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Abstract

A central issue in the design of modern communi-
cation networks 1s that of providing performance guar-
antees. This tssue is particularly important if the net-
works support real-time traffic such as voice and video.
The most critical performance parameter to bound s
the delay experienced by a packet as it travels from its
source to its destination.

We study dynamic routing in a connection-oriented
packet-switching network. We consider a network with
arbitrary topology on which a set of sesstons is defined.
For each session i, packets are injected at a rate r; to
follow a predetermined path of length d;. Due to lim-
ited bandwidth, only one packet at a time may advance
on an edge. Session paths may overlap subject to the
constraint that the total rate of sessions using any par-
ticular edge is less than 1.

We address the problem of scheduling the sessions
at each switch, so as to minimize worst-case packet
delay and queue buildup at the switches. We show
the existence of an asymptotically-optimal schedule
that achieves a delay bound of O(1/r; + d;) with only
constant-size queues at the switches. We also present
a stmple distributed algorithm that, with high proba-
bility, delivers every sesston-i packet to its destination
within O(1/r; 4+ d;log(m/rmin)) steps of its injection,
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where rmin 1S the minimum sesston rate, and m is the
number of edges in the network. Qur results can be
generalized to (leaky-bucket constrained) bursty traf-
fic, where session i tolerates a burst size of b;. In
this case, our delay bounds become O(b;/r; + d;) and
O(b;/r; + d; log(m/rmin)), respectively.

1 Introduction
1.1 Motivation

Motivated by the need for quality-of-service guar-
antees, network designers today offer connection-
oriented service in many networks, e.g. ATM (Asyn-
chronous Transfer Mode) networks. In this medium,
a user requests a particular share of the bandwidth
and injects a stream of packets along one particular
session at the agreed-upon rate. An important conse-
quence of the user’s predictability is that the network
can, in return, guarantee the user an end-to-end de-
lay bound, i.e. an upper bound on the time that any
packet takes to move from its source to its destina-
tion. In order to provide this delay guarantee, the
network must determine how to schedule the packets
that contend for the same edge simultaneously. Apart
from delay bounds, it is also important to guaran-
tee small queues at each switch due to limited buffer
size. In this paper we show, for the first time, that
it is possible to design such a schedule that guaran-
tees asymptotically-optimal per-session delay bounds
as well as small queues.
1.2 Model and problem

Consider a network N of arbitrary topology and a
set of sessions defined on this network. A session
is associated with a source node, a destination node,
and a simple path from the source to the destination.
(A path is simple if it uses each edge at most once.)
Packets are injected to the network A in sessions. A
packet injected in session i enters the system at the



source node of 7, traverses the path associated with ¢,
and then is absorbed at its destination. The length d;
is the number of edges on the path from the source to
the destination of session «¢.

Each session ¢ has an associated injection rate r;.
This rate constrains the injection of new packets from
the session so that, during any interval of ¢ consecutive
steps, at most ¢r; + 1 packets can be injected in session
t, for any ¢.

We assume that all packets have the same size and
all edges have the same bandwidth. We also assume a
synchronized store-and-forward routing, where at each
step at most one packet can traverse each edge. When
two packets simultaneously contend for the same edge,
one packet has to wait in a queue. During the rout-
ing, packets wait in two different kinds of queues. Af-
ter a packet has been injected, but before it leaves its
source, the packet is stored in an initial queuwe. Once
the packet has left its source, during any time it is
waiting to traverse an edge, the packet is stored in an
edge queue. The end-to-end delay (delay for short) for
a packet is the total time from the packet injection
until it reaches its destination. This includes the to-
tal time the packet spends waiting in both types of
queues, plus the time it spends traversing edges.

Our goal is to minimize both the end-to-end delay
for each packet and the size of all edge queues. In
order to achieve delay guarantees and bounded queue
sizes, 1t 1s necessary to require that, for all edges e,
the sum of the rates of the sessions that use edge e is
at most 1. Throughout, we shall assume that the sum
of the rates of the sessions using any edge e is at most
1 —¢, for a constant ¢ € (0,1).

