Resource Discovery in Distributed Networks*

Mor Harchol-Balterf Tom Leighton? Daniel Lewin®

MIT, Cambridge, MA 02139
(harchol,ftl,danl)@theory.lcs.mit.edu

Abstract

In large distributed networks of computers, it is often the case that a subset of machines wants to
cooperate to perform a task. Before they can do so, these machines need to learn of the existence
of each other. In this paper we are interested in distributed algorithms whereby machines in
a network learn of other machines in the network by making queries to machines they already
know. The algorithms should be efficient both in terms of the time required and in terms of the
total network communication required until all machines have discovered all other machines. We
propose a very simple algorithm called Name-Dropper whereby all machines learn about each other
within O(log® n) rounds, where n is the number of machines in the network. The total number of
connections required is O(n log? n), and the total number of pointers which must be communicated
is O(n? log? n). Each of the preceding bounds is optimal to within polylogarithmic factors.

*Contact author: Mor Harchol-Balter, harchol@theory.lcs.mit.edu. Tracks: long presentation. Student paper: Daniel
Lewin is a full-time student

"Laboratory for Computer Science. Supported by the NSF Postdoctoral Fellowship in the Mathematical Sciences.

iDepartment of Mathematics and Laboratory for Computer Science. Supported by DARPA N00014-95-1-1246 and
ARMY DAAH 04-95-1-0607

§Laboratory for Computer Science. Supported by DARPA N00014-95-1-1246 and ARMY DAAH 04-95-1-0607

1 Introduction

In large distributed networks of computers, it is often the case that a subset of machines want to co-
operate to perform a common task. For example, machines may cooperate to implement a distributed
web caching protocol, to form a distributed file system, or to do some distributed computation. A
first step in any of these applications is for the machines to learn about the existence of each other.
In other words, machines need to know “Who on the network wants to cooperate with me?” This
common first step is what we call the Resource Discovery Problem.

Resource discovery algorithms need to be efficient in terms of time and network communication.
That is, machines should learn about each other quickly, without using an inordinate amount of
communication. This is particularly important in applications where the algorithm may be used
repeatedly to obtain updated information about the status of machines in the system.

An instance of the resource discovery problem is modeled as a directed graph. Each machine is
represented by a node of the graph and edges represent the relation “machine A knows about machine
B.” As machines learn about each other, new edges are added to the graph. Communication can only
take place between machines that know about each other, in contrast to, say, a “global ping” on the
network, that every machine responds to. In terms of the graph, a node u can only communicate with
another node v if there is a directed edge from u to v. In this case v is considered to be a neighbor or
u. We will use the terms “network” and “graph” and the terms “machine” and “node” interchangably.

We are interested in distributed resource discovery algorithms, where there is no central control in
the network and machines operate independently of each other, making local queries to their neighbors
and transferring information about part or all of their neighbor lists. Figure 1 gives an example of a
connection between adjacent nodes where one node, A, sends its entire neighbor list (including itself)
to its neighbor node, B, adding to B’s neighbor list.

We model resource discovery algorithms as proceeding in synchronous parallel rounds. We define
one round as the time for each machine in the network to contact one or more of its neighbors and
exchange some subset of its neighbor list. The running time of a resource discovery algorithm is the
number of rounds required until every machine knows about every other machine, i.e., a complete
graph is formed. Observe that different rounds can have different running times. One difference is
caused by the fact that the “neighbors” of a node may be of different distances from the node in the
underlying physical network. However, it can also turn out that communicating between two nodes
which are physically close may be more costly than communicating between two nodes which are far
apart because of differences in the speeds of the routers and speeds of the machines. Thus we simply
use the number of rounds as our run time metric. In practice there is enough time between rounds
that each round is able to complete.

Another performance measure of resource discovery algorithms is the amount of network commu-
nication they require. We measure network communication in two ways: The pointer communication
complezity is defined to be the total number of pointers communicated during the course of the al-
gorithm. The connection communication complerity is defined to be the total number of connections
which are opened during the course of the algorithm, where a connection between u and v is created
when w contacts v. During the connection, u is allowed to transmit as much information as it likes
to v. For example, suppose we have a d-regular graph and each node picks one of its neighbors and
sends it its entire neighbor list (including itself). Then the total pointer complexity for that round is
n(d+1), whereas the communication complexity for the round is n. We consider both the pointer com-
munication complexity and the connection communication complexity because, in practice, network
communication is a linear combination of the two.

