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Abstract

Consider the problem of computing the average packet delay in a general dynamic

packet-routing network with Poisson input stream, during steady-state.

Any packet-routing network can be formulated as a queueing network, where each

server has a constant service time. If each server had exponentially-distributed service

time, queueing theory techniques could be used to determine the expected packet delay.

However, it is not known how to compute the average packet delay for all but the simplest

networks with constant time servers.

It has been conjectured that to get an upper bound on expected packet delay in

the constant service network, one can simply replace each constant time server with an

exponential server of equal mean service time.

This paper shows that for a large class of networks, this conjecture is true, but that

surprisingly there exists a network for which it is false. This large class of networks is all

queueing networks with Markovian routing. Queueing networks with Markovian routing

are important because they include many packet-routing networks where the packets are

routed to random destinations.

1 Introduction

Many parallel and distributed applications require packets to be routed in a network. As

packets move along their routes, they are delayed by other packets. In computing performance

bounds for a given network and routing scheme, it is useful to be able to determine the time

by which the average packet is delayed.

There are two general classi�cations of packet-routing networks: static and dynamic.

Static packet-routing refers to the case where the packets to be routed are all present in

the network when the routing commences. In dynamic packet-routing, packets arrive at the
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network at random times and the routing proceeds in a continuous fashion. In this paper we

will be interested in the dynamic case, in steady state, with Poisson input stream.

Most theoretical research has concentrated on analyzing delays in the static case. The

dynamic case appears more di�cult to deal with using conventional techniques. The most

commonly used technique for bounding the delay in packet-routing networks is to use Cherno�

bounds to bound the maximum number of packets which could possibly need to traverse a

given edge during a window of time (w.h.p.). Examples of research on static packet-routing

networks are [Lei90], [Lei92], [VB81], [Val82], [Ale82], [Upf84], [GL85], [ALMN90], [CS86].

All of these are speci�c to a particular network and a particular routing scheme. They mostly

concentrate on the problem of permutation routing, and use the Cherno� bound approach.

Some research on static packet-routing networks applies to general networks (see [LMR88]

[PU87]). This research concentrates on worst-case bounds. There are very few theoretical

results for dynamic packet-routing networks. A few are [Lei90],[KL95], and [CS86]. [Lei90]

and [KL95] assume a discrete Poisson arrival steam (a new packet is born at each node of

the network at every second with probability p). [CS86] assume a new permutation arrives

every T seconds. Both these results are network and routing scheme speci�c, and although

their bounds are very strong, the analysis is very involved. Lastly, since in most of the above

routing schemes packets are �rst sent to intermediate random destinations, there's been a lot

of research which concentrates on computing delays for the case where the �nal destinations

are random (see for example [Lei90], [Val82], [Lei92], [KL95]). Again, except for [Lei90] and

[KL95] all these results are for the static case.

For computing delays in dynamic packet-routing networks, queueing theory provides a

huge body of useful results which apply to any network con�guration and routing scheme.

Unfortunately, these results rely on a few unrealistic assumptions (the most unrealistic being

independent exponentially distributed service times), and therefore people are reluctant to

make use of them. In this paper we discuss when the assumption of independent exponential

service times can be replaced by (the much more realistic) constant service times. More

speci�cally (see Section 1.3.3):

� We show packet-routing networks may be described as queueing networks with constant-

time servers, where each server in the queueing network corresponds to an edge (or any

other bottleneck) in the packet-routing network.

� We prove that if the queueing network has Markovian routing and the contention reso-

lution protocol at the servers is FCFS (�rst-come-�rst-served), then replacing constant

time servers with exponentially-distributed time servers of equal mean service time in-

creases average packet delay. Since queueing networks with FCFS, exponential time

servers are easily solvable for average delay, we therefore have an upper bound on the

average delay in any packet-routing network. An almost immediate consequence of our

proof is a su�cient condition for the stability of any queueing networks with Markovian

routing and constant time servers. Our result easily generalizes to a broader class of

contention resolution protocols.

� We show there exists a queueing network (with Non-Markovian routing) for which
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Figure 1: A packet-routing network

replacing constant time servers with exponential time servers (of equal mean service

time) decreases average packet delay.

1.1 De�nition of Packet-Routing Network

A packet-routing network consists of nodes with wires connecting the nodes, as shown in

Figure 1. Packets arrive continuously from outside the network at the nodes of the network.

