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Abstract

Consider the problem of computing the average packet delay in a general dynamic
packet-routing network with Poisson input stream, during steady-state.

Any packet-routing network can be formulated as a queueing network, where each
server has a constant service time. If each server had exponentially-distributed service
time, queueing theory techniques could be used to determine the expected packet delay.
However, it is not known how to compute the average packet delay for all but the simplest
networks with constant time servers.

It has been conjectured that to get an upper bound on expected packet delay in
the constant service network, one can simply replace each constant time server with an
exponential server of equal mean service time.

This paper shows that for a large class of networks, this conjecture is true, but that
surprisingly there exists a network for which it is false. This large class of networks 1s all
queueing networks with Markovian routing. Queueing networks with Markovian routing
are important because they include many packet-routing networks where the packets are
routed to random destinations.

1 Introduction

Many parallel and distributed applications require packets to be routed in a network. As
packets move along their routes, they are delayed by other packets. In computing performance
bounds for a given network and routing scheme, it is useful to be able to determine the time
by which the average packet is delayed.

There are two general classifications of packet-routing networks: static and dynamic.
Static packet-routing refers to the case where the packets to be routed are all present in
the network when the routing commences. In dynamic packet-routing, packets arrive at the
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network at random times and the routing proceeds in a continuous fashion. In this paper we
will be interested in the dynamic case, in steady state, with Poisson input stream.

Most theoretical research has concentrated on analyzing delays in the static case. The
dynamic case appears more difficult to deal with using conventional techniques. The most
commonly used technique for bounding the delay in packet-routing networks is to use Chernoff
bounds to bound the maximum number of packets which could possibly need to traverse a
given edge during a window of time (w.h.p.). Examples of research on static packet-routing
networks are [Lei90], [Lei92], [VB81], [Val82], [Ale82], [Upf84], [GL85], [ALMN90], [CS86].
All of these are specific to a particular network and a particular routing scheme. They mostly
concentrate on the problem of permutation routing, and use the Chernoff bound approach.
Some research on static packet-routing networks applies to general networks (see [LMRS8S]
[PU8T]). This research concentrates on worst-case bounds. There are very few theoretical
results for dynamic packet-routing networks. A few are [Lei90],[KL95], and [CS86]. [Lei90]
and [KL95] assume a discrete Poisson arrival steam (a new packet is born at each node of
the network at every second with probability p). [CS86] assume a new permutation arrives
every T’ seconds. Both these results are network and routing scheme specific, and although
their bounds are very strong, the analysis is very involved. Lastly, since in most of the above
routing schemes packets are first sent to intermediate random destinations, there’s been a lot
of research which concentrates on computing delays for the case where the final destinations
are random (see for example [Lei90], [Val82], [Lei92], [KL95]). Again, except for [Lei90] and
[KL95] all these results are for the static case.

For computing delays in dynamic packet-routing networks, queueing theory provides a
huge body of useful results which apply to any network configuration and routing scheme.
Unfortunately, these results rely on a few unrealistic assumptions (the most unrealistic being
independent exponentially distributed service times), and therefore people are reluctant to
make use of them. In this paper we discuss when the assumption of independent exponential
service times can be replaced by (the much more realistic) constant service times. More
specifically (see Section 1.3.3):

o We show packet-routing networks may be described as queueing networks with constant-
time servers, where each server in the queueing network corresponds to an edge (or any
other bottleneck) in the packet-routing network.

e We prove that if the queueing network has Markovian routing and the contention reso-
lution protocol at the servers is FCFS (first-come-first-served), then replacing constant
time servers with exponentially-distributed time servers of equal mean service time in-
creases average packet delay. Since queueing networks with FCEFS, exponential time
servers are easily solvable for average delay, we therefore have an upper bound on the
average delay in any packet-routing network. An almost immediate consequence of our
proof is a sufficient condition for the stability of any queueing networks with Markovian
routing and constant time servers. Our result easily generalizes to a broader class of
contention resolution protocols.

e We show there exists a queueing network (with Non-Markovian routing) for which
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Figure 1: A packet-routing network

replacing constant time servers with exponential time servers (of equal mean service
time) decreases average packet delay.

