
Connection Scheduling in Web ServersMark E. Crovella� Robert Frangioso�Department of Computer ScienceBoston UniversityBoston, MA 02215fcrovella,rfrangiog@bu.edu Mor Harchol-BalterySchool of Computer ScienceCarnegie Mellon UniversityPittsburgh, PA 15213-3891harchol@cs.cmu.eduAbstractUnder high loads, a Web server may be ser-vicing many hundreds of connections concurrently.In traditional Web servers, the question of the or-der in which concurrent connections are servicedhas been left to the operating system. In thispaper we ask whether servers might provide bet-ter service by using non-traditional service order-ing. In particular, for the case when a Web serveris serving static �les, we examine the costs andbene�ts of a policy that gives preferential serviceto short connections. We start by assessing thescheduling behavior of a commonly used server(Apache running on Linux) with respect to connec-tion size and show that it does not appear to pro-vide preferential service to short connections. Wethen examine the potential performance improve-ments of a policy that does favor short connections(shortest-connection-�rst). We show that mean re-sponse time can be improved by factors of fouror �ve under shortest-connection-�rst, as comparedto an (Apache-like) size-independent policy. Fi-nally we assess the costs of shortest-connection-�rstscheduling in terms of unfairness (i.e., the degree towhich long connections su�er). We show that un-der shortest-connection-�rst scheduling, long con-nections pay very little penalty. This surprising re-sult can be understood as a consequence of heavy-tailed Web server workloads, in which most connec-tions are small, but most server load is due to thefew large connections. We support this explanationusing analysis.1 IntroductionAs the demand placed on a Web server grows,the number of concurrent connections it must han-dle increases. It is not uncommon for a Web server�Supported in part by NSF Grant CCR-9706685.ySupported by the NSF Postdoctoral Fellowship in theMathematical Sciences.

under high loads to be servicing many hundreds ofconnections at any point in time. This situationraises the question: when multiple outstanding con-nections require service, in what order should ser-vice be provided?By service, we mean the use of some system de-vice (processor, disk subsystem, or network inter-face) that allows the server to make progress in de-livering bytes to the client associated with the con-nection. Thus, the question of service order appliescollectively to the order in which connections are al-lowed to use the CPU, the disk(s), and the networkinterface.In most Web servers, the question of the order inwhich concurrent connections should be serviced hastypically been left to a general-purpose operatingsystem. The OS scheduler orders access to the CPU,and the disk and network subsystems order servicerequests for disk and network I/O, respectively. Thepolicies used in these systems typically emphasizefairness (as provided by, e.g., approximately-FIFOservice of I/O requests) and favorable treatmentof interactive jobs (as provided by feedback-basedCPU scheduling).In this paper, we examine whether Webservers might provide better service by using non-traditional service ordering for connections. In par-ticular, we are concerned with Web servers thatserve static �les. In this case, the service demandof the connection can be accurately estimated atthe outset (i.e., once the HTTP GET has been re-ceived) since the size of the �le to be transferred isthen known; we call this the \size" of the connec-tion. The question then becomes: can servers usethe knowledge of connection size to improve meanresponse time?Traditional scheduling theory for simple, single-device systems shows that if task sizes are known,policies that favor short tasks provide better meanresponse time than policies that do not make useof task size. In a single-device system, if run-

ning jobs can be pre-empted, then the optimalwork-conserving policy with respect to mean re-sponse time is shortest remaining processing time�rst (SRPT). Since a Web server is not a single-device system, we cannot use SRPT directly. How-ever we can employ service ordering within the sys-tem that attempts to approximate the e�ects ofSRPT.The price to be paid for reducing mean responsetime is that we reduce the fairness of the system.When short connections are given favorable treat-ment, long connections will su�er. Care must betaken to ensure that the resulting unfairness doesnot outweigh the performance gains obtained.Our goal in this paper is to explore the costs andbene�ts of service policies that favor short connec-tions in a Web server. We call this the connectionscheduling problem. The questions we address are:1. How does a traditional Web server (Apacherunning on Linux) treat connections with re-spect to their size? Does it favor short connec-tions?2. What are the potential performance improve-ments of favoring short connections in a Webserver, as compared to the traditional serviceorder?3. Does favoring short connections in a web serverlead to unacceptable unfairness?We are interested in the answers to these ques-tions in the context of a traditionally structured op-erating system (like Linux). Thus, to answer thesequestions we have implemented a Web server, run-ning on Linux, that allows us to experiment withconnection scheduling policies. For each of the de-vices in the system (CPU, disk, and network in-terface) the server allows us to in
uence the or-der in which connections are serviced. Since all ofour scheduling is done at the application level, ourserver does not allow us precise control of all of thecomponents of connection service, particularly thosethat occur in kernel mode; this is a general drawbackof traditional operating systems structure whose im-plications we discuss in detail below. However ourserver does provide suÆcient control to allow usto explore two general policies: 1) size-independentscheduling, in which each device services I/O re-quests in roughly the same order in which they ar-rive; and 2) shortest-connection-�rst scheduling, inwhich each device provides service only to the short-est connections at any point in time. We use theSurge workload generator [5] to create Web re-quests; for our purposes, the important property of

