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ABSTRACT

The growing trend in computer systems towards using scheduling
policies that prioritize jobs with small service requirements has re-
sulted in a new focus on the fairness of such policies. In particular,
researchers have been interested in whether prioritizing smail job
sizes results in large jobs being treated “unfairly.” However, fair-
ness is an amorphous concept and thus difficult to define and study.
This article provides a short survey of recent work in this area.

1. INTRODUCTION

Traditionally, the performance of scheduling policies has been
measured using mean response time (a.k.a. sojourn time, flow time),
and more recently mean slowdown [3, 16, 24] and the tail of re-
sponse time [6, 7, 26]. Under these measures, policies that give
priority to small job sizes (a.k.a. service requirements) at the ex-
pense of larger job sizes perform quite well. For example, Shortest-
Remaining-Processing-Time -(SRPT) is known to optimize mean
response time [36, 37]. As a result, designs based on these policies
have been suggested for a variety of computer systems in recent
years. However the adoption of these new designs has been slow
due to fears about the fairness of these policies. Specifically, there
are worries that large job sizes may be “starved” of service under
a policy that gives priority to small job sizes, which would result
in large job sizes having response times that are unfairly long and
variable [5, 38, 39, 40].

These worries have recurred nearly everywhere size based poli-
cies have been suggested. A first example is the case of web servers,
where recent designs have illustrated that giving priority to requests
for small files can significantly reduce response times [17, 29].
However, it is important that this improvement does not come at the
expense of providing large job sizes unfairly large response times,
which are typically associated with the important requests. It is in
this setting that Bansal & Harchol-Balter provided the first study of
the fairness of SRPT [4]. The same tradeoff has appeared across di-
verse application areas. For example, UNIX processes are assigned
decreasing priority based on their current age — CPU usage so far.
The worry is that this may create unfairness for old processes [10].
Similar tradeoffs can be found in recent designs for routers [27, 28],
wireless networks [19], transport protocols [45], and beyond.

To address these worries, there has been an explosion of theoret-
ical work studying the “fairness” of priority-based policies, and it
is the purpose of this paper to present a brief survey of this work.

Before moving forward however, let us take a moment to define
the model we are considering and the notation we will use. Our
focus will be on work conserving, preempt-resume single server
queues, the M/GI/] model unless otherwise stated. The policies
that we will consider are summarized in Table 1. We define 7" and
T(z) to be the steady-state response time overall and for a job of

size x respectively, and we let p < 1 be the system load. That
is p = AE[X], where A is the arrival rate of the system and X
is a random variable distributed according to a continuous service
(job size) distribution F(z) having density function f(z) defined
forall z > 0. Let F(z) = 1 — F(x). Further, define p(z) =
AF(z)E[X|X < z] and p(z) = AE[min(X,z)]. Finally, let B
denote the length of a busy period.

2. DEFINING FAIRNESS

Fairness is an amorphous concept, and nearly impossible to de-
fine in a universal way. The difficulty in defining the fairness of
scheduling policies is best illustrated using a few simple examples:

(i) Suppose jobs a and b are the same size, and a enters the queue
slightly before b.

(ii) Suppose jobs ¢ and d are very large and very small respec-
tively, and job c enters the queue slightly before job d.

Most people agree that it is fair to serve job a before job b and to
serve job d before job c. However, notice how the fair service order
changes depending on the setting being considered. If the queue
in question is a ticket box office, then it is more fair to serve job ¢
before job d and if the setting is a hospital it is more fair to serve
the more urgent job, regardless of the sizes or arrival order.

This simple example illustrates that we must have a clear idea of
what is meant by the term “fair” in the application context before
defining an appropriate notion of fairness. In this survey, our fo-
cus is on evaluating the fairness of system designs that propose to
give priority to small job sizes. Thus, in our context “fairness”
refers to the idea that all job sizes should receive equitable service,
i.e. no job size receives unduely large response times. 1t is im-
portant to realize that this is only one possible meaning of the term
“fairness,” and in other applications fairness could mean something
completely different. In Section 7, we will briefly discuss this topic
further.

Moving forward, let us reiterate that our goal is to evaluate the
fairness of priority-based scheduling (particularly the heuristic of
giving priority to small jobs) with respect to the performance of
different job sizes (particularly large jobs). Thus, we are interested
in understanding the behavior of T'(z) across .

In order to compare the response times of different job sizes,
we need to first understand how to normalize the response times in
order to make the comparison, i.e. how to normalize T'(z) in or-
der to compare it across z. In addition, it is important to define a
criterion that indicates when the normalized response time is con-
sidered “fair.” The following metric and criterion were proposed
by Wierman & Harchol-Balter in [41]:



FB Foreground-Background preemptively serves those
jobs that have received the least amount of service
so far.

FCFS | First Come First Served serves jobs in the order they
arrive.

LCFS | Last Come First Served non-preemptively serves the
job that arrived the most recently.

LRPT | Longest Remaining Processing Time preemptively
serves the job in the system with the largest remain-
ing processing time.

LJF | Longest Job First non-preemptively serves the job in
the system with the largest original size.

Preemptive Last Come First Served preemptively
serves the most recent arrival.

PLJF | Preemptive Longest Job First preemptively serves
the job in the system with the largest original size.
PS Processor Sharing serves all customers simultane-
ously, at the same rate.

PSJF | Preemptive Shortest Job First preemptively serves
the job in the system with the smallest original size.
SJF | Shortest Job First non-preemptively serves the job in
the system with the smallest original size.

SRPT | Shortest Remaining Processing Time preemptively
serves the job with the shortest remaining size.