1.1 Definition of Packet-Routing Network

A packet-routing network consists of nodes with wires connecting the nodes, as shown in
Figure 1. Packets arrive continuously from outside the network at the nodes of the network.
Each packet is born with a path. For example, in the routing scheme of Figure 1, packets with
path A — B — ' — are born at a rate of one every 10 seconds, and packets with path
B — (C — B — C — are born at a rate of one every 20 seconds, etc. Most literature
considers the edges (wires) of the packet-routing network to be the bottlenecks. Specifically,
it takes some constant time to traverse an edge (this constant may be different for each edge),
and only one packet may traverse the edge at a time. The packets traverse the edge in a
non-preemptive order. This causes a packet to be delayed when it arrives at an edge that is
currently being used. The nodes of the network serve only to route the packets from one edge
to the next. In our analysis, it is equally easy to assume the nodes of the network also form
bottlenecks (in the same way as the edges).

In this paper we’ll be interested in computing the time an average packet is delayed by
waiting in queues.

Although we haven’t explicitly mentioned transmission delays and propagation times in
our definition of a packet-routing network, we observe below that our definition is general
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enough to capture all these properties of a real network with fixed-size packets (as in an ATM
[Vet95] network). We will use R to denote a “real” packet-routing network, and P to denote a
packet-routing network of the type in our definition above. In a real packet-routing network,
R, more than one packet may be on a given link, however the packets must be separated by
the transmission time, ¢, namely the time necessary to load the whole packet onto the link
(note that since the packets all have the same size, ¢ is the same for all packets). Let T' be the
time for a packet to traverse a given link (this is a function of the length of the link). Then
we can replace each link in R by a chain of 7'/t short links in P, where each of these short
links requires time ¢ to traverse and only one packet may traverse each short link at a time.
Note that P now exactly models R.

1.2 Queueing Network Definitions and Background

A queueing network N consists of servers with edges connecting the servers, as shown in
Figure 2. It’s behavior is very similar to our definition of a packet-routing network, except
that time is only spent at the servers, and no time is spent on the edges. (Thus packets queue
up at the servers of ). Packets arrive continuously at the servers of A/, and each packet has
a path associated with it which it follows. A queueing network is defined by 3 parameters:

service-time distribution The service time associated with a server is a random variable
from a distribution. (Note the distribution — or just its mean — may be different for
each server).

contention resolution protocol The order in which packets are served in case of conflict
at a server.

outside arrival process In this paper, whenever we speak of a queueing network, we will
assume that outside arrivals occur at each server according to a Poisson process.



We say that a queueing network has Markovian routing if when a packet finishes serving at
a server 7, the probability that it next moves to some server j (or leaves the network) depends
only on where the packet last served and is independent of its previous history (or route).
In this case the packets appear indistinguishable. Thus a queueing network with Markovian
routing can simply be described by a directed graph with probabilities on the edges.!

Given a queueing network N, we define N¢ peps (respectively, Ng pors) to be queueing
network N where each server has a constant (respectively, exponentially distributed) service
time with the same mean as the corresponding server in A/, and the packets are served in a
First-Come-First-Served order.

1.2.1 Recasting a packet-routing network P as a queueing network N¢

Observe that every packet-routing network P may be described as a queueing network of
type N¢ as follows: Corresponding to each bottleneck in P, we create a server in A'. For
example, the edges of the packet-routing network are bottlenecks, so we create one server in
N corresponding to each edge in P. We set the service time at each server to be constant,
equal to the time required to traverse the corresponding edge in P. Since only one packet at
a time may traverse an edge in P, we restrict the contention resolution protocol in A to one
where only one packet at a time serves at a server. In the case where edge contention in P is
specifically FCFS, P can be represented by a queueing network of type N¢ pors.

Thus from now on, we will never refer to packet-routing networks again, but rather we
will only address how to compute delays in queueing networks of type A'¢. In this section and
the next, we will look specifically at networks of type N¢ pers. (In Section 3, we will consider
more general contention resolution protocols.) Unfortunately, it is not known how to compute
the average packet delay for all but the simplest N¢ pops networks, since N¢ popg networks
don’t have product-form. However, Ny pcps is a product-form network (more specifically it’s
a classed Jackson queueing network, see [BS93]) and therefore the average packet delay is
easy to determine for networks of this type (see, for example, [Wal89] [BS93]).