Surge is that it accurately mimics the size distri-bution of requests frequently seen by Web servers.Using this apparatus, we develop answers tothe three questions above. The answer to our �rstquestion is that Apache does not appear to fa-vor short connections. We show that compared toour server's size-independent policy, Apache's treat-ment of di�erent connection sizes is approximatelythe same (and even can be more favorable to longconnections|a trend opposite to that of shortest-connection-�rst).This result motivates our second question: Howmuch performance improvement is possible un-der a shortest-connection-�rst scheduling policy, ascompared to size-independent (i.e., Apache-like)scheduling? We show that for our server, adopt-ing shortest-connection-�rst can improve mean re-sponse time by a factor of 4 to 5 under moderateloads.Finally our most surprising result is thatshortest-connection-�rst scheduling does not sig-ni�cantly penalize long connections. In fact,even very long connections can experience im-proved response times under shortest-connection-�rst scheduling when compared to size-independentscheduling. To explore and explain this somewhatcounterintuitive result we turn to analysis. We useknown analytic results for the behavior of simplequeues under SRPT scheduling, and compare theseto size-independent scheduling. We show that theexplanation for the mild impact of SRPT schedul-ing on long connections lies in the size distributionof Web �les|in particular, the fact that Web �lesizes show a heavy tailed distribution (one whosetail declines like a power-law). This result meansthat Web workloads are particularly well-suited toshortest-connection-�rst scheduling.2 Background and Related WorkThe work reported in this paper touches on anumber of related areas in server design, and in thetheory and practice of scheduling in operating sys-tems.Traditional operating system schedulers useheuristic policies to improve the performance ofshort tasks given that task sizes are not known inadvance. However, it is well understood that inthe case where the task sizes are known, the work-conserving scheduling strategy that minimizesmeanresponse time is shortest-remaining-processing-time�rst (SRPT). In addition to SRPT, there are manyalgorithms in the literature which are designed forthe case where the task size is known. Goodoverviews of the single-node scheduling problem and

its solution are given in [7], [14], and [17].In our work we focus on servers that serve staticcontent, i.e., �les whose size can be determined inadvance. Web servers can serve dynamic content aswell; in this case our methods are less directly ap-plicable. However, recent measurements have sug-gested that most servers serve mainly static content,and that dynamic content is served mainly from arelatively small fraction of the servers in the Web[15].Despite the fact that the �le sizes are typicallyavailable to the Web server, very little work has con-sidered size-based scheduling in the Web. One pa-per that does discuss size-based scheduling in theWeb is that of Bender, Chakrabarti, and Muthukr-ishnan [6]. This paper raises an important point: inchoosing a scheduling policy it is important to con-sider not only the scheduling policy's performance,but also whether the policy is fair, i.e. whether sometasks have particularly high slowdowns (where slow-down is response time over service time). That pa-per considers the metric max slowdown (the maxi-mum slowdown over all tasks) as a measure of un-fairness. The paper proposes a new algorithm, Dy-namic Earliest Deadline First (DEDF), designed toperform well on both the mean slowdown and maxslowdown metrics. The DEDF algorithm is a the-oretical algorithm which cannot be run within anyreasonable amount of time (it requires looking at allprevious arrivals), however it has signi�cance as the�rst algorithm designed to simultaneously minimizemax slowdown and mean slowdown. That work doesconsider a few heuristics based on DEDF that areimplementable; however, simulation results evalu-ating those more practical algorithms at high loadindicate their performance to be about the sameas SRPT with respect to max slowdown and sig-ni�cantly worse than SRPT with respect to meanslowdown.At the end of our paper (Section 6) we turn toanalysis for insight into the behavior of the shortest-connection-�rst scheduling policy. In that sectionwe examine a single queue under SRPT scheduling,which was analyzed by Schrage and Miller [18].In addition to scheduling theory, our work alsotouches on issues of OS architecture. In particular,the work we describe in this paper helps to exposede�ciencies in traditional operating system struc-ture that prevent precise implementation of ser-vice policies like shortest-connection-�rst. Shortest-connection-�rst scheduling requires that resource al-location decisions be based on the connection re-quiring service. This presents two problems: �rst,kernel-space resource allocation is not under the

control of the application; and second, resource al-location is diÆcult to perform on a per-connectionbasis. These two problems have been have beennoted as well in other work [1, 3].3 A Server Architecture for Schedul-ing ExperimentsIn this section we present the architecture of theweb server we designed and developed for use in ourexperiments. Our primary goal in designing thisserver was to provide the ability to study policiesfor scheduling system resources. Two additional butless important goals were simplicity of design andhigh performance.3.1 Scheduling MechanismsWeb servers like Apache [11] follow the tradi-tional architectural model for Internet service dae-mons, in which separate connections are served byseparate Unix processes. This model is insuÆcientfor our needs because none of its scheduling deci-sions are under application control. Instead we needto expose scheduling decisions to the application asmuch as possible.
Listen Thread Protocol Queue

Disk Queue

Network QueueFigure 1: Organization of the Experimental ServerA typical connection needs three types of serviceafter connection acceptance: 1) protocol processing,2) disk service, and 3) network service. In order toexpose the scheduling decisions associated with eachtype of service, we organize the server applicationas a set of three queues. This architecture is shownin Figure 1. The entities that are held in (and movebetween) queues correspond to individual connec-tions. Next we describe how, by varying the serviceorder of each queue, the application can in
uenceresource scheduling decisions on a per-connectionbasis.Each queue in Figure 1 has an associated pool ofthreads. In addition there is a single listen thread.The role of the listen thread is to block on theaccept() call, waiting for new connections. Whena new connection arrives, it creates a connectiondescriptor. The connection descriptor encapsulatesthe necessary state the connection will need (two �le

