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ABSTRACT

This paper presents an overview of research in the stochastic anal-
ysis of multiserver systems, where scheduling often play a critical
role. Qur primary focus is on the stochastic analysis and optimiza-
tion of multiserver systems in general, since most of this research
directly investigates scheduling issues and all of this research pro-
vides the methods and resuits that have been and will continue to
be used to study existing and future multiserver scheduling issues.

1. INTRODUCTION

In the beginning there was the single-server queue. And the
queue was in its simplest form, and void of known results. And man
studied the single-server queue to let there be light upon this dark-
ness. And man derived its mathematical properties and applied
these results to the design, analysis and implementation of com-
puter systems and networks. And the derivations of these mathe-
matical results and their applications proved to be fruitful and they
multiplied. And the book of Cohen [13] was the authoritative text
on this subject, often referred to as the bible of the single-server
queue, presenting and deriving some of the most fundamental re-
sults in the area. And man saw that the single-server queue was
good, both in theory and in practice.

Those who know the author will not require any explanation that
the above analogy is intended to make a serious point, and those
who do not know the author should understand that no disrespect is
intended in any way. Our intention here is to highlight the impor-
tant role that the single-server queue often played in the genesis of
the stochastic analysis and optimization of multiserver systems in
practice. As a specific example, from the earliest days of computing
up until the last decade or so, there was a continual debate among
computer architects about whether improved performance in com-
puter designs should be achieved through increasing the speed of a
single centralized processor or through the use of multiple proces-
sors, with the decision always being made in favor of the single-
server design approach (with the exception, of course, that multi-
server computer systems were indeed built, but they were in the
vast minority and were built for other reasons) [63]. Many of the
most important reasons for this consistent design choice were based
(consciously or not) on the mathematical properties and optimiza-
tion results obtained for the single-server and multiserver queue-
ing systems under the type of scheduling policies (relatively simple
timesharing) and workloads (not involving heavy-tailed distribu-
tions) found in the computer systems of the day. The more re-
cent switch to multiserver computer designs by computer archi-
tects over the past decade or so, with multiple processors on each
of the multiple chips comprising the computer, has been the result
of constraints due to physics and power consumption and changes
in the objective function rather than the fundamental properties es-

44

tablished for single-server and multiserver systems [63].

On the other hand, the interest in and development of multi-
server systems has moved far beyond its initial role as a natural
alternative design to single-server systems. New and emerging
trends in technology and a wide variety of applications have cre-
ated a significant increase in both the level and breadth of interest
in the stochastic analysis and optimization of multiserver systems.
Some examples include Internet applications and services, wireless
networks, Web servers and systems, parallel computing environ-
ments, network bandwidth allocation, computer memory manage-
ment, databases, call/contact centers, and manufacturing systems.
This has created a significant increase in the complexity and diver-
sity of multiserver systems with respect to scheduling and control
policies, structural organizations, topologies, and workloads.

The stochastic analysis and optimization of multiserver systems
must address these complexities and difficulties. Scheduling issues,
in particular, are of paramount importance. To a great extent, how-
ever, it is difficult to separate these scheduling issues from the mul-
tiserver system itself. Namely, the scheduling and control policies
play a predominant role in the analysis of any multiserver system,
and the multiserver system plays a predominant role in the anal-
ysis of any scheduling or control issue. The optimization of per-
formance in these systems makes such connections even stronger.
We therefore focus in this paper on the stochastic analysis and op-
timization of multiserver systems in general, where scheduling and
control issues are included either implicitly or explicitly and often
are the main focus of the analysis. The overwhelming breadth and
depth of the relevant research literature on the stochastic analysis
of multiserver systems prohibits an exhaustive exposition, and thus
we do not even attempt to do so. However, we do attempt to con-
sider a broad range of approaches, methods and results that have
been and will continue to be used in the stochastic analysis and
optimization of existing and future multiserver systems.

Paper Organization. We first summarize the general multi-
server model and some mathematical definitions and results used
in the paper. Instead of being spread throughout, we centralize this
material in Section 2 for easier reference. The next two sections pri-
marily consider exact methods and results, where Sections 3 and 4
focus on boundary value problems and stability, respectively. Sec-
tion 5 considers both exact and approximate approaches, whereas
approximations based on limiting regimes are considered in Sec-
tion 6. A few classical multiserver systems are briefly discussed in
Section 7, followed by some concluding remarks.