The objective is therefore to bound the average delay of N¢ pers (which we
care about) by the average delay of Ng pers (which we know how to compute).

1.3 In This Paper We Show ...
1.3.1 Overall Goal

Our overall goal is to identify for which A/

Angelay(J\/’C,Fcfps) < Angelay(./\/’E,FCFLg) (1)

!Note an equivalent, but more elegant, way to define a queueing network A is to say that each outside
arrival to N is associated with some class. A packet of class £ moves from server i to server j next with
probability pfj. The special case of a Markovian network A is defined as a network with only one class of
packets.



1.3.2 Previous Work on Goal

All previous work seems to indicate (1) holds for all queueing networks N.

For example, the average packet delay is an increasing function of the variance in the
service time distribution for each of the following single queue networks: the M/G/1 queue,
the M/G/1 queue with batch arrivals, the M/G/1 queue with priorities, and the M/G/k
queue, [Whi83] [Whi80] [Ros89, pp. 353-356].

With respect to networks of queues, [ST94] showed that for all layered (i.e. acyclic)
networks A'with Markovian routing, Vg rors has greater average packet delay than Ne pers.
Unbeknownst to [ST94] and to us, [RS92] earlier proved a stronger result for all networks with
Markovian routing, namely that Mg pers has greater average packet delay than Nipgr rers,
where ILR denotes any service time distribution which has an increased likelihood ratio.
However, [RS92]’s proof requires specialized cross-coupling and conditioning arguments, and
therefore we choose to present our own elementary proof. There are also simulation studies
of several non-Markovian networks A (i.e. general classed networks) which find the average
packet delay to be greater for N popg than for Ne perg (see [HBB94] [MC86] [HC86]) .

With respect to how tight this upper bound is, in all of the above simulations the average
delay in Ng pers was never greater than that of Mg peps by more than a factor of 3 (this
included networks loaded to 99% of capacity and having 100 servers). However, since the
difference increases both with the load and with the number as

servers (see for example Section 2.2 and also [KL95]), this ratio could be greater for large
networks.

The above results have led to a general belief that greater variance in service times leads
to greater average packet delay [Whi84] [Wal94] [Fer94] [Kle94]. In Section 2.2, we give some
intuition for this. Counterexamples to this theory have only been found in the case where
arrivals are not Poisson [Wol77] [Ros78]. For example Figure 3 indicates why counterexamples
can be found which use batch Poisson arrivals such as those in [Wol77]. The final thing we
do in this paper is to demonstrate a counterexample for the case of Poisson arrivals.

1.3.3 Main Results

e (Section 2) We give an easy proof showing that all queueing networks A with Markovian
routing,
AvgDelay (N¢ rers) < AvgDelay(Ng pers)

and N¢ pors is stable under the same conditions as Ny pors.

Significance of this result: Recall that computing delays in packet-routing networks
when the packets have random destinations is important because most randomized rout-
ing algorithms consist of two random routing problems (see the third paragraph of the
introduction). Queueing networks with Markovian routing are important because they
include many packet-routing networks in which the packets have random destinations.
A couple common examples are the mesh network with greedy routing (packets are first
routed to the correct column and then to the correct row) and the hypercube network



Figure 3: Non-Poisson (in this case batch-Poisson) arrivals can favor more variance in service
distributions. For example, if three packets arrive in a batch (serving in the top three servers
above), they’ll collide at the next server unless their service-completions are staggered.

with canonical routing (packets cross each dimension if needed in order). When the
packets have random destinations, rather than choosing the random destination when
the packet is born, we can view the random destination as being decided a little at a
time, by flipping a coin after each server.? The above result tells us that we can easily
compute an upper bound on the average delay for any packet-routing network which
can be modeled by a queueing network with Markovian routing. Also, Section 1.3.2
cites evidence that this upper bound is not far from tight in practice.

e (Section 4) We demonstrate (a non-Markovian) network N, s.t.
AvgDelay(N¢ rors) > AvgDelay (N rors)
Significance of this result: The counterexample disproves the widely believed conjecture

that for all networks V¢ pops has better average delay than Ny perg (see Section 1.3.2).

