a formal proof of transience. Theorem 26.12
provides a proof by precisely relating chain (b) to the two-way Gambler’s walk.

Theorem 26.12 Chain (b) in Figure 26.8 is transient.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

26.7 Back to the Three Chains and the Ergodicity Question 493

Proof: [This cute proof is due to Misha Ivkov.] The proof relies on looking at
two other chains which we have already analyzed, shown in Figure 26.9.

04 0.4 04 04

(b”) Two-way transient chain

04 04 04

(b””) Recurrent chain

Figure 26.9 Some helper chains for proving Theorem 26.12.

We define a few quantities:
fo = P {return to 0 in chain (b)}
fy =P {return to 0 in chain (b")}
fy/ =P {return to 0 in chain (b"’)}
fij = P {eventually visit j, given currently in i in chain (b)}
fl’j = P {eventually visit j, given currently in i in chain (b")}

f{} =P {eventually visit j, given currently in i in chain (b")} .
To show that chain (b) is transient, it suffices to show that fy < 1. By conditioning

we have:

fo=(04)-1+(0.6) - fio. (26.8)

Now observe that

fio = fo- (26.9)

This is due to the fact that chain (b") looks identical to chain (b) except for
the states to the left of state 0; however, those states left of O don’t matter in
computing fio or f],. Substituting (26.9) into (26.8) we have:

fo=(04)-1+(0.6) - f,. (26.10)

Now observe that

flo < 1. (26.11)

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

494 26 Discrete-Time Markov Chains: Infinite-State

Equation (26.11) follows from this series of equations:

1> fo’ because chain (b") is transient
=(04) - f1,,+(0.6) - f{, by conditioning
=(0.4) - 7, +(0.6) - f, whats right of state 0 doesn’t matter
=(04)-1+(0.6)- f{, because (b”) is recurrent

Thus 0.6 > (0.6) - f/,, and hence f], < 1.

Combining (26.11) and (26.10), we have:
fo=(04)-1+(0.6) - f{, < (0.4)-1+(0.6)1 =1. [|

26.7.3 Figure 26.8(c) is Recurrent

Chain (c) is recurrent. This follows from the fact that f;, the probability of
returning to state 0, is at least as high in chain (c¢) as in the Gambler’s walk of
Figure 26.7 with p = 0.5, and we’ve shown that fy = 1 for the Gambler’s walk
with p = 0.5.

Question: Given that chain (c) is recurrent, does this mean that the limiting
distribution exists for this third chain? If so, what is it?

Answer: Although this chain (c) is recurrent, and irreducible and aperiodic, it
turns out that these are not enough to guarantee the existence of the limiting
distribution. To see why, we turn to Theorem 26.13, known as the Ergodic
Theorem of Markov Chains.

26.8 Why Recurrence Is Not Enough

Theorem 26.13 (Ergodic Theorem of Markov Chains) Given a recurrent,
aperiodic, irreducible DTMC, nj = lim,_,. (P"); | exists and
1
Tj=—"7, A4 _] .
i

The Ergodic Theorem of Markov Chains is saying the same thing that we saw in
Theorem 25.12, about 7; being the reciprocal of m ;. However, those theorems
were restricted to finite-state chains. The fact that we now allow for infinite-state
chains makes the proof much more technical than for the case of a finite number
of states, and we refer the reader to [35, section 9.10].

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

26.8 Why Recurrence Is Not Enough 495

Question: The Ergodic Theorem (Theorem 26.13) seems to suggest that recur-
rent + aperiodic + irreducible suffices for the limiting distribution to exist. What’s
wrong with this?

Answer: There’s an important distinction. While 7 exists, it is not necessarily
positive. We're told that

but m; can be infinite!

In the case of a finite irreducible chain, we were guaranteed that m; is finite, but
that’s not necessarily true for an infinite state chain. In particular for the chain
in Figure 26.8(c), Theorem 26.14 shows that m;; = co for all states j. Hence
the limiting probability of being in state j exists, but is zero. Consequently, the
limiting distribution does not exist (since a countable number of 0’s can’t sum to
1). Furthermore, by Theorem 26.9 no stationary distribution exists for this chain
either.

Theorem 26.14 For chain (c) in Figure 26.8, m;; = oo, for all states j.

Proof: We show that mgg = co. Suppose by contradiction that mqy is finite.

Observe that
1 1
=1+--0+—" .
moo + 5 + 7 mio

Thus, given that mgy is finite, it must also be the case that m g is finite. Now
observe that

1
'0+§'WI20

- (ma1 + myp)

But the only way that
mio = 1+m 10
is if m¢ = oo, which is a contradiction. Hence,

mop = ©0.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

496 26 Discrete-Time Markov Chains: Infinite-State

The argument is very similar to show that m;; = co, where j > 1, and we leave
it as Exercise 26.12. |

We have seen that while chains (a) and (c) in Figure 26.4 are both recurrent, they
differ in the mean time to return to a state.

Definition 26.15 Recurrent Markov chains fall into two types: positive recur-
rent and null recurrent. In a positive-recurrent MC, the mean time between
recurrences (returning to the same state) is finite. In a null-recurrent MC, the
mean time between recurrences is infinite.

Both positive recurrence and null recurrence are class properties.

Theorem 26.16 (More class properties) If state i is positive recurrent and
i <« J, then j is positive recurrent. If state i is null recurrent and i «—— j,
then j is null recurrent.

Proof: See Exercise 26.23. []

26.9 Ergodicity for Infinite-State Chains

Definition 26.17 An ergodic DTMC is one that has all three desirable prop-
erties: aperiodicity, irreducibility, and positive recurrence.

Theorem 26.18 For an ergodic DTMC, the limiting distribution exists.

Proof: By Theorem 26.13, the limiting probabilities (the r;’s) exist. By positive
recurrence, they are all positive. All that remains is to show that >, ; 7; = 1. To
see this, recall p ;, the time-average fraction of time that the chain spends in state
J. We proved in Section 25.6 that, for finite-state irreducible, aperiodic chains,

1
pj=— wp.l

mjj
This was proven via invoking the Strong Law of Large Numbers (SLLN).
Question: What was the one thing needed for SLLN to hold?

Answer: We needed the mean time between renewals, m ;, to be finite.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

26.9 Ergodicity for Infinite-State Chains 497

For the case of infinite-state DTMCs, the same argument as in Section 25.6 goes
through, provided that m; is finite, which it is for a positive recurrent chain.

Now, observe that

ZPJ: 1,

Jj=0

since a random walk must be in some state at all time steps, so the fraction of
time it spends in each state must total to 1. Hence, since

1

it also follows that

Z”J’ZI-]

Jj=0

Remark: For a finite-state DTMC, positive recurrence is a consequence of
irreducibility. This fact was proven in Exercise 25.19. Hence, for finite-state
chains, aperiodicity and irreducibility suffice for ergodicity.

To summarize, infinite-state DTMCs are much more complicated than finite-state
DTMCs because positive recurrence is required for the limiting distribution (and
stationary distribution) to exist and we don’t always have positive recurrence.
Fortunately, as explained in the Theorem 26.19 and the associated Remark, we
never need to check for positive recurrence.

Theorem 26.19 (Summary theorem) An irreducible, aperiodic DTMC be-
longs to one of the following two classes:

Either:

(i) All the states are transient, or all are null recurrent. In this case nj =
limy, 0 (P™); = 0, Vj, and there does not exist a limiting distribution or
a stationary distribution.

Or:

(ii) All states are positive recurrent. Then the limiting distribution © =
(7o, 1, M2, . .) exists, and there is a positive probability of being in each
state. Here,

n—oo

is the limiting probability of being in state j. In this case 7t is a stationary
distribution, and no other stationary distribution exists. Also, n; = mL
JJ

where m; is the mean number of steps between visits to state j.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

498 26 Discrete-Time Markov Chains: Infinite-State

Proof: We know by Theorems 26.16 and 26.7 that transience, null recurrence, and
positive recurrence are class properties, meaning that in an irreducible Markov
chain all the states are of the same one type.

If all states are transient, then by Theorem 26.8, the limiting probabilities are all
zero and no limiting distribution exists. Further, by Theorem 26.9, no stationary
distribution exists.

If all states are null recurrent, then by Theorem 26.13, all the limiting probabilities
are zero, so they can’t add up to 1, hence no limiting distribution exists. Also,
again by Theorem 26.9, no stationary distribution exists.

If all states are positive recurrent, then by Theorem 26.18, the limiting distribution
exists. Finally, by Theorem 26.1, when the limiting distribution exists, it is equal
to the unique stationary distribution. |

Important Remark: What is nice about Theorem 26.19 is that it tells us that
we never have to actually determine whether our DTMC is positive recurrent.
It suffices to simply check for irreducibility and aperiodicity and then solve the
stationary equations. If these stationary equations yield a distribution, then that
distribution is also the limiting probability distribution.

26.10 Exercises

26.1 Irreducibility, aperiodicity, and positive recurrence
For each of the following transition matrices: (i) Is the DTMC irreducible?
(i1) Is it aperiodic? (iii) Is it positive recurrent? [Note: If the period is not
defined, then the chain is not aperiodic.]
) 0
(d) (0
1

010
(a) (b)(0 0 1) (c)
1 00

26.2 Time to empty
Consider a router where, at each time step, the number of packets increases
by 1 with probability 0.4 and decreases by 1 with probability 0.6. How
long does it take for the router to empty? The Markov chain depicting the
number of packets is shown in Figure 26.10. Let 77 o denote the time to
get from state 1 to state 0. (a) Compute E [T} o]. (b) Compute Var(T} o).

—_ Oh|—
S Ok~
O ==
OR——
ORIl O©
— O WI
[B
SO O
~—~—

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

26.10 Exercises 499

[Hint: The variance computation is a little tricky. Be careful not to lump
together distinct random variables.]

04 04 04 04 04

0.6 0.6 0.6 0.6 0.6

Figure 26.10 Number of packets at router.

26.3 Time to empty — extra strength
Consider the same setup as in Exercise 26.2. Let T, o denote the time to get
from state 7 to state 0. (a) Compute E [T},]. (b) Compute Var(T,,).

26.4 Gambling game
Dafna starts out with zero dollars. Every day she gains a dollar with
probability p, stays put with probability s, or loses all her money (goes
broke) with probability b, where p + s + b = 1. Dafna plays the game
forever. Use a DTMC to determine the stationary probability that Dafna
has i dollars. What happens to your stationary probability when s = 0?
What is Dafna’s long-run expected money (for any general s)?

26.5 Reviewing the definitions

For the DTMC shown in Figure 26.11, circle all the statements that are
true. Provide a one-line explanation for every item that you circled.

0.5 . . 0.5

0.5

Figure 26.11 Chain for Exercise 26.5.

(a) The chain is null recurrent.
(b) The chain is positive recurrent.
(c) The chain is time-reversible.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

500 26 Discrete-Time Markov Chains: Infinite-State

(d) 2oy (P™)g is finite.

(e) The chain is irreducible.

(f) The chain is aperiodic.

(g) There are an infinite number of stationary distributions .

(i) Tim,_e 222 =,

(j) The chain is ergodic.

(k) moo = 0.

(1) The limiting distribution exists.
(m) fo < 1.

() (P?)gy =27,

Glossary:

P is the transition probability matrix

fj = probability that we ever return to state j given that we start in state j.
N (t) = number of visits to state j by time 7.

m ; = mean number of time steps to return to j given we're in state j.

26.6 Equivalent definitions
Given an ergodic DTMC with transition matrix P, make as few equiva-
lence classes as you can out of the expressions below. For example, your
answer might be:

a=b=d=i=j; c=g="h e; f=j.

(@) limy— e (Pn)jj

() -

© 7

(d) 7,

(e) 2:;0 (Pn)jj

(B) T+ 2gej Pjkc - mi;
(&) 2k 7k Prj

(h) lim, o, 2

(1) lirnn—mo (Pn)kj

@ fi

Glossary:

P;; = (i, j)th entry of transition matrix P.

m; = mean number of time steps to return to j given we’re in state j.
n; = limiting probability of being in state ;.

pj = time-average fraction of time that chain spends in state j.

fj = probability that a chain starting in state j ever returns to state j.
N (t) = number of visits to state j by time 7.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

26.10 Exercises 501

26.7 A positive recurrent chain
Recall the chain in Figure 26.12 that we’ve seen many times before.

04 04 04 04

0.6 0.6 0.6 0.6

Figure 26.12 Chain for Exercise 26.7.

(a) Use Theorem 26.19 to explain how we know that the chain is positive
recurrent.

(b) Derive mgg via conditioning on the next step. Then use a theorem to
explain why your answer makes sense.

