Connection Scheduling in Web Servers

Mark E. Crovella*

Boston University
Boston, MA 02215
{crovella,rfrangio}@bu.edu

Abstract

Under high loads, a Web server may be ser-
vicing many hundreds of connections concurrently.
In traditional Web servers, the question of the or-
der in which concurrent connections are serviced
has been left to the operating system. In this
paper we ask whether servers might provide bet-
ter service by using non-traditional service order-
ing. In particular, for the case when a Web server
is serving static files, we examine the costs and
benefits of a policy that gives preferential service
to short connections. We start by assessing the
scheduling behavior of a commonly used server
(Apache running on Linux) with respect to connec-
tion size and show that it does not appear to pro-
vide preferential service to short connections. We
then examine the potential performance improve-
ments of a policy that does favor short connections
(shortest-connection-first). We show that mean re-
sponse time can be improved by factors of four
or five under shortest-connection-first, as compared
to an (Apache-like) size-independent policy. Fi-
nally we assess the costs of shortest-connection-first
scheduling in terms of unfairness (i.e., the degree to
which long connections suffer). We show that un-
der shortest-connection-first scheduling, long con-
nections pay very little penalty. This surprising re-
sult can be understood as a consequence of heavy-
tailed Web server workloads, in which most connec-
tions are small, but most server load is due to the
few large connections. We support this explanation
using analysis.

1 Introduction

As the demand placed on a Web server grows,
the number of concurrent connections it must han-
dle increases. It is not uncommon for a Web server

*Supported in part by NSF Grant CCR-9706685.
TSupported by the NSF Postdoctoral Fellowship in the
Mathematical Sciences.

Robert Frangioso*
Department of Computer Science

Mor Harchol-Balterf
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3891

harchol@cs.cmu.edu

under high loads to be servicing many hundreds of
connections at any point in time. This situation
raises the question: when multiple outstanding con-
nections require service, in what order should ser-
vice be provided?

By service, we mean the use of some system de-
vice (processor, disk subsystem, or network inter-
face) that allows the server to make progress in de-
livering bytes to the client associated with the con-
nection. Thus, the question of service order applies
collectively to the order in which connections are al-
lowed to use the CPU, the disk(s), and the network
interface.

In most Web servers, the question of the order in
which concurrent connections should be serviced has
typically been left to a general-purpose operating
system. The OS scheduler orders access to the CPU,
and the disk and network subsystems order service
requests for disk and network I/O, respectively. The
policies used in these systems typically emphasize
fairness (as provided by, e.g., approximately-FIFO
service of I/O requests) and favorable treatment
of interactive jobs (as provided by feedback-based
CPU scheduling).

In this paper, we examine whether Web
servers might provide better service by using non-
traditional service ordering for connections. In par-
ticular, we are concerned with Web servers that
serve static files. In this case, the service demand
of the connection can be accurately estimated at
the outset (i.e., once the HTTP GET has been re-
ceived) since the size of the file to be transferred is
then known; we call this the “size” of the connec-
tion. The question then becomes: can servers use
the knowledge of connection size to improve mean
response time?

Traditional scheduling theory for simple, single-
device systems shows that if task sizes are known,
policies that favor short tasks provide better mean
response time than policies that do not make use
of task size. In a single-device system, if run-

ning jobs can be pre-empted, then the optimal
work-conserving policy with respect to mean re-
sponse time is shortest remaining processing time
first (SRPT). Since a Web server is not a single-
device system, we cannot use SRPT directly. How-
ever we can employ service ordering within the sys-
tem that attempts to approximate the effects of
SRPT.

The price to be paid for reducing mean response
time is that we reduce the fairness of the system.
When short connections are given favorable treat-
ment, long connections will suffer. Care must be
taken to ensure that the resulting unfairness does
not outweigh the performance gains obtained.

Our goal in this paper is to explore the costs and
benefits of service policies that favor short connec-
tions in a Web server. We call this the connection
scheduling problem. The questions we address are:

1. How does a traditional Web server (Apache
running on Linux) treat connections with re-
spect to their size? Does it favor short connec-
tions?

2. What are the potential performance improve-
ments of favoring short connections in a Web
server, as compared to the traditional service
order?

3. Does favoring short connections in a web server
lead to unacceptable unfairness?

We are interested in the answers to these ques-
tions in the context of a traditionally structured op-
erating system (like Linux). Thus, to answer these
questions we have implemented a Web server, run-
ning on Linux, that allows us to experiment with
connection scheduling policies. For each of the de-
vices in the system (CPU, disk, and network in-
terface) the server allows us to influence the or-
der in which connections are serviced. Since all of
our scheduling is done at the application level, our
server does not allow us precise control of all of the
components of connection service, particularly those
that occur in kernel mode; this is a general drawback
of traditional operating systems structure whose im-
plications we discuss in detail below. However our
server does provide sufficient control to allow us
to explore two general policies: 1) size-independent
scheduling, in which each device services I/O re-
quests in roughly the same order in which they ar-
rive; and 2) shortest-connection-first scheduling, in
which each device provides service only to the short-
est connections at any point in time. We use the
SURGE workload generator [5] to create Web re-
quests; for our purposes, the important property of

SURGE is that it accurately mimics the size distri-
bution of requests frequently seen by Web servers.

Using this apparatus, we develop answers to
the three questions above. The answer to our first
question is that Apache does not appear to fa-
vor short connections. We show that compared to
our server’s size-independent policy, Apache’s treat-
ment of different connection sizes is approximately
the same (and even can be more favorable to long
connections—a trend opposite to that of shortest-
connection-first).