Our paper focuses on the problem of timing the
movements of the packets along their paths. A sched-
ule specifies which packets move and which packets
wait 1n queues at each time step. We address the
problem of finding a schedule which, for each session,
guarantees an asymptotically-optimal delay bound for
packets of that session, while maintaining constant-
size edge queues.

In this paper most of the schedules obtained are
template based. The schedule defines a fixed template
for each edge in advance. A template of size M is a
wheel with M slots, each of which contains at most
one token. Each token is affiliated with some session.
The wheel spins at the speed of one slot per time step.
A session-t packet can traverse the edge if and only if a
session-i token appears. For each session-i token, the
session-i packet that uses 1t will be the one that has
been waiting to cross the edge for the longest amount
of time, i.e. the session-i packets use the session-i to-

kens in a First-Come-First-Served manner. The tem-
plate size and associated tokens do not change over
time.

1.3 Lower Bounds

Observe that d; is always a lower bound on the de-
lay for session i, since every session-¢ packet has to
cross d; edges. Tt is also easy to see that Q(1/r;) is
an existential lower bound. For instance, consider n
sessions, all of which have the same rate r = (1—¢)/n
and the same initial edge e. If a packet is injected
in each session simultaneously, one of the packets re-
quires n = Q(1/r) steps to cross e.

Furthermore, for any given set of sessions, Q(1/r;)
is a lower bound for some session ¢ in template-based
schedules. It can be proven that, in the template for
an edge e where Y~ r; = 1 —¢, there exist two session-i
tokens separated by at least (1—¢)/r; slots, for some i.
Then, an adversary can make sure a session-i packet
arrives just after the first token has passed, thereby
forcing the packet to wait (1/r;) steps.

If the schedule is not restricted to being template-
based, the scheduler is more powerful. The scheduler
does not have to decide on a fixed schedule in advance,
but rather can make a new decision at each step, based
on seeing the adversary’s injections. In this case it is
unknown if for any given set of sessions Q(1/r;) is a
lower bound.

1.4 Previous Work

The problem of dynamic packet routing in the
above setting i1s well studied. Until recently, the best
delay bound known was O(d; /r;) for packets of session
t. It is tempting to believe that this is the best pos-
sible delay bound, since a session-¢ packet may need
to wait O(1/r;) steps to cross each of the d; edges on
its route. However, this leaves a large gap between
the upper bound of O(d;/r;) and the lower bound of
O(1/r; + d;). The recent work seeks to close this gap.

In 1990, Demers, Keshav and Shenker [6] proposed
a widely-studied routing algorithm called Weighted
Fair Queueing (WFQ). WFQ is a packetized approxi-
mation of the idealized fluid model algorithm Gener-
alized Processor Sharing (GPS). WFQ is simple and
distributed. This same algorithm was proposed in-
dependently by Parekh and Gallager [11, 12] in 1992
under the name of Packet-by-Packet Generalized Pro-
cessor Sharing (PGPS). Parekh and Gallager prove
that the algorithm has an end-to-end delay guarantee
of 2d;/r; [12, page 148] in the case when all packets
have the same size.

In their 1996 paper, Rabani and Tardos [13] pro-
duce an algorithm that routes every packet to its des-
tination with probability 1 — p in time O(1/rmin) +



(log™ p_l)o(bg*p_l)dmax—l—poly(log p~ 1), where rpi, =
min; 7; and dpax = max; d;.  Ostrovsky and Ra-
bani improve the bound to O(1/rmin + dmax +
log'*< p=1) [10]. These bounds are not session-based,
meaning that if one session has a small rate or a long
path then the delay bounds for all sessions will suffer.
The algorithms of Rabani et al. are distributed, where
knowledge of the entire network is not assumed, but
each packet carries some information.

The main technique of Rabani et al. is based on
“delay-insertion”. The intuition here is that if each
packet receives a large random initial delay, then the
packets are sufficiently spread out to ensure that they
only need to wait O(1) steps at each successive edge
rather than O(1/r;) steps. This delay-insertion tech-
nique is used extensively by Leighton et al. in [8, 9]
in the context of static routing. (In the static rout-
ing problem, all packets are present in the network
initially.) Since our main result employs many tech-
niques from [8], we give a detailed summary of [8] in
Section 3.1.