26.8 Stationary but not limiting
We’ve seen several examples of finite-state DTMCs for which the station-
ary distribution exists, but the limiting distribution does not. Provide an
example of an infinite-state, irreducible DTMC for which there is a unique
stationary distribution, but no limiting distribution exists. Solve for the
stationary distribution.

26.9 Expected time until k failures

This is a repeat of Exercise 4.18, where we want to derive the expected
number of minutes until there are k consecutive failures in a row, assum-
ing that a failure occurs independently every minute with probability p.
However, this time, solve the problem by finding the limiting probability
of some Markov chain. Include a picture of your Markov chain. [Hint: You
will have to think a bit to see how to convert from the limiting probabilities
of the Markov chain to what you really want.]

26.10 Threshold queue
Figure 26.13 depicts a “threshold queue” with integer parameter ¢.

0.2

0.6 0.6 0.6 04 04 04
04 XX
A g

04 04 04 0.6 0.6 0.6

Figure 26.13 For Exercise 26.10. Markov chain for threshold queue with t = 3.

When the number of jobs is < t, then the number of jobs decreases by 1
with probability 0.4 and increases by 1 with probability 0.6 at each time

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

502 26 Discrete-Time Markov Chains: Infinite-State

step. However, when the number of jobs increases to > t, then the reverse

is true and the number of jobs increases by 1 with probability 0.4 and

decreases by 1 with probability 0.6 at each time step.

(a) Derive the stationary probability distribution as a function of ¢, for
arbitrary threshold 7.

(b) Given that you have a stationary distribution, explain why it follows
that this distribution is the limiting distribution.

(¢c) Compute the mean number of jobs, E [V], as a function of ¢.

(d) What happens to E [N] when ¢ = 0? Does this answer make sense?

26.11 I am one with the chain
[Proposed by Misha Ivkov] For the two chains in Figure 26.14, determine if
each is positive recurrent, transient, or null recurrent. (Do not do anything
complicated — just look and make a simple argument.)

04 0.6 04 0.6

(b)
Figure 26.14 Markov chains for Exercise 26.11.
26.12 Finish proof of Theorem 26.14
Complete the proof of Theorem 26.14 in the chapter.
26.13 Deriving the mean time between visits

Consider the two DTMCs in Figure 26.15. For each chain, derive my,
the mean number of time steps between visits to state 0. If you claim that

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

26.10 Exercises 503

moo = oo, you need to prove it. If you claim that mgy < oo, you need to
specify what myy is.

Figure 26.15 Two chains for Exercise 26.13.

26.14 Walking in a winter wonderland
[Proposed by Misha Ivkov] Figure 26.16 shows an infinite binary tree
representing a DTMC, where p + g +r = 1. Label the layers where node
1 is layer 0, nodes 2 and 3 are layer 1, and nodes 2X through 2%+! — 1
comprise layer k.

Figure 26.16 Markov chain for Exercise 26.14.

(a) Under what conditions does the limiting distribution exist (explain)?
What is that limiting distribution? [Hint: It suffices to derive the

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

504 26 Discrete-Time Markov Chains: Infinite-State

following: (i) Express mp; in terms of 7;; (ii) Express 7541 in terms
of n;; (iii) Derive 7;.]
(b) What is the long-run expected layer?

26.15 Pricing model

You are the market maker for GOGO. You have no clue whether GOGO
stock will rise or fall, but you are obligated to buy or sell single shares
from customers at all times. However, you do get to set the share price. To
control the size of your position (number of shares of GOGO you own),
when you are long (that is, own) GOGO, you set the price so that with
probability p < % your next trade is a buy, and with probability g =1 —p
your next trade is a sell. In contrast, if you are short (that is, owe) GOGO,
you set the price so that with probability p your next trade is a sell, and
with probability g your next trade is a buy.

q q q 0.5 P p
p p 0.5 q q q

Figure 26.17 Bidirectional chain for pricing.

Your position is represented by the bidirectional chain in Figure 26.17.
A negative state indicates how many shares you owe, and a positive state
indicates how many shares you own.

(a) Given this pricing, what does your position tend to revert to?

(b) Derive the time-average fraction of time spent in each state.

(c) Why weren’t you asked to find the limiting probabilities?

(d) What is the expected (absolute value) size of your position?

26.16 Brownian motion
Brownian motion models the walk of a drunkard, as depicted by Fig-
ure 26.18. Assume that the drunkard starts in state 0 and makes one move
per day.

0.5 0.5 0.5 0.5 0.5 0.5

0.5 0.5 0.5 0.5 0.5 0.5

Figure 26.18 Brownian motion.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

26.10 Exercises 505

(a) Let Ty, denote the number of days it takes the drunkard to get from
state O to state n. What is E [TO,n] ? Prove it formally.
(b) Let Dy, denote the number of days until the drunkard first achieves
distance n from its origin (that is, the drunkard first hits either state
n or —n). Prove that E [DO,n] = n?. Provide any proof that you like.
The steps below are (optional) helping steps:
(i) Define D; ; to be the number of days until the drunkard first gets
to either state j or state —j, given that the drunkard starts in state
i. Argue that Do, = Do1+ D12+ Doz + -+ Dp_y1,.
(ii) Whatis E [Dg,;|? Derive E [D1,]. Derive E [D 3]. Do you see
a pattern?
(iii) Guess a formula for E [Di,m] and verify that your guess is
correct.
(iv) Returning to step (i), derive E [DO,n]-

26.17 Wandering around the Pittsburgh airport
[Proposed by Adrian Abedon] At the Pittsburgh international airport, each
of the terminals A, B, C, and D now have an infinite number of gates. A
weary traveler in the airport wanders the gates at random, starting from
the central hub (0). The traveler’s movement is modeled by the Markov
chain in Figure 26.19.

Figure 26.19 DTMC for Exercise 26.17.

(a) Find the stationary distribution 7 4;, 7 g;, Tci, Tpi, and mg.
(b) Find mg 42, the expected time for the traveler to get to their gate A2.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

506 26 Discrete-Time Markov Chains: Infinite-State

26.18 Gambler ruin problem
Imagine a gambler who is equally likely to win a dollar or to lose a dollar
every day (see Figure 26.20). The gambler starts out with i dollars. What
is P; ,,, the probability that he makes it to n dollars before going bankrupt?
[Hint: It helps to guess an expression for P; ,, in terms of Pj4q ,.]

%) %) %) %) %)
QUOL @ PO
%) Y %) %) Y
Figure 26.20 State i indicates that there are i more tails than heads.

26.19 Mouse in infinite maze

[Proposed by Misha Ivkov] A mouse is trapped in a maze with an infinite
number of layers. At each time step, with probability % the mouse de-
creases its layer by 1, and with probability % it increases its layer by 1, as
shown in Figure 26.21. The mouse can only escape from layer 0. Suppose
that we drop the mouse into this maze at a random layer > 1, where the
mouse is dropped at layer i with probability 21—1 Let T denote the number
of steps until the mouse escapes (gets to layer 0).

%] V! %) V%)
% % % %

Figure 26.21 Markov chain for Exercise 26.19, where the state represents the mouse’s
current layer.

(a) Derive the z-transform, f(z). It helps to define T in terms of 7;, where
T; is the time to escape when starting in layer i. Follow these steps:
(i) Start by deriving the z-transform of 77. [Hint: You will need to
use the fact that X (z) = 1 when z = 1 for any discrete r.v. X.]
(i1) Now derive the z-transform of 7; in terms of 7].
(iii) Finally derive the z-transform of 7' by conditioning on the starting
state i.
(b) Differentiate your answer to (a) to get E [T].

26.20 2D gambler’s walk
[Proposed by Weina Wang] A drunkard walks on the two-dimensional
plane depicted in Figure 26.22. Formally prove or disprove that this is a

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

26.10 Exercises 507

recurrent chain. You will need to make use of the following equations: !

S -0

k=0

[Hint: This will look a lot like Section 26.6. In expressing the V quantity, it
helps to use a single summation over k, rather than a double summation.]

Figure 26.22 Markov chain for Exercise 26.20.

26.21 Hellbound

[Proposed by Alec Sun] Every lifetime Iggy is reincarnated into either

heaven or hell. Since Iggy is a bad boy, reincarnations occur as follows:

— If Iggy is in heaven, then he will always be reincarnated into hell.

— If Iggy is in hell and has been in hell for j > 1 consecutive lifetimes
since last being in heaven, then with probability 0 < p; < 1 he is
reincarnated into heaven and with probability 1 — p; he is reincarnated
into hell.

Figure 26.23 depicts the infinite-state DTMC showing Iggy’s state:

(a) Is the DTMC in Figure 26.23 irreducible, assuming that every value

of p; satisfies 0 < p; < 1?7
' The equality is a special case of Vandermonde’s identity. The inequality can be derived from

Stirling’s approximation. See Section 1.5 for a discussion of both.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

508 26 Discrete-Time Markov Chains: Infinite-State

Figure 26.23 DTMC for Exercise 26.21.

(b) Let ¢ € (0,1) be a constant and suppose p; = ¢ forall j > 1. Is
our DTMC transient, positive recurrent, or null recurrent? Prove your
answer.

(c) Suppose p; = I—il for all j > 1. Is this DTMC transient, positive
recurrent, or null recurrent? Prove your answer. [Hint: It may be
easier to consider 1 — fj.]

(d) Suppose p; = 27/ for all j > 1. Is this DTMC transient, positive
recurrent, or null recurrent? Prove your answer. [Hint: Compute fj.]

26.22 Irreducible finite-state chains are positive recurrent ... again
This is a repeat of Exercise 25.19. Once again, you're being asked to prove
that in a finite-state, irreducible DTMC, all states are positive recurrent.
This time, follow these steps:
(a) First show that all states are recurrent.
(b) Now show that there exists at least one positive recurrent state.
(c) Now make use of Theorem 26.16 to finish the proof.

26.23 Proving that positive recurrence and null recurrence are class prop-
erties
Prove Theorem 26.16, which states that positive recurrence and null re-
currence are class properties. [Warning: This is a difficult exercise.]

26.24 Processor with failures
The DTMC in Figure 26.24 is used to model a processor with failures.
The chain tracks the number of jobs in the system. At any time step, either

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

26.10 Exercises 509

Figure 26.24 DTMC for processor with failures.

the number of jobs increases by 1 (with probability p), or decreases by

1 (with probability ¢), or a processor failure occurs (with probability r),

where p + g + r = 1. In the case of a processor failure, all jobs in the

system are lost. Derive the limiting probability, ;, of there being i jobs

in the system.

You will want to use the z-transform approach that you learned in Chap-

ter 6. Here are some steps to help remind you how this works:

(a) Write the balance equation for state 0. Now express 7} in terms of 7g.

(b) Write the balance equations for state i > 1.

(c) LetII(z) = Y2 miz'. Derive an expression for I1(z) in terms of .
You should get

Ty — Mo — zfl

(z) = ——2L.
2P _ 1
=y zq+1

(d) Rewrite I1(z) with its denominator factored into (1 - r%) (1 - i),

where 71 and r; are roots that you specify, where | < r».
(e) Determine my. You will need three steps:
(i) Explain why I1(z) is bounded for all 0 < z < 1.
(i1) Now show that 0 < r| < 1.
iii. We thus can conclude that f[(rl) < o0, Thus, since ry is a root of
the denominator of I1(z), it must also be a root of the numerator
of I1(z). Use this to get 7. [Note: Although you now have 7,
wait until the very end of the problem to substitute in this value.]
(f) Apply partial fraction decomposition to I1(z).
(g) T1(z) should now be very simple. Rewrite I1(z) as a geometric series.
(h) Match coefficients to get the x;’s.
(i) Verify that your solution for 7r; satisfies the balance equations.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

27 A Little Bit of Queueing
Theory

We have alluded to the fact that probability is useful in the performance analysis
and design of computer systems. Queueing theory is an area of applied probability
which directly targets systems performance. Here the “system” might refer to
a computer system, a call center, a healthcare system, a manufacturing system,
a banking system, or one of many other examples. Markov chains (particularly
continuous-time chains) are just one of many tools used in queueing theory. In
this final part of the book, we provide a very brief introduction to queueing
theory. For a much more in-depth coverage, see [35].

27.1 What Is Queueing Theory?

Queueing theory is the theory behind what happens when you have lots of
jobs, scarce resources, and subsequently long queues and delays. It is literally
the “theory of queues”: what makes queues appear, how to predict the queue
lengths, and how to improve system design by making the queues get shorter or
g0 away.

Imagine a computer system, say a web server, where there is only one job. The
job arrives, it uses certain resources (say some CPU, some I/O, some bandwidth),
and then it departs. If we know the job’s resource requirements, it is very easy to
predict exactly when the job will depart. There is no delay because there are no
queues. If every job indeed got to run in isolation on its own computer system,
there would be no need for queueing theory. Unfortunately, that is rarely the case.