2. TECHNICAL PRELIMINARIES
2.1 Generic Model Description

We consider a generic multiserver system consisting of S servers



in which customers arrive according to an exogenous stochastic
process A(t) with mean interarrival time A™" = E[A] and cus-

tomer service times on server s = 1,...,S follow a stochastic
process B (t) with mean p; ' = E[B,]. In multiclass instances of
this generic multiserver system, customers of class ¢ = 1,...,C

arrive according to an exogenous stochastic arrival process A.(t)
with mean interarrival time A' E[A.] and class ¢ customer

service times on server s = 1,...,S follow a stochastic process
Bisc(t) with mean p;) = E[Bs]). We allow E[A] = co and
E[A] = oo, in which case the corresponding exogenous arrival

process is not considered, and we allow E[B;] = oo and E[Bs.] =
00, in which case the corresponding service process is not consid-
ered. Let Q;(t) denote the number of type-i customers in the mul-
tiserver system at time ¢, and let Q(t) = (Q:(t))ic g be the cor-
responding number in system vector (often the queue length vector
process), where the index ¢ can represent a server or customer class
or combination of both with the set of such indices denoted by Q.
Define Q = {Q(¢); t > 0} to be the corresponding multidimen-
sional stochastic number in system process for the multiserver sys-
tem. Further assumptions can be, and typically are, imposed on the
above stochastic processes, but we instead focus on a generic multi-
server system and consider the stochastic analysis and optimization
of these systems in general, leaving it to the references to provide
the additional assumptions associated with any specific results.

A wide variety of structural organizations and topologies exist
for such generic multiserver systems and this continues to grow.
These organizations and topologies include a single queue of cus-
tomers being served by a set of servers, through a single-tier of
multiple servers that service multiple queues of different classes of
customers, up to a network of single-server queues or multiserver
queues in either of these forms under arbitrary organizations and
topologies, as well as every possibility in between and any possible
combination. The servers can be homogeneous or heterogeneous.
Upon completing the service of a customer, the server follows a
scheduling policy to determine which customer to serve next, in-
cluding the possibility of remaining idle even when customers are
waiting as the policy need not be work conserving. Upon complet-
ing its service at a server, the customer follows a routing policy to
determine whether it leaves the system or moves to one of the sys-
tem queues to receive service, possibly switching to another cus-
tomer class. Once again, we make no specific assumptions about
the scheduling or routing policies employed in the multiserver sys-
tem, leaving it to the references to provide additional assumptions
associated with any specific results. Our interests in this paper span
the entire spectrum of multiserver systems in general and most of
the statements in the paper will correspond to this entire spectrum
of multiserver organizations and topologies. Any statements in-
tended for a specific organization or topology should be made clear
from the context.

2.2 Mathematical Definitions and Results

In this section we briefly summarize some mathematical defini-
tions and results used in the paper. Many technical details are omit-
ted and we refer the interested reader to the references provided.
Let e be a column vector of proper order containing all ones.

Consider a continuous-time Markov process X = {X(¢); ¢ €
R4}, on a countable, multidimensional state space X'. The fluid
limit of this process is associated with the almost sure convergence
of the scaled process X" () = X" (nt)/n as n — oo such that

X" — X, u.o.c., as m — oo.

Similarly, the diffusion limit of the stochastic process X is asso-
ciated with the weak convergence of the scaled process X™(t) =
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X™(nt)/+/n as n — oo such that

X" 4 X,
Refer to, e.g., [12, 75] for additional technical details.

Consider a discrete-time Markov process X° = {X°(¢);t €
Z.4.} on a countable, multidimensional state space X. A nonneg-
ative function ® : X — Ry is a Lyapunov function if there exist
some y > 0 and B > 0 such that for any t € Z* and any x € X,
with &(x) > B,

E[X°(t+1) [ X°() = x] < ®(x) — 7.

Refer to, e.g., [51, 22] for additional technical details.
Consider a continuous-time Markov process X = {X(t); ¢

as n — oC.

€
X

R}, on a countable, multidimensional state space X = | Ji
with infinitesimal generator matrix T having the form
Bow Bax 0 0 O
Bio Biix Ao 0 O
T = ()

0 Az A Ag O ...,
where Boo, Bo1, B1o, Ag:x=0,1,2, have dimensions [Xg| X [X5],

[XB| % | XN, |Xn]| X |XB], |XN]| X | XN, respectively, with X5 =
UNS! ;. Define forx; ; € X, 5 € {1,...,|X:]}, i € Zy,

m(xiy) = lim PX(#) = xi5],
i 2 (m(xin), m(Xi2), - T(Xex,0)s
w 2 (mo,m1,m2,...).

