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where rmin is the minimum session rate, and m is thenumber of edges in the network. Our results can begeneralized to (leaky-bucket constrained) bursty traf-�c, where session i tolerates a burst size of bi. Inthis case, our delay bounds become O(bi=ri + di) andO(bi=ri + di log(m=rmin)), respectively.1 Introduction1.1 MotivationMotivated by the need for quality-of-service guar-antees, network designers today o�er connection-oriented service in many networks, e.g. ATM (Asyn-chronous Transfer Mode) networks. In this medium,a user requests a particular share of the bandwidthand injects a stream of packets along one particularsession at the agreed-upon rate. An important conse-quence of the user's predictability is that the networkcan, in return, guarantee the user an end-to-end de-lay bound, i.e. an upper bound on the time that anypacket takes to move from its source to its destina-tion. In order to provide this delay guarantee, thenetwork must determine how to schedule the packetsthat contend for the same edge simultaneously. Apartfrom delay bounds, it is also important to guaran-tee small queues at each switch due to limited bu�ersize. In this paper we show, for the �rst time, thatit is possible to design such a schedule that guaran-tees asymptotically-optimal per-session delay boundsas well as small queues.1.2 Model and problemConsider a network N of arbitrary topology and aset of sessions de�ned on this network. A session iis associated with a source node, a destination node,and a simple path from the source to the destination.(A path is simple if it uses each edge at most once.)Packets are injected to the network N in sessions. Apacket injected in session i enters the system at the



source node of i, traverses the path associated with i,and then is absorbed at its destination. The length diis the number of edges on the path from the source tothe destination of session i.Each session i has an associated injection rate ri.This rate constrains the injection of new packets fromthe session so that, during any interval of t consecutivesteps, at most tri+1 packets can be injected in sessioni, for any t.We assume that all packets have the same size andall edges have the same bandwidth. We also assume asynchronized store-and-forward routing, where at eachstep at most one packet can traverse each edge. Whentwo packets simultaneously contend for the same edge,one packet has to wait in a queue. During the rout-ing, packets wait in two di�erent kinds of queues. Af-ter a packet has been injected, but before it leaves itssource, the packet is stored in an initial queue. Oncethe packet has left its source, during any time it iswaiting to traverse an edge, the packet is stored in anedge queue. The end-to-end delay (delay for short) fora packet is the total time from the packet injectionuntil it reaches its destination. This includes the to-tal time the packet spends waiting in both types ofqueues, plus the time it spends traversing edges.Our goal is to minimize both the end-to-end delayfor each packet and the size of all edge queues. Inorder to achieve delay guarantees and bounded queuesizes, it is necessary to require that, for all edges e,the sum of the rates of the sessions that use edge e isat most 1. Throughout, we shall assume that the sumof the rates of the sessions using any edge e is at most1� ", for a constant " 2 (0; 1).Our paper focuses on the problem of timing themovements of the packets along their paths. A sched-ule speci�es which packets move and which packetswait in queues at each time step. We address theproblem of �nding a schedule which, for each session,guarantees an asymptotically-optimal delay bound forpackets of that session, while maintaining constant-size edge queues.In this paper most of the schedules obtained aretemplate based. The schedule de�nes a �xed templatefor each edge in advance. A template of size M is awheel with M slots, each of which contains at mostone token. Each token is a�liated with some session.The wheel spins at the speed of one slot per time step.A session-i packet can traverse the edge if and only if asession-i token appears. For each session-i token, thesession-i packet that uses it will be the one that hasbeen waiting to cross the edge for the longest amountof time, i.e. the session-i packets use the session-i to-