This result motivates our second question: How
much performance improvement is possible un-
der a shortest-connection-first scheduling policy, as
compared to size-independent (i.e., Apache-like)
scheduling? We show that for our server, adopt-
ing shortest-connection-first can improve mean re-
sponse time by a factor of 4 to 5 under moderate
loads.

Finally our most surprising result is that
shortest-connection-first scheduling does not sig-
nificantly penalize long connections. In fact,
even very long connections can experience im-
proved response times under shortest-connection-
first scheduling when compared to size-independent
scheduling. To explore and explain this somewhat
counterintuitive result we turn to analysis. We use
known analytic results for the behavior of simple
queues under SRPT scheduling, and compare these
to size-independent scheduling. We show that the
explanation for the mild impact of SRPT schedul-
ing on long connections lies in the size distribution
of Web files—in particular, the fact that Web file
sizes show a heavy tailed distribution (one whose
tail declines like a power-law). This result means
that Web workloads are particularly well-suited to
shortest-connection-first scheduling.

2 Background and Related Work

The work reported in this paper touches on a
number of related areas in server design, and in the
theory and practice of scheduling in operating sys-
tems.

Traditional operating system schedulers use
heuristic policies to improve the performance of
short tasks given that task sizes are not known in
advance. However, it is well understood that in
the case where the task sizes are known, the work-
conserving scheduling strategy that minimizes mean
response time is shortest-remaining-processing-time
first (SRPT). In addition to SRPT, there are many
algorithms in the literature which are designed for
the case where the task size is known. Good
overviews of the single-node scheduling problem and

its solution are given in [7], [14], and [17].

In our work we focus on servers that serve static
content, i.e., files whose size can be determined in
advance. Web servers can serve dynamic content as
well; in this case our methods are less directly ap-
plicable. However, recent measurements have sug-
gested that most servers serve mainly static content,
and that dynamic content is served mainly from a
relatively small fraction of the servers in the Web
[15].

Despite the fact that the file sizes are typically
available to the Web server, very little work has con-
sidered size-based scheduling in the Web. One pa-
per that does discuss size-based scheduling in the
Web is that of Bender, Chakrabarti, and Muthukr-
ishnan [6]. This paper raises an important point: in
choosing a scheduling policy it is important to con-
sider not only the scheduling policy’s performance,
but also whether the policy is fair, i.e. whether some
tasks have particularly high slowdowns (where slow-
down is response time over service time). That pa-
per considers the metric maz slowdown (the maxi-
mum slowdown over all tasks) as a measure of un-
fairness. The paper proposes a new algorithm, Dy-
namic Earliest Deadline First (DEDF), designed to
perform well on both the mean slowdown and max
slowdown metrics. The DEDF algorithm is a the-
oretical algorithm which cannot be run within any
reasonable amount of time (it requires looking at all
previous arrivals), however it has significance as the
first algorithm designed to simultaneously minimize
max slowdown and mean slowdown. That work does
consider a few heuristics based on DEDF that are
implementable; however, simulation results evalu-
ating those more practical algorithms at high load
indicate their performance to be about the same
as SRPT with respect to max slowdown and sig-
nificantly worse than SRPT with respect to mean
slowdown.

At the end of our paper (Section 6) we turn to
analysis for insight into the behavior of the shortest-
connection-first scheduling policy. In that section
we examine a single queue under SRPT scheduling,
which was analyzed by Schrage and Miller [18].

In addition to scheduling theory, our work also
touches on issues of OS architecture. In particular,
the work we describe in this paper helps to expose
deficiencies in traditional operating system struc-
ture that prevent precise implementation of ser-
vice policies like shortest-connection-first. Shortest-
connection-first scheduling requires that resource al-
location decisions be based on the connection re-
quiring service. This presents two problems: first,
kernel-space resource allocation is not under the

control of the application; and second, resource al-
location is difficult to perform on a per-connection
basis. These two problems have been have been
noted as well in other work [1, 3].

3 A Server Architecture for Schedul-

ing Experiments

In this section we present the architecture of the
web server we designed and developed for use in our
experiments. Our primary goal in designing this
server was to provide the ability to study policies
for scheduling system resources. Two additional but
less important goals were simplicity of design and
high performance.

3.1 Scheduling Mechanisms

Web servers like Apache [11] follow the tradi-
tional architectural model for Internet service dae-
mons, in which separate connections are served by
separate Unix processes. This model is insufficient
for our needs because none of its scheduling deci-
sions are under application control. Instead we need
to expose scheduling decisions to the application as
much as possible.

Disk Queue

O

Network Queue

Figure 1: Organization of the Experimental Server

Listen Thread

O—

Protocol Queue

A typical connection needs three types of service
after connection acceptance: 1) protocol processing,
2) disk service, and 3) network service. In order to
expose the scheduling decisions associated with each
type of service, we organize the server application
as a set of three queues. This architecture is shown
in Figure 1. The entities that are held in (and move
between) queues correspond to individual connec-
tions. Next we describe how, by varying the service
order of each queue, the application can influence
resource scheduling decisions on a per-connection
basis.

Each queue in Figure 1 has an associated pool of
threads. In addition there is a single listen thread.
The role of the listen thread is to block on the
accept () call, waiting for new connections. When
a new connection arrives, it creates a connection
descriptor. The connection descriptor encapsulates
the necessary state the connection will need (two file

descriptors, a memory buffer, and progress indica-
tors). It then places the connection descriptor into
the protocol queue and resumes listening for new
connections.

Protocol threads handle all aspects of HTTP.
When a protocol thread is done, the server knows
what file is being requested and is ready to start
sending data. In addition the thread has called
stat () on the file to determine the file’s size. The
protocol thread then enqueues the connection de-
scriptor into the disk queue.