The limiting probability vector v is the stationary distribution of
the stochastic process X, which we assume to be irreducible and
ergodic and thus the stationary distribution is uniquely determined
by solving the global balance equations 7T = 0 and the normal-
izing constraint we = 1. From standard matrix-analytic analysis,
the stationary distribution 7 has a matrix-geometric form given by

TN+n = ﬂ-NRna ne Z+7 (2)
B B

0 = (mwo,m1,...,7N) (BTE B, +D§A2> .

1 = (mo,m1,...,*n—1)e + *n(I—-R)"'e, (@)

where R is the minimal nonnegative matrix that satisfies R?A, +
RA; + Ao = 0. Refer to, e.g., {56, 57, 45] for additional details.
Consider a sequence of multiserver systems, indexed by n
1,2,..., where the nth system operates under the control policy
K™, in the heavy traffic limit (commensurate with diffusion scal-
ing of the associated underlying stochastic processes) as n — oo.
Let J™(K™) be the expected cost for the nth multiserver system
under the control policy K™. Then a control policy K™* is called
asymptotically optimal if for any feasible policy K", we have

T
Jn (]Kn,*) —
This definition indicates that the cost J* = limp oo J™(K™") is
the best cost one can achieve asymptotically and that this asymptot-

ically minimal cost is achieved by the sequence of control policies
{K™"}. Refer to, e.g., [5] for additional technical details.

3. BOUNDARY VALUE PROBLEMS

The stochastic analysis and optimization of multiserver systems
often involve the analysis of Markov processes defined on count-
able, multidimensional state spaces. This general class of multi-
dimensional problems is notoriously difficult to solve exactly with

lim inf asn — 0o. 5)



analytic solution methods. In fact, these multidimensional aspects
of the stochastic process underlying the multiserver system is one
of the major sources of complexity and difficulty in the stochas-
tic analysis and optimization of multiserver systems. On the other
hand, a number of general approaches have been developed to solve
certain instances of two-dimensional multiserver systems.

In one well-known example of the so-called two coupled proces-
sor mode] [20], it has been shown that the functional equations for
the two-dimensional generating function of the joint queue length
distribution can be reduced to a Riemann-Hilbert boundary value
problem, making it possible to exploit results from the general the-
ory of boundary value equations and singular integral equations.
Systematic and detailed studies of this general approach and its
use in the stochastic analysis and optimization of distinct multi-
server systems can be found in [15, 21]. Some additional applica-
tions of this approach include shortest queue routing, longest queue
first scheduling, fork-join queues, the so-called 2 x 2 switch, two-
dimensional random walks, and the M/G/2 queue. We refer the
interested reader to [15, 14, 21, 1] and the references cited therein,
noting that other related general approaches are discussed in [1].

4. STABILITY AND THROUGHPUT

The stability of multiserver systems and associated scheduling
policies are important issues in the stochastic analysis and opti-
mization of such systems. Stability is also directly related to the
maximum throughput of multiserver systems, which is often an im-
portant performance objective for the design of multiserver schedul-
ing policies. Moreover, the rate at which the maximum throughput
scales as S — oo is another important topic of both theoretical and
practical interest for multiserver systems and scheduling policies.

The stability of multiserver systems has been a fundamental as-
pect of the stochastic analysis of these systems from the very be-
ginning, with the stability conditions also providing the maximum
throughput of the system. In recent years, the issue of stability has
received a great deal of attention, especially with respect to single-
class and multiclass queueing networks. This recent interest was
piqued by several studies showing that the traditional stability con-
dition, namely that the nominal load at each queue/server is less
than unity, is not sufficient for a large class of multiserver systems
under various scheduling policies; see, e.g., [42, 10] and the ref-
erences cited therein. A wide variety of methods and results have
been developed to address the stability of multiserver systems, and
we refer the interested reader to [51, 22] and the references therein
for a thorough treatment of much of this research. Of particular
interest is the unified approach via fluid limits developed in [16],
generalizing the related earlier work in [65], based on the key re-
sult that a queueing network is stable if the corresponding fluid
limit network is stable in the sense that the fluid network eventu-
ally reaches zero and stays there regardless of the initial multiserver
system configuration. This approach and related extensions have
played an important role in determining the stability conditions of
multiserver systems, and the design of optimal scheduling policies,
especially since the analysis can focus on the fluid limit of the mul-
tiserver system rather than the more complex stochastic system.