PLCFS

Table 1: A brief description of the scheduling policies discussed
in this paper.

DEFINITION 1. Let 0 < p < 1 in an M/Gl/1. A job size x is
treated fairly under policy P, service distribution X, and load p if
P
EI@)]” _ 1
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Otherwise a job size x is treated unfairly. A scheduling policy P
is fair if every job size is treated fairly. Otherwise P is unfair.

Definition 1 consists of two pieces: a metric, E[T'(z)]/z, and a
criterion, 1/(1 — p). Each of these pieces can be motivated in a
variety of ways.

Let us first consider some justifications for the metric E[T(x)}/x.

The metric E[T(x)]/x, which is referred to as the mean condi-
tional slowdown, derives intuitively from Aristotle’s notion of fair-
ness: like cases should be treated alike; different cases should be
treated differently; and different cases should be treated differently
in proportion to the difference at stake [33]. In the context of
scheduling queues, this matches the common intuition that: small
jobs should have small response times, large jobs should have large
response times, and the differences in response times of small and
large jobs should be proportional to the differences between the
job sizes. More formally, when comparing E[T'(z)]” across z, we
want a metric that scales E[T'(x)]* appropriately to allow for com-
parison of E[T'(z)]” between small and large 2. For E[T'(z)], it
is clear that 1/ is an appropriate scaling factor because E[T'(x)
©(z) under all work conserving scheduling policies (see Theorem
10), and thus we need to normalize by 1/x.

To justify the criterion 1/(1— p), we will again start with an intu-
itive justification. PS is typically thought of as a fair policy because
at every instant every job in the system receives an equal share of
the server. This also corresponds to Rawls’ theory of social justice
[30]. Further, PsS satisfies the idea that E[T(z)] should be propor-
tional to x, since E[T(z)]"%/z = 1/(1 — p). Thus, 1/(1 — p) is
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a natural choice for a fairness criterion. In addition, it is a practical
choice because in many computer applications PS is the status quo,
and by comparing with the status quo we develop an understanding
of how new designs will affect response times. In addition to these
justifications, we can also provide a more formal justification of
the criterion 1/(1 — p). We can view it as a form of min-max fair-
ness (a.k.a. Pareto efficiency). In our context, Wierman & Harchol-
Balter [41] prove that min p max, E[T(x)]¥ /z = 1/(1 — p), and
thus 1/(1 — p) is the appropriate bar for comparison. Finally, it is
important to point out that 1/(1 — p) will turn out to be a useful cri-
terion because it distinguishes between distinct patterns of behavior
of policies with respect to E[T'(x)]¥ /z (see Figure 1).

With Definition 1 in hand, it is possible to group scheduling poll-
cies based on whether they (i) treat all job sizes fairly or (ii) treat
some job sizes unfairly. Curiously, some policies may fall into ei-
ther type (i) or type (ii) depending on the load and service distribu-
tion. We therefore define three types of unfairness.

DEFINITION 2. Let 0 < p < 1inan M/GI/I queue. A schedul-
ing policy P is: (i) Always Fair if P is fair for all such p and X ;
(ii) Sometimes Fair if P is fair under some p and X and unfair
under other p and X ; or (iii) Always Unfair if P is unfair under
all loads and service distributions.

Note that Definition 2 is a generalization of the definition in [41].
Initially, in [41], only distributions with finite variance were consid-
ered. However, more recently Brown [8] was able to extend many
of the results to allow the consideration of distributions with infi-
nite variance. The extension led to some counter-intuitive results
that we will discuss later in the paper.

3. STUDYING COMMON POLICIES

The purpose of Definition 1 is to be able to understand the fair-
ness of recent system designs that propose policies that prioritize
small jobs. To that end, in this section we will survey recent re-
sults characterizing the fairness of two important policies: SRPT
and FB. Designs based on SRPT have been proposed for use in a
number of application areas, including web servers [17, 29] and
wireless networks [19], and designs based on FB have been pro-
posed for use in operating systems [10] and routers [27, 28].

However, before we can study SRPT and FB, it is useful to de-
velop an understanding of Definition 1 by studying the fairness of
a few simpler policies. As a first step, it is easy to see that PS and
PLCFS are Always Fair because

BIT@]™°"% = BT @)™ = 1—
Thus, there are a number of policies that are fair under all service
distributions and all loads.

However, most common policies are not Always Fair. In fact,
most are Always Unfair. For example, it is straightforward to see
that FCFS is Always Unfair, since the smallest job size in the ser-
vice distribution will be treated unfairly {41]. But, it turns out that
by giving priority to small jobs, it is possible to be Sometimes Fair.
In particular, we will see that SRPT and FB are Sometimes Fair. In
fact, we will see that even in the settings where these policies are
unfair, the degree of unfairness to large job sizes is not as bad as
one might expect.

We will now delve into detail about the fairness of SRPT and
FB. Note though that although we only consider SRPT and FB in
detail, the fairness of a wide variety of other common policies have
been analyzed in [4, 8, 13, 18, 27, 28, 41]. The reader may find
illustrations of the fairness behavior of FB, SRPT, and many other
common policies in Figures 1 and 4.
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Figure 1: The conditional mean slowdown is illustrated under a variety of both preemptive and non-preemptive policies. The service
distribution is exponential with mean 1. The dotted line shows the criterion for fairness.