2 Upper Bounding Average Delay in Markovian Queueing
Networks

In this section we will prove the following theorem:

Theorem 1 For all Markovian queueing networks N,

AvgDelay(Nc pers) < AvgDelay(Ng, rors)

20bserve that since the server in the queueing network represents an edge in the packet-routing network, all
we need to know to determine the probabilities is the server (edge) at which the packet just finished serving.



Our proof is modeled after [ST94] who proved this result for layered Markovian networks.
Whereas their proof uses induction on the levels of the network, we induct on time, thereby
simplifying the proof and obviating the need for a layered network.

Define N¢ pg to be the queueing network A where each server has a constant service
time with the same mean as the corresponding server in A/ and the service order is Processor
Sharing. (In Processor Sharing, the server is shared equally by all the packets currently
waiting at the server. So, for example if the service time at the server is 2, and there are 3
packets waiting at the server, each packet is being served at a rate of é) By [BCMPGT5]
and [Kel75], we know that the average packet delay in N¢ pg is equal to the average packet
delay in N perg for all N3 1t is therefore sufficient to prove that for any queueing network
N with Markovian routing,*

AvgDelay (N ¢ rers) < AvgDelay(Ne ps) = AvgDelay(Ng rors)
We start by proving the inequality for a single server network.

Claim 1 If the sequence of arrivals to a (single server) FCFS queue is no later than the
arrivals to a PS queue, then the i™™ departure from the FCFS queue occurs no later than the
ith departure from the PS queue.

Proof: In both queues, each packet must wait for all packets with earlier arrivals to depart,
but only in the PS queue must a packet also wait while later arrivals get service. [

To generalize the statement from the single server to the network, we’ll use a coupling
argument. Consider the behavior of the two networks when coupled to run on the same
sample point consisting of:

1. the sequence of outside inter-arrival times at each server, and
2. the choices for where the j™ packet served at each server proceeds next.

Note the above quantities are all independent for a Markovian network. Also, the j*% packet
to complete at a particular server in the two networks may not be the same packet.

Claim 2 For a given sample point, the j™ service completion at any server of the FCFS
network occurs no later than the j™ service completion at the corresponding server of the PS
network.

Proof: Assume the claim is true at time ¢. We show it’s true at time ¢’ > ¢, where ¢’ is the time
of the next service completion. We distinguish between outside arrivals to a server (packets
arriving from outside the network) and inside arrivals to the server (service completions),
and make the following sequence of observations:

#This powerful theorem is also described more recently in [Wal89] and [Kle76].
4Our proof of the inequality is valid for any sequence of outside arrivals, not just a Poisson arrival stream.
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Figure 4: [llustration of proof of Claim 2. We consider the same server ¢ in the FCFS
network and the PS network. The arrival stream into PS server q is delayed relative to the
arrival stream into FCFS server . Of course, the order of arrivals may be different for the
two queues, but for Markovian routing, packets are indistinguishable with respect to routing
anyway.

e During [0,t), Claim 2 is true.

e During [0,¢'), every arrival at any PS server, ¢, must have already occurred at the
corresponding FCES server, ¢ (see Figure 4). (This is true for inside arrivals because
any inside arrival at PS server ¢ is, say, the j service completion at some PS server
¢', and by the previous observation, the j service completion at FCFS server ¢’ is at
least as early. By definition of the sample point, the observation is also true for outside
arrivals.)

e Therefore, during [0,#'), the i*h packet to arrive at any server of the FCFS network
arrives no later than the " arrival at the corresponding server of the PS network.

e Hence, by Claim 1, we see Claim 2 holds during [0,#]. This includes the current service
completion.