Each packet is born with a path. For example, in the routing scheme of Figure 1, packets with

path A �! B �! C �! are born at a rate of one every 10 seconds, and packets with path

B �! C �! B �! C �! are born at a rate of one every 20 seconds, etc. Most literature

considers the edges (wires) of the packet-routing network to be the bottlenecks. Speci�cally,

it takes some constant time to traverse an edge (this constant may be di�erent for each edge),

and only one packet may traverse the edge at a time. The packets traverse the edge in a

non-preemptive order. This causes a packet to be delayed when it arrives at an edge that is

currently being used. The nodes of the network serve only to route the packets from one edge

to the next. In our analysis, it is equally easy to assume the nodes of the network also form

bottlenecks (in the same way as the edges).

In this paper we'll be interested in computing the time an average packet is delayed by

waiting in queues.

Although we haven't explicitly mentioned transmission delays and propagation times in

our de�nition of a packet-routing network, we observe below that our de�nition is general

3
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Figure 2: A queueing network

enough to capture all these properties of a real network with �xed-size packets (as in an ATM

[Vet95] network). We will use R to denote a \real" packet-routing network, and P to denote a

packet-routing network of the type in our de�nition above. In a real packet-routing network,

R, more than one packet may be on a given link, however the packets must be separated by

the transmission time, t, namely the time necessary to load the whole packet onto the link

(note that since the packets all have the same size, t is the same for all packets). Let T be the

time for a packet to traverse a given link (this is a function of the length of the link). Then

we can replace each link in R by a chain of T=t short links in P , where each of these short

links requires time t to traverse and only one packet may traverse each short link at a time.

Note that P now exactly models R.

1.2 Queueing Network De�nitions and Background

A queueing network N consists of servers with edges connecting the servers, as shown in

Figure 2. It's behavior is very similar to our de�nition of a packet-routing network, except

that time is only spent at the servers, and no time is spent on the edges. (Thus packets queue

up at the servers of N ). Packets arrive continuously at the servers of N , and each packet has

a path associated with it which it follows. A queueing network is de�ned by 3 parameters:

service-time distribution The service time associated with a server is a random variable

from a distribution. (Note the distribution | or just its mean | may be di�erent for

each server).

contention resolution protocol The order in which packets are served in case of con
ict

at a server.

outside arrival process In this paper, whenever we speak of a queueing network, we will

assume that outside arrivals occur at each server according to a Poisson process.

4



We say that a queueing network hasMarkovian routing if when a packet �nishes serving at

a server i, the probability that it next moves to some server j (or leaves the network) depends

only on where the packet last served and is independent of its previous history (or route).

In this case the packets appear indistinguishable. Thus a queueing network with Markovian

routing can simply be described by a directed graph with probabilities on the edges.

1

Given a queueing network N , we de�ne N

C,FCFS

(respectively, N

E,FCFS

) to be queueing

network N where each server has a constant (respectively, exponentially distributed) service

time with the same mean as the corresponding server in N , and the packets are served in a

First-Come-First-Served order.

1.2.1 Recasting a packet-routing network P as a queueing network N

C

Observe that every packet-routing network P may be described as a queueing network of

type N

C

as follows: Corresponding to each bottleneck in P , we create a server in N . For

example, the edges of the packet-routing network are bottlenecks, so we create one server in

N corresponding to each edge in P . We set the service time at each server to be constant,

equal to the time required to traverse the corresponding edge in P . Since only one packet at

a time may traverse an edge in P , we restrict the contention resolution protocol in N to one

where only one packet at a time serves at a server. In the case where edge contention in P is

speci�cally FCFS, P can be represented by a queueing network of type N

C,FCFS

.

Thus from now on, we will never refer to packet-routing networks again, but rather we

will only address how to compute delays in queueing networks of type N

C

. In this section and

the next, we will look speci�cally at networks of type N

C,FCFS

. (In Section 3, we will consider

more general contention resolution protocols.) Unfortunately, it is not known how to compute

the average packet delay for all but the simplest N

C,FCFS

networks, since N

C,FCFS

networks

don't have product-form. However, N

E,FCFS

is a product-form network (more speci�cally it's

a classed Jackson queueing network, see [BS93]) and therefore the average packet delay is

easy to determine for networks of this type (see, for example, [Wal89] [BS93]).