3.1 SRPT

SRPT has long been known to optimize E[T]. However, its use
in practice has been hindered by the fear that large job sizes expe-
rience unfairly long response times. The fairness of SRPT was first
studied by Bansal & Harchol-Balter [4] under the assumption that
E[X?] < oo. These initial results were later extended by Wierman
& Harchol-Balter [41], and then by Brown [8], who was the first
to consider fairness when E[X?] = co. We summarize the major
results in the following theorem:

THEOREM 1. SRPT is Sometimes Fair. SRPT is fair when p <
0.5 or when the service distribution is regularly varying' with rate
a € (1,1.5). However, when E[X?) < oo, under all service
distributions there exists a p. < 1 such that for all p > p. SRPT
is unfair.

Theorem 1 illustrates that, surprisingly, in many cases SRPT is
fair to all job sizes. Thus, in many cases it is possible to optimize
E[T) while still providing fair response times to all job sizes. In
particular, when the system load is small enough or the tail of the
service distribution is heavy enough, SRPT is fair. In fact, SRPT
is often fair in practical settings since workloads in many computer
applications are thought to be regularly varying with o € (1, 1.5).

However, SRPT is not Always Fair, because when E[X?] <
oo, under high enough load SRPT becomes unfair. This behavior
is illustrated in Figure 1. Note that an important open question
is determining the p. below which SRPT is fair and above which
SRPT is unfair. This p. is highly service distribution dependent,
and currently all that is known is that p. € (0.5, 1).

Though SRPT is fair in many cases, there are also many situa-
tions when SRPT is unfair and, in these cases, it is important to
understand which job sizes are treated unfairly and how unfairly
these job sizes are treated. The following theorem summarizes the
results from [4, 41]:

THEOREM 2. All x suchthat p(z) < max(1/2,2p/3,1—/1—p)

are treated fairly under SRPT. Further, for any x that is treated un-
Sairly,
2—-p ) 1

20-p)) 1=p’

'Regularly varying distributions are a class of distributions that
have the same tail behavior as the Pareto. Formally, a service dis-
tribution is regularly varying if F'(z) = L(z)z~ for some L(x)
such that for all y > 0, L(yz)/L(x) — 1 as & — oo.

BIT@)5*"7 < (

Notice that only a small fraction of jobs are treated unfairly and
that these jobs experience a quite small degree of unfairness. Fur-
ther, it is important to note that as p increases, so does the lower
bound 1 — /1T = p on p(z). In fact, this bound converges to 1 as
p — 1, which signifies that the size of the smallest job that might
be treated unfairly is increasing unboundedly as p increases.

One expects that when SRPT is unfair, it is unfair to large jobs
and most unfair to the largest ones. It turns out that SRPT is unfair
to (a small fraction of) large jobs, but that it is most unfair to some
range medium-large jobs. Specifically, as z — oo, E[T(z)}/z —
1/(1 — p) and the limit is approached from above [41]. This be-
havior is illustrated in Figure 1.

In summary, it seems that worries about the starvation of large
job sizes under SRPT can safely be discarded since in many prac-
tical settings SRPT is fair. Further, when SRPT is unfair, only a
small fraction of jobs are treated unfairly and the degree of unfair-
ness these jobs experience is small.

32 FB

FB? has long been known to optimize [T among policies blind
to job size information when job sizes have decreasing failure rate
[34]. However, like SRPT, its use in practice has long been hin-
dered by the fear that large job sizes experience unfairly large re-
sponse times. The first results on the fairness of FB were published
simultaneously by Wierman & Harchol-Balter {41] and Rai, Urvoy-
Keller, & Biersack [27] under the assumption that E[X?] < co.
However, recently Brown found, surprisingly, that FB can be fair
when the service distribution has infinite variance [8]. We summa-
rize the major results in the following theorem:

THEOREM 3. FBis Sometimes Fair. FB is unfair when E[X?] <
o0. However, FB is fair when the service distribution is regularly
varying with rate a € (1,1.5).

Comparing Theorem 3 with Theorem 1 indicates that FB is more
unfair than SRPT when E[X?] < oo but that FB parallels the fair-
ness of SRPT under regularly varying distributions. Intuitively, this
is aresult of the fact that, the heavier the tail of the service distribu-
tion, the closer to SRPT FB becomes. In particular, it is well known
that under regularly varying service distributions FB behaves very

2FB is known by a variety of other names including Least Attained
Service (LAS) and Shortest Elapsed Time first (SET). See [25] for
a survey.



similarly to SRPT with respect to E[T] and P(T > z) [26, 25].
Theorem 3 indicates that this similarity also extends to fairness.

Though Theorem 3 says that FB can be fair in some situations,
more often than not, FB is unfair. Thus, it is important to under-
stand which job sizes FB is unfair to and how unfairly these job
sizes are treated. A number of researchers have looked into this
question. Summarizing the major results from [8, 27, 41], we have
the following answers to these questions:

THEOREM 4. All x such that p(z) < max(2p/3,1—+/1T—p)
are treated fairly under FB. Further, for any x that is treated un-

Sairly,

Notice that the percentage of job sizes that are treated unfairly
is quite small in most settings, and especially in the case when the
service distribution is highly variable since under such distributions
a small percentage of the largest jobs make up a large fraction of the
load. Further, notice that the degree of unfairness experienced by
this small fraction of jobs is bounded independently of the service
distribution, and is small when the system is not heavily loaded.

Like with SRPT, one expects that when FB is unfair, it is unfair
to large jobs and most unfair to the largest ones. It turns out that
FB is indeed unfair to (a small fraction) of large jobs, but that it
is most unfair to some range medium-large jobs. Specifically, as
x — 0o, E[T(z)]¥® /x — 1/(1 — p) and the limit is approached
from above [41]. This behavior is illustrated in Figure 1.