A contrasting model, the connectionless adversarial
queneing model, is also much studied, e.g. [3, 1]. Here
the paths on which packets are injected can change
over time giving the adversary more power. In the ad-
versarial queueing model the best delay bound known
is polynomial in the maximum path length [1].

1.5 Our Results

We first provide a randomized, distributed sched-
uler that achieves a delay bound of O(1/r; +
dilog (m/rmin)) and a bound on the queue size of
O(log (m/rmin)), where m is the number of edges in
the network and rpi, = min; r;,. While this bound is
not optimal, it nevertheless conveys some intuition for
our main result.

The main contribution of this paper 1is an
asymptotically-optimal schedule. We prove that a
schedule exists for the dynamic routing problem such
that the end-to-end delay of each session-i packet is
bounded by O(1/r; +d;). ! Our result improves upon
previous work in several aspects.

e We provide a session-based delay guarantee. That
1s, packets from sessions with short paths and
high injection rates reach their destinations fast.
This is a big improvement over the previous
bounds, which are stated in terms of rp;, =
min; 7; and D = max; d;. We also guarantee that

1In this paper, we concentrate on proving the existence of
such a schedule. However, the proof can be made constructive
using ideas of Leighton, Maggs and Richa [9] that are based on
Beck’s algorithm [2]. For details, see [15].

every packet always reaches its destination within
the delay bound, without dropping any packets.

o We guarantee constant-size edge queues. This is
interesting because edge queues are much more
expensive than initial queues in practice.

e A consequence of our result 1s a packet-based
bound, which improves upon the O(¢+ d) bound
in [8] for the static problem. (See Section 3.1
for the problem and parameter definitions.) We
show that if packet p; follows a route P;, then p;
can be routed to its destination within O(e; + d;)
steps, where ¢; is the maximum congestion along
P; and d; is the number of edges on P;. This re-
sult trivially follows from our result by creating a
different session ¢ for each packet p;, and defining

ry = (1 —6)/62'.

The asymptotically-optimal schedule is template-
based. Even if the computation of the schedule is time-
consuming, it only needs to be done once. Packets can
then be scheduled indefinitely as long as the sessions
do not change.

Leaky-bucket injection model Our results above
can be generalized to bursty traffic streams that are
leaky-bucket requlated. Here, each session ¢ has a max-
imum burst size (or bucket size) of b; > 1 and an
average arrival rate of r;. During any ¢ consecutive
time steps at most r;t + b; session-i packets are in-
jected. Leaky-bucket regulated traffic is widely used
in the literature, e.g. [4, 5, 7, 11, 12, 14].

Leaky-bucket regulated injections allow traffic
shaping. When session-i¢ packets are injected, they
first enter the session-i bucket at the source. These
packets then leave the bucket one at a time at the
rate of r;. In this way, the end-to-end delay is sepa-
rated into two components, delay in the bucket and
delay in the network. Since delay in the bucket is
at most b;/r;, the end-to-end delay is increased by at
most b; /r; steps, and the size of the edge queues is
unchanged.

The rest of the paper 1s divided into sections as fol-
lows. We first describe a simple distributed scheduler
that has a delay bound of O(1/r; +d; log(m/rmin)) in
Section 2. In Section 3, we overview the main tech-
niques employed to achieve a bound of O(1/r; + d;)
and constant-size edge queues. The proof details are
presented in the full version of the paper.

2 A Preliminary Result
Before presenting our main result, we first present
a simple centralized schedule and a simple distributed



schedule that achieve delay bounds of O(1/r; +
d;log(m/rmin)) with high probability. In addition,
the centralized schedule has a maximum queue size of
O(log(m/rmin)) with high probability. These prelimi-
nary results are substantially simpler to prove because
of the relaxed bounds on delay and queue sizes. Nev-
ertheless, they illustrate the basic ideas of the main
result.