The objective is therefore to bound the average delay of N

C,FCFS

(which we

care about) by the average delay of N

E,FCFS

(which we know how to compute).

1.3 In This Paper We Show ...

1.3.1 Overall Goal

Our overall goal is to identify for which N

AvgDelay(N

C,FCFS

) � AvgDelay(N

E,FCFS

) (1)

1

Note an equivalent, but more elegant, way to de�ne a queueing network N is to say that each outside

arrival to N is associated with some class. A packet of class ` moves from server i to server j next with

probability p

`

ij

. The special case of a Markovian network N is de�ned as a network with only one class of

packets.

5



1.3.2 Previous Work on Goal

All previous work seems to indicate (1) holds for all queueing networks N .

For example, the average packet delay is an increasing function of the variance in the

service time distribution for each of the following single queue networks: the M/G/1 queue,

the M/G/1 queue with batch arrivals, the M/G/1 queue with priorities, and the M/G/k

queue, [Whi83] [Whi80] [Ros89, pp. 353{356].

With respect to networks of queues, [ST94] showed that for all layered (i.e. acyclic)

networks Nwith Markovian routing, N

E,FCFS

has greater average packet delay than N

C,FCFS

.

Unbeknownst to [ST94] and to us, [RS92] earlier proved a stronger result for all networks with

Markovian routing, namely that N

E,FCFS

has greater average packet delay than N

ILR,FCFS

,

where ILR denotes any service time distribution which has an increased likelihood ratio.

However, [RS92]'s proof requires specialized cross-coupling and conditioning arguments, and

therefore we choose to present our own elementary proof. There are also simulation studies

of several non-Markovian networks N (i.e. general classed networks) which �nd the average

packet delay to be greater for N

E,FCFS

than for N

C,FCFS

(see [HBB94] [MC86] [HC86]) .

With respect to how tight this upper bound is, in all of the above simulations the average

delay in N

E,FCFS

was never greater than that of N

C,FCFS

by more than a factor of 3 (this

included networks loaded to 99% of capacity and having 100 servers). However, since the

di�erence increases both with the load and with the number as

servers (see for example Section 2.2 and also [KL95]), this ratio could be greater for large

networks.

The above results have led to a general belief that greater variance in service times leads

to greater average packet delay [Whi84] [Wal94] [Fer94] [Kle94]. In Section 2.2, we give some

intuition for this. Counterexamples to this theory have only been found in the case where

arrivals are not Poisson [Wol77] [Ros78]. For example Figure 3 indicates why counterexamples

can be found which use batch Poisson arrivals such as those in [Wol77]. The �nal thing we

do in this paper is to demonstrate a counterexample for the case of Poisson arrivals.

1.3.3 Main Results

� (Section 2) We give an easy proof showing that all queueing networksN with Markovian

routing,

AvgDelay(N

C,FCFS

) � AvgDelay(N

E,FCFS

)

and N

C,FCFS

is stable under the same conditions as N

E,FCFS

.

Signi�cance of this result: Recall that computing delays in packet-routing networks

when the packets have random destinations is important because most randomized rout-

ing algorithms consist of two random routing problems (see the third paragraph of the

introduction). Queueing networks with Markovian routing are important because they

include many packet-routing networks in which the packets have random destinations.

A couple common examples are the mesh network with greedy routing (packets are �rst

routed to the correct column and then to the correct row) and the hypercube network

6
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Figure 3: Non-Poisson (in this case batch-Poisson) arrivals can favor more variance in service

distributions. For example, if three packets arrive in a batch (serving in the top three servers

above), they'll collide at the next server unless their service-completions are staggered.

with canonical routing (packets cross each dimension if needed in order). When the

packets have random destinations, rather than choosing the random destination when

the packet is born, we can view the random destination as being decided a little at a

time, by 
ipping a coin after each server.

2

The above result tells us that we can easily

compute an upper bound on the average delay for any packet-routing network which

can be modeled by a queueing network with Markovian routing. Also, Section 1.3.2

cites evidence that this upper bound is not far from tight in practice.

� (Section 4) We demonstrate (a non-Markovian) network N , s.t.

AvgDelay(N

C,FCFS

) > AvgDelay(N

E,FCFS

)

Signi�cance of this result: The counterexample disproves the widely believed conjecture

that for all networksN

C,FCFS

has better average delay than N

E,FCFS

(see Section 1.3.2).