descriptors, a memory bu�er, and progress indica-tors). It then places the connection descriptor intothe protocol queue and resumes listening for newconnections.Protocol threads handle all aspects of HTTP.When a protocol thread is done, the server knowswhat �le is being requested and is ready to startsending data. In addition the thread has calledstat() on the �le to determine the �le's size. Theprotocol thread then enqueues the connection de-scriptor into the disk queue.The role of the disk thread is to dequeue a con-nection descriptor, and based on the �le associatedwith the connection, read() a block of �le datafrom the �lesystem into the connection descriptor'sbu�er. Currently our server reads blocks of up to32KB at a time. The read() call is blocking; whenit returns, the thread enqueues the descriptor intothe network queue.The network thread also starts by dequeueing aconnection descriptor; it then calls write() on theassociated socket to transfer the contents of the con-nection's bu�er to the kernel's socket bu�er. Thewrite() call is blocking. When it returns, if theall the bytes in the �le have been transferred, thenetwork thread will close the connection; otherwiseit will place the descriptor back into the disk queue.Thus each connection will move between the net-work and disk queues until the connection has beenentirely serviced.An important advantage of this architecture isthat we can observe which subsystem (protocol,disk, or network) is the bottleneck by inspecting thelengths of the associated queues. For the workloadswe used (described in Section 4.1) we found that thebottleneck was the network queue; queue lengths atthe protocol and disk queues were always close tozero.This scheme gives us a
exible environment toin
uence connection scheduling by varying the ser-vice order at each queue. In this study we focuson two scheduling policies: size-independent andshortest-connection-�rst. In our size-independentpolicy, each thread simply dequeues items from itsassociated queue in FIFO order. The implicationof this policy is that each connection is given a fairshare of read() and write() calls, and that any�xed set of connections is conceptually served in ap-proximately round-robin order.Under shortest-connection-�rst scheduling, each(disk or network) thread dequeues the connectionthat has the least number of bytes remaining to beserved. This appears to be a good indicator of theremaining amount of work needed to service the con-

nection. More precise policies are possible, whichare not considered in this paper.Finally, we note that the listen and protocolthreads run at a higher priority than disk and net-work threads, and that the protocol queue is alwaysserved in FIFO order (since connection size is notyet known).3.2 PerformanceAs stated at the outset, high performance is onlya secondary goal of our archtectural design. How-ever our architecture is consistent with recent trendsin high performance servers and (as shown in Sec-tion 5) yields performance that is competitive witha more sophisticated server (Apache).Considerable attention has been directed to im-proving the architecture of high performance webservers. As mentioned above, servers like Apachefollow the model in which separate connectionsare served by separate Unix processes. More re-cent servers have moved away from process-per-connection model, toward lower-overhead strategies.A number of Web server architectures based ona single or �xed set of processes have been built[13, 16]. Removing the overhead of process creation,context switching, and inter-process-communicationto synchronize and dispatch work allows the serverto use system resources more eÆciently. In addition,in single-process servers memory consumption is re-duced by not using a running process for each con-current connection receiving service, which allowssuch servers to make more e�ective use of memoryto cache data. The drawback is that single pro-cess web servers are typically more complicated andmust rely on multi-threading or non-blocking I/Oschemes to achieve high throughput.Our server obtains the performance bene�ts ofusing a single process, with a �xed number ofthreads (i.e., it does not use a thread per connec-tion). However we have not adopted all of the per-formance enhancements of aggressively optimizedservers like Flash [16] because of our desire to keepthe server simple for
exibility in experimentingwith scheduling policies. In particular we use block-ing threads for writing, which is not strictly neces-sary given an nonblocking I/O interface. Howeverwe note that the policies we explore in our serverappear to be easily implementable in servers likeFlash.3.3 LimitationsThe principal limitation of our approach is thatwe do not have control over the order of eventsinside the operating system. As a speci�c exam-

ple, consider the operation of the network subsys-tem. Our server makes write() calls which pop-ulate socket bu�ers in the network subsytem in aparticular order. However, these bu�ers are not nec-essarily drained (i.e., written to the network) in theorder in which our application has �lled them.Two factors prevent precise control over the or-der in which data is written to the network. First,each bu�er is part of a
ow-controlled TCP connec-tion with a client. If the client is slow with respectto the server, the client's behavior can in
uence theorder in which bu�ers are drained. For this reason inour experiments we use a multiple high-performanceclients and we ensure that the clients are not heavilyloaded on average. Thus in our case client interac-tion is not a signi�cant impediment to schedulingprecision.The second, more critical problem is that in tra-ditional Unix network stack implementations, pro-cessing for all connections is handled in an aggregatemanner. That is, outgoing packets are placed onthe wire in response to the arrival of acknowledge-ments. This means that if many connections havedata ready to send, and if the client and network arenot the bottleneck, then data will be sent from theset of connections in order that acknowledgementsarrive, which is not under application control. Theimplication is that if the network subsystem has alarge number of connections that have data readyto send, then the order in which the application haswritten to socket bu�ers will have less e�ect on thescheduling of connections.The problem has been recognized and addressedin previous work. In particular, Lazy ReceiverProcessing [10] can isolate each connection's paththrough the network stack. This allows schedulingdecisions to be made on a per-connection basis atthe level of the network interface.Our goal was to demonstrate the improvementspossible without operating system modi�cation. Asa result, to obtain control over I/O scheduling welimit the concurrency in the I/O systems. For ex-ample, by limiting concurrency in the network sub-system, we limit the number of connections thathave data ready to send at any point in time, thusnarrowing the set of connections that can trans-mit packets. Because our disk and network threadsuse blocking I/O, we need multiple threads if wewant to have concurrent outstanding I/O requests.This means that it is straightforward to control theamount of concurrency we allow in the kernel sub-systems, by varying the number of threads in eachof the pools.At one extreme, if we allow only one thread per