kens in a First-Come-First-Served manner. The tem-plate size and associated tokens do not change overtime.1.3 Lower BoundsObserve that di is always a lower bound on the de-lay for session i, since every session-i packet has tocross di edges. It is also easy to see that 
(1=ri) isan existential lower bound. For instance, consider nsessions, all of which have the same rate r = (1� ")=nand the same initial edge e. If a packet is injectedin each session simultaneously, one of the packets re-quires n = 
(1=r) steps to cross e.Furthermore, for any given set of sessions, 
(1=ri)is a lower bound for some session i in template-basedschedules. It can be proven that, in the template foran edge e wherePe ri = 1�", there exist two session-itokens separated by at least (1�")=ri slots, for some i.Then, an adversary can make sure a session-i packetarrives just after the �rst token has passed, therebyforcing the packet to wait 
(1=ri) steps.If the schedule is not restricted to being template-based, the scheduler is more powerful. The schedulerdoes not have to decide on a �xed schedule in advance,but rather can make a new decision at each step, basedon seeing the adversary's injections. In this case it isunknown if for any given set of sessions 
(1=ri) is alower bound.1.4 Previous WorkThe problem of dynamic packet routing in theabove setting is well studied. Until recently, the bestdelay bound known was O(di=ri) for packets of sessioni. It is tempting to believe that this is the best pos-sible delay bound, since a session-i packet may needto wait O(1=ri) steps to cross each of the di edges onits route. However, this leaves a large gap betweenthe upper bound of O(di=ri) and the lower bound ofO(1=ri+ di). The recent work seeks to close this gap.In 1990, Demers, Keshav and Shenker [6] proposeda widely-studied routing algorithm called WeightedFair Queueing (WFQ). WFQ is a packetized approxi-mation of the idealized 
uid model algorithm Gener-alized Processor Sharing (GPS). WFQ is simple anddistributed. This same algorithm was proposed in-dependently by Parekh and Gallager [11, 12] in 1992under the name of Packet-by-Packet Generalized Pro-cessor Sharing (PGPS). Parekh and Gallager provethat the algorithm has an end-to-end delay guaranteeof 2di=ri [12, page 148] in the case when all packetshave the same size.In their 1996 paper, Rabani and Tardos [13] pro-duce an algorithm that routes every packet to its des-tination with probability 1 � p in time O(1=rmin) +



(log� p�1)O(log� p�1)dmax+poly(log p�1), where rmin =mini ri and dmax = maxi di. Ostrovsky and Ra-bani improve the bound to O(1=rmin + dmax +log1+" p�1) [10]. These bounds are not session-based,meaning that if one session has a small rate or a longpath then the delay bounds for all sessions will su�er.The algorithms of Rabani et al. are distributed, whereknowledge of the entire network is not assumed, buteach packet carries some information.The main technique of Rabani et al. is based on\delay-insertion". The intuition here is that if eachpacket receives a large random initial delay, then thepackets are su�ciently spread out to ensure that theyonly need to wait O(1) steps at each successive edgerather than O(1=ri) steps. This delay-insertion tech-nique is used extensively by Leighton et al. in [8, 9]in the context of static routing. (In the static rout-ing problem, all packets are present in the networkinitially.) Since our main result employs many tech-niques from [8], we give a detailed summary of [8] inSection 3.1.A contrasting model, the connectionless adversarialqueueing model, is also much studied, e.g. [3, 1]. Herethe paths on which packets are injected can changeover time giving the adversary more power. In the ad-versarial queueing model the best delay bound knownis polynomial in the maximum path length [1].1.5 Our ResultsWe �rst provide a randomized, distributed sched-uler that achieves a delay bound of O(1=ri +di log (m=rmin)) and a bound on the queue size ofO(log (m=rmin)), where m is the number of edges inthe network and rmin = mini ri. While this bound isnot optimal, it nevertheless conveys some intuition forour main result.The main contribution of this paper is anasymptotically-optimal schedule. We prove that aschedule exists for the dynamic routing problem suchthat the end-to-end delay of each session-i packet isbounded by O(1=ri+ di). 1 Our result improves uponprevious work in several aspects.� We provide a session-based delay guarantee. Thatis, packets from sessions with short paths andhigh injection rates reach their destinations fast.This is a big improvement over the previousbounds, which are stated in terms of rmin =mini ri and D = maxi di. We also guarantee that1In this paper, we concentrate on proving the existence ofsuch a schedule. However, the proof can be made constructiveusing ideas of Leighton, Maggs and Richa [9] that are based onBeck's algorithm [2]. For details, see [15].