The role of the disk thread is to dequeue a con-
nection descriptor, and based on the file associated
with the connection, read() a block of file data
from the filesystem into the connection descriptor’s
buffer. Currently our server reads blocks of up to
32KB at a time. The read() call is blocking; when
it returns, the thread enqueues the descriptor into
the network queue.

The network thread also starts by dequeueing a
connection descriptor; it then calls write () on the
associated socket to transfer the contents of the con-
nection’s buffer to the kernel’s socket buffer. The
write() call is blocking. When it returns, if the
all the bytes in the file have been transferred, the
network thread will close the connection; otherwise
it will place the descriptor back into the disk queue.
Thus each connection will move between the net-
work and disk queues until the connection has been
entirely serviced.

An important advantage of this architecture is
that we can observe which subsystem (protocol,
disk, or network) is the bottleneck by inspecting the
lengths of the associated queues. For the workloads
we used (described in Section 4.1) we found that the
bottleneck was the network queue; queue lengths at
the protocol and disk queues were always close to
Z€ro.

This scheme gives us a flexible environment to
influence connection scheduling by varying the ser-
vice order at each queue. In this study we focus
on two scheduling policies: size-independent and
shortest-connection-first. In our size-independent
policy, each thread simply dequeues items from its
associated queue in FIFO order. The implication
of this policy is that each connection is given a fair
share of read() and write() calls, and that any
fixed set of connections is conceptually served in ap-
proximately round-robin order.

Under shortest-connection-first scheduling, each
(disk or network) thread dequeues the connection
that has the least number of bytes remaining to be
served. This appears to be a good indicator of the
remaining amount of work needed to service the con-

nection. More precise policies are possible, which
are not considered in this paper.

Finally, we note that the listen and protocol
threads run at a higher priority than disk and net-
work threads, and that the protocol queue is always
served in FIFO order (since connection size is not
yet known).

3.2 Performance

As stated at the outset, high performance is only
a secondary goal of our archtectural design. How-
ever our architecture is consistent with recent trends
in high performance servers and (as shown in Sec-
tion 5) yields performance that is competitive with
a more sophisticated server (Apache).

Considerable attention has been directed to im-
proving the architecture of high performance web
servers. As mentioned above, servers like Apache
follow the model in which separate connections
are served by separate Unix processes. More re-
cent servers have moved away from process-per-
connection model, toward lower-overhead strategies.
A number of Web server architectures based on
a single or fixed set of processes have been built
[13, 16]. Removing the overhead of process creation,
context switching, and inter-process-communication
to synchronize and dispatch work allows the server
to use system resources more efficiently. In addition,
in single-process servers memory consumption is re-
duced by not using a running process for each con-
current connection receiving service, which allows
such servers to make more effective use of memory
to cache data. The drawback is that single pro-
cess web servers are typically more complicated and
must rely on multi-threading or non-blocking I/0
schemes to achieve high throughput.

Our server obtains the performance benefits of
using a single process, with a fixed number of
threads (i.e., it does not use a thread per connec-
tion). However we have not adopted all of the per-
formance enhancements of aggressively optimized
servers like Flash [16] because of our desire to keep
the server simple for flexibility in experimenting
with scheduling policies. In particular we use block-
ing threads for writing, which is not strictly neces-
sary given an nonblocking I/O interface. However
we note that the policies we explore in our server
appear to be easily implementable in servers like
Flash.

3.3 Limitations

The principal limitation of our approach is that
we do not have control over the order of events
inside the operating system. As a specific exam-

ple, consider the operation of the network subsys-
tem. Our server makes write() calls which pop-
ulate socket buffers in the network subsytem in a
particular order. However, these buffers are not nec-
essarily drained (i.e., written to the network) in the
order in which our application has filled them.

Two factors prevent precise control over the or-
der in which data is written to the network. First,
each buffer is part of a flow-controlled TCP connec-
tion with a client. If the client is slow with respect
to the server, the client’s behavior can influence the
order in which buffers are drained. For this reason in
our experiments we use a multiple high-performance
clients and we ensure that the clients are not heavily
loaded on average. Thus in our case client interac-
tion is not a significant impediment to scheduling
precision.

The second, more critical problem is that in tra-
ditional Unix network stack implementations, pro-
cessing for all connections is handled in an aggregate
manner. That is, outgoing packets are placed on
the wire in response to the arrival of acknowledge-
ments. This means that if many connections have
data ready to send, and if the client and network are
not the bottleneck, then data will be sent from the
set of connections in order that acknowledgements
arrive, which is not under application control. The
implication is that if the network subsystem has a
large number of connections that have data ready
to send, then the order in which the application has
written to socket buffers will have less effect on the
scheduling of connections.

The problem has been recognized and addressed
in previous work. In particular, Lazy Receiver
Processing [10] can isolate each connection’s path
through the network stack. This allows scheduling
decisions to be made on a per-connection basis at
the level of the network interface.

Our goal was to demonstrate the improvements
possible without operating system modification. As
a result, to obtain control over I/O scheduling we
limit the concurrency in the I/O systems. For ex-
ample, by limiting concurrency in the network sub-
system, we limit the number of connections that
have data ready to send at any point in time, thus
narrowing the set of connections that can trans-
mit packets. Because our disk and network threads
use blocking I/0O, we need multiple threads if we
want to have concurrent outstanding I/O requests.
This means that it is straightforward to control the
amount of concurrency we allow in the kernel sub-
systems, by varying the number of threads in each
of the pools.