pool, then we have fairly strict control over the orderof events inside the kernel. At any point in time thekernel can only have one I/O request of each typepending, so there are no scheduling decisions avail-able to it. Unfortunately this approach sacri�cesthroughput; both the disk and network subsystemsmake use of concurrent requests to overlap process-ing with I/O. At the other extreme, if we provide alarge number of threads to each pool, we can obtainhigh throughput; however then we lose all controlover scheduling.In order to explore the utility of shortest-connection-�rst scheduling, we have adopted an in-termediate approach. Rather than running ourserver at its absolute maximum throughput (as mea-sured in bytes per unit time), we limit its through-put somewhat in order to obtain control over I/Oscheduling. Note however that our server's through-put (in bytes per second) is still greater than thatof Apache under the same load level.2 The perfor-mance implications of this approach are presentedin Section 5.4. It is important to note that thisis only necessary because of the limitations of thetraditionally structured OS on which we run ourexperiments, and this restriction could be droppedgiven a di�erent OS structure. Our approach thusallows us enough in
uence over kernel scheduling todemonstrate the costs and bene�ts of the shortest-connection-�rst policy.4 Experimental Setup4.1 File Size DistributionAn important aspect of our work is that we havefocused on careful modeling of the �le size distribu-tion typically seen on Web servers. As shown inSection 6, properties of the �le size distribution aredirectly related to some of our results.Our starting point is the observation that �lesizes on Web servers typically follow a heavy-taileddistribution. This property is surprisingly ubiqui-tous in the Web; it has been noted in the sizes of�les requested by clients, the lengths of network con-nections, and �les stored on servers [2, 8, 9]. Byheavy tails we mean that the tail of the empiricaldistribution function declines like a power law withexponent less than 2. That is, if a random variableX follows a heavy-tailed distribution, thenP [X > x] � x��; 0 < � < 2where f(x) � a(x) means that limx!1 f(x)=a(x) =c for some positive constant c.2Apache was con�gured for high performance as describedin Section 4.2.

BodyDistribution LognormalPMF 1x�p2� e�(lnx��)2=2�2Range 0 � x < 9020Parameters � = 7:630; � = 1:001TailDistribution Bounded ParetoPMF �k�1�(k=p)� x���1Range 9020 � x � 1010Parameters k = 631:44; � = 1:0; p = 1010Table 1: Empirical Task Size Model. PMF is theprobability mass function, f(x), where R ba f(x)dxrepresents the probability that the random variabletakes on values between a and b.Random variables that follow heavy tailed distri-butions typically show extremely high variability insize. This is exhibited as many small observationsmixed with a small number of very large observa-tions. The implication for Web �les is that a tinynumber of the very largest �les make up most of theload on a Web server. We refer to this as the heavy-tailed property of Web task sizes; it is central to thediscussion in this paper and will come up again inSection 6.Although Web �les typically show heavy tails,the body of the distribution is usually best describedusing another distribution. Recent work has foundthat a hybrid distribution, consisting of a body fol-lowing a lognormal distribution and a tail that de-clines via a power-law, seems to �t well some Web�le size measurements [4, 5]. Our results use sucha model for task sizes, which we call the empiricalmodel; parameters of the empirical model are shownin Table 1. In this empirical �le size model, most�les are small|less than 5000 bytes. However, thedistribution has a very heavy tail, as determined bythe low value of � in the Bounded Pareto distribu-tion, and evidenced by the fact that the mean ofthis distribution is 11108 | much larger than thetypical �le size.4.2 Experimental EnvironmentTo generate HTTP requests that follow the sizedistribution described above, we use the Surgeworkload generator [5]. In addition to HTTP re-quest sizes, Surge's stream of HTTP requests alsoadheres to empirically derived models for the sizesof �les stored on the server; for the relative popu-larity of �les on the server; for the temporal locality

present in the request stream; and for the timing ofrequest arrivals at the server.Surge makes requests using synthetic clients,each of which operates in a loop, alternating be-tween requesting a �le and lying idle. Each syn-thetic client is called a User Equivalent (UE). Theload that Surge generates is varied by varying thenumber of UEs. In our tests we varied the number ofUEs from 400 to 2000. Validation studies of Surgeare presented in [5]; that paper shows that the re-quest stream created by Surge conforms closely tomeasured workloads and is much burstier, and hencemore realistic, than that created by SPECWeb96 (acommonly used Web benchmarking tool).All measurements of Apache's performance pre-sented in this paper were generated using version1.2.5. We con�gured Apache for high performanceas recommended on Apache's performance tuningWeb page.3 In particular, MaxRequestsPerChildwas set to 0, meaning that there is no �xed limit tothe number of connections that can be served by anyof Apache's helper processes. This setting improvesApache's performance considerably as compared tothe default.In addition to the data reported in this paper,we also ran many experiments using version 1.3.4 ofApache. Our experiments indicated that this ver-sion had a performance anomaly under low loadthat we did not isolate, so we do not present thoseresults. However, our experiments indicated that al-though version 1.3.4 was somewhat faster for shortconnections, its overall performance was not di�er-ent enough to a�ect the conclusions in this paper.All our tests were conducted using two clientmachines (evenly splitting the Surge UEs) andone server in a 100 Mbit switched Ethernet envi-ronment. After our experiments were concluded,we found that one client's port was malfunctioningand delivering only 10 Mbit/sec; so half of the loadwas generated over a path that was e�ectively only10Mbit/sec, while the other half of the load arrivedover a 100Mbit/sec path. All machines were Dell Di-mensions equipped with Pentium II 233 processors,128 MB of RAM, and SCSI disks. Each of thesemachines was running Linux 2.0.36. We con�guredSurge to use a �le set of 2000 distinct �les varyingin size from 186 bytes to 121 MB. Our measurementspertaining to response time, byte throughput, andHTTP GETs per second were extracted from clientside logs generated by Surge.All experiments were run for ten minutes. Thistime was chosen to be suÆciently long to provide3http://www.apache.org/docs/misc/perf-tuning.html.