every packet always reaches its destination withinthe delay bound, without dropping any packets.� We guarantee constant-size edge queues. This isinteresting because edge queues are much moreexpensive than initial queues in practice.� A consequence of our result is a packet-basedbound, which improves upon the O(c+ d) boundin [8] for the static problem. (See Section 3.1for the problem and parameter de�nitions.) Weshow that if packet pi follows a route Pi, then pican be routed to its destination within O(ci+ di)steps, where ci is the maximum congestion alongPi and di is the number of edges on Pi. This re-sult trivially follows from our result by creating adi�erent session i for each packet pi, and de�ningri = (1� ")=ci.The asymptotically-optimal schedule is template-based. Even if the computation of the schedule is time-consuming, it only needs to be done once. Packets canthen be scheduled inde�nitely as long as the sessionsdo not change.Leaky-bucket injection model Our results abovecan be generalized to bursty tra�c streams that areleaky-bucket regulated. Here, each session i has a max-imum burst size (or bucket size) of bi � 1 and anaverage arrival rate of ri. During any t consecutivetime steps at most rit + bi session-i packets are in-jected. Leaky-bucket regulated tra�c is widely usedin the literature, e.g. [4, 5, 7, 11, 12, 14].Leaky-bucket regulated injections allow tra�cshaping. When session-i packets are injected, they�rst enter the session-i bucket at the source. Thesepackets then leave the bucket one at a time at therate of ri. In this way, the end-to-end delay is sepa-rated into two components, delay in the bucket anddelay in the network. Since delay in the bucket isat most bi=ri, the end-to-end delay is increased by atmost bi=ri steps, and the size of the edge queues isunchanged.The rest of the paper is divided into sections as fol-lows. We �rst describe a simple distributed schedulerthat has a delay bound of O(1=ri+ di log(m=rmin)) inSection 2. In Section 3, we overview the main tech-niques employed to achieve a bound of O(1=ri + di)and constant-size edge queues. The proof details arepresented in the full version of the paper.2 A Preliminary ResultBefore presenting our main result, we �rst presenta simple centralized schedule and a simple distributed



schedule that achieve delay bounds of O(1=ri +di log(m=rmin)) with high probability. In addition,the centralized schedule has a maximum queue size ofO(log(m=rmin)) with high probability. These prelimi-nary results are substantially simpler to prove becauseof the relaxed bounds on delay and queue sizes. Nev-ertheless, they illustrate the basic ideas of the mainresult.In this section, for ease of presentation, we omit
oors and ceilings where they are necessary. We shallalso assume that 1=ri is an integer for all i and thereis a constant k such that k=rmin is a multiple of 1=rifor all i.22.1 Template-Related De�nitionsThroughout much of this paper we are consider-ing template-based schedules. Specifying a template-based schedule reduces to the problem of assigningtokens to the slots on the templates. Our usual strat-egy is to assign tokens in token sequences. A tokensequence for session i consists of di tokens, one foreach edge along session i. For each method of as-signing tokens we initially provide bounds on delayand queue size for a token-sequence schedule. In thisschedule, packets use tokens for the initial edge ina First-Come-First-Served manner. However, once apacket has used one token from a particular token se-quence then for subsequent edges it only uses tokensfrom that token sequence. Below we state a theoremshowing that token-sequence bounds give us boundsfor the corresponding template-based schedule in whichsession-i packets use session-i tokens in a First-Come-First-Served manner on all edges. The proof is con-tained in the full version. If no ambiguity arises, weshall often refer to scheduling packets rather than as-signing tokens in token sequences.Let �1, : : :, �di be a token sequence for session i.If �j+1 appears xj steps after �j, then xj is the to-ken lag for these two tokens and Pdi�1j=1 xj is the end-to-end delay for this token sequence. The token se-quences for each session i form a partition of all thesession-i tokens. In the following we state that, in anytemplate-based schedule, bounding the delay for tokensequences is su�cient to bound the packet delays andthat bounding the token lag is su�cient to bound the2In the main text, we choose to assume the existence of k soas to avoid obscuring themain ideas. If there is no such constantk, we can always show the existence of r̂i for each session i suchthat the following holds. i) r̂i is a fraction si=`i, where si, `iare integers and `i = �(1=ri) is a power of 2; ii) ri � r̂i; iii)Pi r̂i � 1�5"=6 for all edges. Hence, if we choose the templatesize M = maxi `i, then M = �(1=rmin) is a multiple of all `i's.Then in the token placement process of Section 2.2, we place sitokens in one slot every `i slots.