In summary, the results in this section should serve to ease con-
cerns about the unfairness experienced by large job sizes under FB.
When FB is unfair, it is to a very small fraction of jobs and the de-
gree of unfairness experienced by these jobs is small. Further, in
many practical settings FB is fair to all job sizes.

4. STUDYING SCHEDULING
CLASSIFICATIONS

Traditionally, research studying the scheduling of queues has fo-
cused on a limited range of idealized scheduling policies, as we
have in this paper to this point. However these policies are hardly
ever implemented in their pure form in computer systems. For ex-
ample, though many recent systems have been designed using the
heuristic of “prioritizing small jobs” none have implemented pure
SRPT or FB as a result of limitations on the scheduling techniques
that are possible and the desire to optimize a range of secondary
metrics. Instead hybrid policies have been proposed, e.g. [14, 15,
28, 10]. Thus, there is a gap between the results provided by tradi-
tional research and the needs of practitioners.

An emerging style of research attempts to bridge this gap by
formalizing general scheduling heuristics (such as giving priority
to small/large jobs) and scheduling techniques (such as prioritiz-
ing using remaining sizes), and then analyzing these heuristics and
techniques instead of analyzing the behavior of idealized individual

policies [22, 10, 41, 42, 43]). The analysis of these heuristic classi- -

fications provides both practical and theoretical benefits. Theoreti-
cally, such results add structure to the space of scheduling policies
that cannot be attained by studying individual policies alone. Prac-
tically, such results provide analyses of the hybrid policies that are
implemented in real systems.

4.1 Scheduling heuristics

The goal of this section is to characterize the fairness of three
common scheduling heuristics: prioritizing small jobs, prioritiz-
ing large jobs, and symmetric scheduling. The scheduling heuristic

employed by a policy is a key factor in determining the perfor-
mance of the policy. For example, though recent web server de-
signs have been motivated by the optimality of SRPT, pure SRPT
is not implemented. However, the policies that are implemented
do obey the heuristic of prioritizing small jobs, and therefore still
provide near optimal mean response time.

4.1.1 Prioritizing small jobs

1t is well known that policies that “prioritize small jobs” perform
well with respect to mean response time. As we have already dis-
cussed, this idea has been fundamental to many computer systems
applications ranging from web servers and routers to supercomput-
ing centers and operating systems. The SMART class, recently in-
troduced by Wierman, Harchol-Balter & Osogami [43] formalizes
the heuristic of “prioritizing small jobs” in order to provide “SMAIL
Response Times®” using three simple properties described below.

We denote the remaining size, original size, and arrival time of
job a as rq, sq4, and t, respectively. The original sizes, remaining
sizes, and arrival times of b and ¢ are defined similarly. We define
Job a to have priority over job b if job b can never run while job a
is in the system.

DEFINITION 3. A work conserving policy P belongs to the SMART
class, denoted P € SMART, if it obeys the following properties.’

Bias Property: Ifry, > sq, then job a has priority over job b.

Consistency Property: If job a ever receives service while job b
is in the system, thereafter job a has priority over job b.

Transitivity Property: If an arriving job b preempts job c at time
t; thereafter, until job c receives service, every arrival, a,
with size s, < sy is given priority over job c.

This definition has been crafted to mimic the heuristic of bias-
ing towards jobs that are (originally) short or have small remaining
service requirements. The Bias Property guarantees that the job
being run at the server has remaining size smaller than the origi-
nal size of all jobs in the system. The Consistency and Transitivity
Properties ensure coherency in the priority structure enforced by
the Bias Property. In particular, the Consistency Property prevents
time-sharing by guaranteeing that after job a is chosen to run ahead
of b, job b will never run ahead of job a. This makes intuitive sense
because our priority function is based on the heuristic of giving
priority to small jobs, and as job a receives service, it can only get
smaller. Finally, the Transitivity Property guarantees that SMART
policies do not second guess themselves: if an arrival o is estimated
to be “smaller” than job b (and hence is given priority over job b),
future arrivals smaller than a are also considered “smaller” than b.

Many common policies are part of the SMART class, e.g. SRPT
and PSJF. Further, the SMART class includes many generalizations
of these policies, including policies that use time-varying priority
functions (see [26] for details).

Over the past few years, a number of results have been proven
about SMART policies [26, 43, 44]. Of interest to us here are the
bounds that have been proven by Wierman, Harchol-Balter, & Os-
ogami on E[T] and T'(x) [43].

THEOREM 5. For P € SMART:
R(Z)SRPT+W(.'L‘)PSJF Sst T(E)P _<_st R(IL‘)PSJF+W(£E)SRPT.
It follows that T(x)" <. T(z)FB. Further,

E[T]SRPT < E[T]P < ZE[T]SRPT

3We thank Hanoch Levy for his suggestion of this acronym.
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Figure 2: This figure illustrates the bounds on E[T'(z)]/x and
E[T] under the class of SMART policies. The shaded area in-
dicates the response times attainable using SMART policies. In
addition, the behaviors of the two most common SMART poli-
cies, SRPT and PSJF, are illustrated and compared with PS.
In both plots the service distribution is taken to be Exponential
with mean 1, and the load in (a) is 0.7.

This result (illustrated in Figure 2) serves as a validation of the
heuristic of prioritizing small jobs, since it indicates that all policies
that obey this heuristic have near optimal response times. Further,
the fairness properties of the class follow from Theorem 5 using the
same techniques as used in [41] to analyze SRPT.

THEOREM 6. All SMART policies are Sometimes Fair.