con�dence that the measurements were not stronglyin
uenced by transients. For a 1000 UE experiment,this meant that typically more than 2.5GB of datawas transferred and more than 250,000 connectionstook place.5 Results5.1 Characterizing Apache's Perfor-mance as a Function of Task SizeIn this section we characterize Apache's per-formance as a function of task size under 3 dif-ferent load levels: 1000 UEs, 1400 UEs, and 1800UEs. These loads correspond to lightly loaded,moderately loaded, and overloaded conditions forthe server. Thus they span the range of importantloads to study.In order to study how di�erent servers treat con-nections with respect to size, we bin HTTP transac-tions according to size, and plot the mean responsetime over all transactions in the bin, as a functionof mean �le size of transactions in the bin. We plotthe resulting data on log-log axes, in order to simul-taneously examine both very small and very largeconnection sizes. Bin sizes grow exponentially, lead-ing to equal spacing on logarithmic axes.Figure 2 shows the resulting plots of mean re-sponse time as a function of �le size under Apacheand under our Web server with size-independentscheduling for the three di�erent load levels. Theplots generally show that reponse time of small �les(less than about 10KB) is nearly independent of�le size. For this range of �les, response time isdominated by connection setup cost. For large �les(larger than about 10KB) reponse time increasesas a function of �le size in an approximately linearmanner.Across all loads, two trends are evident from the�gure. First, for small �les, Apache tends to providethe same response time or worse response time thandoes our size-independent server. Second, for large�les, Apache tends to provide the same reponse timeor better than does our size-independent server.These two trends indicate that with respectto size, Apache treats connections in a mannerthat is either approximately the same as our size-independent policy, or else is more favorable to longconnections.4 That is, Apache is, if anything, pun-ishing short connections with respect to our size-independent server.4As discussed in Section 4.2 these measurements useApache version 1.2.5. We found in other experiments withApache 1.3.4 (not shown here) that the newer version ofApache in fact shows performance that is even closer to thatof our server with size-independent scheduling.

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

2 3 4 5 6 7

L
og

10
(M

ea
n

R
es

po
ns

e
T

im
e

in
 S

ec
on

ds
)

Log10(File Size in Bytes)

size-independent
apache

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

2 3 4 5 6 7

L
og

10
(M

ea
n

R
es

po
ns

e
T

im
e

in
 S

ec
on

ds
)

Log10(File Size in Bytes)

size-independent
apache

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

2 3 4 5 6 7

L
og

10
(M

ea
n

R
es

po
ns

e
T

im
e

in
 S

ec
on

ds
)

Log10(File Size in Bytes)

size-independent
apache

Figure 2: Mean transfer time as a function of �lesize under the Apache server and our server withsize-independent scheduling. Both axes use a logscale. Top to bottom: 1000, 1400, and 1800 UEs.5.2 Performance Improvements Possi-ble with Shortest-Connection-FirstSchedulingGiven that Apache does not appear to treat con-nections in a manner that is favorable to short con-nections, our next question is whether a policy thatdoes favor short connections leads to performanceimprovement, and if so, how much improvementis possible. Thus, in this section we compare the

0

0.5

1

1.5

2

2.5

400 600 800 1000 1200 1400 1600 1800 2000

M
ea

n
R

es
po

ns
e

T
im

e
(s

ec
)

User Equivalents

size-independent
shortest-connection-first

apache

Figure 3: Mean response time as a function of loadfor our Web server with shortest-connection-�rstscheduling and size-independent scheduling, and forApache.mean response time of our Web server with shortest-connection-�rst scheduling versus size-independentscheduling.Figure 3 shows mean response time as a functionof the number of user equivalents for our server withshortest-connection-�rst scheduling compared withsize-independent scheduling. The �gure shows thatat low loads (less than 1000 UEs) there is no dif-ference between the two scheduling policies. Thus1000 UEs represents the point where the networkqueue in our server �rst starts to grow, making theorder in which it services write requests important.As the load increases beyond 1000 UEs, the di�er-ence in performance between shortest-connection-�rst scheduling and size-independent scheduling be-comes stark. For example under 1400 UEs, theshortest-connection-�rst scheduling policy improvesmean response time by a factor of 4 to 5 over thesize-independent scheduling policy.Also plotted for reference in Figure 3 is the meanresponse time of Apache under the same conditions.As can be seen, Apache's performance is very similarto that of our server with size-independent schedul-ing. This is consistent with the conclusions from theprevious subsection.It is important to note that these performance�gures may only be lower bounds on the im-provement possible by using shortest-connection-�rst scheduling, due to our constraint of workingwithin a traditionally structured operating system.5.3 How Much Do Long ConnectionsSu�er?In the previous section we saw that large im-provements in mean transfer time were possible by