In this section, for ease of presentation, we omit
floors and ceilings where they are necessary. We shall
also assume that 1/r; is an integer for all ¢ and there

is a constant k such that k/ryin is a multiple of 1/7;
for all ¢.2

2.1 Template-Related Definitions

Throughout much of this paper we are consider-
ing template-based schedules. Specifying a template-
based schedule reduces to the problem of assigning
tokens to the slots on the templates. Our usual strat-
egy 1s to assign tokens in foken sequences. A token
sequence for session ¢ consists of d; tokens, one for
each edge along session i. For each method of as-
signing tokens we initially provide bounds on delay
and queue size for a token-sequence schedule. In this
schedule, packets use tokens for the initial edge in
a First-Come-First-Served manner. However, once a
packet has used one token from a particular token se-
quence then for subsequent edges it only uses tokens
from that token sequence. Below we state a theorem
showing that token-sequence bounds give us bounds
for the corresponding template-based schedule in which
session-7 packets use session-i tokens in a First-Come-
First-Served manner on all edges. The proof is con-
tained in the full version. If no ambiguity arises, we
shall often refer to scheduling packets rather than as-
signing tokens in token sequences.

Let k1, ..., k4, be a token sequence for session .
If k;41 appears x; steps after ;, then z; is the fo-
to-end delay for this token sequence. The token se-
quences for each session ¢ form a partition of all the
session-z tokens. In the following we state that, in any
template-based schedule, bounding the delay for token
sequences 1s sufficient to bound the packet delays and
that bounding the token lag is sufficient to bound the

ken lag for these two tokens and Z;l’_ll x; is the end-

2In the main text, we choose to assume the existence of k so
as to avoid obscuring the main ideas. If there is no such constant
k, we can always show the existence of 7; for each session 7 such
that the following holds. i) 7; is a fraction s;/¢;, where s;, ¢;
are integers and ¢; = ©(1/r;) is a power of 2; ii) r; < 7y; iii)
Zi 7; < 1—5e/6 for all edges. Hence, if we choose the template
size M = max; {;, then M = ©(1/rmin) is a multiple of all £;’s.
Then in the token placement process of Section 2.2, we place s;
tokens in one slot every ¢; slots.

edge queues.

Theorem 1 Ifthe end-to-end delay for each session-i
token sequence is bounded by X, then in the template-
based schedule, each session-i packet reaches its desti-
nation within X steps after it obtains an initial token.
If the token lag is bounded by x for all token sequences
for all sesstons, then in the template-based schedule
the edge queue size is also bounded by x.

Note that in the template-based schedule the session-i
packets reach their destination in order.
2.2 A Simple Centralized Schedule

We now describe the centralized schedule which we
call TEMPLATE. Let M = k/rmin where k is the con-
stant chosen above. Each template has size M. We
first place r; M initial tokens on the template for the
first edge of session 4, spaced 1/r; slots apart.

Lemma 2 Fach sesston-i packet will obtain a
session-1 token al most 2/r; steps after ils injection.

Proof: Suppose that packet p is injected at time ¢ but
has not obtained an initial token by time ¢ +2/r; + 1.
Let ¢’ be the last time before ¢t + 2/r; + 1 that there
were no session-i packets waiting for initial tokens.
(Note that t' < ¢.) Between times t' and ¢ at most
(t —t')r; + 1 session ¢ packets are injected. However,
at least (t—t'+2/r;)r; —1 = (t —t')r;+1 initial tokens
for session ¢ appear between times ¢’ and ¢ 4+ 2/r;. By
the definition of ¢/, each of these tokens was used by a
packet. Hence none of the packets injected between #/
and ¢ (and in particular packet p) can still be waiting
for an initial token at time ¢ + 2/7; + 1. i

Once the initial session-i tokens are placed, we de-
lay each of them by an amount chosen uniformly and
independently at random from [L+1, L+ 1/r;], where
L = §log(mM) and « is a constant. The intuition is
that the random delays would spread out the tokens.
After the tokens have been delayed we can be sure that
each packet obtains an initial token within L + 3/r;
steps. We now create the token sequences. (Recall
the definition of token sequence from Section 2.1.) For
every session-i token a placed in the template corre-
sponding to the jth edge, we place a session-: token
b on the template corresponding to the (j + 1)st edge
such that b appears exactly 2L steps after a.

We observe that two different session-i token se-
quences have their initial tokens in different slots, and
therefore two session-1 tokens can never be in the same
slot. Unfortunately, tokens from different sessions may
be placed in one slot, which would cause packets from



different sessions to cross the same edge simultane-
ously. The following lemma shows that the tokens are
not clustered to any great extent.