This theorem is in many ways a negative result, since it indicates
that no policy that prioritizes small jobs (and thus has near optimal
E[T]) can be Always Fair. However, it is also a positive result in
the sense that the fairness of these policies is not as bad as expected,
and there are practical settings where they are fair.

4.1.2 Prioritizing large jobs

We now move from policies that prioritize small jobs to poli-
cies that prioritize large jobs, which we term FOOLISH policies.
Though FOOLISH policies may not be practical in many settings,
we introduce them here in order to contrast the behavior of policies
that bias towards large jobs with the behavior of SMART policies.

DEFINITION 4. A work conserving policy P € FOOLISH if it
obeys the following property:

Bias Property: If vy > 14 and sy > Sa, then job b has priority
over job a.

Notice that Definition 4 parallels Definition 3 of SMART poli-
cies. However, an important difference between the two definitions
is that the definition of FOOLISH policies does not include a Con-
sistency or Transitivity Property. This is because these properties
are used by the SMART definition to avoid time-sharing and other
such behaviors that increase E[T’]. However, all FOOLISH policies
will have large F[T, so there is no need to exclude these behaviors
from the FOOLISH class.

Many common policies are part of the FOOLISH class. Of course,
the FOOLISH class includes LRPT and PLJF. Further, it is easy to
prove that the FOOLISH class includes a range of policies hav-
ing more complicated (maybe time-varying) priority schemes, sim-
ilarly to the SMART class.

Let us now discuss E[T] and T'(z) under FOOLISH policies.

THEOREM 7. In a GI/Gl/I queue, for P € FOOLISH,
T((L‘)PLJF <st T(QL‘)P <ot T($)LRPT-

Thus, E[T)P*7F < E[T)P < E[T)*RPT.
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Figure 3: This figure illustrates the bounds on E[T(z)]/x and
E[T] under the class of FOOLISH policies. The shaded area in-
dicates the response times attainable using FOOLISH policies.
In addition, the behaviors of the two most common FOOLTSH
policies, PLJF and LRPT, are illustrated and compared with
PS. The service distribution is taken to be Exponential with
mean 1, and the load in (a) is 0.7.

The bounds on E[T] under FOOLISH policies are illustrated
in Figure 3. It is interesting to compare the bounds on E[T] un-
der FOOLISH and SMART policies. The mean response time un-
der SMART policies is significantly smaller than the mean response
time under FOOLISH policies, and in fact, under many service dis-
tributions (for instance the Exponential used in Figure 3) all SMART
policies have smaller mean response time than all FOOLISH poli-
cies under all loads. Further, from Figure 3 it is immediately evi-
dent that FOOL I SH policies are unfair to small job sizes. The proof
of this fact follows easily from Theorem 7.

THEOREM 8. All FOOLISH policies are Always Unfair.

4.1.3 Symmetric scheduling

Neither of the scheduling heuristics we have considered so far
are Always Fair. However, there is one common scheduling heuris-
tic that is Always Fair: the class of SYMMETRIC scheduling poli-
cies, which was introduced by Kelly [20]. SYMMETRIC disciplines
have proved fundamental to the study of queueing networks due to
the important property that the departure process is stochastically
identical to the arrival process when time is reversed under these
policies. In this paper, we consider the class of SYMMETRIC dis-
ciplines not because of their behavior in queueing networks, but
rather due to the sense of “fairness” they provide. Unlike SMART
and FOOLISH policies, SYMMETRIC policies do not prioritize based
on job size information. Instead, SYMMETRIC policies provide
“fairness” in the sense that they do not schedule based on any job
traits — all arrivals are treated equivalently.

Let us now define the SYMMETRIC class. Consider a queue con-
taining customers in positions 1, 2, ..., n where upon the comple-
tion of the ith job the jobs in positions ¢ + 1,...,n move to posi-
tions ¢, ...,n - 1 and upon an arrival to the 7th position the jobs in
position 4, . .., » move to positions ¢ + 1,...,n + 1.

DEFINITION 5. A scheduling policy is an M/GI/1 SYMMETRIC
discipline if when m jobs are in the queue, a proportion §(i,n) of
the server is directed to the ith customer in the queue, and an ar-
rival enters position ¢ with probability 6(i,n). Of course, for all n,

S 6m) =1

Intuitively, SYMMETRIC policies are policies where the arrival
and service rates for each position in the queue are “symmetric.”
It may not be immediately apparent, but the class of SYMMETRIC
policies is quite broad, e.g. by taking §(3,n) = 1/n we obtain PS
and by taking 6(4,n) = 1{;=n) We obtain PLCFS.
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Figure 4: An illustration of the classification of common prior-
itization techniques and heuristics with respect to fairness.

Amazingly, all SYMMETRIC policies have equivalent mean re-
sponse times, and thus all SYMMETRIC policies are Always Fair,
which is a stark contrast to SMART and FOOLISH policies. How-
ever, though SYMMETRIC policies are Always Fair, they are inef-
ficient in the sense that they have E[T] far from optimal. Thus, in
order to be fair they sacrifice efficiency.