Due to the explosive growth in wireless technology and appli-
cations, the asymptotic rate at which the maximum throughput of
wireless networks scales with respect to the size of the network
S has become an important theoretical and practical issue. A ran-
dom multiserver model of static wireless networks was used in [28]
to show that the maximum throughput per source-destination pair
is O(1/V/8) as § — oo. Also presented is a ©(1/1/Slog 5)
throughput scheme, which has been generalized to a parametrized
version that achieves the optimal throughput-delay tradeoff for max-
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imum throughputs of O(1/4/8log S) [18, 19]. See [39, 43, 46] for
further extensions of the original model and their analyses. The fo-
cus has recently turned to the asymptotic scalability of wireless net-
works under constant-size buffers at each server of the multiserver
system, for which it has been shown that there is no end-to-end pro-
tocol capable of achieving the maximum throughput of O(1/v/S)
as S — oo [37, 38]. However, it is also shown that there ex-
ists a protocol which achieves the asymptotic maximum throughput
of O(1/+/Slog S) with constant-size per-server buffers and which
has to employ a local buffer coordination scheduling scheme.

The methods and results used to determine the stability condi-
tions, and in turn maximum throughput, of multiserver systems
have also been extended to obtain a broader set of performance
metrics through important connections between the stability and
the stationary distribution 7= of multiserver systems. As a specific
example, a general methodology is proposed in [7] based on Lya-
punov functions to study the stationary distribution of infinite mul-
tidimensional Markov processes Q, which model a general set of
multiclass multiserver systems. This methodology is based on key
results showing that if there exist linear or piecewise linear Lya-
punov functions which establish the stability of multiserver sys-
tems, then these Lyapunov functions can also be used to determine
upper and lower bounds on the stationary tail distribution, which in
turn provide bounds on the expected queue lengths. These upper
and lower bounds hold uniformly under any work conserving pol-
icy, and the lower bounds are further extended to priority policies.
The results in [7] also represent the first explicit geometric upper
and lower bounds on the tail probabilities of the multidimensional
queue length process Q for such general multiserver systems.

In another example related to infinite multidimensional Markov
processes [26], more specifically a stochastic online version of the
classical bin packing scheduling problem, a stochastic analysis of
the corresponding multiserver system is developed based on a com-
bination of a Lyapunov function technique and matrix-analytic meth-
ods. These results include the stability conditions and the station-
ary distribution 7 of the joint queue length process Q for general
stochastic multidimensional bin packing processes. The stability
and stationary distribution results are both derived in a recursive
manner by exploiting a priority structural property, where the sta-
bility condition for the current level of the partitioned queue length
process is obtained using a Lyapunov function technique involving
the stationary distribution for the previous level of the partitioned
queue length process, and the stationary distribution for the current
level is obtained from (discrete-time) versions of (2) — (4). In ad-
dition, various performance metrics are obtained including asymp-
totic decay rates and expected wasted space, and large deviations
bounds are used to obtain an accurate level of truncation. The ap-
proach in [26] is also based on a form of stochastic decomposition,
which is generally considered in more detail in the next section.

5. STOCHASTIC DECOMPOSITION

As previously noted, the multidimensional aspects of stochastic
processes underlying multiserver systems and scheduling policies
are one of the many sources of complexity in their stochastic analy-
sis and optimization, which often involve various dependencies and
dynamic interactions among the different dimensions of the mul-
tidimensional process. Hence, a considerable number of general
approaches have been developed that essentially decompose the
complex multidimensional stochastic process into a combination
of various forms of simpler processes with reduced dimensionality.

One general class of stochastic decomposition approaches is based
on models of each dimension of the multidimensional process in
isolation together with a fixed-point equation to capture the depen-



dencies and dynamic interactions among the multiple dimensions.
In order to consider what is probably the most well-known example
of this general approach, let us first recall that the classical Erlang
loss model consists of J links, with each link j having capacity
C;, and a set of routes R defined as a collection of links. Calls for
route r arrive with rate A, and require capacity Aj, from link j,
A, € Zy. Such a call arrival is lost if the available capacity on
any link j is less than Aj.,Vj = 1,...,J, and otherwise the call
reserves the available capacity A, on each link j for a duration
having mean prlVj = 1,...,J. The traffic intensity for route
r is denoted by pr = Ar/ur. Itis well known that there exists a
unique stationary distribution 7 for the number of active calls on
all routes r and that 7 has a product-form solution in terms of the
traffic intensities p,. Then the stationary probability L, that a call
on route r is lost can be expressed in terms of this stationary distri-
bution. However, the computational complexity of calculating the
exact stationary distribution is known to be § P complete [47], thus
causing such calculations to be computationally intractable even
for moderate values of J and |R|. We refer the interested reader
to {41] and the references therein for additional details.