Queueing theory applies anywhere that queues come up (see Figure 27.1). We
have all had the experience of waiting in line at the bank, wondering why there
are not more tellers, or waiting in line at the supermarket, wondering why the
express lane is for 8 items or less rather than 15 items or less, or whether it might
be best to actually have rwo express lanes, one for 8 items or less and the other for
15 items or less. Queues are also at the heart of any computer system. Your CPU
uses a time-sharing scheduler to serve a queue of jobs waiting for CPU time. A
computer disk serves a queue of jobs waiting to read or write blocks. A router
in a network serves a queue of packets waiting to be routed. The router queue is

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

27.2 A Single-Server Queue 511

Arriving >
customers

Server

Figure 27.1 [llustration of a queue, in which customers wait to be served, and a server.
The picture shows one customer being served at the server and five others waiting in the
queue.

a finite-capacity queue, in which packets are dropped when demand exceeds the
buffer space. Memory banks serve queues of threads requesting memory blocks.
Databases sometimes have lock queues, where transactions wait to acquire the
lock on a record. Server farms consist of many servers, each with its own queue
of jobs. Data centers often have a single central queue, where each job requests
some number of resources to run. The list of examples goes on and on.

The goals of a queueing theorist are three-fold. The first is predicting the system
performance. Typically this means predicting mean delay or delay variability or
the probability that delay exceeds some service level agreement (SLA). However,
it can also mean predicting the number of jobs that will be queueing or the mean
number of servers being utilized (e.g., total power needs), or any other such
metric. The second goal is capacity provisioning, namely determining how many
resources are needed to achieve certain performance goals. One might want to
provision to ensure that the system is stable, meaning that the queue lengths don’t
grow unboundedly. Or one might provision to ensure that certain SLAs are met.
The third goal is finding a superior system design to improve performance. This
often takes the form of a smarter scheduling policy or routing policy to reduce
delays.

27.2 A Single-Server Queue

Figure 27.2 illustrates a single-server queue. The circle represents the server.
One job can be served (worked on) at a time. New jobs arrive over time. If the
server is free, the arriving job is served immediately; otherwise, the job has to

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

512

27 A Little Bit of Queueing Theory

queue. Unless stated otherwise, we assume that the jobs queue in First-Come-
First-Served (FCFS) order.

A=3 —»---I.

FCFS u=4

Figure 27.2 Single-server queue. The height of the rectangle indicates the size of the job.

We formally define these quantities associated with the single-server queue:

Service order This is the order in which jobs (packets) will be served by the

server. Unless otherwise stated, assume FCFS.

Average arrival rate This is the average rate, A, at which jobs arrive to the

server. For example, 4 = 3 jobs/s, indicates that on average 3 jobs are
arriving every second. Of course, some seconds might see more than 3
jobs, and others might see fewer than 3 jobs.

Interarrival time, mean interarrival time It is common to imagine that the

times between arrivals are independent and identically distributed
(i.i.d.), where there is a random variable (r.v.), /, which represents the
time between successive job arrivals. In this case, E [/] would represent
the mean interarrival time.
Question: How can we think of E [/] in terms of what we’ve already
seen?

1

Answer: By definition, E [/] = 5. Thus, in our example, the mean

interarrival time would be % = % seconds. Note that we have not said

anything about what the distribution of the interarrival time looks like.
It might be Deterministic, meaning that exactly one job arrives every
% seconds, or it might be Exponential with rate 3, meaning that on
average the time between arrivals is % but it might be anywhere from 0

to infinity.

Service requirement, size It is common to assume that the sizes of jobs are

ii.d. and are denoted by the r.v. S. The size of a job is also called its
service requirement. S is expressed in units of time and denotes the time
it would take the job to run on this server if there were no other jobs
around (no queueing). Importantly, the size is typically associated with
the server.

Mean service time This is E [S], namely the average time required to serve a

job on this server, where again “service” does not include queueing time.
For example, we might have E [S] = 0.25 seconds.

Average service rate This is the average rate, u, at which jobs are served.

Question: How can we think of u in terms of what we’ve already seen?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

27.3 Kendall Notation 513

Answer: By definition, u = ﬁ = 4 jobs/s. Again, we have not said
anything about the job size distribution. S might follow a Deterministic
job size distribution, where every job has exactly size 0.25 seconds, or,
for example, a Pareto distribution, with mean 0.25 seconds.

Observe that this way of speaking is different from the way we normally talk
about servers in conversation. For example, nowhere have we mentioned the
absolute speed of the server; rather, we have only defined the server’s speed in
terms of the set of jobs that it is working on.

Imagine that the server is a CPU with a FCFS queue of jobs. In normal conver-
sation, we might say:

e The average arrival rate of jobs is 3 jobs per second.

e Jobs have different service requirements, but the average number of cycles
required by a job is 2,000 cycles per job.

e The CPU speed is 8,000 cycles per second.

e That is, an average of 6,000 cycles of work arrive at the CPU each second,
and the CPU can process 8,000 cycles of work per second.

In the queueing-theoretic way of talking, we would never mention the word
“cycle.” Instead, we would simply say:

o The average arrival rate of jobs is 3 jobs per second.
o The average rate at which the CPU can service jobs is 4 jobs per second.

This second way of speaking suppresses some of the detail and thus makes the
problem a little easier to think about. You should feel comfortable going back
and forth between the two.

27.3 Kendall Notation

In queueing theory there is a shorthand notation, called Kendall notation, which
is used to represent simple commonly seen queueing systems consisting of just
a single queue. Kendall notation is in no way expressive enough to represent
all queueing systems (in particular, it is not useful for representing systems
consisting of multiple queues, like networks), but it is still worth learning this
shorthand.

As we saw in the previous section, what’s most relevant is the distribution of the

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

514 27 A Little Bit of Queueing Theory

interarrival times of jobs and the distribution of the job sizes (service times). In
Kendall notation there are typically three slots. The first indicates the distribution
of the interarrival times; the second indicates the job size distribution; and the
third indicates the number of servers. So, for example, writing:

D /Pareto(a)/1

indicates that we’re talking about a single-server queue where the interarrival
times follow a Deterministic distribution and the job sizes follow a Pareto(a)
distribution. Likewise, the notation

M/M/1

indicates that we’re talking about a single-server queue where both the interarrival
times and the job sizes are Exponentially distributed; the letter M is reserved for
the Exponential distribution, and denotes the Markovian (memoryless) property
of that distribution.

One thing that we have not discussed is independence. Kendall notation typically
assumes (unless otherwise indicated) that the interarrival times are all indepen-
dent random variables drawn from some distribution, and likewise that the job
sizes are independent random variables drawn from some distribution, and that
there is no correlation between interarrival times and the job sizes.

We also have not discussed the scheduling policy. Kendall notation typically
assumes FCFS scheduling. If the service order is something other than FCFS,
such as Shortest-Job-First, that information is sometimes included in a fourth
slot. However we’ll see that the fourth slot can be used for other things as well,
such as indicating that the buffer capacity (number of jobs that can be in the
system) is limited.

Question: Recall that back in Section 26.2, we talked about a queue where time
was discretized. At each discrete time step, with probability p a packet (job)
arrived, and with probability g a packet (job) departed, if there was a packet
there. How can we represent such a system via Kendall notation?

Answer: Geometric(p)/Geometric(g)/1.

27.4 Common Performance Metrics

We consider these common performance metrics for queueing systems:

o Response time, time in system, 7: We define a job’s response time by

T= depart — Larrives

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

27.4 Common Performance Metrics 515

where Zgepare 1S the time when the job leaves the system, and Z,yive 1S the time
when the job arrived to the system. We are interested in E [T], the mean
response time; Var(7'), the variance in response time; and the tail behavior of
T,P{T > t}.

o Waiting time, delay, Tg: This is the time that the job spends in the queue, not
being served. It is also called the “time in queue” or the “wasted time.”

e Number of jobs in the system, N: The r.v. N includes those jobs in the
queues, plus any jobs in service.

e Number of jobs in queue, Ng: The r.v. Np denotes only the number of jobs
waiting (in queues).

Question: For a single-server queue, with FCFS service order, as in Figure 27.2,
what is the relationship between T and Tp?

Answer: In a single-server queue with FCFS service order, waiting time can be
defined as the time from when a job arrives to the system until it first receives
service. Here T =T + §.

27.4.1 Immediate Observations about the Single-Server Queue

There are some immediate observations that we can make about the single-
server queue. First, observe that as A, the mean arrival rate, increases, all the
performance metrics mentioned earlier increase (get worse). Also, as u, the mean
service rate, increases, all the performance metrics mentioned earlier decrease
(improve).

We require that 4 < u (we always assume A < p).
Question: If 2 > y what happens?

Answer: If 1 > y then it seems like the queue length grows over time. We refer to
this as instability. If the queue were represented by a Markov chain, this would
be a transient chain.

Question: Can you provide the intuition for why the number of jobs in the system
grows over time?

Answer: Consider a large time . Let N(¢) be the number of jobs in the system at
time ¢. Let A(f) (respectively, C(¢)) denote the number of arrivals (respectively,

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

516 27 A Little Bit of Queueing Theory

completions) by time . Then we have:
N(t) = A(r) - C(1)
E[N®] = E[A(D)] -E[C()]
At — ut
1(A-p)
— ocoast — oo (when A > pu).

\%

(The inequality comes from the fact that the expected number of departures by
time ¢ is actually smaller than ut, because the server is not always busy.)

Throughout this book, we assume A < u, which is needed for stability, which is
defined as keeping queue sizes from growing unboundedly with time. When we
later deal with networks of queues, we will also assume stability.

Question: Given the previous stability condition (1 < u), for a D/D/1 queue,
what is Tp? What is T?

Answer: Tp =0,and T = S.

Therefore queueing (waiting) results from variability in service time and/or inter-
arrival time distributions. Here is an example of how variability leads to queues:
Let’s discretize time. Suppose at each time step, an arrival occurs with probability
p = 1/6. Suppose at each time step, a departure occurs with probability g = 1/3.
Then there is a non-zero probability that the queue will build up (temporarily) if
several arrivals occur without a departure.

27.5 Another Metric: Throughput

We have already seen four performance metrics: E [N], E [T], E [NQ], and
E [TQ]. Now we introduce two new performance metrics: throughput and uti-
lization. Throughput is arguably the performance metric most used in conversa-
tion. Everyone wants higher throughput! Is higher throughput related to lower
response time? Let’s see.

Question: In Figure 27.3, which system has higher throughput?

Answer: You might be tempted to think that the top queue has higher throughput,
since its server is faster and thus jobs complete more quickly. While the top queue
does have lower mean response time, both queues have the same throughput.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

27.5 Another Metric: Throughput 517

VS.

A=3 —»

P ¥

Figure 27.3 Comparing throughput of two systems.

Definition 27.1 Throughput, denoted by X, is the long-run rate of job com-
pletions over time. We write:
X = lim @,
r—00 t

where C(t) denotes the number of completions by time t. Note that X is tradi-
tionally capitalized even though it’s not a random variable.

Question: What is the throughput, X, of the queues in Figure 27.3?

Answer: Both systems have the same throughput of X = A = 3 jobs/s. No matter
how high we make p, the completion rate is still bounded by the arrival rate:
“Rate in = Rate out.” Changing u affects the maximum possible X, but not the
actual X.

We now move on to understanding throughput for more complex systems.

27.5.1 Throughput for M /G [k

Figure 27.4 illustrates a k-server queueing system with a single shared queue.
Whenever a server is free, it picks the job at the head of the queue to work on;
if there is no job there, it sits idling until a job arrives. Because there is only
one queue, we can describe this with Kendall notation. For example, this might
be an M /G [k queue with arrival rate A jobs per second, where the M indicates
that the interarrival times are distributed as Exp(1). The G here denotes that job
sizes are i.i.d. following some general distribution, which we haven’t specified.
We use r.v. S to denote job size where the service rate at each server, u, is defined
tobe u = ﬁ Here there are k servers, and a single FCFS queue, where the

servers all pick their jobs from the same queue.

Question: What condition is needed to keep the system in Figure 27.4 stable?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

518 27 A Little Bit of Queueing Theory

k servers

PUPYY

Figure 27.4 A k-server queueing system.

Answer: To keep the queue from growing unboundedly, we need to ensure that
the total arrival rate of jobs into the system, 4, is less than the total rate at which
jobs can leave the system, ku. So we want A < ku.

Question: What is the throughput of the system in Figure 27.47

Answer: Assuming a stable system, what comes in all goes out, so the completion
rate is the arrival rate, namely X = A.