2 Upper Bounding Average Delay in Markovian Queueing

Networks

In this section we will prove the following theorem:

Theorem 1 For all Markovian queueing networks N ,

AvgDelay(N

C,FCFS

) � AvgDelay(N

E,FCFS

)

2

Observe that since the server in the queueing network represents an edge in the packet-routing network, all

we need to know to determine the probabilities is the server (edge) at which the packet just �nished serving.
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Our proof is modeled after [ST94] who proved this result for layered Markovian networks.

Whereas their proof uses induction on the levels of the network, we induct on time, thereby

simplifying the proof and obviating the need for a layered network.

De�ne N

C,PS

to be the queueing network N where each server has a constant service

time with the same mean as the corresponding server in N and the service order is Processor

Sharing. (In Processor Sharing, the server is shared equally by all the packets currently

waiting at the server. So, for example if the service time at the server is 2, and there are 3

packets waiting at the server, each packet is being served at a rate of

1

6

). By [BCMPG75]

and [Kel75], we know that the average packet delay in N

C,PS

is equal to the average packet

delay in N

E,FCFS

for all N .

3

It is therefore su�cient to prove that for any queueing network

N with Markovian routing,

4

AvgDelay(N

C,FCFS

) � AvgDelay(N

C,PS

) = AvgDelay(N

E,FCFS

)

We start by proving the inequality for a single server network.

Claim 1 If the sequence of arrivals to a (single server) FCFS queue is no later than the

arrivals to a PS queue, then the i

th

departure from the FCFS queue occurs no later than the

i

th

departure from the PS queue.

Proof: In both queues, each packet must wait for all packets with earlier arrivals to depart,

but only in the PS queue must a packet also wait while later arrivals get service.

To generalize the statement from the single server to the network, we'll use a coupling

argument. Consider the behavior of the two networks when coupled to run on the same

sample point consisting of:

1. the sequence of outside inter-arrival times at each server, and

2. the choices for where the j

th

packet served at each server proceeds next.

Note the above quantities are all independent for a Markovian network. Also, the j

th

packet

to complete at a particular server in the two networks may not be the same packet.

Claim 2 For a given sample point, the j

th

service completion at any server of the FCFS

network occurs no later than the j

th

service completion at the corresponding server of the PS

network.

Proof: Assume the claim is true at time t. We show it's true at time t

0

> t, where t

0

is the time

of the next service completion. We distinguish between outside arrivals to a server (packets

arriving from outside the network) and inside arrivals to the server (service completions),

and make the following sequence of observations:

3

This powerful theorem is also described more recently in [Wal89] and [Kle76].

4

Our proof of the inequality is valid for any sequence of outside arrivals, not just a Poisson arrival stream.
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Figure 4: Illustration of proof of Claim 2. We consider the same server q in the FCFS

network and the PS network. The arrival stream into PS server q is delayed relative to the

arrival stream into FCFS server q. Of course, the order of arrivals may be di�erent for the

two queues, but for Markovian routing, packets are indistinguishable with respect to routing

anyway.

� During [0; t

0

), Claim 2 is true.

� During [0; t

0

), every arrival at any PS server, q, must have already occurred at the

corresponding FCFS server, q (see Figure 4). (This is true for inside arrivals because

any inside arrival at PS server q is, say, the j

th

service completion at some PS server

q

0

, and by the previous observation, the j

th

service completion at FCFS server q

0

is at

least as early. By de�nition of the sample point, the observation is also true for outside

arrivals.)

� Therefore, during [0; t

0

), the i

th

packet to arrive at any server of the FCFS network

arrives no later than the i

th

arrival at the corresponding server of the PS network.

� Hence, by Claim 1, we see Claim 2 holds during [0; t

0

]. This includes the current service

completion.

By Claim 2, it follows that for any sample point, the i

th

departure from N

C,FCFS

occurs

no later than the i

th

departure from N

C,PS

. This implies that

Number of packets in N

C,FCFS

at time t �

st

Number of packets in N

C,PS

at time t

which implies that

E fNumber of packets in N

C,FCFS

at time tg � E fNumber of packets in N

C,PS

at time tg

9



So by Little's Law [Wol89, p. 236] we have shown that

AvgDelay(N

C,FCFS

) � AvgDelay(N

C,PS

)

and therefore proved Theorem 1 above.