The well-known Erlang fixed-point approximation has been de-
veloped to address this computational complexity and it is based
on a stochastic decomposition in which the multidimensional Er-
lang formula is replaced by a system of J nonlinear equations in
terms of the one-dimensional Erlang formula. More specifically,
the stationary loss probabilities L, for routes r are given by

J

- Ja- By~

j=1

L

where the blocking probabilities B; for links j satisfy the system
of nonlinear equations

IR J
By = E{(1=B)7 Y Appe [ =B, G ), ©)
r=1 i=1
with
C C n -1
- P f
E(p7C) - H( — n|>

being the Erlang formula for the loss probability of an isolated link
of capacity C under traffic from an exogenous stream with inten-
sity p. Furthermore, it is well-known that there exists a solution
B € [0,1]” of the Erlang fixed-point equations (6) and that this so-
lution converges to the exact solution of the original Erlang loss
model in the limit as the traffic intensity vector p and capacity
vector C are increased together in fixed proportion; see [74, 40,
41]. The corresponding capacity planning optimization problem to
maximize profit as a function of the loss probabilities L, and ca-
pacities C; has been considered within this context [74, 41]. The
asymptotic exactness of the Erlang fixed-point approximation and
optimization based on this approximation, which follows from an
instance of the central limit theorem for conditional Poisson ran-
dom variables, is an important aspect of this general decomposition
approach for the stochastic analysis and optimization of complex
multiserver systems, though establishing such results is not always
possible. Extensions of the Erlang loss model and fixed-point ap-
proximation are also possible, including recent resuits on optimal
capacity planning under time-varying multiclass workloads [8].

A variant of this general stochastic decomposition approach was
developed in [69, 53] to obtain the stationary distribution 7 of a
(symmetric) multiserver system in which a scheduling policy as-
signs customers to the server where they are served most efficiently
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and in which a threshold-based scheduling policy manages the trade-
off between balancing the workload among the servers and serving
customers in the most efficient manner. A matrix-analytic analy-
sis of the stochastic processes modeling each server in isolation is
derived to obtain the corresponding stationary probability vectors
in terms of their arrival and departure processes which are modi-
fied to reflect the probabilistic behavior of the other servers. These
probability vectors are given by versions of (2) —(4), where explicit
solutions for the elements of the matrix R are obtained in several
instances of the multiserver system. Then the modified arrival and
departure processes of each server are expressed in terms of the
corresponding stationary probability vector, and the final solution
of the system of equations is obtained via a fixed-point iteration.
This solution can be shown to be asymptotically exact, in terms of
the number of servers S, under certain conditions. The results of
this study illustrate and quantify the significant performance bene-
fits of the dynamic threshold-based scheduling policy, particularly
at moderate to relatively heavy traffic intensities, but also demon-
strate the potential for unstable behavior where servers spend most
of their time inefficiently serving customers when thresholds are
selected inappropriately. The stochastic analysis in [69, 53] can be
used to determine the optimal threshold values for the multiserver
system as a function of its parameters. Related (non-symmetric)
instances of this multiserver system and this dynamic threshold-
based scheduling policy have also been considered within the con-
text of diffusion limiting regimes; refer to Section 6.

Another general class of stochastic decomposition approaches is
based on exploiting various priority structural properties to reduce
the dimensionality of the multiserver system in a recursive man-
ner. Although this general approach was originally developed for
single-server systems with multiple queues under a priority schedul-
ing discipline (see, e.g., [27, 36]), it has been extended and gener-
alized in many different ways for the stochastic analysis and opti-
mization of multiserver systems. The basic idea consists of a recur-
sive mathematical procedure starting with the two highest priority
dimensions of the process that involves: (%) analyzing the proba-
bilistic behavior of the so-called completion-time process, which
characterizes the intervals between consecutive points when cus-
tomers of the lower priority dimension begin service within a busy
period; (%) obtaining the distributional characteristics of related
busy-period processes through an analysis of associated stochastic
processes and modified service time distributions in isolation; and
(717) determining the solution of the two-dimensional priority pro-
cess from a combination of these results. These steps are repeated
to obtain the solution for the (¢ -+ 1)-dimensional priority process
using the results for the c-dimensional priority process, until reach-
ing the final solution for the original multidimensional stochastic
process. Refer to, e.g., [27, 36], and the references cited therein.