At one extreme, if we allow only one thread per

pool, then we have fairly strict control over the order
of events inside the kernel. At any point in time the
kernel can only have one I/0O request of each type
pending, so there are no scheduling decisions avail-
able to it. Unfortunately this approach sacrifices
throughput; both the disk and network subsystems
make use of concurrent requests to overlap process-
ing with I/O. At the other extreme, if we provide a
large number of threads to each pool, we can obtain
high throughput; however then we lose all control
over scheduling.

In order to explore the utility of shortest-
connection-first scheduling, we have adopted an in-
termediate approach. Rather than running our
server at its absolute maximum throughput (as mea-
sured in bytes per unit time), we limit its through-
put somewhat in order to obtain control over I/O
scheduling. Note however that our server’s through-
put (in bytes per second) is still greater than that
of Apache under the same load level.? The perfor-
mance implications of this approach are presented
in Section 5.4. It is important to note that this
is only necessary because of the limitations of the
traditionally structured OS on which we run our
experiments, and this restriction could be dropped
given a different OS structure. Our approach thus
allows us enough influence over kernel scheduling to
demonstrate the costs and benefits of the shortest-
connection-first policy.

4 Experimental Setup
4.1 File Size Distribution

An important aspect of our work is that we have
focused on careful modeling of the file size distribu-
tion typically seen on Web servers. As shown in
Section 6, properties of the file size distribution are
directly related to some of our results.

Our starting point is the observation that file
sizes on Web servers typically follow a heavy-tailed
distribution. This property is surprisingly ubiqui-
tous in the Web; it has been noted in the sizes of
files requested by clients, the lengths of network con-
nections, and files stored on servers [2, 8, 9]. By
heavy tails we mean that the tail of the empirical
distribution function declines like a power law with
exponent less than 2. That is, if a random variable
X follows a heavy-tailed distribution, then

PIX>z]~z % 0<a<?2
where f(z) ~ a(z) means that lim,_, ., f(z)/a(z) =
c for some positive constant c.

2 Apache was configured for high performance as described
in Section 4.2.

Body
Distribution Lognormal
PMF zg\l/ﬁef(lnzfu)2/202
Range 0 <z <9020
Parameters w="7.630; c = 1.001
Tail
Distribution Bounded Pareto
ak™ —a—
PMF it
Range 9020 < z < 10'°
Parameters | k = 631.44; a = 1.0; p = 10™°

Table 1: Empirical Task Size Model. PMF is the
probability mass function, f(z), where f:f(a:)da:
represents the probability that the random variable
takes on values between a and b.

Random variables that follow heavy tailed distri-
butions typically show extremely high variability in
size. This is exhibited as many small observations
mixed with a small number of very large observa-
tions. The implication for Web files is that a tiny
number of the very largest files make up most of the
load on a Web server. We refer to this as the heavy-
tailed property of Web task sizes; it is central to the
discussion in this paper and will come up again in
Section 6.

Although Web files typically show heavy tails,
the body of the distribution is usually best described
using another distribution. Recent work has found
that a hybrid distribution, consisting of a body fol-
lowing a lognormal distribution and a tail that de-
clines via a power-law, seems to fit well some Web
file size measurements [4, 5]. Our results use such
a model for task sizes, which we call the empirical
model; parameters of the empirical model are shown
in Table 1. In this empirical file size model, most
files are small—less than 5000 bytes. However, the
distribution has a very heavy tail, as determined by
the low value of « in the Bounded Pareto distribu-
tion, and evidenced by the fact that the mean of
this distribution is 11108 — much larger than the
typical file size.

4.2 Experimental Environment

To generate HTTP requests that follow the size
distribution described above, we use the SURGE
workload generator [5]. In addition to HTTP re-
quest sizes, SURGE’s stream of HTTP requests also
adheres to empirically derived models for the sizes
of files stored on the server; for the relative popu-
larity of files on the server; for the temporal locality

present in the request stream; and for the timing of
request arrivals at the server.

SURGE makes requests using synthetic clients,
each of which operates in a loop, alternating be-
tween requesting a file and lying idle. Each syn-
thetic client is called a User Equivalent (UE). The
load that SURGE generates is varied by varying the
number of UEs. In our tests we varied the number of
UEs from 400 to 2000. Validation studies of SURGE
are presented in [5]; that paper shows that the re-
quest stream created by SURGE conforms closely to
measured workloads and is much burstier, and hence
more realistic, than that created by SPECWeb96 (a
commonly used Web benchmarking tool).

All measurements of Apache’s performance pre-
sented in this paper were generated using version
1.2.5. We configured Apache for high performance
as recommended on Apache’s performance tuning
Web page.® In particular, MaxRequestsPerChild
was set to 0, meaning that there is no fixed limit to
the number of connections that can be served by any
of Apache’s helper processes. This setting improves
Apache’s performance considerably as compared to
the default.

In addition to the data reported in this paper,
we also ran many experiments using version 1.3.4 of
Apache. Our experiments indicated that this ver-
sion had a performance anomaly under low load
that we did not isolate, so we do not present those
results. However, our experiments indicated that al-
though version 1.3.4 was somewhat faster for short
connections, its overall performance was not differ-
ent enough to affect the conclusions in this paper.

All our tests were conducted using two client
machines (evenly splitting the SURGE UEs) and
one server in a 100 Mbit switched Ethernet envi-
ronment. After our experiments were concluded,
we found that one client’s port was malfunctioning
and delivering only 10 Mbit/sec; so half of the load
was generated over a path that was effectively only
10Mbit /sec, while the other half of the load arrived
over a 100Mbit/sec path. All machines were Dell Di-
mensions equipped with Pentium IT 233 processors,
128 MB of RAM, and SCSI disks. Each of these
machines was running Linux 2.0.36. We configured
SURGE to use a file set of 2000 distinct files varying
in size from 186 bytes to 121 MB. Our measurements
pertaining to response time, byte throughput, and
HTTP GETs per second were extracted from client
side logs generated by SURGE.