edge queues.Theorem 1 If the end-to-end delay for each session-itoken sequence is bounded by X, then in the template-based schedule, each session-i packet reaches its desti-nation within X steps after it obtains an initial token.If the token lag is bounded by x for all token sequencesfor all sessions, then in the template-based schedulethe edge queue size is also bounded by x.Note that in the template-based schedule the session-ipackets reach their destination in order.2.2 A Simple Centralized ScheduleWe now describe the centralized schedule which wecall template. Let M = k=rmin where k is the con-stant chosen above. Each template has size M . We�rst place riM initial tokens on the template for the�rst edge of session i, spaced 1=ri slots apart.Lemma 2 Each session-i packet will obtain asession-i token at most 2=ri steps after its injection.Proof: Suppose that packet p is injected at time t buthas not obtained an initial token by time t+2=ri+ 1.Let t0 be the last time before t + 2=ri + 1 that therewere no session-i packets waiting for initial tokens.(Note that t0 < t.) Between times t0 and t at most(t � t0)ri + 1 session i packets are injected. However,at least (t�t0+2=ri)ri�1 = (t�t0)ri+1 initial tokensfor session i appear between times t0 and t+ 2=ri. Bythe de�nition of t0, each of these tokens was used by apacket. Hence none of the packets injected between t0and t (and in particular packet p) can still be waitingfor an initial token at time t+ 2=ri + 1. 2Once the initial session-i tokens are placed, we de-lay each of them by an amount chosen uniformly andindependently at random from [L+1; L+1=ri], whereL = �2 log(mM ) and � is a constant. The intuition isthat the random delays would spread out the tokens.After the tokens have been delayed we can be sure thateach packet obtains an initial token within L + 3=risteps. We now create the token sequences. (Recallthe de�nition of token sequence from Section 2.1.) Forevery session-i token a placed in the template corre-sponding to the jth edge, we place a session-i tokenb on the template corresponding to the (j + 1)st edgesuch that b appears exactly 2L steps after a.We observe that two di�erent session-i token se-quences have their initial tokens in di�erent slots, andtherefore two session-i tokens can never be in the sameslot. Unfortunately, tokens from di�erent sessions maybe placed in one slot, which would cause packets from