Lemma 3 There are at most L tokens in any con-
secutive L slots on any template with probability
1 — 1/(mM), where L = $log(mM) and o is a
sufficiently-large constant.

Proof: Since the initial tokens for session ¢ are
spaced 1/r; apart and each is delayed by an amount
chosen independently and uniformly at random from
[L+1,L+1/r], the expected number of session-7 to-
kens in a single slot is ;. For a particular interval of
consecutive slots on a particular template, let the ran-
dom variable X equal the number of tokens in these
slots. By linearity of expectations, F[X] <3 7L <
(1 —¢)L. (Note also that >, |rL] <X <> . [riL].)
Whether or not a token lands in these L slots is a
Bernoulli event. Since the delays to the initial to-
kens are chosen independently and all session paths
are simple, these Bernoulli events are independent.
Since F[X] < (1 — ¢)L, we have the following by a
Chernoff bound.

PriX>L] < Pr[X>({+¢)(l-¢)L]
< 6_52(1_€)L/3.

In m templates there are at most mM intervals of L
consecutive slots. Therefore, by a union bound the
probability that more than L tokens appear in any L
consecutive slots is bounded by,

mMPr[X>L] < mMe=< (1=)L/3

mMe—a2(1—a)ozlog(mM)/6.

By choosing a sufficiently large constant «, we can
bound the above probability by 1/(mM). a

Lemma 3 is not sufficient to guarantee one token
per slot. We solve this problem by partitioning each
template into intervals of L consecutive slots® and
“smoothing out” each interval as follows. We take
the at most L tokens from these slots and rearrange
them arbitrarily so that there is at most one token in
each slot. We have,

Lemma 4 Consider a packet p. Let KP be the to-
ken sequence that contains the initial token used by
p before the smoothing process. Let /f? be the token

3Here we assume M is a multiple of L. This can be achieved
by choosing M and L to be powers of 2. (See the previous
footnote.)

for the jth edge in this token sequence. Then, after
the smoothing process, the packet p can use the token
/f? to cross its jth edge. Therefore, p reaches its des-
tination within O(1/r; + d;log(m/rmin)) steps of its
mjection.

Proof: It is sufficient to show that, after the smooth-
ing process, token «{ (the initial token) appears after
the injection of p and Iﬁ??_l_l appears after Iﬁ??. A token
is shifted by at most L — 1 steps by the smoothing
process. Before the smoothing, k] appears at least L
steps after the injection of p and Iﬁ??_l_l appears exactly
2L steps after Iﬁ??. The lemma follows. a

Hence, we have presented a schedule TEMPLATE
that assigns tokens on the templates with at most
one token per slot with high probability. Note that
if the first execution of TEMPLATE assigns more than
one token per slot, TEMPLATE can be executed again
until the condition of one token per slot is satisfied.
We have already bounded the delay experienced by
packets. We now show that the queue size is small.

Lemma 5 FEvery session-i packet waits at most
O(log(m/rmin)) steps to cross each edge. Therefore,
the queue size is O(log(m/rmin)).

Proof: Suppose that packet p uses token K?;]» from to-
ken sequence K? to cross its jth edge. Then packet p
can use K?;]»_I_l to cross its j+ 1st edge. Thus token K?;]»_I_l
appears at most 4L = O(log(m/rmin )) steps later than
K?;]». The result follows. ad

Therefore,

Theorem 6 With high probability, the randomized
centralized schedule TEMPLATE has a delay bound
of O(1/r; + d;log(m/rmin)) and a queue size of
O(log(m/rmin)).

2.3 A Simple Distributed Schedule

The above scheme TEMPLATE is centralized since
the session-¢ tokens on one template are dependent on
the previous template. However, it suggests the fol-
lowing simple distributed strategy for scheduling pack-
ets so as to achieve small delay. As with the central-
ized schedule, we place initial tokens on the first edge
of session ¢ and then delay each token by an amount
chosen independently and uniformly at random from
[L+1,L+ 1/r;]. Suppose that a packet now has its
initial token at time 7. Then for the kth edge on
this packet’s path the packet i1s given a “deadline” of
T+ 2Lk — 1)+ L, where L = §log(mM). When-
ever two or more packets contend for the same edge
simultaneously, the packet with the earliest deadline



moves. We call this scheme EARLIEST-DEADLINE-
FIRST (EDF).