All experiments were run for ten minutes. This
time was chosen to be sufficiently long to provide

Shttp://www.apache.org/docs/misc/perf-tuning.html.

confidence that the measurements were not strongly
influenced by transients. For a 1000 UE experiment,
this meant that typically more than 2.5GB of data
was transferred and more than 250,000 connections
took place.

5 Results

5.1 Characterizing Apache’s Perfor-
mance as a Function of Task Size

In this section we characterize Apache’s per-
formance as a function of task size under 3 dif-
ferent load levels: 1000 UEs, 1400 UEs, and 1800
UEs. These loads correspond to lightly loaded,
moderately loaded, and overloaded conditions for
the server. Thus they span the range of important
loads to study.

In order to study how different servers treat con-
nections with respect to size, we bin HTTP transac-
tions according to size, and plot the mean response
time over all transactions in the bin, as a function
of mean file size of transactions in the bin. We plot
the resulting data on log-log axes, in order to simul-
taneously examine both very small and very large
connection sizes. Bin sizes grow exponentially, lead-
ing to equal spacing on logarithmic axes.

Figure 2 shows the resulting plots of mean re-
sponse time as a function of file size under Apache
and under our Web server with size-independent
scheduling for the three different load levels. The
plots generally show that reponse time of small files
(less than about 10KB) is nearly independent of
file size. For this range of files, response time is
dominated by connection setup cost. For large files
(larger than about 10KB) reponse time increases
as a function of file size in an approximately linear
manner.

Across all loads, two trends are evident from the
figure. First, for small files, Apache tends to provide
the same response time or worse response time than
does our size-independent server. Second, for large
files, Apache tends to provide the same reponse time
or better than does our size-independent server.

These two trends indicate that with respect
to size, Apache treats connections in a manner
that is either approximately the same as our size-
independent policy, or else is more favorable to long
connections.* That is, Apache is, if anything, pun-
ishing short connections with respect to our size-
independent server.

4As discussed in Section 4.2 these measurements use
Apache version 1.2.5. We found in other experiments with
Apache 1.3.4 (not shown here) that the newer version of
Apache in fact shows performance that is even closer to that
of our server with size-independent scheduling.

[
(&)l

)
g 2+ sizeindependent o |
(§§ apaChe +
c15¢ N
g o
E 11 L]
'_
8 L35
5 05 r s |
i o
x Or L |
2-0'5 [M ++++++++++++++++Oooo |
6 +<> oooo
‘8’. R ° o°°°°°o° |
S °© °0
- o
-15 . ‘ ‘ ‘
2 4 5 d
Logl0(File Size in Bytes)
25 ‘
w
g 2 r size-independent e
3; apache + L
c157 e
g o + +
£ 1} o |
3 < ++ +
or 7
v L rr®?
dof - Ry |
S-05 ¢ |
g
21 |
-
-15 ‘ ‘ ‘ |
2 3 2 5 . .
LoglO(File Size in Bytes)
25 ‘
w0
g 2 r size-independent o
3; apache + .
cl57 o]
[.)
g by oo L tas]
% o °° o
%05 [o$$$o++++ |
@' AT, ebEebEEerse YT
F O ¢ |
S-05 ¢ |
g
21 |
-
-15 ‘ ‘ ‘ |
2 3 . .

4 5
Log10(File Size in Bytes)

Figure 2: Mean transfer time as a function of file
size under the Apache server and our server with
size-independent scheduling. Both axes use a log
scale. Top to bottom: 1000, 1400, and 1800 UEs.

5.2 Performance Improvements Possi-
ble with Shortest-Connection-First
Scheduling

Given that Apache does not appear to treat con-
nections in a manner that is favorable to short con-
nections, our next question is whether a policy that
does favor short connections leads to performance
improvement, and if so, how much improvement
is possible. Thus, in this section we compare the

25

size-independent ——
shortest-connection-first —+—
g 2r apache —=—
2
=151
8
c
o
g 1}
14
205}
0 ki 1 | | | |

400 600 800 1000 1200 1400 1600 1800 2000
User Equivalents

Figure 3: Mean response time as a function of load
for our Web server with shortest-connection-first
scheduling and size-independent scheduling, and for
Apache.

mean response time of our Web server with shortest-
connection-first scheduling versus size-independent
scheduling.

Figure 3 shows mean response time as a function
of the number of user equivalents for our server with
shortest-connection-first scheduling compared with
size-independent scheduling. The figure shows that
at low loads (less than 1000 UEs) there is no dif-
ference between the two scheduling policies. Thus
1000 UEs represents the point where the network
queue in our server first starts to grow, making the
order in which it services write requests important.
As the load increases beyond 1000 UEs, the differ-
ence in performance between shortest-connection-
first scheduling and size-independent scheduling be-
comes stark. For example under 1400 UEs, the
shortest-connection-first scheduling policy improves
mean response time by a factor of 4 to 5 over the
size-independent scheduling policy.

Also plotted for reference in Figure 3 is the mean
response time of Apache under the same conditions.
As can be seen, Apache’s performance is very similar
to that of our server with size-independent schedul-
ing. This is consistent with the conclusions from the
previous subsection.

It is important to note that these performance
figures may only be lower bounds on the im-
provement possible by using shortest-connection-
first scheduling, due to our constraint of working
within a traditionally structured operating system.