In today’s data centers, it is commonly the case that a job occupies multiple
servers simultaneously rather than just occupying a single server. Exercise 27.7
examines how the above answers change in these multi-server job settings.

27.5.2 Throughput for Network of Queues with Probabilistic
Routing

Figure 27.5 shows a network of queues. Here, server i receives external arrivals
(“outside arrivals”) with average rate r;. However, server i also receives internal
arrivals from some of the other servers. A job that leaves server i next goes to
server j with probability P;;. Server i processes jobs with average rate y;.

Note that we have not said anything about the distribution of the interarrival
times or the service times, but that won’t matter for questions of stability or
throughput.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

27.5 Another Metric: Throughput 519

Server 2

ry —» @DT’ PZ,()ul

P12 P23
Server 1 Server 3
Pi3 L,
Iy — U > Us
[§
l P
Pl,out r3

Figure 27.5 Network of queues with probabilistic routing.

Question: Assuming that the system is stable, what is the system throughput, X
in Figure 27.5?

Answer: All jobs that arrive will also leave, so the rate of departures is the total
rate of arrivals, namely: X = }; r;.

Question: What is the throughput at server 7, X;?

Answer: X; is the rate of completions at server i. Let A; denote the fotal arrival
rate into server i (including both external and internal arrivals). Then X; = A;.
But to get A; we need to solve these simultaneous equations:

/li:ri"'z/ljpji- (271)
J

Here, r; denotes the rate of outside arrivals into server i, while A ;P ; denotes the
rate of internal arrivals into server 7 from server j. Note that A; here represents
the total departure rate from server j (which is equal to the total arrival rate into
server j).

Question: How are the r;’s constrained in these equations?

Answer: To maintain stability, we must have A; < y;, Vi, and this constrains the
r;’s (see Exercise 27.8).

27.5.3 Throughput for Network of Queues with Deterministic
Routing

In the queueing network in Figure 27.6, all jobs follow a predetermined route:
CPU to disk 1 to disk 2 to disk 1 to disk 2 to disk 1 and then out.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

520 27 A Little Bit of Queueing Theory

CPU Disk 1

i O

. 2 x around
Disk 2 (Disk 1,2,1,2,1)

Figure 27.6 Network of queues with non-probabilistic routing.

Question: What is X in Figure 27.6?
Answer: X = A.
Question: What are Xp;q and Xpigo?

Answer: XDiskl =31 and XDiskZ =2A.

27.5.4 Throughput for Finite Buffer

The queue in Figure 27.7 has finite capacity. The outside arrival rate is A and the
service rate is y. Any arrival that finds no room is dropped.

IO

Space for 10
jobs total

Figure 27.7 Single-server network with finite buffer capacity.

Question: What is X?

Answer: Here, X < A because not all arrivals are admitted. The exact formula
is X = A - P {job is admitted}.

27.6 Utilization

When we talk about “utilization,” we’re almost always talking about the utiliza-
tion of a single device (think single server), which we call “device utilization.”

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

27.7 Introduction to Little’s Law 521

Definition 27.2 The device utilization, denoted by p, is the long-run fraction
of time the device is busy. This is also called the device load.

Think about watching the device for a long period of time, ¢. Let B(¢) denote the
total time during the observation period that the device is non-idle (busy). Then
B(1)

p = lim —=
t—o00 t

Question: Looking at the two queues in Figure 27.3, what do you think p is for
each server?

Answer: Intuitively it seems that p = % = % for the top server, while p = % for
the bottom one. For example, for the bottom queue we imagine that there are 3
jobs coming in per second, and each occupies the server for ‘—ll second on average,
so the server is occupied for % fraction of each second. This is NOT a proof! In
Section 27.11, we will formally prove that

p=— (27.2)
u

in the case of a single-server queue with arrival rate A and service rate .

Although utilization almost always refers to a single device, if all the devices in
a system are homogeneous and receive stochastically the same arrivals, then we
often define the system load to be the same as a single server load.

For example, in the M /G [k of Figure 27.4, we would say:

system load = i (27.3)
ku
To see this, observe that, by symmetry, an individual server receives % of the
arrivals, on average, so its arrival rate is % and its service rate is y, leading to a
server utilization of 2K = ﬁ The case where a job occupies multiple servers is
not much more complicated, see Exercise 27.7.

27.7 Introduction to Little’s Law

Thus far, we have not discussed how one can determine the response time in a
queueing system. One way in which this is done is to first represent the queueing
system via a Markov chain. Then we solve for the stationary distribution of the
Markov chain, which gives us E [/N], the mean number of jobs in the system.
‘We then use a beautiful theorem, called Little’s Law, which allows us to convert

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

522 27 A Little Bit of Queueing Theory

from E [N] to E [T'], the mean response time. The purpose of this section is to
present and prove Little’s Law.

As a side note: Not all queueing systems can be represented easily as Markov
chains. The

Geometric(p)/Geometric(g)/1

queue forms a nice discrete-time Markov chain (DTMC), because the Geometric
distribution is memoryless. Likewise, the M /M /1 queue (for the same reason
of memorylessness) can be represented by a Markov chain, but this time a
continuous-time Markov chain (CTMC) is required. However, what do we do
when the interarrival times or service times are not memoryless? It turns out that
one can usually approximate general distributions by mixtures of memoryless
distributions, see [35, chpt. 21]. This ends up being very convenient for modeling
queueing systems via Markov chains. On the other hand, there are also many
techniques for getting to E [T'] without going through a Markov chain.

Little’s Law does more than relate E [N] to E [T]. It provides a formal law for
obtaining an average by dividing two averages, a trick that has many applications!
One important application of Little’s Law is that it allows us to prove the formula
for device utilization (p = ﬁ) that we saw in (27.2).

One of the reasons that Little’s Law is so powerful is that it holds for any
ergodic queueing system, no matter how complex, no matter how many queues,
no matter what routing between the queues, no matter what service order within
each queue, etc.

Question: What do we mean when we talk about an “ergodic system”?

Answer: Recall that for a Markov chain, we said that the Markov chain is
ergodic if it is (1) irreducible, (2) aperiodic, and (3) positive recurrent. These
ergodicity properties were sufficient to ensure that the time-averages were equal
to their ensemble-average counterparts with probability 1. Even if we’re not
explicitly talking about a Markov chain, the same points apply. Generally, any
“well-behaved” system is ergodic. By “well-behaved” we mean that the system
is stable, in that queue lengths do not grow to infinity, and that the mean time
between the system emptying is finite (as in positive recurrent).

27.8 Intuitions for Little’s Law

Before we state Little’s Law, it is worth trying to guess what it might say on
your own. It should seem intuitive that E [T'] and E [N] are proportional. For
example, a fast-food restaurant gets people out fast (low E [T]) and also does not

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

27.8 Intuitions for Little’s Law 523

require much waiting room (low E [N]). By contrast, a slow-service restaurant
gets people out slowly (high E [T]) and therefore needs a lot more seating room
(high E [N]). Thus it seems that E [T] should be directly proportional to E [N].

Let’s see if you can “guess” what it might be, by just looking at a single-server
queue. Figure 27.8 shows an illustration of a single-server queue with outside
arrival rate A jobs/s, and mean job size E [S] = %l seconds/job.

A=3 —»---I.

FCFS u=4

Figure 27.8 Single-server queue. The height of the rectangle indicates the size of the job.

Question: Suppose we know the mean number of jobs in this system, E [N]. Is
there a way to convert that to the mean response time, E [T]?

Here’s a (WRONG) attempt: Let’s think of E [T'] as adding up the work in the
system as seen by an arrival, where §; denotes the size of the ith job, maybe
something like:

E[T] =E[N]-E[S].

Intuitively the above attempt seems right because an arrival sees E [N] jobs, and
each of these requires E [S] service time. However, it is WRONG for several
reasons. First of all, N and S are not independent. Second, we’re not taking into
account the remaining service time on the job in service; remember that the job
in service is typically partially complete. Third, this logic in no way generalizes
to larger systems with many queues and servers.

The correct answer is:
E[N]

E[T] = ——. (27.4)

Question: Can you explain intuitively why (27.4) makes sense for a single-server
queue?

Answer: Think about a single FCFS queue, as shown in Figure 27.8. From a
time-average perspective suppose that there are E [N] jobs in the system. Now
observe that, on average,

1
E [Time between completions] = T

not 1/u, because the average rate of completions is X = A (note that 1/ is

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

524 27 A Little Bit of Queueing Theory

larger than 1/u). Hence, intuitively, the expected time until the customer leaves
isE[T] = % - E [N]. This is NOT a proof, only intuition. Theorem 27.3 will
give us a proof, and that proof will hold for any network of queues.

27.9 Statement of Little’s Law

Theorem 27.3 (Little’s Law) For any ergodic system (including arbitrarily
complex networks of queues) we have that:

E[N] = AE[T], (27.5)

where E [N] is the expected number of jobs in the system, A is the average
arrival rate into the system, and E [T] is the mean time jobs spend in the
system.

Arrivals (rate 1) Departures

‘4—— Time in system, 7 —»:

Figure 27.9 Little’s Law is extremely general.

It is important to note that Little’s Law makes no assumptions about the arrival
process, the number of servers or queues, the service time distributions at the
servers, the network topology, the service order, or anything! Also, since any
portion of a queueing network is still a queueing network, Little’s Law will apply
to that portion as well.

Observe that, because we’re considering ergodic systems, every job that arrives
will complete in finite time (the mean time until the whole system empties is
finite), so we know that

A=X
in Figure 27.9. Here,

/l:limM and X = lim &,

t—oo f t—oo f

where A(¢) is the number of arrivals by time ¢ and C(¢) is the number of system
completions (departures) by time 7.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

27.10 Proof of Little’s Law 525

Restatement via Time Averages

Theorem 27.4 is a restatement of Little’s Law in terms of time averages. This is
the version that we’ll actually be proving.

Theorem 27.4 (Little’s Law restated) Given any system, let M (s) denote the
number of jobs in the system at time s. Let T; denote the response time of the
ith arriving job.

t A(t)
NTime Avg — i f() M(s)ds and TTime Avg — B Zi:l Tl
t—00 t t—o00 A(t)
For any system where the above limits exist and where A = X, then,
NTime Avg - 1. TTime Avg‘ (276)

Observe that Little’s Law as stated in Theorem 27.4 is an equality between time
averages on a single sample path, while Little’s Law from Theorem 27.3 is an
equality between ensemble averages.

Question: Does Theorem 27.4 imply Theorem 27.3?

Answer: Yes! Theorem 27.3 assumes ergodicity, which subsumes the assumption
that 2 = X, which is needed in Theorem 27.4.! As we’ve seen in Chapters 25
and 26, if we have an ergodic system then the time average equals the ensemble
average with probability 1. So proving that the time-average equality (27.6) holds
suffices to guarantee that the ensemble averages are equal too. The reason we
need the stronger assumption of ergodicity in Theorem 27.3 is just to make sure
that the ensemble averages exist. Thus, assuming ergodicity, we can apply Little’s
Law in an ensemble average sense, which is what we do.

27.10 Proof of Little’s Law

We are now ready to prove Little’s Law.

Proof: [Theorem 27.4] Let T; denote the time that the ith arrival to the system
spends in the system, as shown in Figure 27.10. Thus the rectangle 7; marks the
time from when the first job arrives until it completes (this includes time that the
job is being served and time that it spends waiting in various queues).

' Ergodicity says that the mean time between empties is finite, so clearly every job completes in
finite time, so the long-run rate of arrivals and completions converge.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

526 27 A Little Bit of Queueing Theory

Now, for any time ¢, consider the area, A, contained within all the rectangles in
Figure 27.10, up to time ¢ (this includes most of the rectangle labeled 7).

The key idea in proving Little’s Law is that this area A is the same, whether we
view it by summing horizontally or by summing vertically. We will first view
A by summing horizontally, and then, equivalently, view it again by summing
vertically.

» Time

Arrival Departure t
Istjob 1stjob

Figure 27.10 Graph of arrivals.

The horizontal view consists of summing up the 7;’s as follows: We observe that

where Zf’;(lt) T; denotes the sum of the time in system of those jobs that have

completed by time ¢, and Z?:(lt) T; denotes the sum of the time in system of those
jobs that have arrived by time ¢ (a slight abuse of notation).

The vertical view of A adds up the number of jobs in the system at any moment
in time, M (s), where s ranges from O to 7. Thus,

A = ‘/Ot M(s)ds.

Combining these two views, we have
C(1) A(t)

;Tis/() M(s)ds <)" T;.