di�erent sessions to cross the same edge simultane-ously. The following lemma shows that the tokens arenot clustered to any great extent.Lemma 3 There are at most L tokens in any con-secutive L slots on any template with probability1 � 1=(mM ), where L = �2 log(mM ) and � is asu�ciently-large constant.Proof: Since the initial tokens for session i arespaced 1=ri apart and each is delayed by an amountchosen independently and uniformly at random from[L+ 1; L+ 1=ri], the expected number of session-i to-kens in a single slot is ri. For a particular interval of Lconsecutive slots on a particular template, let the ran-dom variable X equal the number of tokens in theseslots. By linearity of expectations, E[X] �Pi riL �(1 � ")L. (Note also that PibriLc � X �PidriLe.)Whether or not a token lands in these L slots is aBernoulli event. Since the delays to the initial to-kens are chosen independently and all session pathsare simple, these Bernoulli events are independent.Since E[X] � (1 � ")L, we have the following by aCherno� bound.Pr [ X > L ] � Pr [ X > (1 + ")(1� ")L ]� e�"2(1�")L=3:In m templates there are at most mM intervals of Lconsecutive slots. Therefore, by a union bound theprobability that more than L tokens appear in any Lconsecutive slots is bounded by,mM Pr [ X > L ] � mMe�"2(1�")L=3= mMe�"2(1�")� log(mM)=6:By choosing a su�ciently large constant �, we canbound the above probability by 1=(mM ). 2Lemma 3 is not su�cient to guarantee one tokenper slot. We solve this problem by partitioning eachtemplate into intervals of L consecutive slots3 and\smoothing out" each interval as follows. We takethe at most L tokens from these slots and rearrangethem arbitrarily so that there is at most one token ineach slot. We have,Lemma 4 Consider a packet p. Let Kp be the to-ken sequence that contains the initial token used byp before the smoothing process. Let �pj be the token3Here we assumeM is a multiple of L. This can be achievedby choosing M and L to be powers of 2. (See the previousfootnote.)

for the jth edge in this token sequence. Then, afterthe smoothing process, the packet p can use the token�pj to cross its jth edge. Therefore, p reaches its des-tination within O(1=ri + di log(m=rmin)) steps of itsinjection.Proof: It is su�cient to show that, after the smooth-ing process, token �p1 (the initial token) appears afterthe injection of p and �pj+1 appears after �pj . A tokenis shifted by at most L � 1 steps by the smoothingprocess. Before the smoothing, �p1 appears at least Lsteps after the injection of p and �pj+1 appears exactly2L steps after �pj . The lemma follows. 2Hence, we have presented a schedule templatethat assigns tokens on the templates with at mostone token per slot with high probability. Note thatif the �rst execution of template assigns more thanone token per slot, template can be executed againuntil the condition of one token per slot is satis�ed.We have already bounded the delay experienced bypackets. We now show that the queue size is small.Lemma 5 Every session-i packet waits at mostO(log(m=rmin)) steps to cross each edge. Therefore,the queue size is O(log(m=rmin)).Proof: Suppose that packet p uses token �qj from to-ken sequence Kq to cross its jth edge. Then packet pcan use �qj+1 to cross its j+1st edge. Thus token �qj+1appears at most 4L = O(log(m=rmin)) steps later than�qj . The result follows. 2Therefore,Theorem 6 With high probability, the randomizedcentralized schedule template has a delay boundof O(1=ri + di log(m=rmin)) and a queue size ofO(log(m=rmin)).2.3 A Simple Distributed ScheduleThe above scheme template is centralized sincethe session-i tokens on one template are dependent onthe previous template. However, it suggests the fol-lowing simple distributed strategy for scheduling pack-ets so as to achieve small delay. As with the central-ized schedule, we place initial tokens on the �rst edgeof session i and then delay each token by an amountchosen independently and uniformly at random from[L + 1; L + 1=ri]. Suppose that a packet now has itsinitial token at time T . Then for the kth edge onthis packet's path the packet is given a \deadline" ofT + 2L(k � 1) + L, where L = �2 log(mM ). When-ever two or more packets contend for the same edgesimultaneously, the packet with the earliest deadline