5.3 How Much Do Long Connections
Suffer?

In the previous section we saw that large im-

provements in mean transfer time were possible by

running our Web server under shortest-connection-
first scheduling as opposed to size-independent
scheduling. The question now is: does this perfor-
mance improvement come at a significant cost to
large jobs? Specifically, we ask whether large jobs
fare worse under shortest-connection-first schedul-
ing than they do under size-independent scheduling.

To answer this question we examine the per-
formance of both shortest-connection-first schedul-
ing and size-independent scheduling as a function of
task size. The results are shown in Figure 4, again
for a range of system loads (UEs).

The figure shows that in the case of 1000 UEs,
shortest-connection-first scheduling is identical in
performance to size-independent scheduling across
all file sizes. Thus since there is no buildup at the
network queue, there is also no performance im-
provement from shortest-connection-first scheduling
in the case of 1000 UEs. However, the figure shows
that in the case of 1400 UEs, shortest-connection-
first results in much better performance for small
jobs (as compared with size-independent schedul-
ing), and yet the large jobs still do not fare worse
under shortest-connection-first scheduling than they
do under size-independent scheduling. Thus the
overall performance improvement does not come at
a cost in terms of large jobs. When we increase the
load to 1800 UEs, however, the large jobs do begin
to suffer under shortest-connection-first scheduling
as compared with size-independent scheduling. In
fact over all our experiments, we find that in the
range from about 1200 UEs to 1600 UEs, shortest-
connection-first allows short connections to expe-
rience considerable improvement in response time
without significantly penalizing long connections.
This seemingly counter-intuitive result is explained,
with analytical justification, in Section 6.

5.4 Varying The Write Concurrency

As discussed in Section 3.3, in order to gain con-
trol over the order in which data is sent over the net-
work, we need to restrict our server’s throughput (in
bytes per second). In this section we quantify this
effect.

In all our previous plots we have used a thread
pool of 35 threads to service the network queue.
Figure 5 shows the effect of varying the number of
network threads on mean response time and on doc-
uments (HTTP GETSs) served per second, at a load
of 1400 UEs.

Both plots in the figure make the point that as
the number of write threads increases, the differ-
ence in performance between shortest-connection-
first and size-independent scheduling decreases, un-

[
(&)l

@
% 2r size-independent < 1
(ﬁ shortest-connection-first + .
% 15 s
E 1t oot
= ot
Bos | R
g 2{‘2
%
g‘é— 0 L o¢$ N
T
§-0.5 3 Ry 1
§ ¢ ss®® :
D -1l T o Le99%? 1
e} o++o$$
| o
-15 L L L L
2 4 5 7
Logl0(File Size in Bytes)
25 .
) o s
S 2t size-independent 1
PETICE N
3; shortest-connection-first + .
£ 15¢ so0 " i
(0] ° +
E 1t Lo et]
= o "
%0.5 r R °°+°+ 1
?é- or °ooo<><>oooo<>oo°°°°<>oo +++ b
2—0.5 r ++++ R
= R SR 1
-
-15 L L L L
2 3 4 5 6 7
Log10(File Size in Bytes)
25 .
S 2t size-independent o 1
3; shortest-connection-first « T e
151]
(] $°
E 1t ot]
[R og*
%0.5 r i o oo°®°o+++]
Sig ot % o ++*+ il
SO5F e)
g J
2Ly 1
-
-15 L L L L
2 3 6 7

4 5
Log10(File Size in Bytes)

Figure 4: Response time as a function of task size
for shortest-connection-first scheduling versus size-
independent scheduling. Top to bottom: 1000,
1400, and 1800 UEs.

til at about 60 threads, the choice of scheduling pol-
icy has no effect. At the point of 60 threads, there is
no buildup in the network queue and all scheduling
is determined by kernel-level events.

These plots also show that as the number of
threads used declines from 35 threads, the perfor-
mance difference between shortest-connection-first
and traditional scheduling becomes even greater.
This suggests that the advantage of shortest-

size-independent ——
shortest-connection-first —+— |

Mean Response Time in Seconds
= N w
[[6,] N [} w [6;]

o
3

o

10 20 30 40 50 60 70
Number of Network Threads

size-independent ——
shortest-connection-first ——

10 20 30 40 50 60 70
Number of Network Threads

Figure 5: The effect of varying the number of net-

work threads on (upper) mean response time and

(lower) HTTP GETs/second for the two scheduling

policies.

connection-first scheduling may be even more dra-
matic in a system where there is greater control
over kernel-level scheduling, since as the number of
threads declines in our system, the degree of control
over kernel scheduling increases.

Figure 6 shows the effect on byte throughput of
varying the number of network threads. In this fig-
ure we have plotted the total number of bytes in
files succesfully transferred during each of our 10
minute experiments. It shows that for our server,
throughput increases roughly linearly with addi-
tional network threads, regardless of the policy used.
In all cases, shortest-connection-first has slightly
higher throughput than our size-independent pol-
icy; this is because the server is serving fewer con-
current connections (on average) and so can pro-
vide slightly higher aggregate performance. The pri-
mary point to note is when configured with 35 net-
work threads, our server is not performing at peak
throughput; this is the price paid for control over
network scheduling. As stated earlier, this price is
exacted because the kernel does not support per-
connection scheduling within the protocol stack.

3.5e+09 size-independent ——
shortest-connection-first ——

apache ——

3et+09
2.5e+09 |
2e+09

1.5e+09
/

1let+09 1

Bytesin Files Served

5e+08 ‘ ‘ ‘ : :

10 20 30 40 50 60 70
Number of Network Threads

Figure 6: The effect of varying the number of net-

work threads on the byte throughput for the two

scheduling policies.