Dividing by ¢ throughout, we get:

t
STy M$ds AT
t - t - t

b

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

27.11 Important Corollaries of Little’s Law 527

or, equivalently,

ST Ji M(s)ds _ T A
C(1) T t T A® t

Taking limits as t — oo,

Zc_(t) T; C(t —Time Av, ZA_(I) T; At

im 2L iy SO T gy 2l g, AD)

t—00 C(t) t—oo t—00 A(l’) t—oo f
—Time Avg

—Time Av —Time Av;
g <T g

=T X<N A.

Yet we are given that X and A are equal. Therefore,

—Time Avg —Time Avg
N =A- .

A-T

Question: Are we assuming FCFS service order in this argument?

Answer: No, this argument does not depend on service order. Observe that the
second arrival departs after the third arrival departs.

Question: Are we assuming anywhere that this is a single-server system?

Answer: No, this argument holds for any system. In fact, Little’s Law can also
be applied to any part of a system, so long as that part is well behaved (ergodic).
We’ll see this in Example 27.8.

C (1) A(t)
A final remark on the proof: The proof assumes lim;_,q C‘%;) = lim; ﬁ.

To see why, observe that the difference in the numerators is just the total work in
the system at time ¢, which is finite, whereas the denominators grow with time.
Thus the difference disappears in the limit as t — oo.

27.11 Important Corollaries of Little’s Law

Corollary 27.5 (Little’s Law for time in queue) Given any system where
—Time Avg —Time Avg

0 , TQ , A, and X exist and where A = X, then
—Time Avg —Time Avg

where Ng represents the number of jobs in the queues in the system and Tgo
represents the time jobs spend in queues.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

528 27 A Little Bit of Queueing Theory

Question: How would you prove Corollary 27.5?

Answer: Same proof as for Theorem 27.4, except that now instead of drawing
T;, we draw Tg), namely the time the ith arrival to the system spends in queues

(wasted time). Note that T may not be a solid rectangle. It may be made up
of several rectangles because the ith job might be in a queue for a while, then in
service, then waiting in some other queue, then in service again, etc.

Corollary 27.6 (Utilization Law) Consider a single device i with its own
queue, possibly within a network of queues. Suppose that the average arrival
rate into device i is A; jobs/s and the average service rate of device i is y;
Jjobs/s, where A; < ;. Let p; denote the long-run fraction of time that device i
is busy. Then,

A;

pi=—.
Hi

We refer to p; as the “device utilization” or “device load.”
Proof:
Question: Do you see where to apply Little’s Law to queue i?

Hint: What should the “system” be for applying Little’s Law?

Answer: Let the “system” consist of just the “service facility” (the server part
without the associated queue), as shown in the shaded box of Figure 27.11. Now
the number of jobs in the “system” is always just O or 1.

Device i

Arrival rate 1; —» @—» Departures

C The “system”

Figure 27.11 Using Little’s Law to prove the Utilization Law.

Question: What is the expected number of jobs in the system as we have defined
it?

Answer: The number of jobs in the system is 1 when the device is busy (this
happens with probability p;) and is O when the device is idle (this happens with
probability 1 — p;). Hence the expected number of jobs in the system is p;. So,

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

27.11 Important Corollaries of Little’s Law 529

applying Little’s Law, we have:

p; = Expected number jobs in service facility for device i
= (Arrival rate into service facility) - (Mean time in service facility)

= A; - E [Service time at device i]

1
=1 —. [|
Hi

We often express the Utilization Law as:

pi =4 = LE[S;] = XE[Si],

where p;, 4;, X;, and E [S;] are the load, average arrival rate, average throughput,
and average service requirement at queue i, respectively.

Suppose we have some arbitrary network of queues. We’d like to again relate
E [T] to E [N] for the system. However, we are only interested in “red” jobs,
where “red” denotes some type of job. Specifically, we’d like to understand how
E [Nieq], the mean number of red jobs in the system relates to E [Tiq], the mean
response time of red jobs.

Question: Suppose we want to apply Little’s Law to just a particular class of
jobs, say the “red” jobs. Can we do this?

Answer: Yes.

Theorem 27.7 (Little’s Law for red jobs) For any ergodic system we have
that:

E [Nre] = AredE [Tre] 5

where E [N,.4] is the expected number of red jobs in the system, A, is the
average arrival rate of red jobs into the system, and E [T,.4] is the mean time
that red jobs spend in the system.

Proof: The proof is exactly the same as for Little’s Law, but only the T;’s
corresponding to the red jobs are included in Figure 27.10. [

Example 27.8 (Repair center)

Repairs don’t always work. In Jenny’s repair center, shown in Figure 27.12,
every arriving item undergoes a “repair attempt,” but with probability 0.9 the
item needs to go in for another round. We say that the total time for repair, 7,
is the time from when the item first arrives until it is fully repaired. Based on

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

530 27 A Little Bit of Queueing Theory

Jenny’s measurements, on average, A = 2 items arrive to the repair center every
hour, the average repair attempt takes E [S] = 2 minutes, and E [T'] = 10 hours.

09

A=2 —»

0.1

Repair
attempt

Figure 27.12 Jenny'’s repair center.
Question: What fraction of time is the repair center busy?

Answer: To answer this, we draw a gray box around just the server, as shown in
Figure 27.13.

0.9

A=2 —5

0.1

Repair
attempt

Figure 27.13 The “system” here is the gray box.

Applying Little’s Law to this gray box system, we have:
E [Nbox] = dpox - E [Tbox] .

Observe that E [Npx] = p. Furthermore, E [T,ox] = E[S] = % hours. To get
Avox, We note that, on average, an item requires 10 repair attempts. Hence

Apox = 10 - 2 = 20 items/hour.
Little’s Law thus yields:
E [Nbox] = dpox " E [Tb x]
2 2
=20-—=-.
P 60 3
Question: What is the expected number of items in the repair center, E [N]?

Hint: This can be solved in two different ways, depending on how we define our
system of interest in Figure 27.14.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

27.12 Exercises 531

0.9 0.9
A=2 ——— A=2 —>»
0.1 0.1
Repair Repair
attempt attempt
(@ (b)

Figure 27.14 Two different views of the “system,” both with the same E [N].

Answer: If we draw our gray box around the entire system, as shown in Fig-
ure 27.14(a), then Ayox = A = 2. This yields:
E [Nbox] = dpox - E [Tbox]
E[N] =41 -E[T]
=2-10 = 20 items.

On the other hand, if we draw our gray box around a single attempt, as shown in

Figure 27.14(b), then Adpox = 104. However, E [Ty] is only % since there are
10 attempts on average. This yields:

E [Nbox] = dpox - E [Tbox]
E[N] = (102) - E [Tattempt]
E|[T]

:(10.2).1_0

10
=20- T = 20 items.

Unsurprisingly, the answer is the same, since Little’s Law applies to any system
or portion of a system.

27.12 Exercises

27.1 Professors and students
A professor practices the following strategy with respect to taking on new
PhD students. On the even-numbered years, she takes on two new PhD
students. On the odd-numbered years, she takes on one new PhD student.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

532 27 A Little Bit of Queueing Theory

All students graduate and the average time to graduate is six years. How
many PhD students on average will the professor have in her group? Prove
your answer.

27.2 Professors and students, revisited

A professor practices the following strategy with respect to taking on new
PhD students. On the even-numbered years, she takes on two new PhD
students. On the odd-numbered years, she takes on one new PhD student.
Not all students graduate. Of the students whom the professor takes on,
% end up staying for one year on average and then leave the program;
é graduate after four years; % graduate after five years; é graduate after
six years; and % graduate after seven years. How many PhD students on
average will the professor have in her group? Prove your answer.

27.3 Mean response time at router with infinite capacity
Recall in Section 26.2 we derived the mean number of packets in a router
with infinite capacity, where at every time step, with probability p =
}l one packet arrives, and, independently, with probability g = % one
packet departs. What is the mean response time, E [T'], for this particular

system?

27.4 Mean response time at router with finite capacity

As in Exercise 27.3, we return to the router in Section 26.2, but this time,
the router only has room for a total of 3 packets. Specifically, if a packet
arrives when the state of the DTMC is 3, then the packet is dropped and
the state of the system doesn’t change. What is the mean response time,
E [T1], of those packets that are not dropped. [Hint: To create an ergodic
system, you’ll want to think about the “system” as consisting only of the
arrivals that enter.]

27.5 The single-server queue
Kunhe’s system consists of a single-server queue. Based on Kunhe’s mea-
surements, the average arrival rate is 4 = 5 jobs/s; the average job size is
E [S] = 0.1 s; and the average number of jobs is E [N] = 10.5 jobs.
(a) What is the fraction of time that Kunhe’s server is busy?
(b) What is the average time that jobs spend queueing in Kunhe’s system,
E [To]?

27.6 The Arthur Ravenel bridge
The Arthur Ravenel bridge in Charleston allows walkers and joggers to
get to downtown Charleston. During my visit to Charleston, I observed
that:
e On average, 20 walkers arrive per hour and take an average of 1 hour
to cross the bridge.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

27.12 Exercises 533

e Onaverage, 10 joggers arrive per hour and take an average of 20 minutes
to cross the bridge.

Based on this data, estimate the average number of people (walkers plus

joggers) on the bridge at any time.

27.7 Data center utilization

The Clouds-R-Us company runs a data center with 10,000 servers
shown in Figure 27.15. Jobs arrive to the data center with average
rate 4 = 2 jobs/s. Each job requires some number of servers K, where
K ~ Binomial(1000, 0.05). The job holds onto these K servers for some
time S seconds, where S ~ Exp(0.02), and then releases all its servers
at once. Assume that K and S are independent. Jobs are served in FCFS
order. If a job gets to the head of the queue, but the number of servers
that it needs exceeds the number of idle servers, then the job simply
waits (blocking those jobs behind it in the queue) until that number of
servers becomes available. You may assume that the system is ergodic.
On average, how many jobs are running at a time?

Figure 27.15 Data center for Exercise 27.7.

27.8 Maximum outside arrival rate
For the network-of-queues with probabilistic routing given in Figure 27.5,
suppose that each server serves at an average rate of 10 jobs/s; that is,
u; = 10, Vi. Suppose that r, = r3 = 1. Suppose that pj2 = p2.our = 0.8,
P23 = p13 = 0.2, p1owr =0, and p3; = 1. What is the maximum allowable
value of r; to keep this system stable?

27.9 Simplified power usage in data centers
Given that power is expensive, it is common practice to leave servers on
only when they are being used and to turn them off whenever they are

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

534 27 A Little Bit of Queueing Theory

not in use. Assume that the following power-aware algorithm is used:
When a job arrives, it instantly turns on a fresh server (assume zero setup
cost). When the job completes service, it instantly turns off that server.
Assume that there is always a server available for every job (i.e., there is
no queueing). Your goal is to derive the time-average rate at which power
is used in our system. Assume that when a server is on, it consumes power
at arate of £ = 240 watts. Assume A = 10 jobs arrive per second and that
the service requirement of jobs is Uniformly distributed, ranging from 1
second to 9 seconds.

27.10 Going to the DMV

When getting your driver’s license at the DMV, you have to pass through
two stations: the photo-taking station and the license-creation station.
Unfortunately, at the end of license-creation, with probability 25% they
find something wrong with the photo, and the whole process has to start
all over again. Figure 27.16 shows the process. As shown in the figure,
the average arrival rate of people to the DMV is r = 15 people per hour,
the average number of people in the photo station is 10, and the average
number in the license station is 20. Assume that the system is stable in
that the total arrival rate into each station is less than the service rate at
the station. Derive the mean time from when you walk into the DMV until
you walk out with your driver’s license.

7

License station
E [NLicense] = 20 %

r= 15 Photo station .
E [NP/mto] =10 ’

Figure 27.16 The DMV process for Exercise 27.10.

27.11 Network that looks like a flip flop

Tianxin’s network, shown in Figure 27.17, looks like a flip flop.

Jobs arrive to Tianxin’s network at a rate of » = 1 jobs per second. The
routing probabilities are shown. The service rate at station A is uq = 3
jobs per second, and that at station B is up = 4 jobs per second. An
individual job might pass through Station A, then B, then A, then B, etc.,
before it eventually leaves. Tianxin has observed that the expected number
of jobs at station A is E [N4] = 2 and the expected number of jobs at
station Bis E [Ng] = 1.

(a) Let T denote the response time of a job, i.e., the time from when it

arrives until it departs. What is E [T]?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

27.12 Exercises 535

27.12

Station A

Station B

Figure 27.17 Tianxin’s network for Exercise 27.11.

(b) Let 14 denote the total arrival rate into station A. Let Ag denote the
total arrival rate into station B. What are 14 and Ag?

(c) What is the throughput of the system? What is the throughput of
station A? Which is higher?