moves. We call this scheme Earliest-Deadline-First (edf).Lemma 7 For any edge, there are at most L dead-lines in any consecutive L time steps with probabilityat least 1� 1=(mM ), where L = �2 log(mM ) and � isa su�ciently large constant.Proof: The proof is almost identical to that ofLemma 3. 2Lemma 8 If for any edge, there are at most L dead-lines in any consecutive L time steps, then each packetcrosses every edge by its deadline.Proof: For the purpose of contradiction, let D bethe �rst deadline that is missed. This implies that alldeadlines earlier than D are met. Let p be the packetthat misses deadline D for edge e. Since packet pmeets its previous deadlines, p must have crossed itsprevious edge by timeD�L, or else e must be p's �rstedge and pmust have obtained its initial token by timeD�L. Hence, at every time step from timeD�L+1 toD packet p is held up by another packet with deadlineno later than D. Furthermore, these deadlines mustbe later than D � L since all deadlines earlier thanD are met. Therefore, at least L + 1 packets havedeadlines for edge e from time D � L + 1 to D. Thiscontradicts the assumption of the lemma. 2Lemmas 7 and 8 imply,Theorem 9 With high probability, the random-ized distributed schedule Earliest-Deadline-Firstachieves a delay bound of O(1=ri + di log(m=rmin)).Note that edf does not generate a template foreach edge. Instead, it generates a list of riM initialdeadlines for the �rst edge of session i, and gives themin order to the session-i packets injected.3 Summary of the Main ResultOur main result for the dynamic routing problemparallels an earlier result on static routing. In Sec-tion 3.1 we review the method used for solving thestatic case, and in Section 3.2 we give an overview ofthe additional complexities that need to be addressedin the dynamic case.3.1 A Bound of O(c+d) for Static RoutingLeighton, Maggs and Rao consider the static rout-ing problem for arbitrary networks in [8]. For staticrouting, all packets are present in the network initially.Each packet is associated with a source, a destination,and a route. The congestion on each edge is the total

number of routes that require that edge, and the di-lation of a route is the number of edges on the route.Leighton et al. show that for any set of routes withmaximum congestion c (over all edges) and maximumdilation d (over all routes), there is a schedule of lengthO(c+d) and edge queue size O(1). In this schedule, atmost one packet traverses each edge at each time step.A packet waits O(c + d) steps initially before leavingits source, and it waits O(1) steps to cross each edgethereafter.We summarize here the techniques in [8]. The strat-egy for constructing an e�cient schedule is to make asuccession of re�nements to an initial schedule S(0). InS(0), each packet moves at every step until it reachesits destination. This schedule has length d, but asmany as c packets may traverse the same edge at thesame step. Each re�nement brings the schedule closerand closer to the requirement that at most one packetuses one edge per time step.A T -frame is a time interval of length T . The framecongestion, C, in a T -frame is the largest number ofpackets that use any edge during the frame. The rel-ative congestion in a T -frame is the ratio C=T . Theframe congestion (resp. relative congestion) on an edgee during a T -frame is de�ned to be the frame conges-tion (resp. relative congestion) associated with edgee. It is obvious that the initial schedule S(0) has rel-ative congestion at most 1 for any c-frame. A re�ne-ment transforms a schedule S(q) with relative conges-tion at most c(q) in any frame of size I(q) or largerinto a schedule S(q+1) with relative congestion at mostc(q+1) in any frame of size I(q+1) or larger. The re-sulting frame size I(q+1) is much smaller than I(q),whereas the relative congestion c(q+1) is only slightlybigger than c(q). In particular, I(q+1) = log5 I(q) andc(q+1) = (1 + o(1))c(q). After a series of O(log� c)re�nements, a schedule S(�) is obtained where the rel-ative congestion is O(1) for any O(1)-frame. A �nalschedule, in which at most one packet at a time crosseseach edge, can be constructed by replacing each stepof S(�) by a constant number of steps. Each re�ne-ment is achieved by inserting delays to the packets. Itis the central issue in [8] to show that a set of delaysalways exists satisfying the criteria in Table 1.3.2 A Bound of O(1=ri + di) for DynamicRoutingOur result for the dynamic routing problem is par-allel to that in [8]. For an arbitrary network wherepaths (sessions) are de�ned, we show that there is aschedule such that every session-i packet reaches itsdestination within O(1=ri + di) steps of its injection,