Our only assumption about the network is that it is initially weakly connected. That is, if we
ignore edge directions then the graph is connected. In practice, this boils down to giving every newly

O

Figure 1: (i) Machine A makes a connection to machine B and sends its list of neighbors to B. (ii)
As a result, machine B learns about A and A’s neighbors (shown as dashed lines). The operation

depicted above has connection communication complexity of 1 and pointer communication complexity
of 4.

added machine a pointer to at least one machine in the network. Weak connectivity is a necessary
assumption because otherwise we allow disconnected networks where there is no hope of ever evolving
into one component.

Our goal is to design a resource discovery algorithm which requires few rounds and requires low
network communication. In this paper we propose a randomized resource discovery algorithm with
the following properties:

e QOur algorithm is distributed and each machine executes the same simple local protocol.

e Machines learn about each other quickly: If there are n machines, then with high probability
within O(log? n) rounds, all machines know about each other.

e Our algorithm does not flood the network with communication. In particular the connection com-
munication complexity is O(nlog?n) and the pointer communication complexity is O(n?log? n),
with high probability.

Each of the preceding bounds is optimal to within polylogarithmic factors.

1.1 Some Candidate Algorithms

Before describing our algorithm, we first describe three natural algorithms for resource discovery, some
of which are used in real systems. Our algorithm uses ideas from each of these. The performance of
these algorithms is summarized in Table 1.

1.1.1 The Flooding Algorithm

The Flooding algorithm is used by Internet routers today [7].

In the Flooding algorithm, a machine is initially configured to have a fixed set of neighboring
machines, and direct communication is only allowed with machines in this set. In terms of the graph,
a node only communicates over the edges that were initially in the graph; new edges that are added
to the graph are not used for communication. Observe that those edges that constitute the “initial
neighbors” are not necessarily the links in the underlying physical network, but rather they are virtual
links, each possibly corresponding to a path in the underlying network.

We denote by 7 (v) the set consisting of v and of all the nodes that v points to. In every round
of the Flooding algorithm, each node v contacts all of its #nitial neighbors and transmits to them the
updates to ? (v), (denoted by ? (v)UPdates) e those nodes in ? (v) that are new since the last time

Num. Rounds | Pointer Communication | Connection Communication
Flooding dinitial Qn - Minitial) Wdinitial - Minitial)
Swamping O(logn) Q(n?) Q(n?)
Random Pointer Jump | ©Q(n) in worst case | (num. rounds) m;nitial (num. rounds)-n
Name-Dropper O(log® n) O(n?log”n) O(nlog®n)

Table 1: This table shows the performance of 8 natural resource discovery algorithms, as compared with
our own resource discovery algorithm, Name-Dropper. In the above notation: mipitiar *S the number
of edges in the initial graph, n is the number of nodes in the graph, and d;nitq 15 the initial diameter
of the graph. The Name-Dropper algorithm outperforms the other 8 algorithms in terms of worst-
case communication complexity by a factor of Q(n/log®n), while the runtime of the Name-Dropper
algorithm 1s close to optimal.

v sent information. A node u that receives ? (v)UP%€s then updates its set of neighbors by merging
? (u) and 7 (v)UPdates (7 (y) «—— 7 (u) U ? (v)Updates),

The number of rounds required for the Flooding algorithm to converge to a complete graph is equal
to the diameter, d;;q, Of the initial graph. If d;uie0 s small then the algorithm is fast; however
dinitia1 could be large: ©(n). Thus the Flooding algorithm could be very slow if we are not careful to
start with an initial graph that has small diameter.

The communication complexity of the Flooding algorithm also depends on the initial graph. Let
Minitial D€ the number of edges in the initial graph. The pointer communication complexity of the
Flooding algorithm is ©(n - m;,iq) because every pointer must be sent over every edge during the
algorithm. The connection communication complexity of the Flooding algorithm is O (d;pitial - Minitial)-
The above bound can be obtained by the following argument: If the diameter is dj,;iq1, then every
point s is at least d/2 distance away from some other point, which means that there is a shortest path
to s of length at least d/2. Thus s learns new pointer information in one of the next > d/2 rounds.
Thus s must open up a connection with all of its initial neighbors during each of the new rounds, so
that it can communicate this new information to them. Hence every one of the my,;1;4 edges is used
during at least the next d/2 rounds. Thus the lower bound is Q(dinitia - Minitiar)- Observe that this is
also an upper bound since there are d;,;;,; rounds, and during each round at most m;,;4,4; connections
can be open.