(d) Let T4 denote the time it takes for a job to make a single visit to station
A (this includes queueing and then serving at station A). Likewise, let
T denote the time it takes for a job to make a single visit to station
B. What are E [T4] and E [Tg]?

(e) Let Tp denote the total time that a job spends queueing while in the
system. This includes the total time that the job is in queues from
when it arrives until it leaves the system. What is E [TQ] ?

Finally a haircut!

For over a year in lockdown, I haven’t been able to get my hair cut, but
finally I can return to the salon! At my salon there are two stations: the
washing station and the cutting station, each with its own queue. The
people who work at the washing station only wash hair. The people who
work at the cutting station only cut hair. When a washing person frees up,
they take the next person in the wash line, and similarly for the cutting
line.

My salon is very quick. The average wash time is only E [Sy,n] =]1—3
hours and the average cut time is only E [S¢y] = % hours. Unfortunately,
they’re so quick that they sometimes forget to rinse the shampoo, so, with
probability }l, I will need to rejoin the wash line after my wash is complete.
There are two types of customers at my salon: the “wash-and-cut” cus-
tomers, who get their hair washed and then cut, and the “cut-only” cus-
tomers who only get their hair cut (no wash).

Figure 27.18 shows the salon. Assume that 54 customers enter the salon
per hour. Assume that % are wash-and-cut customers and % are cut-only
customers.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

536 27 A Little Bit of Queueing Theory

T cut-only

Y cur-and-wash e

34

Wash
queue

Cut

O queue

Figure 27.18 Hair salon for Exercise 27.12.

O

(a) What is the bare minimum number of staff (washers + cutters) that
are needed to ensure that the hair salon is stable?

(b) On average, the number of customers at the wash station (either in the
wash queue or having their hair washed) is 9. On average, the number
of customers at the cutting station (either in the cut queue or having
their hair cut) is 18.

(i) What is the expected response time of a random customer (we’re
not told the type of customer)?

(i) Whatis the expected response time of a cut-only customer? [Hint:
Think about the experience of a cut-only customer.]

27.13 Little’s Law and the vaccine center
Our local COVID vaccine center is structured as a multi-server queue,
where there are five nurses providing vaccines, and a queue of patients
waiting to receive vaccines, as in Figure 27.19. When a patient is getting
their vaccine, they sit in one of the five chairs. Due to social distancing
rules, there is a limit of 25 on the total number of people allowed in the
vaccine center (this includes the five nurses). There is an overflow queue
of patients outside the vaccine center, waiting to get in. The total number
of patients, N, grows and shrinks over time, but, on average there are
E [N] = 80 patients in total (including both the vaccine center and the
overflow queue). The long-run average rate of patients joining the queue
is A = 40 patients per hour.
(a) What is the expected total response time (from arrival to departure)?
(b) Suppose we model N ~ Geometric (%) Let Ncener denote the num-
ber of people inside the vaccine center (gray area). Let Tieneer denote
the time spent inside the vaccine center. What is E [Tepter]?
[Hint: Start by expressing Neeneer in terms of N. You will need a “min”
term. Then derive E [Neeneer | and apply Little’s Law.]

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

27.12 Exercises 537

l

l

l

=k =t =t

T

S
|

=

Vaccine center

Figure 27.19 Vaccine center.

27.14 Mean slowdown
The slowdown metric is related to response time, but is somewhat more
practical. A job’s slowdown is defined as its response time divided by its
size:
Response time of

Slowdown of job j = Size of 7 . 27.7)
z J

The idea is that large jobs (like downloading a whole movie) can tolerate
larger response times (while you go make popcorn), while small jobs (like
downloading a web page) can tolerate only very small response times. The
slowdown metric captures this tolerance better than response time.

(a) Jobs arrive at a server that services them in FCFS order (Figure 27.20).

b |||||®—’

FCFS

Figure 27.20 Figure for Exercise 27.14.

The average arrival rate is A = % job/s. The job sizes (service times)
are i.i.d. and are represented by r.v. S, where

g= 1 w/prob.?—‘.
2 otherwise

You have measured the mean response time, E [T] = %. Based on
this information, compute the mean slowdown, E [Slowdown].

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

538 27 A Little Bit of Queueing Theory

(b) If the service order in part (a) had been Shortest-Job-First, would the
same technique have worked for computing mean slowdown?

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

References

[1] Ilan Adler, Yang Cao, Richard Karp, Erol A. Pekoz, and Sheldon M. Ross.
Random knockout tournaments. Operations Research, 65(6):1429-1731,
2017.

[2] Micah Adler, Peter Gemmell, Mor Harchol-Balter, Richard M. Karp, and
Claire Kenyon. Selection in the presence of noise: The design of play-
off systems. In Proceedings of 5th ACM-SIAM Symposium on Discrete
Algorithms, pages 546-573, Arlington, VA, January 1994.

[3] W.R. Alford, A. Granville, and C. Pomerance. There are infinitely many
Carmichael numbers. Annals of Mathematics, 140:703-722, 1994.

[4] Tom Anderson, David Culler, and David Patterson. A case for networks of
workstations. IEEE Micro, 15(1):54-64, 1995.

[5] Nikhil Bansal and Mor Harchol-Balter. Analysis of SRPT scheduling:
Investigating unfairness. In Proceedings of ACM SIGMETRICS, pages
279-290, Cambridge, MA, June 2001.

[6] Amnon Barak, Shai Guday, and Richard G. Wheeler. The Mosix Distributed
Operating System: Load Balancing for Unix. Springer-Verlag, 1993.

[7] Paul Barford and Mark E. Crovella. Generating representative Web work-
loads for network and server performance evaluation. In Proceedings of the
ACM SIGMETRICS Conference on Measurement and Modeling of Com-
puter Systems, pages 151-160, Madison, W1, July 1998.

[8] David P. Blinn, Tristan Henderson, and David Kotz. Analysis of a wi-fi
hotspot network. In International Workshop on Wireless Traffic Measure-
ments and Modeling, pages 1-6, Seattle, WA, June 2005.

[9] Burton H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422-426, 1970.

[10] Paul Bratley, Bennett Fox, and Linus Schrage. A Guide to Simulation.
Springer-Verlag, 2nd ed., 1983.

[11] Goerg Cantor. Uber eine elementare frage der mannigfaltigkeitslehre.
Jahrensbericht der Deutschen Mathematiker-Vereinigung, 1:75-78, 1891.

[12] R. D. Carmichael. Note on a new number theory function. Bulletin of the
American Mathematics Society, 16:232-238, 1910.

[13] R. D. Carmichael. On composite p which satisfy the Fermat congruence
aP~!' =1 mod p. American Mathematics Monthly, 19:22-27, 1912.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

540 References

[14] Herman Chernoff. A measure of asymptotic efficiency for tests of a typoth-
esis based on the sum of observations. Annals of Mathematical Statistics,
23:493-507, 1952.

[15] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progressions. Journal of Symbolic Computation, 9:251-280, 1990.

[16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 3rd ed., 2009.

[17] Mark Crovella, Bob Frangioso, and Mor Harchol-Balter. Connection
scheduling in web servers. In USENIX Symposium on Internet Technologies
and Systems, pages 243-254, Boulder, CO, October 1999.

[18] Mark E. Crovella and Azer Bestavros. Self-similarity in World Wide Web
traffic: Evidence and possible causes. In Proceedings of the 1996 ACM
SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, pages 160—169, May 1996.

[19] Mark E. Crovella, Murad S. Taqqu, and Azer Bestavros. Heavy-tailed
probability distributions in the world wide web. In A Practical Guide To
Heavy Tails, pages 1-23. Chapman & Hall, 1998.

[20] Allen B. Downey. The inspection paradox 1is everywhere.
towardsdatascience.com/the-inspection-paradox-is-everywhere-
2ef1c2e9d709, August 2019.

[21] D. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis
of Randomized Algorithms. Cambridge University Press, 2012.

[22] Richard Durrett. Probability: Theory and Examples. Cambridge University
Press, 2019.

[23] E. O. Elliott. Estimates of error rates for codes on burst-noise channels.
Bell Systems Technical Journal, 42:1977-1997, 1963.

[24] P. Erdos. On a new method in elementary number theory which leads to
an elementary proof of the prime number theorem. Proceedings of the
National Academy of Science, 35:374-384, 1949.

[25] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-
law relationships of the internet topology. In Proceedings of SIGCOMM,
pages 251-262, Cambridge, MA, August 1999.

[26] Scott Feld. Why your friends have more friends than you do. American
Journal of Sociology, 96(6):1464-1477, 1991.

[27] William Feller. An Introduction to Probability Theory and Its Applications,
volume II. John Wiley and Sons, 2nd edition, 1971.

[28] P. Flajolet, P. J. Grabner, P. Kirschenhofer, and H. Prodinger. On Ramanu-
jan’s Q-function. Journal of Computational and Applied Mathematics,
58:103-116, 1995.

[29] R. Freivalds. Probabilistic machines can use less running time. In Infor-
mation Processing, pages 839-842, 1977.

[30] Jean Gallier and Jocelyn Quaintance. Notes on primality testing and
public key cryptography part 1: Randomized algorithms Miller—Rabin

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

References 541

and Solovay-Strassen tests. www.cis.upenn.edu/~jean/RSA-primality-
testing.pdf.

[31] Pete Gemmell and Mor Harchol. Tight bounds on expected time to add
correctly and add mostly correctly. Information Processing Letters, 49:77—
83, 1994.

[32] E. N. Gilbert. Capacity of a burst-noise channel. Bell Systems Technical
Journal, 39:1253-1265, 1960.

[33] Varun Gupta, Michelle Burroughs, and Mor Harchol-Balter. Analysis of
scheduling policies under correlated job sizes. Performance Evaluation,
67(11):996-1013, 2010.

[34] Mor Harchol-Balter. Task assignment with unknown duration. Journal of
the ACM, 49(2):260-288, 2002.

[35] Mor Harchol-Balter. Performance Modeling and Design of Computer Sys-
tems: Queueing Theory in Action. Cambridge University Press, 2013.

[36] Mor Harchol-Balter, Mark Crovella, and Cristina Murta. On choosing a
task assignment policy for a distributed server system. Journal of Parallel
and Distributed Computing, 59(2):204-228, 1999.

[37] Mor Harchol-Balter and Allen Downey. Exploiting process lifetime distri-
butions for dynamic load balancing. In Proceedings of ACM SIGMETRICS,
pages 13-24, Philadelphia, PA, May 1996.

[38] Mor Harchol-Balter and Allen Downey. Exploiting process lifetime dis-
tributions for dynamic load balancing. ACM Transactions on Computer
Systems, 15(3):253-285, 1997.

[39] Mor Harchol-Balter, Bianca Schroeder, Nikhil Bansal, and Mukesh
Agrawal. Size-based scheduling to improve web performance. ACM Trans-
actions on Computer Systems, 21(2):207-233, 2003.

[40] Madeline Holcombe and Theresa Waldrop. More infectious delta variant
makes up 83% of new US coronavirus cases as vaccine hesitancy persists.
CNN, July 2021.

[41] Juraj Hromkovic. Design and Analysis of Randomized Algorithms: Intro-
duction to Design Paradigms. Springer-Verlag, 2005.

[42] D. Karger. Global min-cuts in RNC and other ramifications of a sim-
ple mincut algorithm. In 4th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 21-30, January 1993.

[43] D. Karger and C. Stein. A new approach to the minimum cut problem.
Journal of the ACM, 43(4):601-640, 1996.

[44] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew
Levine, and Daniel Lewin. Consistent hashing and random trees: Dis-
tributed caching protocols for relieving hot spots on the world wide web.
In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of
Computing, pages 654—663, El Paso, TX, May 1997.

[45] S. Karlin and H. M. Taylor. A First Course in Stochastic Processes. Aca-
demic Press, 2nd ed., 1975.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

542 References

[46] Donald Knuth. The Art of Computer Programming, Volume 3. Addison
Wesley Longman Publishing Co., 1998.

[47] Tor Lattimore and Csaba Szepesvari. Bandit Algorithms. Cambridge Uni-
versity Press, 2020.

[48] Averill M. Law and W. David Kelton. Simulation Modeling and Analysis.
McGraw-Hill, 2000.

[49] Cynthia Bailey Lee, Yael Schwartzman, Jennifer Hardy, and Allan Snavely.
Are user runtime estimates inherently inaccurate? In Proceedings of the
10th International conference on Job Scheduling Strategies for Parallel
Processing, pages 253-263, New York, NY, June 2004.

[50] Maplesoft. Mathematica. www.maplesoft.com/products/Maple/.

[51] Milefoot.com Mathematics. Joint continuous probability distributions.
www.milefoot.com/math/stat/rv-jointcontinuous.htm.