Schedule Frame size Relative congestionS(q) I(q) c(q)Re�nement log5 I(q) (1 + o(1))c(q)S(q+1) I(q+1) c(q+1)Table 1: Frame-re�nement for static routing in [8].where ri and di are the injection rate and path lengthfor session i, respectively. A session-i packet waitsO(1=ri + di) steps initially before leaving its source,and it waits O(1) steps to cross each edge afterwards.To achieve a session-based, end-to-end delay boundof O(1=ri + di) for our dynamic routing problem, weadopt the general approach in [8]. However, thereare three major problems in transforming the solutionfor the static problem into a solution for the dynamicproblem. In the following we present these three prob-lems and their solutions.Problem 1: In�nite timeIn [8] all the packets to be scheduled are present ini-tially. In the dynamic model, packets are injectedover an in�nite time line. We would like to parti-tion the in�nite time line into �nite time intervalswhich can be scheduled independently of each other.We divide time into intervals of length T , whereT = �(1=rmin+dmax). We then independently sched-ule the time intervals [0; T ), [T ; 2T ), [2T ; 3T ), etc.We associate each session i with a quantity Ti =�(1=ri + di). For any integer k � 0 consider allthe session-i packets that are injected during inter-val [kT � Ti; (k+ 1)T � Ti). We provide a schedule inwhich all these packets leave their sources no earlierthan time kT and reach their destinations before time(k + 1)T . (See Figure 1.) From now on, we concen-trate on scheduling the arrivals that would be servicedduring interval [T ; 2T ).Problem 2: Session-based delay guaranteesOnce we restrict ourselves to the interval [T ; 2T ), itseems that the dynamic routing problem is similar tothe static problem. However, we cannot simply pro-ceed with the successive re�nements as in Section 3.1,since some sessions need tighter delay bounds thanothers. Session-i packets can only tolerate a delay pro-portional to 1=ri+di. We group sessions according totheir associated 1=ri + di value. We start by insert-ing delays to sessions having large values of 1=ri + di,

TiTj TiTjT 2TService time for all sessionsArrival time for session iArrival time for session jFigure 1: All the session-i packets that arrive during[kT � Ti; (k+ 1)T � Ti) are serviced during [kT ; (k+1)T ). In this �gure, k = 1.reducing the frame size and bounding the relative con-gestion. When the frame size becomes small enough,sessions with smaller 1=ri + di join in.More precisely, we introduce the concept of inte-gral and fractional sessions. When session i is integral,packets of size 1 are injected at rate ri. When sessioni is fractional, a packet of size r̂i is injected at everytime step, where r̂i is a value slightly larger than ri.A packet from a fractional session always crosses oneedge at a time, whether or not other packets are cross-ing the edge at the same time. Therefore, a fractionalpacket from session i always contributes exactly r̂i tothe congestion. Integral sessions are those to whichwe can a�ord to insert delays in order to bound thecongestion. Fractional sessions are those to which wecannot insert delays. However, congestion due to afractional session i is only r̂i, which is small.As before, S(q) represents the schedule in the qth it-eration. The set of integral sessions for S(q) is denotedby A(q). For the initial schedule S(0), all the sessionsare fractional and we show that the relative congestionis less than 1. For schedule S(q) we inductively assumethat the relative congestion due to the current integraland fractional sessions is at most c(q) for any frame ofsize I(q) or larger. To create a schedule S(q+1) fromschedule S(q) we carry out a frame-re�nement step anda conversion step.The frame-re�nement step reduces the frame size