Lemma 7 For any edge, there are at most L dead-
lines in any consecutive L time steps with probability
at least 1 —1/(mM), where L = 5 log(mM) and o is
a suffictently large constant.

Proof: The proof is almost identical to that of
Lemma 3. m|

Lemma 8 If for any edge, there are at most L dead-
lines in any consecutive L time steps, then each packet
crosses every edge by its deadline.

Proof: For the purpose of contradiction, let 1D be
the first deadline that is missed. This implies that all
deadlines earlier than D are met. Let p be the packet
that misses deadline D for edge e. Since packet p
meets its previous deadlines, p must have crossed its
previous edge by time D— L, or else e must be p’s first
edge and p must have obtained its initial token by time
D—1L. Hence, at every time step from time D—L+1 to
D packet p is held up by another packet with deadline
no later than D). Furthermore, these deadlines must
be later than D — L since all deadlines earlier than
D are met. Therefore, at least L + 1 packets have
deadlines for edge e from time D — L + 1 to D. This
contradicts the assumption of the lemma. a

Lemmas 7 and 8 imply,

Theorem 9 With high probability, the random-
1zed distributed schedule EARLIEST-DEADLINE-FIRST
achieves a delay bound of O(1/r; + d;log(m/rmin)).

Note that EDF does not generate a template for
each edge. Instead, it generates a list of r; M initial
deadlines for the first edge of session ¢, and gives them
in order to the session-¢ packets injected.

3 Summary of the Main Result

Our main result for the dynamic routing problem
parallels an earlier result on static routing. In Sec-
tion 3.1 we review the method used for solving the
static case, and in Section 3.2 we give an overview of
the additional complexities that need to be addressed
in the dynamic case.

3.1 A Bound of O(c+d) for Static Routing

Leighton, Maggs and Rao consider the static rout-
ing problem for arbitrary networks in [8]. For static
routing, all packets are present in the network initially.
Each packet is associated with a source, a destination,
and a route. The congestion on each edge is the total

number of routes that require that edge, and the di-
lation of a route is the number of edges on the route.
Leighton et al. show that for any set of routes with
maximum congestion ¢ (over all edges) and maximum
dilation d (over all routes), there is a schedule of length
O(c+d) and edge queue size O(1). In this schedule, at
most one packet traverses each edge at each time step.
A packet waits O(c + d) steps initially before leaving
its source, and it waits O(1) steps to cross each edge
thereafter.

We summarize here the techniques in [8]. The strat-
egy for constructing an efficient schedule is to make a
succession of refinements to an initial schedule (. In
S each packet moves at every step until it reaches
its destination. This schedule has length d, but as
many as ¢ packets may traverse the same edge at the
same step. Each refinement brings the schedule closer
and closer to the requirement that at most one packet
uses one edge per time step.

A T-frame is a time interval of length T". The frame
congestion, C', in a T-frame is the largest number of
packets that use any edge during the frame. The rel-
ative congestion in a T-frame is the ratio C'/T. The
frame congestion (resp. relative congestion) on an edge
e during a T-frame is defined to be the frame conges-
tion (resp. relative congestion) associated with edge
e.

It is obvious that the initial schedule S(®) has rel-
ative congestion at most 1 for any c-frame. A refine-
ment transforms a schedule S(4) with relative conges-
tion at most ¢9) in any frame of size I(9) or larger
into a schedule S(*1) with relative congestion at most
¢4t in any frame of size I(+t1) or larger. The re-
sulting frame size 11 is much smaller than ()
whereas the relative congestion ¢(4t1) is only slightly
bigger than ¢(2). In particular, I(¢tD) = log® 1) and
9t = (1 4 o(1))el®.  After a series of O(log” ¢)
refinements, a schedule S(¢) is obtained where the rel-
ative congestion is O(1) for any O(1)-frame. A final
schedule, in which at most one packet at a time crosses
each edge, can be constructed by replacing each step
of 8©) by a constant number of steps. Each refine-
ment is achieved by inserting delays to the packets. It
is the central issue in [8] to show that a set of delays
always exists satisfying the criteria in Table 1.