[52] MathWorks. Matlab. www.mathworks.com/products/matlab.html.

[53] M. Mitzenmacher and E. Upfal. Probability and Computing. Cambridge
University Press, 2005.

[54] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge Uni-
versity Press, 1995.

[55] Jayakrishnan Nair, Adam Wierman, and Bert Zwart. The Fundamentals of
Heavy Tails: Properties, Emergence, and Estimation. Cambridge Univer-
sity Press, 2022.

[56] Rasmus Pagh and Flemming Friche Rodler. Cuckoo hashing. In 9th Annual
European Symposium on Algorithms, Aarhus, Denmark, August 2001.

[57] Michael O. Rabin. Probabilistic algorithm for testing primality. Journal of
Number Theory, 12(1):128-138, 1980.

[58] I.A. Rai, E. W. Biersack, and G. Urvoy-Keller. Size-based scheduling to
improve the performance of short TCP flows. IEEE Network, 19:12-17,
2005.

[59] L.A.Rai, G. Urvoy-Keller, and E. W. Biersack. LAS scheduling approach to
avoid bandwidth hogging in heterogeneous TCP networks. Lecture Notes
in Computer Science, 3079:179-190, 2004.

[60] Andréa Richa, Michael Mitzenmacher, and Ramesh Sitaraman. The power
of two random choices: A survey of techniques and results. In P. Pardalos,
S. Rajasekaran, and J. Rolim, editors, Handbook of Randomized Computing.
Kluwer Press, 2001.

[61] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120-126, 1978.

[62] Sheldon M. Ross. Stochastic Processes. John Wiley and Sons, 1983.

[63] Sheldon M. Ross. Simulation. Academic Press, 2002.

[64] Sheldon M. Ross. Introduction to Probability Models. Elsevier, 2007.

[65] J Graham Ruby, Megan Smith, and Rochelle Buffenstein. Naked mole-rat
mortality rates defy Gompertzian laws by not increasing with age. eLife,
7:¢31157, 2018.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

References 543

[66] L.E.Schrage. A proof of the optimality of the shortest remaining processing
time discipline. Operations Research, 16:687—-690, 1968.

[67] L. E. Schrage and L. W. Miller. The queue M/G/1 with the shortest re-
maining processing time discipline. Operations Research, 14:670-684,
1966.

[68] A. Selberg. An elementary proof of the prime number theorem. Annals of
Mathematics, 50:305-313, 1949.

[69] Anees Shaikh, Jennifer Rexford, and Kang G. Shin. Load-sensitive routing
of long-lived IP flows. In Proceedings of ACM SIGCOMM, pages 215-226,
Cambridge, MA, September 1999.

[70] Edward H. Simpson. The interpretation of interaction in contingency tables.
Journal of the Royal Statistical Society, Series B, 13:238-241, 1951.

[71] George B. Thomas and Ross L. Finney. Calculus and Analytic Geometry.
Addison-Wesley, 9th ed., 1996.

[72] Muhammad Tirmazi, Adam Barker, and Nan Deng et al. Borg: The next
generation. In Proceedings of the Fifteenth European Conference on Com-
puter Systems (EuroSys ’20), pages 1-14, Heraklion, April 2020.

[73] Abhishek Verma, Luis Pedrosa, and Madhukar et al. Korupolu. Large-
scale cluster management at Google with Borg. In Proceedings of the
Tenth European Conference on Computer Systems, pages 1-17, Bordeaux,
France, April 2015.

[74] Abraham Wald. On cumulative sums of random variables. The Annals of
Mathematical Statistics, 15(3):283-296, 1944.

[75] Stefan Waner and Steven R. Costenoble. Normal distribution table for finite
mathematics. www.zweigmedia.com/Real World/normaltable.html.

[76] Eric W. Weisstein. Stirling’s Approximation. math-
world.wolfram.com/Stirlings Approximation.html.

[77] John Wilkes. Google cluster-usage traces v3, November 2019.
http://github.com/google/cluster-data.

[78] Virginia Vassilevska Williams. Fixing a tournament. In Proceedings of
AAAI pages 2992-2999, Atlanta, GA, June 2010.

[79] Virginia Vassilevska Williams. Multiplying matrices faster than Copper-
Winograd. In Proceedings of 44th ACM Symposium on Theory of Comput-
ing, pages 887-898, New York, NY, May 2012.

[80] Wolfram. Mathematica. www.wolfram.com/mathematica/.

[81] Zippia. The 10 largest shoe brands in the United States, August 2022.
www.zippia.com/advice/largest-shoe-brands/.

[82] Daniel Zwillinger. CRC Standard Mathematical Tables and Formulae.
Chapman & Hall, 31st ed., 2003.

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Index

Accept-reject method, 232
Active process migration, 182
Adding n-bit numbers, 401
Amplification of confidence, 397
And/or tree evaluation, 379

Approximate median algorithm, 399

Approximating 7, 395
Arrival rate, 512
Asymptotic notation
o(-), 15
Q(), 17
0(-), 18
w(-), 17
o(1), 16, 340
o(-), 16
0(6),213
Average-case analysis, 365
Adding n-bit numbers, 401
Finding the max, 376
Marriage algorithm, 377
Move-to-Front, 376
Quicksort, 370
Axioms of Probability, 22

Balls and bins, 337
Lots of bins have many, 343
Max bin, 343, 344
With high probability, 338, 351
Bayes’ law
Continuous, 145, 157, 165
Extended, 33
Original, 32
Bayesian estimators, 285, 299
Bernoulli random variable, 46
Binary symmetric channel, 56
Binomial distribution, 47
Like Poisson, 55
Binomial expansion, 13
Birthday paradox, 36, 357
Boosting, 397
Bounded-Pareto distribution, 189
Brownian motion, 504

Caching, 472

Carmichael number, 409
Cauchy—Schwarz inequality, 109

Central Limit Theorem, 176, 194, 313, 474

Accuracy, 179

Approximating sum, 177
Heuristic proof via transforms, 208
Central moments, 92, 112
Chain rule for conditioning, 26, 36
Chebyshev’s inequality, 99, 308
Chernoff bound, 309
Change of variable, 323
For Binomial
Simple bound, 312
Stronger bound, 316, 324
For Binomial 1/-1, 323
Poisson tail, 311
Chess problems, 434, 476
Chicken McNugget Theorem, 441
Choosing, (i), bounds on, 13
Class properties, see Markov chains
Coeflicient of determination, 282
Coeflicient of variation, 87
Coin with unknown probability, 144
Combination, 12
Concentration Inequalities
Chebyshev’s inequality, 99
Concentration inequalities, 307
Chebyshev’s inequality, 308
Chernoft simple, 312
Chernoft stronger, 316, 324
For pair-wise independent r.v.s, 322
Hoeftding, 318, 326
Markov’s inequality, 307, 310
Reverse Markov, 320
Conditional expectation given event
Continuous, 147, 150
Discrete, 69
Conditional independence, 38, 39
Conditional p.d.f., 145, 157
Conditional p.m.f., 67
Conditional probability of event, 24
Conditionally independent events, 30

Conditioning on a zero-probability event, 143,

157
Conditioning on random variable
Continuous, 143, 157, 161
Discrete, 53
Confidence interval, 328
Consistent estimator, 257
Constant failure rate, 194

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Index 545

Continuous distributions
Bounded-Pareto, 189
Erlang-k, 195
Exponential, 137, 210
Hyperexponential, 195
Normal or Gaussian, 170
Pareto, 187
Uniform, 137

Control group creation, 397

Convex function, 102

Convolution, 165

Correlation, 35

Correlation coefficient, 109

Coupon collector, 65, 111, 321

Covariance, 91, 108, 109

COVID, 34, 35

Cumulative distribution function, c.d.f., 46, 136

Cups example, 64, 114

Cut-set, 389

Darts, 165

Distance between, 165

Probability of triangle, 167

Smallest interval, 166
Data center utilization, 533
Decreasing failure rate (DFR), 184, 185
Deducing signal in noise, 301
Degenerate Hyperexponential, 196, 250
Delta-step proof, 211, 214, 215, 222
Different units, 87
Discrete distributions

Bernoulli, 46

Binomial, 47

Geometric, 48

Negative Binomial, 114

Poisson, 49
Disk delay modeling, 168
Dominance, 112
Dominating set algorithm, 378
Double integrals, 4
Doubly stochastic matrix, 434
Downloading files

Max time, 207, 227

Min time, 207, 227
DTMC, see Markov chains

Elephants and mice, 190

Empirical measurements
Google jobs today, 191
Human wealth, 193
Internet node degrees, 193
IP flow durations, 193
Natural disasters, 193
Phone call durations, 193
UNIX process lifetimes, 186
‘Web file sizes, 193
Wireless session times, 193

Ensemble average, 452

Epidemic modeling, 96, 436
Equal in distribution, 71, 84, 110, 139
Ergodic theorem of Markov chains, 494
Ergodicity, 438, 484
Erlang-k distribution, 195
Error correcting codes, 303
Estimating failure probability, 179
Estimating more than one parameter, 276
Estimating the max of a distribution, 273
Estimating total noise, 177
Euclidean number property, 441
Euler’s number (e), 8
Event, 21
Event implies event, 35
Event-driven simulation, 240
Call center, 248
Convergence, 245
Loss probability, 250
PASTA, 246
Performance metrics, 244
Queueing network, 247
Shortest-Job-First, 251
SITA, 251
SRPT, 251
Expectation
Bernoulli, 59
Binomial, 63
Geometric, 59, 73
Poisson, 60
Expectation of a continuous r.v.
As sum of tail, 151
Original, 141
Expectation of discrete r.v.
As sum of tail, 62, 78
Original, 58
Expectation of function of r.v.
Continuous, 141
Discrete, 60
Expectation of function of random variables,
157, 163
Expectation of product of r.v.s, 61, 77
Expectation of product of random variables,
163
Expectation of quotient, 77
Expectation via conditioning
Discrete, 72
Expectation via conditioning on r.v., 162
Exponential distribution, 137, 210
Relationship with Geometric, 211

Failure rate function, 185
Constant, 185, 194
Decreasing, 184
Increasing, 184

Fermat primality test, 408

Fermat’s Little Theorem, 404

Fibonacci sequence, 124

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

546 Index

Financial application, 503

Finding k largest algorithm, 377
Finding the max algorithm, 376
Fractional moments, 179

From Las Vegas to Monte Carlo, 394
From Monte Carlo to Las Vegas, 394

Fundamental Theorem of Calculus, 7, 137, 173

Gambler’s ruin problem, 505
Gambler’s walk, 490
2D, 506
Games
Axis & Allies, 435
Cards, 434
Chess, 434, 476
Monopoly, 435
Generating function, see z-transform, see
Laplace transform
Generating random permutation, 399
Generating random prime, 418
Generating random variables, 229
Accept-reject method, 232
Geometric, 238
Heavy tail distributions, 239
Inverse transform method, 229
Joint distribution, 239
Normal r.v., 236
Poisson distribution, 239
Geometric distribution, 48, 110, 211
Getting distribution from z-transform, 130
Goodness-of-fit, 282
Google jobs
Compute usage, 191
Empirical measurements, 191
Memory usage, 191

Hamming distance, 303
Harmonic number, H,,, 10
Harmonic series, 10
Hashing, 346
Bloom filter hashing, 362
Bucket hashing, 347
With separate chaining, 350, 351
Cryptographic signature, 355
Expected hashes until collision, 361
Hash collision, 357
Hash table, 347
Linear probing, 353
Load factor, 348
Open addressing, 354, 361
Probability no collisions, 358
SHA-256, 359
SUHA, 348
Hazard rate function, 185
Healthcare testing, 33, 37
Heavy-tail property, 189, 196
Heavy-tailed distributions, 189
Higher moments, 102, 116, 198

Bernoulli, 91

Binomial, 89, 91, 128

Continuous r.v., 141

Discrete r.v., 83

Exponential, 142, 194, 201

Geometric, 84, 91, 110, 121

Normal, 194

Pareto, 194

Poisson, 91, 128

Uniform, 141, 194
Hoeffding’s inequality, 318, 326
HTTP request scheduling, 193
Human wealth, 194
Hyperexponential distribution, 195
Hypothesis testing, 111

iid., 64
Improving accuracy of randomized alg, 388
Improving accuracy of randomized alg., 386
Increasing failure rate (IFR), 184, 185
Independence of three events, 37
Independent events, 29
Alternative definition, 27
Conditionally independent, 30
Original definition, 27
Pairwise independence, 29
Independent increments, 217
Independent random variables
Continuous, 155
Discrete, 51
Independent set algorithm, 382
Indicator random variable, 64, 71
Infinite variance, 189
Inspection paradox, 104, 360
Number of friends, 106
Size of class, 104
Waiting for bus, 104, 110
Interaction graph, 302
Intersections of events, 21
Interval estimation, 327, 342
Interval estimator, 328
Inverse transform method, 229
Inverting transforms, 130
IP flow durations, 193