Schedule Integral sessions Frame size Relative congestionS(q) A(q) I(q) c(q)Re�nement A(q) log5 I(q) (1 + o(1))c(q)Conversion A(q) [B(q+1) log5 I(q) (1 + o(1))2c(q)S(q+1) A(q+1) I(q+1) c(q+1)Table 2: Re�nement and conversion for dynamic routing.from I(q) to I(q+1) = log5 I(q), while slightly increas-ing the relative congestion from c(q) to (1 + o(1))c(q).This step is achieved by delaying the integral pack-ets by up to � �(I(q))2� steps. We make sure thatif session i is in A(q) then 1=ri + di � (I(q))2,and therefore the delays inserted can be tolerated.The conversion step converts some sessions from frac-tional to integral, while maintaining the frame size ofI(q+1) and slightly increasing the relative congestionto c(q+1) = (1 + o(1))2c(q). These newly-convertedsessions form a set B(q+1) and have associated values1=ri+di � (I(q+1))2. This bound is chosen so that thesessions in A(q+1), which is A(q) [B(q+1), will be ableto tolerate the delays inserted during the next itera-tion of frame-re�nement. During the conversion stepwe delay the packets in B(q+1) by up to �(1=ri + di)steps. We are able to show the existence of \good" de-lays for both frame-re�nement and conversion steps.Table 2 summarizes our approach.At the termination of our algorithm we have aschedule S(�) in which every session is integral andthe relative congestion is at most 1, for all frames ofsize larger than a certain constant. In S(�) all session-iarrivals during [T � Ti; 2T � Ti) are serviced during[T ; 2T ). Furthermore, all session-i packets reach theirdestination within O(Ti) steps of their injections.Problem 3: Constant-factor stretching in the�nal scheduleAs discussed above, we repeat the process of re�ne-ment and conversion until we have a schedule, S(�), inwhich all sessions are integral and in which the rela-tive congestion is 1 for all frames of size larger thana certain constant w. In the static problem, a �nalschedule can easily be obtained by stretching S(�) bya constant factor. However, we cannot a�ord to have aconstant blowup in our �nal schedule for the dynamicproblem. This is because we need to independentlyschedule all time intervals [0; T ), [T ; 2T ), etc, and aconstant blowup would make these time intervals over-lap.

To overcome this problem, we �rst devise a schedulefor a new network M that is constructed from theoriginal network N as follows. Each edge e of N isreplaced by 2w consecutive edges e1; : : : ; e2w, wherew is the constant introduced above. The rates androutes of the sessions are una�ected. In M, session ihas length Di = 2wdi = O(di).All the techniques described earlier are applied tothe network M. We carry out successive conversionand re�nement steps forM and obtain a schedule S(�),where the relative congestion is 1 for any frame whosesize is larger than w. We then \smooth" S(�) andconvert it to a schedule for N where only one packetat a time traverses any edge.The idea behind the smoothing process is as follows.In S(�), more than one packet may require some edgeofM during a given time step, but at most w packetscan require any given edge f inM withinw time steps.This means we can shu�e each packet that requiresedge f by at most w time steps, so that exactly onepacket traverses f at any step. Unfortunately, thisshu�ing in time can lead to an illegal schedule forM,in which a packet can be scheduled to traverse theedges on its path out of order (timewise). However,one can prove that if we consider the schedule withrespect to the packets traversing edge e2w, for all e,then this schedule is legal, i.e. the packets cross theseedges in order. Hence, we schedule edge e in N inexactly the same way that the corresponding edge e2wis scheduled in M.Figure 2 is a schematic picture of our overall ap-proach.The main theorem of this paper is stated below. Adetailed proof is contained in the full version of thepaper.Theorem 10 Consider an arbitrary network in whichsessions are de�ned. Each session i is associated withan injection rate ri and path length di. Packets areinjected to the network along these sessions subject tothe injection rates. If the total rate on each edge is atmost 1�" for a constant " 2 (0; 1), then there exists a



Construct new network MSchedule intervals independentlyPartition time into �nite intervals
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