3.2 A Bound of O(1/r; + d;) for Dynamic
Routing

Our result for the dynamic routing problem 1is par-
allel to that in [8]. For an arbitrary network where
paths (sessions) are defined, we show that there is a
schedule such that every session-i¢ packet reaches its
destination within O(1/r; + d;) steps of its injection,



| Schedule

| Frame size | Relative congestion |

St) Ji63) (D)
Refinement | log® I(9) (14 o(1))cle)
| S(+D) | J(a+1) | at+1) |

Table 1: Frame-refinement for static routing in [8].

where r; and d; are the injection rate and path length
for session i, respectively. A session-i packet waits
O(1/r; 4+ d;) steps initially before leaving its source,
and it waits O(1) steps to cross each edge afterwards.

To achieve a session-based, end-to-end delay bound
of O(1/r; + d;) for our dynamic routing problem, we
adopt the general approach in [8]. However, there
are three major problems in transforming the solution
for the static problem into a solution for the dynamic
problem. In the following we present these three prob-
lems and their solutions.

Problem 1: Infinite time

In [8] all the packets to be scheduled are present ini-
tially. In the dynamic model, packets are injected
over an infinite time line. We would like to parti-
tion the infinite time line into finite time intervals
which can be scheduled independently of each other.
We divide time into intervals of length 7, where
7 = O(1/rmin + dmax). We then independently sched-
ule the time intervals [0,7), [7,27), [27,37), etc.
We associate each session ¢ with a quantity 7; =
O(1/r; + d;). TFor any integer k& > 0 consider all
the session-: packets that are injected during inter-
val [kT —T;, (k+ 1)7T — 7;). We provide a schedule in
which all these packets leave their sources no earlier
than time k7 and reach their destinations before time
(k+ 1)T. (See Figure 1.) From now on, we concen-
trate on scheduling the arrivals that would be serviced

during interval [7,27).

Problem 2: Session-based delay guarantees

Once we restrict ourselves to the interval [T,27), it
seems that the dynamic routing problem is similar to
the static problem. However, we cannot simply pro-
ceed with the successive refinements as in Section 3.1,
since some sessions need tighter delay bounds than
others. Session-: packets can only tolerate a delay pro-
portional to 1/7; +d;. We group sessions according to
their associated 1/r; 4+ d; value. We start by insert-
ing delays to sessions having large values of 1/7; + d;,

Service time for all sessions

Arrival time for session i

Arrival time for session j

<Tl>
- =
T;

T 27T

Figure 1: All the session-¢ packets that arrive during
kT — T, (k+ )T — T;) are serviced during [k7, (k +
1)7T). In this figure, k = 1.

reducing the frame size and bounding the relative con-
gestion. When the frame size becomes small enough,
sessions with smaller 1/r; 4+ d; join in.

More precisely, we introduce the concept of inte-
gral and fractional sessions. When session ¢ 18 integral,
packets of size 1 are injected at rate ;. When session
1 18 fractional, a packet of size #; is injected at every
time step, where 7; is a value slightly larger than r;.
A packet from a fractional session always crosses one
edge at a time, whether or not other packets are cross-
ing the edge at the same time. Therefore, a fractional
packet from session ¢ always contributes exactly #; to
the congestion. Integral sessions are those to which
we can afford to insert delays in order to bound the
congestion. Fractional sessions are those to which we
cannot insert delays. However, congestion due to a
fractional session 7 1s only #;, which is small.

As before, 8@ represents the schedule in the gth it-
eration. The set of integral sessions for S(4) is denoted
by A, For the initial schedule $(®); all the sessions
are fractional and we show that the relative congestion
is less than 1. For schedule S(4) we inductively assume
that the relative congestion due to the current integral
and fractional sessions is at most ¢(9) for any frame of
size 119 or larger. To create a schedule §¢+1) from
schedule 89 we carry out a frame-refinement step and
a conversion step.