running our Web server under shortest-connection-�rst scheduling as opposed to size-independentscheduling. The question now is: does this perfor-mance improvement come at a signi�cant cost tolarge jobs? Speci�cally, we ask whether large jobsfare worse under shortest-connection-�rst schedul-ing than they do under size-independent scheduling.To answer this question we examine the per-formance of both shortest-connection-�rst schedul-ing and size-independent scheduling as a function oftask size. The results are shown in Figure 4, againfor a range of system loads (UEs).The �gure shows that in the case of 1000 UEs,shortest-connection-�rst scheduling is identical inperformance to size-independent scheduling acrossall �le sizes. Thus since there is no buildup at thenetwork queue, there is also no performance im-provement from shortest-connection-�rst schedulingin the case of 1000 UEs. However, the �gure showsthat in the case of 1400 UEs, shortest-connection-�rst results in much better performance for smalljobs (as compared with size-independent schedul-ing), and yet the large jobs still do not fare worseunder shortest-connection-�rst scheduling than theydo under size-independent scheduling. Thus theoverall performance improvement does not come ata cost in terms of large jobs. When we increase theload to 1800 UEs, however, the large jobs do beginto su�er under shortest-connection-�rst schedulingas compared with size-independent scheduling. Infact over all our experiments, we �nd that in therange from about 1200 UEs to 1600 UEs, shortest-connection-�rst allows short connections to expe-rience considerable improvement in response timewithout signi�cantly penalizing long connections.This seemingly counter-intuitive result is explained,with analytical justi�cation, in Section 6.5.4 Varying The Write ConcurrencyAs discussed in Section 3.3, in order to gain con-trol over the order in which data is sent over the net-work, we need to restrict our server's throughput (inbytes per second). In this section we quantify thise�ect.In all our previous plots we have used a threadpool of 35 threads to service the network queue.Figure 5 shows the e�ect of varying the number ofnetwork threads on mean response time and on doc-uments (HTTP GETs) served per second, at a loadof 1400 UEs.Both plots in the �gure make the point that asthe number of write threads increases, the di�er-ence in performance between shortest-connection-�rst and size-independent scheduling decreases, un-

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

2 3 4 5 6 7

L
og

10
(M

ea
n

R
es

po
ns

e
T

im
e

in
 S

ec
on

ds
)

Log10(File Size in Bytes)

size-independent
shortest-connection-first

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

2 3 4 5 6 7

L
og

10
(M

ea
n

R
es

po
ns

e
T

im
e

in
 S

ec
on

ds
)

Log10(File Size in Bytes)

size-independent
shortest-connection-first

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

2 3 4 5 6 7

L
og

10
(M

ea
n

R
es

po
ns

e
T

im
e

in
 S

ec
on

ds
)

Log10(File Size in Bytes)

size-independent
shortest-connection-first

Figure 4: Response time as a function of task sizefor shortest-connection-�rst scheduling versus size-independent scheduling. Top to bottom: 1000,1400, and 1800 UEs.til at about 60 threads, the choice of scheduling pol-icy has no e�ect. At the point of 60 threads, there isno buildup in the network queue and all schedulingis determined by kernel-level events.These plots also show that as the number ofthreads used declines from 35 threads, the perfor-mance di�erence between shortest-connection-�rstand traditional scheduling becomes even greater.This suggests that the advantage of shortest-

0

0.5

1

1.5

2

2.5

3

3.5

10 20 30 40 50 60 70

M
ea

n
R

es
po

ns
e

T
im

e
in

 S
ec

on
ds

Number of Network Threads

size-independent
shortest-connection-first

250

300

350

400

450

500

550

600

650

10 20 30 40 50 60 70

D
oc

um
en

ts
 S

er
ve

d
pe

r
Se

co
nd

Number of Network Threads

size-independent
shortest-connection-first

Figure 5: The e�ect of varying the number of net-work threads on (upper) mean response time and(lower) HTTP GETs/second for the two schedulingpolicies.connection-�rst scheduling may be even more dra-matic in a system where there is greater controlover kernel-level scheduling, since as the number ofthreads declines in our system, the degree of controlover kernel scheduling increases.Figure 6 shows the e�ect on byte throughput ofvarying the number of network threads. In this �g-ure we have plotted the total number of bytes in�les succesfully transferred during each of our 10minute experiments. It shows that for our server,throughput increases roughly linearly with addi-tional network threads, regardless of the policy used.In all cases, shortest-connection-�rst has slightlyhigher throughput than our size-independent pol-icy; this is because the server is serving fewer con-current connections (on average) and so can pro-vide slightly higher aggregate performance. The pri-mary point to note is when con�gured with 35 net-work threads, our server is not performing at peakthroughput; this is the price paid for control overnetwork scheduling. As stated earlier, this price isexacted because the kernel does not support per-connection scheduling within the protocol stack.