THEOREM 9. All SYMMETRIC policies are Always Fair. In
particular, for P € SYMMETRIC,
E[T(z))F = 1%,; and thus E[T]F = lﬂ_"ip

2

4.2 Scheduling techniques

Figure 4 illustrates our results thus far with respect to both in-
dividual scheduling policies and heuristic-based classifications of
policies. However the scheduling heuristic applied in a policy is
only one defining aspect of the discipline. For instance, SRPT is
defined both by the fact that it prioritizes small jobs and the fact
that it uses remaining sizes to prioritize. Therefore, in addition to
heuristic-based classifications, we also consider fechnique-based
classifications For example, consider all scheduling policies that
prioritize using purely the remaining size of a job. This includes
much more than SRPT, for example it includes LRPT as well as
hybrid policies that prioritize both large and small jobs in an at-
tempt to curb unfairness. We call this the class of remaining size
based policies. Similarly, we can define the class of preemptive size
based policies to be all preemptive policies that make use only of
the original size of a job. Figure 4 provides an overview of the fair-
ness of these and other technique-based classifications. The reader
can find more information about these technique-based classifica-
tions in [41, 42].

5. A FAIR AND EFFICIENT POLICY

Over the last few sections, we have seen that there are very few
common policies that are Always Fair, and further that those poli-
cies that are Always Fair have mean response times that can be far
from optimal. In fact, the results we have presented so far paint a
discouraging picture: no common scheduling heuristics and tech-
niques can result in policies that are Always Fair and no policies
can be both fair and efficient.

The search for a fair policy with near optimal performance proved
elusive until the 2003 ACM Sigmetrics conference when Fried-

o PS e PS
---FsP ---FSP
& —SRP 1.5{—SRe"

E[TOqMx

() E[T](‘i —p)

Figure 5: These plots show a comparison between PS, FSP, and
SRPT with respect to both E[T'(x)]/x and E[T]. The service
distribution is Exponential with mean 1. The load in (a) is 0.7.

man and Henderson presented a new policy called Fair-Sojourn-
Protocol (FSP), which provides the first example of a fair policy
that significantly improves upon the performance of pS. {11].

FSP is motivated by one simple idea: at any given point, it is
easy to tell which job will finish next under PS. Given this infor-
mation, it is possible to avoid wasting time time-sharing among
jobs, and thus improve the response times of PS dramatically. The
easiest way to understand FSP is to imagine that at any point in
time you know the full state of a virtual PS queue, with the same
arrival process. (Note though that this is not actually needed. for
the implementation of FSP.) Under the FSP policy, the job being
run is always the job that the virtual PS queue would have com-
pleted first. Thus, FSP can be thought of as performing SRPT on
the remaining times of a virtual PS system.

The power of FSP comes from the following property of the
policy: FSP finishes every job at least as early PS would regardless
of the arrival process and service distribution. This follows from the
fact that, by its definition, FSP is only reordering the work that is
being done under PS so as to be more efficient; however a formal
proof can be found in [11]. v

Unfortunately, beyond the guarantee of better performance than
P3, there exists very little work analyzing the performance of FSP.
Thus, in order to understand how much FSP improves response
times over PS, researchers have been limited to simulation studies
such as those in [11, 14, 15]. In order to summarize the key points
of these studies, we will now briefly illustrate how the mean re-
sponse time of FSP compares to that of PS and further, to the opti-
mal mean response time, E[T]S RPT Pigure 5 illustrates a simple
comparison of the response times under FSP, PS, and SRPT. In
Figure 5 (a) the behavior of E[T'(x)] under each of these policies
is shown. We can see that FSP provides improvements over PS for
all job sizes and that the improvements are most dramatic for small
job sizes. But, the bias towards small job sizes is not as extreme
under FSP as it is under SRPT. Moving to Figure 5 (b), we can see
that E[T]F5% and E[T]%FT are similar when the load is not too
high: only when p — 1 does SRPT provide dramatic gains in E[T)
over FSP. These results clearly illustrate the need for future work
to provide a queueing analysis of FSP.

6. BEYOND FAIRNESS IN EXPECTATION

So far, we have studied fairness in expectation. However, wor-
ries about the experience of large job sizes under policies that pri-
oritize small jobs are not limited to the mean. People worry that
large jobs will experience both larger and more variable response
times [5, 38, 39, 40]. Thus, it is important to develop a framework
for comparing distributional properties of 7°(x) across z, not just
E[T(x)]. The approach that has been followed in the literature is to
compare higher moments of 7T'(z) across x, however developing a



framework for comparing higher moments of T'(z) is not straight-
forward. As a result, we will start by limiting our focus to the
behavior of large job sizes, and then we will exploit these results
in order to present a general fairness framework. Note that another
possible approach is to contrast the tail asymptotics of T'(z) across
z, and we refer the reader to the article of Zwart and Boxma in this
issue for a survey of such results.

6.1 The experience of large jobs

We now move from a discussion of fairness across all job sizes
to a discussion about only large job sizes. By focusing on only
the behavior of large job sizes, we will be able to study the distri-
butional behavior of fairness instead of being limited to studying
fairness in expectation. These results will then provide the basis for
our generalization of Definition 1 beyond fairness in expectation.
Also, a study of large job sizes is of practical importance because
it is worries about the performance of large jobs under policies that
prioritize small jobs that motivates our study of fairness.

The most natural starting point for generalizing Definition 1 to
higher moments is to consider E[T(z)*]/=", which corresponds to
the study of the distribution of slowdown, denoted S(z) = T'(z)/z.
The limiting behavior of slowdown, i.e. S(z) as ¢ — oo, was
first studied by Harchol-Balter, Sigman, & Wierman in the M/GI/1
setting [18]. Following these initial results, a number of other re-
searchers have analyzed the limiting slowdown of nearly all com-
mon policies in the GVGI/1 queue 6, 7, 26]. The results are sum-
marized in the following theorem.

THEOREM 10. In a GI/GI/I queue with E[{X?] < co
1

Jim S(z) <a.s. T
under all work conserving policies and equality. holds for P €
{PS,PLCFS,SRPT,FB,SMARTY} even when E[X?] = oo
If the policy is also non-preemptive, then limg 00 S(2) =a.s. 1.