The frame-refinement step reduces the frame size



| Schedule

| Integral sessions | Frame size | Relative congestion |

S0 A@ 7(0) (9
Refinement A log® I(9) (14 o(1))c(®
Conversion | A0y BletD log® 119 (14 o(1))?c(®)
| S(+D) | Alg+D) | J(a+1) | at+1) |

Table 2: Refinement and conversion for dynamic routing.

from 19 to 14+t = Jog® 19 while slightly increas-
ing the relative congestion from c(® to (1 4 o(1))c(®).
This step is achieved by delaying the integral pack-
ets by up to © ((I(‘]))Z) steps.  We make sure that
if session i is in AW then 1/r; + d; > (I(‘J))Z,
and therefore the delays inserted can be tolerated.
The conversion step converts some sessions from frac-
tional to integral, while maintaining the frame size of
I+ and slightly increasing the relative congestion
to ¢4t = (1 4 0(1))%¢9). These newly-converted
sessions form a set B4t and have associated values
1/ri+d; > (I(‘J‘H))Z. This bound is chosen so that the
sessions in AUt which is AW U BUTD | will be able
to tolerate the delays inserted during the next itera-
tion of frame-refinement. During the conversion step
we delay the packets in BUTD by up to O(1/r; + d;)
steps. We are able to show the existence of “good” de-
lays for both frame-refinement and conversion steps.
Table 2 summarizes our approach.

At the termination of our algorithm we have a
schedule §(©) in which every session is integral and
the relative congestion i1s at most 1, for all frames of
size larger than a certain constant. In S(¢) all session-i
arrivals during [7 — 7;,27 — 7;) are serviced during
[7,2T7). Furthermore, all session-i packets reach their
destination within O(7;) steps of their injections.

Problem 3: Constant-factor stretching in the

final schedule

As discussed above, we repeat the process of refine-
ment and conversion until we have a schedule, () in
which all sessions are integral and in which the rela-
tive congestion i1s 1 for all frames of size larger than
a certain constant w. In the static problem, a final
schedule can easily be obtained by stretching S(©) by
a constant factor. However, we cannot afford to have a
constant blowup in our final schedule for the dynamic
problem. This is because we need to independently
schedule all time intervals [0,7), [7,27), etc, and a
constant blowup would make these time intervals over-
lap.

To overcome this problem, we first devise a schedule
for a new network M that is constructed from the
original network A as follows. Each edge e of A is
replaced by 2w consecutive edges ey, ..., eq,, where
w 1s the constant introduced above. The rates and
routes of the sessions are unaffected. In M, session i
has length D; = 2wd; = O(d;).

All the techniques described earlier are applied to
the network M. We carry out successive conversion
and refinement steps for M and obtain a schedule 8,
where the relative congestion is 1 for any frame whose
size is larger than w. We then “smooth” S() and
convert it to a schedule for A~ where only one packet
at a time traverses any edge.

The idea behind the smoothing process is as follows.
In 8@, more than one packet may require some edge
of M during a given time step, but at most w packets
can require any given edge f in M within w time steps.
This means we can shuffle each packet that requires
edge f by at most w time steps, so that exactly one
packet traverses f at any step. Unfortunately, this
shuffling in time can lead to an illegal schedule for M,
in which a packet can be scheduled to traverse the
edges on its path out of order (timewise). However,
one can prove that if we consider the schedule with
respect to the packets traversing edge esy,, for all e,
then this schedule is legal, 1.e. the packets cross these
edges in order. Hence, we schedule edge ¢ in A in
exactly the same way that the corresponding edge esy,
is scheduled in M.

Figure 2 is a schematic picture of our overall ap-
proach.

The main theorem of this paper is stated below. A
detailed proof is contained in the full version of the

paper.

Theorem 10 Consider an arbitrary network in which
sesstons are defined. Fach session i is assoctated with
an injection rate r; and path length d;. Packets are
wnjected to the network along these sessions subject to
the injection rates. If the total rate on each edge is at
most 1 —e for a constant ¢ € (0,1), then there exists a



[ Construct new network M J

Partition time into finite intervals
Schedule intervals independently

Repeat:

Conversion

)

Refinement

Smooth schedule
Convert back to network A"

Figure 2: An overview of our approach for the dynamic
routing problem.

template-based schedule such that each session-i packet
reaches its destination within O(1/r;+ d;) steps of its
wmjection and at most one packet crosses an edge at
each time step. This schedule also maintains constant
edge queues.
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