Several related extensions of this general approach have been
developed for the stochastic analysis and optimization of various
multiserver systems, e.g., parallel computing systems under a mul-
ticlass gang scheduling policy [71], a (single-class) combination of
spacesharing and timesharing policies {68], and different (single-
class) dynamic coscheduling policies [72]. These approaches gen-
erally exploit distinct priority structures in the underlying multi-
dimensional stochastic process together with the probabilistic be-
havior of dependence structures and dynamics resulting from the
multiserver workloads and policies. More specifically, these ap-
proaches investigate each dimension of the stochastic process in
isolation based on an analysis of the probabilistic behavior of a
set of stochastic processes analogous to the completion-time pro-
cess together with an analysis of related busy-period processes and
modified service time distributions. In [71], this involves deriv-



ing expressions for the conditional distributions of the per-class
timeplexing-cycle processes (which characterize the intervals be-
tween consecutive quanta for a class) given the queue length vec-
tors in terms of the stationary distributions for the other classes.
(In a limiting regime, the exact stationary distribution for the queue
length process of each class can be obtained in isolation as an al-
ternating service process with vacations representing periods when
other classes receive service.) In [68], this involves deriving a first-
passage time analysis of the probabilistic behavior of the departure
processes associated with the set of timeplexing-cycle processes
(which characterize the intervals between consecutive quanta for
a customer) to obtain a set of modified service time distributions
that incorporate the effects of timesharing. In [72], this involves
deriving an analysis of the probabilistic behavior of a set of overall
service processes at each server (characterizing the various states
that every parallel application can be in) and expressing this prob-
abilistic behavior in terms of the corresponding stationary distribu-
tions for the other servers. A fixed-point iteration is used in all of
these cases to solve the resulting system of equations and obtain
the stationary distribution of the corresponding multidimensional
stochastic process in the form of (2) — (4). The probability distribu-
tions obtained from each stochastic analysis in isolation are either
used directly or replaced with more compact (approximate) forms
that are constructed by fitting phase-type distributions to match as
many moments (and/or other associated probabilistic measures) of
the original distributions as are of interest using any of the best
known methods. In particular, classical busy-period results (refer
to, e.g., [53, 57]) can be exploited to obtain a more compact (ap-
proximate) form for any busy-period distribution. Also, see [17].
A similar approach is taken in [30, 31] for the stochastic analysis
of customer assignment with cycle stealing in multiserver systems
under a central queue or immediate dispatch. The workload con-
sists of two classes denoted by C; and C5. Atany given time, a sin-
gle server is associated with each class and the cycle stealing mech-
anism allows the server associated with Cs to serve customers of
C1. In the immediate dispatch case, the stationary distribution for
the C process can be determined in isolation using matrix-analytic
methods with the solution given by versions of (2) — (4); the so-
journ time moments can be directly obtained using virtual waiting
time analysis for the case of Poisson arrivals. Since the servicing
of C1 customers depends upon the Cy process, the first three mo-
ments of the busy and idle periods of the C; process are obtained
and used to construct corresponding two-stage Coxian distributions
with matching moments. The Ci process is augmented with the
approximate busy and idle period distributions of the Ca process
and analyzed in isolation using matrix-analytic methods to obtain
the corresponding stationary distribution. This analysis of the mul-
tiserver system under immediate dispatch is also extended to the
case of multiple C servers. Turning to the analysis for the central
queue case, there are some differences in the details of the analysis
as one would expect, but the basic approach is quite similar. The
stationary distribution for the C process can be determined in iso-
lation using matrix-analytic methods where the first C arrival of a
busy period either starts service immediately or must wait for the
completion of a C'y customer already in service; the mean sojourn
time can be directly obtained, in the case of Poisson arrivals, using
known results for the M/G/1 queue with setup times. A stochas-
tic process is formulated to represent the Cy process together with
the probabilistic behavior of various busy periods associated with
C, where the first three moments of each of the latter measures
are obtained and used to construct corresponding two-stage Cox-
ian distributions with matching moments. The stationary distri-
bution of this process for C customers can be determined using
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matrix-analytic methods with the solution given by versions of (2) ~
(4). The results of these studies demonstrate that cycle stealing can
significantly improve the performance of C) customers, while the
penalty incurred by Cs customers is relatively small. Performance
improvements are found to be greater for both Cy and C under a
central queue than under immediate dispatch.

This approach subsequently evolved into the so-called method
of dimensionality reduction that applies to the class of so-called
recursive foreground-background stochastic processes, which in-
cludes cycle stealing under immediate dispatch, and the class of
so-called generalized foreground-background stochastic processes,
which includes cycle stealing under a central queue [58]. Two ap-
proximations of dimensionality reduction are also proposed in [58],
each attempting to reduce the computational complexity of the re-
cursive use of dimensionality reduction by ignoring dependencies
to varying degrees (namely, partial and complete independence as-
sumptions) while maintaining reasonable accuracy. The method of
dimensionality reduction has been applied to a number of different
multiserver systems, including multiserver systems with multiple
priority classes [32], threshold-based policies for reducing switch-
ing costs in cycle stealing [59, 60], and threshold-based policies for
the so-called Beneficiary-Donor model [61].