Though using S(x) to characterize the distributional behavior of
fairness is natural, the fact that S(z) converges almost surely as
2 — oo hints that other metrics with weaker scaling factors may
be more appropriate since they will provide more information about
the distribution. Specifically, the normalization factor 1/z in S(x)
hides information of the variability of the response times of large
job sizes; thus it is important to consider other scaling factors.

The next natural suggestion for studying the distributional prop-
erties of T'(x) is to use the central moments. However, Wierman
& Harchol-Balter [42] illustrate that the central moments provide
an appropriate comparison for only the first 3 moments. The ob-
servation that the first three central moments are well behaved is
important. It suggests that the cumulant moments may provide the
correct asymptotic metric.

Cumulants have appeared sporadically in queueing [9, 12, 23],
tending to be used in large deviation limits. The cumulant moments
of arandom variable X, x;[X]¢ = 1,2, .., are adescriptive statis-
tic similar to moments and can be found using the logarithm of the
moment generating function. Cumulants capture many of the stan-
dard descriptive statistics: the first cumulant is the mean; the sec-
ond is the variance; the third measures the skewness; and the fourth
measures the kurtosis. See [21] for tables of the relationships be-
tween cumulants, moments, and central moments.

Using the cumulant moments, Wierman & Harchol-Balter [42]
obtain a parallel result to Theorem 10 that captures the distribu-
tional behavior of 7'(z) for large job sizes:

10

THEOREM 11. In an M/Gl/1 queue with E[X**'] < oo,
lim i[T(z)] < 1j=1) + AE[BY]
T—00

under all work conserving policies and equality holds for P €
{PLCFS,SRPT,FB,SMARTY} even when E[X*"'] = co as
long as E[X*] < oo. If the policy is also non-preemptive, then
limg— oo k[T ()] = 1ji=1]-

Theorem 11 can be thought of as a central limit theorem scaling
as opposed to the law of large numbers scaling in Theorem 10. It
is worth pointing out that though the 1j;—) may appear strange at
first, it is a fundamental result of the fact that the first cumulant is
shift-equivariant while all others are shift-invariant: letting c be a
constant, 51[Y +¢] = k1[Y]+cbutfori > 2, k;[Y +¢] = s;[Y]).

6.2 A general framework for studying fairness

The results in the previous section provide strong guidance on
how to generalize Definition 1 to higher moments. In particular,
Theorem 11 motivates the following generalization of the metric
E[T(z)]/x and criterion 1/(1 — p):

DEFINITION 6. Let 0 < p < 1 and E[X*] < oo in an M/GI/I.
A job size x is treated fairly under policy P, service distribution
X, and load p if
Otherwise a job size x is treated unfairly. A scheduling policy P
is fair if every job size is treated fairly. Otherwise P is unfair.

Definition 6 was first introduced by Wierman & Harchol-Balter in
[42]. However, [42] suggests a more restrictive definition where
E[X**!] < co. But, the recent results of Brown studying
Var[T(z)]/z = k2[T(x)]/z under SRPT and FB in the setting
where E[X?] is infinite [8] motivate the extension. Note though
that we must require £[X"’] < oo since otherwise E[B*] = oco.

There are many parallels between Definition 1and Definition 6.
The metric and criterion in Definition 1 match the metric and cri-
terion for ¢ = 1 in Definition 6: x1[T'(z)]/z = E[T(x)]/x and
lp=1) + AE[B] = 14 p/(1 — p) = 1/(1 — p). Further, the mo-
tivation for the metric and criterion parallel the motivations for the
metric E[T'(x)] /= and the criterion 1/(1 — p) in many ways.

In both Definition 1 and Definition 6, the metric is motivated
by the growth rate of moments of T'(x) as ¢ — oo. Specifically,
the metric must scale moments of 7T'(x) appropriately to allow for
comparison of moments of T(z) between small and large . For
E[T(x)], it is clear that 1/z is an appropriate scaling factor be-
cause E[T(z)]F = ©(z) under all work conserving scheduling
policies. For higher moments of T'(x), the correct scaling factor
is not obvious; however in Section 6.1 we illustrated that x;[T(x)]
is ©(z) for common preemptive policies and O(z) for all work
conserving policies. Hence, scaling by 1/ makes sense; whereas
using a stronger scaling would hide the variability of T'(z).

The motivation for the criteria in Definition 6 again parallels
that for the criterion in Definition 1; however it is not as cut-and-
dry. It is not known whether 1j;—1) + AE[B"] provides a min-
max notion of fairness for ¢ > 1. Though we conjecture that to
be true. But, there are many parallels between 1j;=1) + AE[B’]
and 1/(1 — p). For instance, Theorem 11 illustrates that the cri-
terion in Definition 6 also serves as the limit for x;[T(x)]/x un-
der many common scheduling policies just as 1/(1 — p) does for
E[T(z))/x. However, a priori, it is not clear whether this limiting
behavior distinguishes between patterns of behaviors with respect
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Figure 6: The conditional variance of response time is illustrated under a variety of both preemptive and non-preemptive policies.
The service distribution is exponential with mean 1. The dotted line shows the criterion for fairness.

to ks [T(x)] /2 in the same way 1/(1 — p) did for E[T'(z)]/z. But,
Wierman & Harchol-Balter [42] proved that in the case of ¢ = 2,
when 3[T(z)]/x = Var[T(z)]/z, the criterion AE[B?] does in-
deed differentiate between contrasting Var[T'(z)]/x behaviors and
that the behaviors in Var[T'(z)]/z parallel those for E[T(x)]/x.
To illustrate this, we can compare the behavior of Var[T(z)]/x
under common policies (shown in Figure 6) with the behavior of
E|T(z)]/z (shown in Figure 1). Notice that the Definition 6 dis-
tinguishes between between non-monotonic “hump” behaviors —
where some mid-range job sizes are treated the most unfairly — and
monotonically increasing behaviors in the case of 4 = 2 just as it
does in the case of ¢ = 1. Similarly, the fairness properties of the
scheduling heuristics and techniques studied in Section 4 are par-
allel for E[T'(z)]/z and Var[T(x)]/x [42]. An important open
question that remains though is to show that x;[T'(z)] exhibits par-
allel behavior for ¢ > 2.