5e+08

1e+09

1.5e+09

2e+09

2.5e+09

3e+09

3.5e+09

4e+09

10 20 30 40 50 60 70

B
yt

es
 in

 F
ile

s
Se

rv
ed

Number of Network Threads

size-independent
shortest-connection-first

apache

Figure 6: The e�ect of varying the number of net-work threads on the byte throughput for the twoscheduling policies.Also plotted for reference in Figure 6 is the cor-responding byte throughput of Apache at 1400 UEs.The comparison illustrates that, for 35 networkthreads, our server is achieving higher throughputthan Apache. Thus, although using 35 threads lim-its our server from its maximum possible perfor-mance, it is a level that still outperforms Apache.6 Analysis: Why Don't Large JobsSu�er?In this section we help explain why long connec-tions aren't severely penalized in our experimentsusing some simple analytic models. These mod-els are only approximations of the complex systemscomprising a Web server, but they yield conclusionsthat are consistent with our experimental resultsand, more importantly, allow us to explore the rea-sons behind those experimental results. The resultsin this section are based on [12]; that paper presentsadditional background and more results not shownhere.6.1 Assumptions Used in AnalysisIn our analysis we examine the M=G=1 queue,which is a simple queue fed by a Poisson arrivalstream with an arbitrary distribution of servicetimes. The service order is shortest-remaining-processing-time �rst (SRPT).Under the SRPT model, only one task at eachinstant is receiving service, namely, the task withthe least processing time remaining. When a newtask arrives, if its service demand is less than theremaining demand of the task receiving service, thecurrent task is pre-empted and the new task startsservice. We use SRPT as an idealization of shortest-connection-�rst scheduling because in both cases,

tasks with small remaining processing time are al-ways given preference over tasks with longer remain-ing processing time.Our analytical results throughout are based onthe following equation for the mean response timefor a task of size x in an M=G=1 queue with load �,under SRPT [18]:EfRSRPTx g = � R x0 t2 dF (t) + �x2(1� F (x))2 �1� � R x0 t dF (t)�2+ Z x0 1(1� (� R t0 z dF (z)))dtwhere Rx is the response time (departure time mi-nus arrival time) of a job of size x, F (�) is the cu-mulative distribution function of service time, and� is the arrival rate.We adopt the assumption that the amount ofwork represented by a Web request is proportionalto the size of the �le requested. Thus, we use as ourtask size distribution the empirical �le size distribu-tion as shown in Table 1 (the same as that generatedby Surge).6.2 Understanding the Impact on LongConnectionsUsing our simple models we can shed light onwhy large tasks do not experience signi�cant penal-ties under SRPT scheduling; the explanation willapply equally well to long connections in a Webserver employing shortest-connection-�rst.The key observation lies in the heavy-tailedproperty of the workload being considered. As de-�ned in Section 4.1, this means that a small frac-tion of the largest tasks makes up most of the arriv-ing work. The Bounded Pareto distribution, whichmakes up the tail of our empirical distribution, is ex-tremely heavy-tailed. For example, for a BoundedPareto distribution with � = 1:1, the largest 1% ofall tasks account for more than half the total servicedemand arriving at the server. For comparison, foran exponential distribution with the same mean, thelargest 1% of all tasks make up only 5% of the totaldemand. Now consider the e�ect on a very largetask arriving at a server, say a task in the 99thpercentile of the job size distribution. Under theBounded Pareto distribution, this task in the 99thpercentile is interrupted by less than 50% of thetotal work arriving. In comparison, under the ex-ponential distribution, a task in the 99th percentileof the job size distribution is interrupted by about95% of the total work arriving. Thus, under the

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sl
ow

do
w

n
of

 J
ob

Percentile of Job Size Distribution

Exponential
BP

Figure 7: Mean slowdown under SRPT as a functionof task size; � = 0:9.heavy-tailed distribution, a large job su�ers muchless than under a distribution like the exponential.The rest of this section explains and supports thisobservation.To evaluate the potential for unfairness to largetasks we plot the mean slowdown of a task of a givensize, as a function of the task size. Slowdown is de-�ned as the ratio of a task's response time to itsservice demand. Task size is plotted in percentilesof the task size distribution, which allows us to as-sess what fraction of largest tasks will achieve meanslowdown greater than any given value.Figure 7 shows mean slowdown as a function oftask size under the SRPT discipline, for the case of� = 0:9. The two curves represent the case of anexponential task size distribution, and a BoundedPareto (BP) task size distribution with � = 1:1.The two distributions have the same mean.Figure 7 shows that under high server load (� =0:9), there can be considerable unfairness, but onlyfor the exponential distribution. For example, thelargest 5% of tasks under the exponential distribu-tion all experience mean slowdowns of 5.6 or more,with a non-negligible fraction of task sizes experi-encing mean slowdowns as high as 10 to 11. In con-trast, no task size in the BP distribution experiencesa mean slowdown of greater than 1.6. Thus, whenthe task size distribution has a light tail (exponen-tial), SRPT can create serious unfairness; howeverwhen task size distributions show a heavy tail (BPdistribution), SRPT does not lead to signi�cant un-fairness.To illustrate the e�ect of the heavy-tailed prop-erty on the degree of unfairness experienced by largejobs, we plot mean slowdown as a function of tasksize over a range of BP task size distributions withconstant mean (in this case, 3000) and varying �.This plot is shown in Figure 8. The high � cases