6. STOCHASTIC PROCESS LIMITS

The many sources of complexity and difficulty in the stochas-
tic analysis and optimization of multiserver systems often make
an exact analysis intractable for numerous instances of multiserver
systems. Hence, a considerable number of general approaches have
been developed based on an investigation of the underlying stochas-
tic process and associated contro] problem in some limiting regime.

The analysis of fluid limits of multiserver systems is one im-
portant example of this general approach in which the asymptotic
behavior of the underlying stochastic process is typically charac-
terized via a functional strong law of large numbers. As such,
the stochastic system is approximated by a deterministic system
comprised of dynamic continuous flows of fluid to be drained in
a manner analogous to the servicing of discrete customers in the
original stochastic system. In addition to the methods and results
presented in Section 4, this approach and related extensions have
played an important role in the analysis and optimization of mul-
tiserver systems. One example is developed in [11, 12] to study
the optimal dynamic control and scheduling of multiclass fluid net-
works. An algorithmic procedure is presented that systematically
solves the dynamic scheduling problem by solving a sequence of
linear programs. Several important properties of this procedure are
established, including an example that a globally optimal solution
(namely one rendering optimality of the objective function over ev-
ery point of time) may not exist, and thus the solution procedure
is myopic in this respect. The solution procedure generates within
a bounded number of iterations a policy, in the form of dynamic
capacity allocation among all fluid classes at each node in the net-
work, that consists of a finite set of linear intervals over the entire
time horizon and that is guaranteed to yield a stable fluid network.

In another example associated with the dynamic scheduling of
multiclass fluid queueing networks [3], an optimal control approach
to the optimization of fluid relaxations of multiclass stochastic net-
works is developed based on the Pontryagin maximum principle
and related theory [62, 66]. The maximum principle is used to de-
rive the exact optimal control policies in the fluid limiting regime
for several canonical examples of multiserver systems. A numeri-
cal method is proposed, based on the structure of the optimal pol-
icy, to compute exact solutions for the fluid network optimal control
problem using a discrete approximation that is continually refined



until the solution no longer improves. Due to the dimensionality
difficulties of this exact approach, an efficient approximate algo-
rithm is also developed to compute the fluid optimal control. More
recently, efficient approximation algorithms have been developed
for the class of separated continuous linear programming problems
that arise as fluid relaxations of multiclass stochastic networks. For
example, in [24], a proposed polynomial-time algorithm is shown
to provide a solution that, for given constants ¢ > 0 and § > 0,
drains the fluid network with total cost at most (1 + €)OPT + 4,
where OPT is the minimum cost drainage.

Many optimal control problems in multiserver systems can be
studied as Markov decision processes. However, the well known
difficulty with this approach for some multiserver systems is the
so-called curse of dimensionality. In [48, 49], a form of unifica-
tion is established between the dynamic programming equations of
the Markov decision process of a stochastic network control prob-
lem and a related total-cost optimal control problem for the corre-
sponding linear fluid network. This and related results in [48, 49]
form the basis of a general framework for constructing control al-
gorithms for multiclass queueing networks, with network sequenc-
ing and routing problems considered as special cases. Numerical
examples are presented showing close similarity between the opti-
mal policy from the proposed framework and the average-cost op-
timal policy. In [50], the connections between multidimensional
Markov decision processes associated with the optimal control of
stochastic networks and the corresponding optimal fluid limit con-
trol processes are further studied within the context of the control
of stochastic networks using state-dependent safety-stocks. For a
few canonical examples, it is shown that the proposed policy is
fluid-scale asymptotically optimal and approximately average-cost
optimal, leading to a new technique to obtain fluid-scale asymptotic
optimality for general networks modeled in discrete time. These re-
sults are based on the construction of an approximate solution to the
average-cost dynamic programming equations using a perturbation
of the value function for an associated fluid model.

The analysis of diffusion limits of multiserver systems is an-
other important example of the general approach of this section
in which the asymptotic behavior of the underlying stochastic pro-
cess is typically characterized via a functional central limit theo-
rem. As such, the stochastic processes underlying the multiserver
system are approximated by various Brownian motions that de-
scribe the heavy-traffic system behavior. A wide variety of meth-
ods and results for this diffusion approximation approach have been
developed to address the general stochastic analysis and optimiza-
tion of multiserver systems, and we refer the interested reader to,
e.g., [33, 75] and the references therein. Of particular interest is the
well-known Halfin-Whitt regime [29, 75], for which certain heavy-
traffic limits have been established as the traffic intensity goes to
unity and S — oo in a S-server queueing system. This frame-
work and related extensions have played an important role in the
stochastic analysis and optimization of multiserver systems, with
applications in various areas such as large call center environments
where resource (agent) capacity planning and scheduling problems
have received considerable attention. In one example associated
with the dynamic scheduling of multiclass queueing systems in
the Halfin-Whitt heavy-traffic regime [35], the Hamilton-Jacobi-
Bellman equation associated with the limiting diffusion control prob-
lem is shown to have a smooth solution with an optimal policy hav-
ing a so-called bang-bang control. Several qualitative insights are
also derived from the stochastic analysis, including a square root
rule for the capacity planning of large multiserver systems.