2.1 Stability of N

C,FCFS

A su�cient condition for the stability of a queueing network is that the expected time between

which all the queues empty out is �nite.

Stability is a well understood issue for any network of type N

E,FCFS

. A su�cient condition

for stability is that the average arrival rate into each server is less than the service rate at

that server because (by the product-form distribution of N

E,FCFS

) under this condition the

probability that all the queues are empty is non-zero.

Since networks of type N

C,FCFS

don't satisfy product-form, it is harder to prove su�cient

conditions for their stability. However observe that the stochastic ordering in the proof of

Theorem 1 immediately implies that for any queueing network N with Markovian routing,

N

C,FCFS

is stable whenever N

E,FCFS

is. For let N be any network with Markovian routing

and assume that the average arrival rate into each server is less than the service rate at that

server. Then:

Pr fall queues of N

C,FCFS

are emptyg

= 1� Prftot. num. packs in queue in N

C,FCFS

> 0g

� 1� Prftot. num. packs in queue in N

E,FCFS

> 0g

= Pr fall queues of N

E,FCFS

are emptyg

> 0:

2.2 How much worse is PS than FCFS?

In section 1.3.2 we stated that simulations indicate that the average delay in N

C,PS

is always

within a factor of 3 of the average delay in N

C,FCFS

. However, in this section we will show

that when the number of servers, n, in a network is very large, this di�erence might be much

greater. Consider a queueing networkN consisting of only a single line of n servers, each with

service time 1. Packets arrive only at the �rst server, and leave the network after serving at

the nth server. N

C,FCFS

(respectively, N

C,PS

) is the network N where the service resolution

protocol is FCFS (respectively, Processor-Sharing). To determine the average delay in each

network, consider the delay experienced by a newly-arriving packet p. In both N

C,FCFS

and

N

C,PS

, p is delayed by the packets it �nds queued up at the �rst server (in N

C,PS

later arrivals

also cause p to be delayed, but we ignore them). The di�erence is that in N

C,FCFS

, these

packets only each delay p by 1 (after that initial delay the packets are spread out and move

in lockstep), whereas in N

C,PS

, these packets each delay p by n (since the packets all move

in a \clump" down the network).

10



3 Some Easy Generalizations

Observe that the proofs of Claims 1 and 2 do not depend on serving the packets in a FCFS

order. For example, packets could be born with priorities, with servers serving higher-priority

packets �rst, in a non-preemptive fashion. In fact, for a given sample point, the time of the

j

th

service completion at a server is the same for every non-preemptive contention resolution

protocol which serves one packet at a time.

Naturally, we still require that the packet priorities are independent of the packet route,

for otherwise we cannot perform the coupling argument required in the proof of Claim 2.

The stability claim thus also generalizes, even when the contention resolution protocol

intentionally tries to starve a particular packet.

4 A Non-Markovian Counterexample

In this section, we demonstrate an N for which

AvgDelay(N

C,FCFS

) > AvgDelay(N

E,FCFS

)

More speci�cally, de�ning N

C,PS

as in Section 2, we will demonstrate a network N for which

AvgDelay(N

C,FCFS

) > AvgDelay(N

C,PS

) = AvgDelay(N

E,FCFS

)

For some insight into why it is counterintuitive that such a network N exists, see Section 2.2.

4.1 Network Description

Let N be the queueing network shown in Figure 5. The servers in N either have service

time 1 or �, as shown. The only outside arrivals are into the top server. Packets arrive from

outside N according to a Poisson Process with rate � =

1

2e

2

n

2

, where n is the number of

servers of mean service time 1 in N . Half the arriving packets are of type solid and half are of

type dashed (by \type" we mean class). Packets of type solid are routed straight down, only

passing through the time 1 servers. Packets of type dashed are routed through the dashed

edges, i.e. through all the � servers and through every other 1-server.

4.2 Intuition

We will compare the average delay in N

C,FCFS

with the average delay in N

C,PS

, as shown in

Figure 6, by comparing the average delay experienced by an arriving packet p at N

C,FCFS

and N

C,PS

. Throughout our argument, we implicitly use PASTA (Poisson Arrivals See Time

Averages).