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Sl
ow

do
w

n
of

 J
ob

Percentile of BP Job Size Distribution

1.9
1.7
1.5
1.3
1.1
0.9
0.7
0.5

Figure 8: Mean slowdown under SRPT as a functionof task size, varying � of task size distribution.represent relatively light tails, whereas the low �cases represent relatively heavy tails in the task sizedistribution.This �gure shows how the degree of unfairnessunder SRPT increases as the tail weight of the tasksize distribution decreases. When � is less thanabout 1.5, there is very little tendency for SRPT topenalize large tasks (curves for � = 0:5 and � = 0:7stay so close to 1 as to be invisible on the plot).Only as � gets close to 2.0 (e.g., 1.7 or 1.9) is thereany signi�cant fraction of tasks that experience highmean slowdowns.These �gures show that as the heavy-tailedproperty grows more pronounced, unfairness in thesystem under SRPT diminishes. Thus the explana-tion for the surprising resistance of the heavy-tailedtask size distributions to unfairness under SRPT isan e�ect of the heavy-tailed property.7 ConclusionThis paper has suggested that Web servers serv-ing static �les may show signi�cant performance im-provements by adopting nontraditional service or-dering policies. We have examined the behavior ofa popular Web server (Apache running on Linux)and found that, with respect to connection size, itappears to provide service similar to a server thatuses size-independent scheduling. Furthermore, wehave found that signi�cant improvements in meanresponse time|on the order of factors of 4 to 5|are achievable by modifying the service order so asto treat short connections preferentially. Finally,we have found that such a service ordering doesnot overly penalize long connections. Using anal-ysis, we have shed light on why this is the case, andconcluded that the heavy-tailed properties of Webworkloads (i.e., that a small fraction of the longestconnections make up a large fraction of the total

work) make Web workloads especially amenable toshortest-connection-�rst scheduling.Our work has a number of limitations and direc-tions for future work. The architecture of our serverdoes not allow us precise control over the schedul-ing of kernel-mode operations (such as I/O). Thisprevents us from determining the exact amount ofimprovement that is possible under scheduling poli-cies that favor short connections. We plan to im-plement short-connection favoring strategies over akernel architecture that is better designed for serversupport [3, 10] in order to assess their full potential.There is room for better algorithmic design here,since the policy we have explored does not preventthe starvation of jobs in the case when the serveris permanently overloaded. One commonly adoptedsolution to this problem is dynamic priority adjust-ment, in which a job's priority increases as it ages,allowing large jobs to eventually obtain prioritiesequivalent to those of small jobs. We plan to ex-plore such improved policies, perhaps following theinitial work in [6].While more work needs to be done, our re-sults suggest that nontraditional scheduling ordermay be an attractive strategy for Web serversthat primarily serve static �les. In particular, thefact that Web workloads (�le sizes and connectionlengths) typically show heavy-tailed distributionsmeans that shortest-connection-�rst policies can al-lowWeb servers to signi�cantly lower mean responsetime without severely penalizing long connections.References[1] J. Almeida, M. Dabu, A. Manikutty, and P. Cao.Providing di�erentiated quality-of-service in Webhosting services. In Proceedings of the First Work-shop on Internet Server Performance, June 1998.[2] Martin F. Arlitt and Carey L. Williamson. Internetweb servers: Workload characterization and perfor-mance implications. IEEE/ACM Transactions onNetworking, 5(5):631{645, 1997.[3] Gaurav Banga, Peter Druschel, and Je�rey C.Mogul. Resource containers: A new facility forresource management in server systems. In Pro-ceedings of OSDI '99, pages 45{58, 1999.[4] Paul Barford, Azer Bestavros, Adam Bradley, andMark Crovella. Changes in Web client access pat-terns: Characteristics and caching implications.World Wide Web, 1999.[5] Paul Barford and Mark E. Crovella. Generat-ing representative Web workloads for network andserver performance evaluation. In Proceedings ofSIGMETRICS '98, pages 151{160, July 1998.

[6] Michael Bender, Soumen Chakrabarti,and S. Muthukrishnan. Flow and stretch metricsfor scheduling continuous job streams. In Proceed-ings of the 9th Annual ACM-SIAM Symposium onDiscrete Algorithms, 1998.[7] Richard W. Conway, William L. Maxwell, andLouis W. Miller. Theory of Scheduling. Addison-Wesley Publishing Company, 1967.[8] Mark E. Crovella and Azer Bestavros. Self-similarity in World Wide Web traÆc: Evidenceand possible causes. IEEE/ACM Transactions onNetworking, 5(6):835{846, December 1997.[9] Mark E. Crovella, Murad S. Taqqu, and AzerBestavros. Heavy-tailed probability distributionsin the World Wide Web. In A Practical Guide ToHeavy Tails, pages 3{26. Chapman & Hall, NewYork, 1998.[10] Peter Druschel and Gaurav Banga. Lazy receiverprocessing (LRP): A network subsystem architec-ture for server systems. In Proceedings of OSDI '96,October 1996.[11] The Apache Group. Apache web server.http://www.apache.org.[12] M. Harchol-Balter, M. E. Crovella, and S. Park.The case for SRPT scheduling in Web servers.Technical Report MIT-LCS-TR-767, MIT Lab forComputer Science, October 1998.[13] M. Frans Kaashoek, Dawson R. Engler, Gregory R.Ganger, H�ector M. Brice~no, Russell Hunt, DavidMazi�eres, Thomas Pinckney, Robert Grimm, JohnJannotti, and Kenneth MacKenzie. Applicationperformance and
exibility on exokernel systems.In Proceedings of the 16th Symposium on Operat-ing Systems Principles, October 1997.[14] D. Karger, C. Stein, and J. Wein. Scheduling al-gorithms. In CRC Handbook of Computer Science.1997.[15] S. Manley and M. Seltzer. Web facts and fantasy.In Proceedings of the 1997 USITS, 1997.[16] Vivek S. Pai, Peter Druschel, and W. Zwaenepoel.Flash: An eÆcient and portable web server. InProceedings of USENIX 1999, June 1999.[17] M. Pinedo. On-line algorithms, Lecture Notes inComputer Science. Prentice Hall, 1995.[18] Linus E. Schrage and Louis W. Miller. The queueM/G/1 with the shortest remaining processing timediscipline. Operations Research, 14:670{684, 1966.