By Claim 2, it follows that for any sample point, the i** departure from Ne¢ rors occurs
no later than the i*P departure from N¢ pg. This implies that

Number of packets in N¢ porg at time t <;; Number of packets in N¢ pg at time t
which implies that

E {Number of packets in N¢ perg at time t} < E {Number of packets in N¢ pg at time t}



So by Little’s Law [Wol89, p. 236] we have shown that
AvgDelay(N¢ rers) < AvgDelay (N ps)

and therefore proved Theorem 1 above.

2.1 Stability of N¢ pors

A sufficient condition for the stability of a queueing network is that the expected time between
which all the queues empty out is finite.

Stability is a well understood issue for any network of type Mg perg. A sufficient condition
for stability is that the average arrival rate into each server is less than the service rate at
that server because (by the product-form distribution of Ng perg) under this condition the
probability that all the queues are empty is non-zero.

Since networks of type N¢ pops don’t satisfy product-form, it is harder to prove sufficient
conditions for their stability. However observe that the stochastic ordering in the proof of
Theorem 1 immediately implies that for any queueing network A" with Markovian routing,
Ne¢ rerg is stable whenever Ny perpg is. For let A be any network with Markovian routing
and assume that the average arrival rate into each server is less than the service rate at that
server. Then:

Pr {all queues of N¢ pcrg are empty}
1 — Pr {tot. num. packs in queue in J\/'c,FCFS >0}

> 1 — Pr{tot. num. packs in queue in Ng pcps > 0}
= Pr{all queues of Ny porg are empty}
> 0.

2.2 How much worse is PS than FCFS?

In section 1.3.2 we stated that simulations indicate that the average delay in N¢ pg is always
within a factor of 3 of the average delay in N¢ pops. However, in this section we will show
that when the number of servers, n, in a network is very large, this difference might be much
greater. Consider a queueing network A consisting of only a single line of n servers, each with
service time 1. Packets arrive only at the first server, and leave the network after serving at
the nth server. N¢ perg (respectively, N ps) is the network A" where the service resolution
protocol is FCFS (respectively, Processor-Sharing). To determine the average delay in each
network, consider the delay experienced by a newly-arriving packet p. In both N¢ peps and
Ne¢ ps, pis delayed by the packets it finds queued up at the first server (in N¢ pg later arrivals
also cause p to be delayed, but we ignore them). The difference is that in N¢ peops, these
packets only each delay p by 1 (after that initial delay the packets are spread out and move
in lockstep), whereas in N¢ pg, these packets each delay p by n (since the packets all move
in a “clump” down the network).

10



3 Some Easy Generalizations

Observe that the proofs of Claims 1 and 2 do not depend on serving the packets in a FCFS
order. For example, packets could be born with priorities, with servers serving higher-priority
packets first, in a non-preemptive fashion. In fact, for a given sample point, the time of the
jth service completion at a server is the same for every non-preemptive contention resolution
protocol which serves one packet at a time.

Naturally, we still require that the packet priorities are independent of the packet route,
for otherwise we cannot perform the coupling argument required in the proof of Claim 2.

The stability claim thus also generalizes, even when the contention resolution protocol

intentionally tries to starve a particular packet.

4 A Non-Markovian Counterexample
In this section, we demonstrate an A for which
AvgDelay (N ¢, rors) > AvgDelay(Ng pors)
More specifically, defining N¢ pg as in Section 2, we will demonstrate a network A for which
AvgDelay (V¢ pers) > AvgDelay (Ve pg) = AvgDelay(Ng rers)

For some insight into why it is counterintuitive that such a network A exists, see Section 2.2.

4.1 Network Description

Let V' be the queueing network shown in Figure 5. The servers in AN either have service
time 1 or €, as shown. The only outside arrivals are into the top server. Packets arrive from
outside N according to a Poisson Process with rate A = ﬁ, where n is the number of
servers of mean service time 1 in A'. Half the arriving packets are of type solid and half are of
type dashed (by “type” we mean class). Packets of type solid are routed straight down, only
passing through the time 1 servers. Packets of type dashed are routed through the dashed
edges, i.e. through all the € servers and through every other 1-server.