The intuition behind the analysis is as follows: Since � is so low, usually for either network,

p will see no other packets during its traversal of the network. In this case N

C,FCFS

behaves

identically to N

C,PS

. With some probability, however, one other packet will be present in the

network during p's traversal of the network. The expected delay on p in this case is greater
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Figure 5: Counterexample network Nwith

n servers of mean service time 1 and n=2

with mean service time �. Packets arrive at

the top; half follow the dashed route, while

half follow the solid route.
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and N

C,PS

networks.
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for the N

C,FCFS

network than for the N

C,PS

network. Figure 7 shows us why: Consider �rst

N

C,FCFS

. Suppose q is of type solid and some packet p of type dashed enters N

C,FCFS

within

n

2

seconds after q. Then p will eventually catch up to q, and from this point on, q will delay

p by one second at every other server throughout the rest of the N

C,FCFS

. That is, p will be

delayed by �(n) seconds. Now observe that the same scenario would only cause a delay of

at most 2 seconds in N

C,PS

, because when p catches up to q, it will only interfere with q for

two servers and then p will pass q forever. A worse situation for N

C,PS

is the case where p

meets up with another packet of the same type as p during its traversal (since in that case

p is clearly delayed by �(n)). Observe, however, that this scenario can only happen if the

two packets both arrived at N

C,PS

within a second of each other. This occurs with such low

probability for our choice of small � that the scenario's a�ect on average delay is negligible.

Lastly, we have to consider the case that two or more packets are present in the network

during p's traversal of the network. The expected delay on p in this case is greater for the

N

C,PS

network than for the N

C,FCFS

network, but this case occurs with such low probability

that its e�ect on p's delay is also negligible.

4.3 The details

By PASTA, the expected delay a newly arriving packet experiences is equal to the average

packet delay for the network. We will compute an upper bound on the delay an arrival

experiences in N

C,PS

and a lower bound on the delay an arrival experiences in N

C,FCFS

. We

will show

lowerbound

�

E

�

Delay on arrival in N

C,FCFS

	�

> upperbound

�

E

�

Delay on arrival in N

C,PS

	�

:

4.3.1 Upperbound E fDelay on arrival in N

C,PS

g

Let p represent an arriving packet in N

C,PS

. Clearly, p may only be delayed by packets which

are in N

C,PS

during the time p is in N

C,PS

. Note that if i packets are in N

C,PS

, they may take

up to time in to clear the system. So, denoting p's arrival time by 0, if packet p is delayed,

at least one of the following must occur:

� at least 1 other packet arrives during (�n; n).

� at least 2 other packets arrive during (�2n; 2n).

� at least 3 other packets arrive during (�3n; 3n).

� etc.

De�ne

E

0

i

: the event that at least i packets arrive during (�in; in)

E

i

: the event that exactly i packets arrive during (�in; in)
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Figure 7: Example illustrating how a packet, p, of type dashed and a packet, q, of type solid

clash repeatedly in N
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, but only twice in N
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.
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Now p can only be delayed is at least one of the E

0

i

occur, i.e., if

S

E

0

i

is true. However

S

E

0

i

can only occur if

S

E

i

occurs (See footnote

5

for a proof of this subtle point), so p can

only be delayed if at least one of the following events occurs:

� exactly 1 other packet arrives during (�n; n).

� exactly 2 other packets arrive during (�2n; 2n).

� exactly 3 other packets arrive during (�3n; 3n).

� etc.

We will compute the expected delay on p due to each of the above events, and then we'll

sum these. This will be an overcount, but that's o.k. because we're just upperbounding.

Let

P

i

= Pr fexactly i arrivals during time (�in; in)g

Let

D

PS

i

= E fdelay on p due to i arrivals during (�in; in) in N

C,PS

g

So

E fdelay on p in N

C,PS

g � P

1

D

PS

1

+ P

2

D

PS

2

+ P

3

D

PS

3

+ : : :

� P

1

D

PS

1

+ P

2

(2n) + P

3

(3n) + : : :

where the last inequality is an over-estimate, since we are assuming the worst case where all

the packets continually run into each other over and over again during their entire time in

the network.

By de�nition of the Poisson Process,

P

i

=

e

���2in

(� � 2in)

i

i!

For i � 2, we can express P

i

in terms of P

1

as follows:

P

i

(i � 2) =

e

���2in

(� � 2in)

i

i!

=

i

i

i!