7. OTHER FAIRNESS METRICS

Up to this point, we have focused on a specific type of fairness,
that of guaranteeing equitable response times to all job sizes. This
focus is motivated by fears about recent computer system designs
that propose policies which give priority to small jobs at the ex-
pense of large jobs. However, as we discussed earlier, different
settings require different notions of fairness. As a result, following
the introduction of Definition 1, many other metrics have emerged
for evaluating the fairness of scheduling policies.

In particular, Definition 1 only captures the notion of propor-
tional fairness, i.e. the idea that it is fair for jobs to receive response
times proportional to their service times. Resultantly, it is unfair to
force a small job to queue behind a large job because the response
time of the small job will become unfairly large. However, propor-
tional fairness is not always appropriate because if a large job has
been waiting in the queue for a long time it is in some sense unfair
for a small job that just arrived to the queue to jump in front of the
large job, e.g. the queue at a ticket box office. In fact, in many set-
tings FCFS is the most fair policy because it respects the seniority
of customers — this is the idea of temporal fairness.

Recently, a number of measures have been suggested to capture
the notion of temporal fairness, and in many cases balance it against
proportional fairness. Unfortunately, we do not have the space in
this short article to provide a detailed survey of these measures, but
three of the most developed of these measures are: Order Fairness
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[1], Resource Allocation Queueing Fairness Measure (RAQFM)
[32], and Discrimination Frequency (DF) [35]. Each of these mea-
sures captures a different notion of what is “fair.”

Order Fairness, introduced by Avi-Itzhak & Levy [1], was devel-
oped using four simple axioms to formalize the concept of temporal
fairness in a G/D/1 queue. Interestingly, for non-preemptive poli-
cies, Avi-Itzak & Levy determine that the variance of delay satisfies
these four axioms and is thus a useful measure of temporal fairness.

Following the introduction of the Order Fairness measure, Avi-
Itzhak & Levy in combination with Raz present a fairness mea-
sure that balances both proportional and temporal fairness called
RAQFM [32]. The idea behind RAQFM is that at every point in
time, every job in the system deserves an equal service rate. Thus,
the fairness of a policy is determined by looking at the variation
from this service rate that jobs experience. Avi-ltzhak, Levy, &
Raz, have a number of papers illustrating the properties of this in-
teresting measure [31, 2], but unfortunately, the faimess of many
practically relevant policies, e.g. SRPT and FB, has proven diffi-
cult to analyze using RAQFM.

Shortly after the introduction of RAQFM, Sandmann introduced
another fairness measure called Discrimination Frequency (DF) [35].
Unlike RAQFM, which implicitly balanced the notions of propor-
tional fairness and temporal fairness, DF is defined as an explicit
combination of two measures, one for proportional fairness and
one for temporal fairness, each of which is easily analyzed under
all common scheduling policies. A key benefit of this approach is
that DF allows the measure to be tuned depending on the applica-
tion needs. The two measures DF combines are (i) the number of
jobs that arrived after and completed before the tagged job and (ii)
the number of jobs with remaining size larger than the tagged job
(upon arrival) that complete before the tagged job.

Clearly, each of these three fairness measures captures a different
aspect of what is meant by the term “fair,” and resultantly none is
suitable across all applications. However, understanding the perfor-
mance of a scheduling policy under all of these measures provides
significant insight into the behavior of the policy.

8. CONCLUSION

The goal of this article is to provide a short survey of recent
work studying the question: “are policies that prioritize small jobs
unfair to large jobs?” Much work has appeared on this topic since
2001, including a number of surprising results, e.g. that policies



such as SRPT and FB can be fair to all job sizes in many practical
settings. However, it is clear from this survey that many interesting
and important questions remain.

Within the context of Definition 6, it would be very interesting to
determine whether the behavior of policies (and scheduling heuris-
tics) with respect to higher moments matches what has been ob-
served for the first two moments. Further, it would be interesting
to determine whether the criterion in Definition 6 provides a min-
max notion of faimess beyond the first moment. Additionally, ob-
taining results for FSP in the M/GI/1 setting is of great interest.
Finally, beyond Definition 6, there are an abundance of other im-
portant questions to address: from contrasting recently presented
notions of fairness, to finding policies that perform well across all
fairness measures while still providing near optimal E[T], to ex-
tending definitions of fairness beyond the single server model.

Though many open questions remain, the study of fairness has
already begun to have a dramatic effect on the design of computer
systems. The counter-intuitive fact that it is possible to give priority
to small job sizes without hurting the performance of large job sizes
has led to the gradual acceptance of designs using policies such as
SRPT, PSJF, and FB in a variety of applications, including web
servers [17, 29], operating systems [10], routers [27, 28], wireless
networks [19], transport protocols [45], and beyond.
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