4.2 Intuition

We will compare the average delay in N¢ peps with the average delay in N¢ pg, as shown in
Figure 6, by comparing the average delay experienced by an arriving packet p at N¢ rops
and N¢ ps. Throughout our argument, we implicitly use PASTA (Poisson Arrivals See Time
Averages).

The intuition behind the analysis is as follows: Since A is so low, usually for either network,
p will see no other packets during its traversal of the network. In this case N¢ pers behaves
identically to N¢ pg. With some probability, however, one other packet will be present in the
network during p’s traversal of the network. The expected delay on p in this case is greater

11



Figure 5: Counterezample network N with
n servers of mean service time 1 and n/2
with mean service time €. Packets arrive at
the top; half follow the dashed route, while
half follow the solid route.

12

Figure 6: N¢ pors and N¢ ps networks.



for the N¢ perg network than for the AM¢ ps network. Figure 7 shows us why: Consider first
Ne¢ rers. Suppose ¢ is of type solid and some packet p of type dashed enters N¢ pops within

2 seconds after ¢. Then p will eventually catch up to ¢, and from this point on, ¢ will delay

; by one second at every other server throughout the rest of the V¢ pepg. That is, p will be
delayed by O(n) seconds. Now observe that the same scenario would only cause a delay of
at most 2 seconds in N¢ pg, because when p catches up to ¢, it will only interfere with ¢ for
two servers and then p will pass ¢ forever. A worse situation for N¢ pg is the case where p
meets up with another packet of the same type as p during its traversal (since in that case
p is clearly delayed by ©(n)). Observe, however, that this scenario can only happen if the
two packets both arrived at N¢ pg within a second of each other. This occurs with such low
probability for our choice of small A that the scenario’s affect on average delay is negligible.

Lastly, we have to consider the case that two or more packets are present in the network
during p’s traversal of the network. The expected delay on p in this case is greater for the
N¢ ps network than for the N popg network, but this case occurs with such low probability
that its effect on p’s delay is also negligible.

4.3 The details

By PASTA, the expected delay a newly arriving packet experiences is equal to the average
packet delay for the network. We will compute an upper bound on the delay an arrival
experiences in N¢ ps and a lower bound on the delay an arrival experiences in N¢ pops. We
will show

lowerbound (E { Delay on arrival in N pors }) > upperbound (E { Delay on arrival in N¢ pg }) .

4.3.1 Upperbound E {Delay on arrival in J\/'c,ps}

Let p represent an arriving packet in V¢ pg. Clearly, p may only be delayed by packets which
are in N¢ pg during the time pis in N pg. Note that if i packets are in N ¢ pg, they may take
up to time tn to clear the system. So, denoting p’s arrival time by 0, if packet p is delayed,
at least one of the following must occur:

e at least 1 other packet arrives during (—n,n).
e at least 2 other packets arrive during (—2n, 2n).
e at least 3 other packets arrive during (—3n, 3n).

e eftc.

Define
E! : the event that at least ¢ packets arrive during (—in, in)

FE; : the event that exactly i packets arrive during (—in,in)

13



Figure 7: Fzample illustrating how a packet, p, of type dashed and a packet, q, of type solid
clash repeatedly in N¢ pors, but only twice in N¢ pg.

14



Now p can only be delayed is at least one of the E! occur, i.e., if [JF! is true. However
U E! can only occur if |J F; occurs (See footnote® for a proof of this subtle point), so p can
only be delayed if at least one of the following events occurs:

e exactly 1 other packet arrives during (—n, n).
e exactly 2 other packets arrive during (—2n, 2n).
e exactly 3 other packets arrive during (—3n, 3n).

e eftc.

We will compute the expected delay on p due to each of the above events, and then we’ll
sum these. This will be an overcount, but that’s o.k. because we’re just upperbounding.
Let
P, = Pr{exactly 7 arrivals during time (—in, in)}

Let
DS = E{delay on p due to i arrivals during (—in, in) in N¢, ps}

So

PDYS + PDYS 4 DI 4
PDYS £ Py(2n) 4+ P3(3n) + ...

E {delay on p in N¢ ps} <
<

where the last inequality is an over-estimate, since we are assuming the worst case where all
the packets continually run into each other over and over again during their entire time in
the network.