Jensen’s inequality, 103, 113
Job
Age, 183
CPU-hours, 191
Lifetime, 183
Memory-hours, 191
Multi-stage, 227
Remaining lifetime, 183
Remaining size, 183
Size, 183, 512
Job migration, 182
Joint p.d.f., 153, 158, 162, 164
Joint p.m.f., 50

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Index 547

k-Select algorithm, 371

Randomized, 371
Knockout tournament algorithm, 400
Kurtosis, 321

Laplace transform, 198
Conditioning, 203
Cumulative distribution function, 205
Geometric number of Exponentials, 207
Inverting, 207
Linearity, 203
Moments, 201, 206
Normal, 207
Sum of random number of r.v.s, 204
Two-sided, 207
Las Vegas algorithms, 366
Law of Total Probability, 31
Continuous r.v.s, 143
Continuous random variables, 157
Continuous state space, 144, 158
Discrete r.v.s, 53
For conditional probability, 32
Learning bias of coin, 149
Likelihood function, 268
Log likelihood, 271
Likelihood of clicking on ad, 148
Limiting distribution, 429, 479
Limiting probability, 426, 479
Linear regression, 277, 278
Linear transformation, 150, 172, 179
Linearity of expectation
Continuous, 163
Discrete, 63
Linearity of variance, 88, 163
Little’s Law, 523
Load balancing, 182
Loss probability, 250

MAP estimator, 285, 289
As mode of posterior, 294
Posterior distribution, 289
Prior distribution, 287, 289
Relationship to MLE, 287

Marginal p.m.f., 51, 56

Markov chains
n-step transition probabilities, 425
Aperiodic, 441
Balance equations, 464
Class properties, 488, 489, 496, 508
Continuous-time (CTMC), 422
Discrete-time (DTMC), 421, 422
Ensemble average, 452
Ergodic theorem, 494
Ergodicity, 438

Finite-state, 448
Infinite-state, 484, 496

Finite-state, 420, 431, 448, 477, 508
Gambler’s walk, 490

Infinite-state, 479
Irreducible, 443, 477
Limiting distribution, 427, 429, 479
Limiting probabilities, 426, 479
Limiting probabilities as rates, 465
Love is complicated, 420
Markovian property, 421
Null recurrent, 496
Passage time
Mean, 113, 498
Variance, 112, 113, 498
Period, 441, 477
Positive recurrent, 496
Random walk, 450
Infinite, 490
Recurrent chain, 488, 491
Recurrent state, 487
Sample path, 451
Good vs. bad, 453
Solution via generating functions, 125, 508
Stationary distribution, 428, 429, 479
Stationary equations, 428
Stationary property, 421
Steady state, 431
Summary theorem, 497
Time average, 450
Time between visits to state, 448
Time to empty, 498
Time-reversibility equations, 467
Transient chain, 489, 491
Transient state, 487
Transition probability matrix, 421
Markov’s inequality, 98, 307
Markovian property, 421
Marriage algorithm, 57, 377
Matrix multiplication checking
Freivalds’ algorithm, 384
Max-3SAT algorithm, 395
Max-Cut algorithm, 396
Maximum
Of Exponentials, 226, 227
Of Uniforms, 151
Maximum a Posteriori (MAP), 285
Maximum arrival rate, 533
Maximum likelihood estimation (MLE), 267
Maximum likelihood estimator, 267
Continuous, 273
Discrete, 273
Multiple estimators, 276
Mean (expectation)
Continuous, 141
Continuous alternative, 151
Discrete, 58
Discrete alternative, 62, 78
Mean estimator, 256
Mean squared error (MSE), 257

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

548 Index

For Bayesian estimators, 299
Median-Select, 371, 373
Memorylessness, 74, 139, 150, 211
Migrating jobs, 182
Migrating old jobs, 190
Miller—Rabin primality test, 410
Min of rolls, 80
Min-Cut algorithm, 389
Minimum

Of Exponentials, 151, 215, 227
Minimum mean squared error, 295
MLE, 267
MMSE estimator, 295

Minimizes MSE, 300
Modeling disk delay, 168
Moments of random variable, 83
Monte Carlo algorithms, 366, 383

Amplification of confidence, 397
Monty Hall problem

Original, 39

Variants, 40
Mood chain, 451
Mouse in maze example, 112

Infinite, 506

With transforms, 130
Move-to-Front algorithm, 376
MSE, 257

For Bayesian estimators, 299

For MMSE estimator, 301
Multi-stage jobs, 227
Multiplication of monomials, 387, 388
Mutual funds, 107
Mutually exclusive events, 21

Negative Binomial

Tail, 325
Negative Binomial distribution, 114
Network of workstations (NOW), 182
Noisy reading from flash storage, 56
Non-preemptive migration, 182
Normal approximation of Poisson, 179
Normal approximation of sum, 177
Normal distribution, 170

Laplace transform, 207

Linear transformation, 172

Standard Normal, 170

Tail, 325
Number of time pattern appears, 77
Nuts-and-bolts algorithm, 374

One-sided error, 385, 388

Packet corruption model, 38, 41
PageRank algorithm, 458
Dead end, 461
Spider trap, 461
Pairwise independence, 29, 38
Pareto distribution, 187, 192
Properties, 189

Why comes up, 194
Partition of space, 22, 31
Permutation, 12
Pittsburgh Supercomputing Center, 147
Point estimation, 255
Poisson approximation to Binomial, 55
Poisson distribution, 49
Like Normal, 179
Poisson number of Exponentials, 205
Poisson process, 216, 225
Independent increments, 217
Merging processes, 220
Number arrivals during service, 226
Number of arrivals during service, 219
Origin of, 216
Poisson splitting, 221
Stationary increments, 217
Uniformity, 224
Polygon triangulation, 131
Population growth modeling, 228
Posterior
Mean, 295
Mode, 294
Power management, 533
Power of two choices, 341
Power-law distribution, 187
Preemptive migration, 182
Primality testing, 403
Prime Number Theorem, 403
Prior distribution, 287
Probabilistic method, 382
Probability density function, p.d.f., 134
Joint p.d.f., 153
Marginal p.d.f., 154
Probability mass function, p.m.f., 46
Joint p.m.f., 50
Marginal p.m.f,, 51
Probability no collisions, 358
Probability on events, 22
Process migration, 182
Processor with failures, 508
Program analysis example, 424, 433
Program checking, 383

Quality of service, 164
Quality of Service (QoS), 98
Queueing network simulation, 240
Queueing theory, 510
Arrival rate, 512
Interarrival time, 512
Job size, 512
Kendall notation, 513
Little’s Law, 523
For red jobs, 529
For waiting time, 527
Maximum arrival rate, 533
Number in system, 515

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

Index 549

Response time, 514
Service order, 512
Service rate, 512
Service requirement, 512
Slowdown, 537
Stability, 516
Throughput, 516
Utilization, 520
Utilization law, 528
Waiting time, 515
Quicksort
Deterministic, 367
Randomized, 368
Tail analysis, 378

R squared, 282
Ramanujan approximation, 361
Random graphs, 76
Number of edges, 76
Triangles, 77
Random prime, 418
Random variable, 44
Continuous, 134
Discrete, 45
With random parameters, 166, 208
Random variable conditioned on event
Conditional p.d.f., 145, 157
Conditional p.m.f., 67
Random walk, 450
Infinite, 490
On clique, 434
Randomized algorithms, 364
k-Select, 371
3-way fair coin, 374
And/or tree evaluation, 379
Approximate median, 399
Approximating 7, 395
Balls and bins, 337
Bloom filter hashing, 362
Bucket hashing, 351
Control group creation, 397
Cryptographic signature hashing, 355
Dominating set, 378
Fermat Primality Test, 408
Finding k largest, 377
Generating random permutation, 399
Generating random prime, 418
Hashing, 346
Independent set, 382
Knockout tournament, 400
Las Vegas, 366
Linear probing, 353
Making biased coin fair, 373
Matrix multiplication checking, 384
Max-3SAT, 395
Max-Cut, 396
Median-Select, 373

Miller—Rabin primality test, 410
Min-Cut, 389
Monte Carlo, 366, 383
Multiplication of monomials, 387, 388
Near Adder, 401
Nuts and bolts, 374
Primality testing, 403
Program checking, 383
Quicksort, 368
Ropes and cycles, 374
Uniform sampling from stream, 374
Versus deterministic algorithms, 364
Recurrence relations, 124, 131
Recurrent chain, 488, 491
Reliability, 151
Max of Exponentials, 226, 227
Max of Uniforms, 151
Min of Exponentials, 215
Remote execution, 182
Renewal process, 454
Renewal theorem, 454
Repair facility example, 422, 425, 432
Repair queue, 529
Rerouting IP flows, 193
Response time, 514
Reverse Markov inequality, 320
Ropes and cycles, 374

Sample average squared error, 278
Sample mean, 180, 256, 327
Sample path, 451
Sample space, 21
Continuous, 21
Discrete, 21
Sample standard deviation, 264
Sample variance, 180
With known mean, 259
With unknown mean, 260, 263
Sampling from unknown distribution, 180
Sampling without replacement, 109
SASE, 278
Scheduling
Fairness and starvation, 193
Shortest Remaining Processing Time, 193
Scheduling web requests, 193
Security application, 226
Simpson’s paradox, 74
Simulation
Event-driven simulation, 240
Generating random variables, 229
SIR model, 436
Size interval task assignment, 251
Skew, 92
Slowdown, 537
Sojourn time, see Response time
Solving recurrences via generating functions,
125

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

550 Index

Squared coefficient of variation, 87
Stability, 516
Standard deviation, 87
Stationary but not limiting, 501
Stationary distribution, 428, 429, 479
Stationary increments, 217
Stationary property, 421
Statistical inference, 253, 265
Stirling bounds, 14
Heuristic proof, 179
Stochastic dominance, 99, 101, 108, 115
Stochastic process, 421
Stopping time, 114
Strong Law of Large Numbers, 452, 474
Subsets of n elements, 12
Sum of random number of r.v.s
Geometric number of Exponentials, 207, 226
With transforms, 123, 129, 204
Sum of random number of random variables,
113
Mean, 93
Variance, 95
Sum of random variables
Binomials, 55
Continuous, 165
Laplace transforms, 203
Normals, 175, 208
Poissons, 128
z-transforms, 121
Sum of series, 2
Sunday colt, 36
SYNC project, 193

Tail bound, 307
Tail of random variable, 46, 97, 136
Geometric, 78
Negative Binomial, 325
Normal, 325
Tail probability, 306
Taylor series, 9
TCP flow scheduling, 193
Threshold queue, 501
Throughput, 516
Time average, 450
Time in system, see Response time
Time reversibility, 467, 468, 473, 477
Time to empty, 498, 499
Time until k heads, 79, 501
Total variation distance, 115
Transforming p.d.f., 151
Transient chain, 489, 491
Tree growth, 96
Two-offspring example
Extra information, 36
Original, 25

Umbrella problem example, 423, 425, 433
Unbiased estimator, 180, 256

Unbounded queue example, 480

Uniform distribution, 137

Uniform sampling from stream, 374

Union bound, 23, 338

UNIX process lifetime, 183
Empirical measurements, 186

Unreliable network, 28

Utilization, load, 520

Vandermonde’s identity, 14
Variance

Alternative definitions, 86

Bernoulli, 85

Continuous r.v., 141

Discrete r.v., 85

Equivalent definition, 88
Variance and risk, 107
Variance estimator

‘With known mean, 259

With unknown mean, 260
Variance of difference, 107
Variance of sum, 89, 107, 108
Variance-bias decomposition, 263
Virus propagation, 79

Wald’s equation, 114
Walk on undirected weighted graph, 474
Weak Law of Large Numbers, 323
Web file sizes, 193
Which Exponential happens first, 156, 158
Which Geometric happens first, 52, 53
Wireless session times, 193
With high probability, 338, 378
Witness, 384

Divisor witness, 403, 405

Fermat witness, 405

Gcd witness, 407

Root witness, 411
Worst-case analysis, 364, 370

z-transform, 117
Binomial, 118
Conditioning, 123
Geometric, 118
Linearity, 121
Moments, 120
Solving recurrence relations, 124, 131, 508
Sum of random number of r.v.s, 123, 204
Uniqueness, 130

Mor Harchol-Balter. Introduction to Probability for Computing,
Cambridge University Press, 2024. Not for distribution.