Another general class of diffusion approximation approaches have
played an important role in the stochastic analysis and optimization
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of multiserver systems based on solving the corresponding Brown-
ian control problem. As a representative example having received
considerable attention, consider a multiserver system in which each
class of customers can be served at any one of a (per-class) subset
of the servers, with specific class-server service rates. The Brow-
nian control problem associated with the dynamic scheduling of
customers in this multiclass parallel-server system to minimize the
cumulative holding costs of customers is studied in [34] where, as-
suming a so-called complete resource pooling condition, a particu-
lar discretization method is proposed to find discrete-review policy
solutions. (A symmetric version of the general problem, discussed
in Section 5, is studied in [69, 53].) Under the same heavy-traffic
complete resource pooling assumption, a candidate for an asymp-
totically optimal control policy in the form of a dynamic threshold
policy is proposed in [76] for the original multiserver system. It
is then established that this dynamic threshold scheduling policy is
asymptotically optimal in the heavy traffic limit under the complete
resource pooling condition and that the limiting cost is the same as
the optimal cost in the Brownian control problem [5, 6]. Also, for
numerical solutions of such control problems in general, see [44].

Another variant of this general approach consists of first deter-
mining derivatives of the performance function of interest at p = 0,
using a Taylor expansion of the function near p = 0, then deter-
mining the diffusion limit of the underlying stochastic process, and
finally obtaining a closed-form approximation for the performance
function (e.g., the expected sojourn time in the multiserver sys-
tem) by interpolating between these light-traffic and heavy-traffic
limits. This approach was originally proposed in [64] where the
0" through n — 1" order light-traffic derivatives are combined with
the heavy-traffic limit to obtain an n® degree polynomial in p as
an approximation to the normalized performance function, which
in turn is used to produce the desired closed-form approximation.
Several instances of this general approach have been developed for
the stochastic analysis and optimization of various multiserver sys-
tems, including symmetric fork-join queueing systems [73] and op-
timal resource allocation in parallel-server systems [70].

7. OTHER MULTISERVER SYSTEMS

Although the breadth and depth of the subject matter prohibit an
exhaustive exposition, as previously noted, it is difficult to justify
not providing at least a brief discussion of some classical multi-
server systems and related scheduling issues. One example is short-
est queue routing systems in which each of the S servers has its
own dedicated queue and customers join the queue with the short-
est length at the instant of their arrival. The shortest queue system
has received considerable attention in the research literature. We
simply mention the analysis in [25] based on a diffusion limit ap-
proximation, the exact analysis for the two-server case in [2], and
the mean sojourn time approximations obtained in [52]. A related
optimal multiclass scheduling problem is studied in [67] together
with the associated sequencing problem at each of the S servers.

Another example is fork-join queueing system in which each
server has its own dedicated queue and each customer arrival forks
into S tasks, with the th task assigned to the ith server, such that
the customer departs the system only after all of its tasks have re-
ceived service. The fork-join queueing system has also received a
great deal of attention in the research literature. We simply men-
tion the analysis in [23] for the two-server case, the bounds on var-
ious performance metrics presented in [54, 4] and, as previously
mentioned above, the interpolation approximation based on light
and heavy traffic limits obtained in [73]. Finally, we refer the inter-
ested reader to two very nice survey papers [9, 1] and the references
therein for additional research studies related to the stochastic anal-



ysis and optimization of multiserver systems.

8. CONCLUSIONS

The genesis of multiserver systems may have been as straight-
forward extensions and alternatives to single-server systems, but
new and emerging trends in technology and various applications
have been driving a significant growth of interest in multiserver
systems. This growth has resulted in new formulations and even
greater complexities in the multiserver systems in general, as well
as the multiserver scheduling and control issues in particular, from
both theoretical and practical perspectives. The stochastic anal-
ysis and optimization of multiserver systems must address these
complexities and difficulties. This will require extensions of ex-
isting solution methods and results, including some of the general
approaches considered in this paper, but will also require the devel-
opment of new solutions methods and the derivation of new results
in the stochastic analysis and optimization of muitiserver systems
and multiserver scheduling and control policies.
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