By definition of the Poisson Process,

e~ (). 24n)"

2!

P =
For 7 > 2, we can express F; in terms of P; as follows:

e~ (). 24n)"

2!

P(i>2) =

- . 6—/\~2in (A X 271)2

< e eI (N 2n)
= P -(A-2n)7t. ¢

°Let x(f) denote the number of arrivals during (—in,in). Observe that x(i) is a non-decreasing integer-
valued function of i. Let £ be the line z(:) = 1. Since E{x(7)} is less than 1, if x(i) is ever above £, with
probability one it must eventally cross £ and come below £ (by the Law of Large Numbers). Thus if U E!is
true, then so is U E; .

15



Substituting A = ﬁ, we have:

P(i>2)< P -

i1

Now, substituting FP;, ¢ > 2 into the formula for the expected delay on p, we have:

IN

PDYS 4 Py(2n) + P3(3n) + ...

3 4
< PD{PS 4P 24P 4P+
n n

E {delay on p in N¢ ps}

< B (DfS—I—G) (for n > 2)

Dfs = E{ Delay on p caused by 1 other packets arriving in (—n,n) }
= E{ Delay on p caused by 1 packet of same type arriving in (—n,n) }
—I—E{ Delay on p caused by 1 packet of opposite type arriving in (—n,n) }
= Pr{ same type arrival } -E {Delay ‘ same type arrival }
—I—Pr{ opp. type arrival }-E{Delay ‘ opp. type arrival }

1
-0 (— . n) (delayed by n only if packet arrived in (—1,1))
n

+--0(1) (opposite type packet causes at most delay of G(1))

(1)

O N = o~

We have

E {delay on pin N¢ps} = P (D{DS + 6)
= P-0(1)

4.3.2 Lowerbounding E {Delay on arrival in N¢ rcps}

To derive a simple lower bound for the expected delay in N¢ peps, again let p represent
an arriving packet in N¢ pepg. Assume p arrives at N pepg at time 0. To lowerbound
the E {Delay on p in N¢ pors}, we consider only the delay on p caused by 1 packet arriving
during (—n,n).

E {delay on p in N¢ peps}t > P DFCES
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DfCFS = E{ Delay on p caused by 1 other packets arriving in (—n,n) }
= E{ Delay on p caused by 1 packet of same type arriving in (—n,n) }
—I—E{ Delay on p caused by 1 packet of opposite type arriving in (—n,n) }
= Pr{ same type arrival }-E{Delay ‘ same type arrival }
—I—Pr{ opp. type arrival }-E{Delay ‘ opp. type arrival }
= % O (1) (see intuition section)
—|-% -O(n) (see intuition section)
= O6(n)
Thus,
E {delay on p in N¢ pors} > P - DIers
= P -0(n)

5 Conclusion and Future Work

We started this paper by formulating any dynamic packet routing network as a queueing
network of type N¢ perps. Since queueing theory only provides us with results on Ny pers,
our goal became to bound the average delay of N¢ perg by the average delay of N perg:

AvgDelay(N¢, rors) < AvgDelay (Vg rors) (2)

We first proved that (2) holds for all queueing networks wtih Markovian routing. This result
was significant because many packet-routing networks where the packets have random des-
tinations can be formulated as queueing networks with Markovian routing. We then gave a
counterexample showing that (2) does not always hold, contrary to popular belief.

There are three natural open questions raised by these results. Let & be those networks
for which (2) holds. The first is “How large is the set S§?” We know S contains more than just
Markovian networks. For instance it’s easy to prove that S contains the network A" which
consists of just a single server, where each incoming packet serves once, goes back to the end
of the queue, and then serves a second time. Also, simulations suggest § contains many other
non-Markovian networks (see Section 1.3.2). In fact, the difficulty in constructing a network
not in & leads us to speculate that almost all networks are in §.

This leads us to the second question of “How tight an upper bound is Ng pcrs on N¢ pors
with respect to average delay?”, both in practice and theoretically.

Lastly, “For the networks not in S, how far off is the AvgDelay(Nc¢ pers) from the
AvgDelay(Ng rors)?”
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