Also plotted for reference in Figure 6 is the cor-
responding byte throughput of Apache at 1400 UEs.
The comparison illustrates that, for 35 network
threads, our server is achieving higher throughput
than Apache. Thus, although using 35 threads lim-
its our server from its maximum possible perfor-
mance, it is a level that still outperforms Apache.

6 Analysis:
Suffer?

In this section we help explain why long connec-
tions aren’t severely penalized in our experiments
using some simple analytic models. These mod-
els are only approximations of the complex systems
comprising a Web server, but they yield conclusions
that are consistent with our experimental results
and, more importantly, allow us to explore the rea-
sons behind those experimental results. The results
in this section are based on [12]; that paper presents
additional background and more results not shown
here.

Why Don’t Large Jobs

6.1 Assumptions Used in Analysis

In our analysis we examine the M/G/1 queue,
which is a simple queue fed by a Poisson arrival
stream with an arbitrary distribution of service
times. The service order is shortest-remaining-
processing-time first (SRPT).

Under the SRPT model, only one task at each
instant is receiving service, namely, the task with
the least processing time remaining. When a new
task arrives, if its service demand is less than the
remaining demand of the task receiving service, the
current task is pre-empted and the new task starts
service. We use SRPT as an idealization of shortest-
connection-first scheduling because in both cases,

tasks with small remaining processing time are al-
ways given preference over tasks with longer remain-
ing processing time.

Our analytical results throughout are based on
the following equation for the mean response time
for a task of size z in an M/G/1 queue with load p,
under SRPT [18]:

AJy 2 dF(t) + Az?(1 — F(z))

SRPT
PO 2(1- X[tdF(t))’

T 1
+ . dt
J (1= (A [y 2dF(2))

where R, is the response time (departure time mi-
nus arrival time) of a job of size z, F(-) is the cu-
mulative distribution function of service time, and
A is the arrival rate.

We adopt the assumption that the amount of
work represented by a Web request is proportional
to the size of the file requested. Thus, we use as our
task size distribution the empirical file size distribu-
tion as shown in Table 1 (the same as that generated
by SURGE).

6.2 Understanding the Impact on Long
Connections

Using our simple models we can shed light on
why large tasks do not experience significant penal-
ties under SRPT scheduling; the explanation will
apply equally well to long connections in a Web
server employing shortest-connection-first.

The key observation lies in the heavy-tailed
property of the workload being considered. As de-
fined in Section 4.1, this means that a small frac-
tion of the largest tasks makes up most of the arriv-
ing work. The Bounded Pareto distribution, which
makes up the tail of our empirical distribution, is ex-
tremely heavy-tailed. For example, for a Bounded
Pareto distribution with o = 1.1, the largest 1% of
all tasks account for more than half the total service
demand arriving at the server. For comparison, for
an exponential distribution with the same mean, the
largest 1% of all tasks make up only 5% of the total
demand. Now consider the effect on a very large
task arriving at a server, say a task in the 99th
percentile of the job size distribution. Under the
Bounded Pareto distribution, this task in the 99th
percentile is interrupted by less than 50% of the
total work arriving. In comparison, under the ex-
ponential distribution, a task in the 99th percentile
of the job size distribution is interrupted by about
95% of the total work arriving. Thus, under the

Slowdown of Job

Percentile of Job Size Distribution

Figure 7: Mean slowdown under SRPT as a function
of task size; p = 0.9.

heavy-tailed distribution, a large job suffers much
less than under a distribution like the exponential.
The rest of this section explains and supports this
observation.

To evaluate the potential for unfairness to large
tasks we plot the mean slowdown of a task of a given
size, as a function of the task size. Slowdown is de-
fined as the ratio of a task’s response time to its
service demand. Task size is plotted in percentiles
of the task size distribution, which allows us to as-
sess what fraction of largest tasks will achieve mean
slowdown greater than any given value.

Figure 7 shows mean slowdown as a function of
task size under the SRPT discipline, for the case of
p = 0.9. The two curves represent the case of an
exponential task size distribution, and a Bounded
Pareto (BP) task size distribution with @ = 1.1.
The two distributions have the same mean.

Figure 7 shows that under high server load (p =
0.9), there can be considerable unfairness, but only
for the exponential distribution. For example, the
largest 5% of tasks under the exponential distribu-
tion all experience mean slowdowns of 5.6 or more,
with a non-negligible fraction of task sizes experi-
encing mean slowdowns as high as 10 to 11. In con-
trast, no task size in the BP distribution experiences
a mean slowdown of greater than 1.6. Thus, when
the task size distribution has a light tail (exponen-
tial), SRPT can create serious unfairness; however
when task size distributions show a heavy tail (BP
distribution), SRPT does not lead to significant un-
fairness.

To illustrate the effect of the heavy-tailed prop-
erty on the degree of unfairness experienced by large
jobs, we plot mean slowdown as a function of task
size over a range of BP task size distributions with
constant mean (in this case, 3000) and varying a.
This plot is shown in Figure 8. The high a cases

Slowdown of Job

Percentile of BP Job Size Distribution

Figure 8: Mean slowdown under SRPT as a function
of task size, varying a of task size distribution.

represent relatively light tails, whereas the low «
cases represent relatively heavy tails in the task size
distribution.

This figure shows how the degree of unfairness
under SRPT increases as the tail weight of the task
size distribution decreases. When « is less than
about 1.5, there is very little tendency for SRPT to
penalize large tasks (curves for @ = 0.5 and a = 0.7
stay so close to 1 as to be invisible on the plot).
Only as a gets close to 2.0 (e.g., 1.7 or 1.9) is there
any significant fraction of tasks that experience high
mean slowdowns.