� e

���2in

(� � 2n)

i

< e

i

� e

���2n

(� � 2n)

i

= P

1

� (� � 2n)

i�1

� e

i

5

Let x(i) denote the number of arrivals during (�in; in). Observe that x(i) is a non-decreasing integer-

valued function of i. Let L be the line x(i) = i. Since E fx(i)g is less than 1, if x(i) is ever above L, with

probability one it must eventally cross L and come below L (by the Law of Large Numbers). Thus if

S

E

0

i

is

true, then so is

S

E

i

.
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Substituting � =

1

2e

2

n

2

, we have:

P

i

(i � 2) < P

1

�

1

n

i�1

Now, substituting P

i

, i � 2 into the formula for the expected delay on p, we have:

E fdelay on p in N

C,PS

g � P

1

D

PS

1

+ P

2

(2n) + P

3

(3n) + : : :

< P

1

D

PS

1

+ P

1

� 2 + P

1

�

3

n

+ P

1

�

4

n

2

+ : : :

< P

1

�

D

PS

1

+ 6

�

(for n � 2)

Since

D

PS

1

= E

n

Delay on p caused by 1 other packets arriving in (�n; n)

o

= E

n

Delay on p caused by 1 packet of same type arriving in (�n; n)

o

+E

n

Delay on p caused by 1 packet of opposite type arriving in (�n; n)

o

= Pr

n

same type arrival

o

�E

n

Delay

�

�

�

same type arrival

o

+Pr

n

opp. type arrival

o

�E

n

Delay

�

�

�
opp. type arrival

o

=

1

2

��

�

1

n

� n

�

(delayed by n only if packet arrived in (�1; 1))

+

1

2

��(1) (opposite type packet causes at most delay of �(1))

= � (1)

We have

E fdelay on p in N

C,PS

g = P

1

�

D

PS

1

+ 6

�

= P

1

�� (1)

4.3.2 Lowerbounding E fDelay on arrival in N

C,FCFS

g

To derive a simple lower bound for the expected delay in N

C,FCFS

, again let p represent

an arriving packet in N

C,FCFS

. Assume p arrives at N

C,FCFS

at time 0. To lowerbound

the E fDelay on p in N

C,FCFS

g, we consider only the delay on p caused by 1 packet arriving

during (�n; n).

E fdelay on p in N

C,FCFS

g � P

1

D

FCFS

1
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D

FCFS

1

= E

n

Delay on p caused by 1 other packets arriving in (�n; n)

o

= E

n

Delay on p caused by 1 packet of same type arriving in (�n; n)

o

+E

n

Delay on p caused by 1 packet of opposite type arriving in (�n; n)

o

= Pr

n

same type arrival

o

�E

n

Delay

�

�

�
same type arrival

o

+Pr

n

opp. type arrival

o

�E

n

Delay

�

�

�
opp. type arrival

o

=

1

2

�� (1) (see intuition section)

+

1

2

��(n) (see intuition section)

= � (n)

Thus,

E fdelay on p in N

C,FCFS

g > P

1

�D

FCFS

1

= P

1

��(n)

5 Conclusion and Future Work

We started this paper by formulating any dynamic packet routing network as a queueing

network of type N

C,FCFS

. Since queueing theory only provides us with results on N

E,FCFS

,

our goal became to bound the average delay of N

C,FCFS

by the average delay of N

E,FCFS

:

AvgDelay(N

C,FCFS

) � AvgDelay(N

E,FCFS

) (2)

We �rst proved that (2) holds for all queueing networks wtih Markovian routing. This result

was signi�cant because many packet-routing networks where the packets have random des-

tinations can be formulated as queueing networks with Markovian routing. We then gave a

counterexample showing that (2) does not always hold, contrary to popular belief.

There are three natural open questions raised by these results. Let S be those networks

for which (2) holds. The �rst is \How large is the set S?" We know S contains more than just

Markovian networks. For instance it's easy to prove that S contains the network N which

consists of just a single server, where each incoming packet serves once, goes back to the end

of the queue, and then serves a second time. Also, simulations suggest S contains many other

non-Markovian networks (see Section 1.3.2). In fact, the di�culty in constructing a network

not in S leads us to speculate that almost all networks are in S.

This leads us to the second question of \How tight an upper bound is N

E,FCFS

on N

C,FCFS

with respect to average delay?", both in practice and theoretically.

Lastly, \For the networks not in S, how far o� is the AvgDelay(N

C,FCFS

) from the

AvgDelay(N

E,FCFS

)?"
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