These figures show that as the heavy-tailed
property grows more pronounced, unfairness in the
system under SRPT diminishes. Thus the explana-
tion for the surprising resistance of the heavy-tailed
task size distributions to unfairness under SRPT is
an effect of the heavy-tailed property.

7 Conclusion

This paper has suggested that Web servers serv-
ing static files may show significant performance im-
provements by adopting nontraditional service or-
dering policies. We have examined the behavior of
a popular Web server (Apache running on Linux)
and found that, with respect to connection size, it
appears to provide service similar to a server that
uses size-independent scheduling. Furthermore, we
have found that significant improvements in mean
response time—on the order of factors of 4 to 5—
are achievable by modifying the service order so as
to treat short connections preferentially. Finally,
we have found that such a service ordering does
not overly penalize long connections. Using anal-
ysis, we have shed light on why this is the case, and
concluded that the heavy-tailed properties of Web
workloads (i.e., that a small fraction of the longest
connections make up a large fraction of the total

work) make Web workloads especially amenable to
shortest-connection-first scheduling.

Our work has a number of limitations and direc-
tions for future work. The architecture of our server
does not allow us precise control over the schedul-
ing of kernel-mode operations (such as I/0O). This
prevents us from determining the exact amount of
improvement that is possible under scheduling poli-
cies that favor short connections. We plan to im-
plement short-connection favoring strategies over a
kernel architecture that is better designed for server
support [3, 10] in order to assess their full potential.

There is room for better algorithmic design here,
since the policy we have explored does not prevent
the starvation of jobs in the case when the server
is permanently overloaded. One commonly adopted
solution to this problem is dynamic priority adjust-
ment, in which a job’s priority increases as it ages,
allowing large jobs to eventually obtain priorities
equivalent to those of small jobs. We plan to ex-
plore such improved policies, perhaps following the
initial work in [6].

While more work needs to be done, our re-
sults suggest that nontraditional scheduling order
may be an attractive strategy for Web servers
that primarily serve static files. In particular, the
fact that Web workloads (file sizes and connection
lengths) typically show heavy-tailed distributions
means that shortest-connection-first policies can al-
low Web servers to significantly lower mean response
time without severely penalizing long connections.

References

[1] J. Almeida, M. Dabu, A. Manikutty, and P. Cao.
Providing differentiated quality-of-service in Web
hosting services. In Proceedings of the First Work-
shop on Internet Server Performance, June 1998.

[2] Martin F. Arlitt and Carey L. Williamson. Internet
web servers: Workload characterization and perfor-
mance implications. IEEE/ACM Transactions on
Networking, 5(5):631-645, 1997.

[3] Gaurav Banga, Peter Druschel, and Jeffrey C.
Mogul. Resource containers: A new facility for
resource management in server systems. In Pro-
ceedings of OSDI 99, pages 45-58, 1999.

[4] Paul Barford, Azer Bestavros, Adam Bradley, and
Mark Crovella. Changes in Web client access pat-
terns: Characteristics and caching implications.
World Wide Web, 1999.

[6] Paul Barford and Mark E. Crovella. Generat-
ing representative Web workloads for network and
server performance evaluation. In Proceedings of
SIGMETRICS 98, pages 151-160, July 1998.

[6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

Michael Bender, Soumen Chakrabarti,
and S. Muthukrishnan. Flow and stretch metrics
for scheduling continuous job streams. In Proceed-
ings of the 9th Annual ACM-SIAM Symposium on
Discrete Algorithms, 1998.

Richard W. Conway, William L. Maxwell, and
Louis W. Miller. Theory of Scheduling. Addison-
Wesley Publishing Company, 1967.

Mark E. Crovella and Azer Bestavros. Self-
similarity in World Wide Web traffic: Evidence
and possible causes. IEEE/ACM Transactions on
Networking, 5(6):835-846, December 1997.

Mark E. Crovella, Murad S. Taqqu, and Azer
Bestavros. Heavy-tailed probability distributions
in the World Wide Web. In A Practical Guide To
Heavy Tails, pages 3-26. Chapman & Hall, New
York, 1998.

Peter Druschel and Gaurav Banga. Lazy receiver
processing (LRP): A network subsystem architec-
ture for server systems. In Proceedings of OSDI ’96,
October 1996.

The Apache Group.
http://www.apache.org.

M. Harchol-Balter, M. E. Crovella, and S. Park.
The case for SRPT scheduling in Web servers.
Technical Report MIT-LCS-TR-767, MIT Lab for
Computer Science, October 1998.

M. Frans Kaashoek, Dawson R. Engler, Gregory R.
Ganger, Héctor M. Bricefio, Russell Hunt, David
Maziéres, Thomas Pinckney, Robert Grimm, John
Jannotti, and Kenneth MacKenzie. Application
performance and flexibility on exokernel systems.
In Proceedings of the 16th Symposium on Operat-
ing Systems Principles, October 1997.

D. Karger, C. Stein, and J. Wein. Scheduling al-
gorithms. In CRC Handbook of Computer Science.
1997.

S. Manley and M. Seltzer. Web facts and fantasy.
In Proceedings of the 1997 USITS, 1997.

Vivek S. Pai, Peter Druschel, and W. Zwaenepoel.
Flash: An efficient and portable web server. In
Proceedings of USENIX 1999, June 1999.

M. Pinedo. On-line algorithms, Lecture Notes in
Computer Science. Prentice Hall, 1995.

Linus E. Schrage and Louis W. Miller. The queue
M/G/1 with the shortest remaining processing time
discipline. Operations Research, 14:670-684, 1966.

Apache web server.