The connection communication complexity of the Flooding algorithm is Q(d;nitiar - Minitiar). This
follows from the fact that there are at least dj,i4i0) rounds, during which each machine opens up a
connection with all of its initial neighbors.

The bottom line is that the network complexity depends on both djy;ti01 and m;piziar, and often at
least one of these will be high. Observe that m;,;1q is always > n, since the inital graph is weakly
connected.

1.1.2 The Swamping Algorithm

As we mentioned above, the Flooding algorithm is used by Internet routers today. However the
Internet routers are in fact designed with the capability of opening connections to any machine they
know about, not just machines in the “initial set.” Although this capability is not currently being
used in the context of the Internet, it is available in case future algorithms require it.

The Swamping algorithm is identical to the Flooding algorithm except that machines may now open
connections with all their current neighbors, not just their initial neighbors. Also since the neighbor
sets change, all of the current neighbor set is transfered, not just the updates. That is, a machine v
now sends 7 (v) to every machine in 7 (v), instead of only sending to its initial set of neighbors.

Figure 2: (i) Before the Random Pointer Jump. Node A chooses at random one of its neighbors. Here
the chosen neighbor is labeled B. (ii) After the Random Pointer Jump. Node B has passed to node A
all of its neighbors, and now A also points to them. The newly formed edges are shown with dashed
lines.

The advantage of the Swamping algorithm is that the graph always converges to a complete graph
in O(logn) steps, irrespective of the initial configuration.

The disadvantage of the Swamping algorithm is that the network communication complexity is
increased. The pointer communication complexity of the Swamping algorithm is (n?), since during
the last round, when the graph is almost complete, each of the n machines sends each of its n pointers
to each of its n neighbors. The connection communication complexity of the Swamping algorithm
is (n?) since during the last round, when the graph is almost complete, each of n machines makes
connections with each of its n neighbors.

The bottom line is that the Swamping algorithm is very fast (only O(log n) rounds), but this speed
is obtained at the cost of wasted communication where many machines are being told of machines
they already know about.

1.1.3 The Random Pointer Jump Algorithm

The disadvantage of the Swamping algorithm is that the communication complexity grows quickly.
To reduce the communication complexity one might consider having each machine communicate with
only one randomly-chosen neighbor during each round.

The Random Pointer Jump Algorithm works as follows: In each round, each machine v contacts
a random neighbor u € ?(v). The chosen neighbor u then sends 7 (u) to v, who then merges 7 (u)
with 7 (v). An example of the Random Pointer Jump operation is given in Figure 2. Note that this
operation corresponds to the classical pointer jump operation, commonly used in parallel algorithm
design.

The Random Pointer Jump Algorithm can only be applied to strongly connected networks (i.e.,
there must exist a path between every pair of machines), because otherise the graph will never converge
to a complete graph. Consider for example the graph with two nodes and a single directed edge between
them: the remaining edge cannot be formed.

Given that the graph is strongly connected, the Random Pointer Jump might seem like a good idea.
For example a ring of n nodes converges to a complete graph in O(log n) rounds with high probability
and the total connection communication complexity is only O(nlogn), since there are logn rounds
during which each of n machines opens up one connection.

Interestingly, it turns out that this algorithm is not a good choice — even for strongly connected
graphs. Figure 3 gives an example of a graph that is strongly connected and requires, with high
probability ©(n) rounds to converge to a complete graph.

0]

Figure 3: (i) A strongly connected graph with n nodes that takes time Q(n) to converge to a complete
graph using the random pointer jump local query. The “center” of the graph is a complete graph on
n/2 nodes. Each node in the ring around the center is connected to every node in the central clique.
There is a single node in the clique that points out to a single node on the ring - therefore making the
graph strongly connected.

Claim 1 With high probability, the graph in figure 8 requires 2(n) time to converge to a complete
graph using the random jump local query.

Proof: Omitted for brevity. [

1.2 Owur Algorithm — Name-Dropper

The Name-Dropper algorithm looks very similar to the Random Pointer Jump algorithm presented in
the previous section.

The Name-Dropper algorithm works as follows: During each round, each machine v transmits 7 (v)
to one, randomly chosen neighbor. A machine u that receives 7 (v) merges ? (v) with 7 (u) as in the
previous algorithms. Figure 4 illustrates one connection in the Name-Dropper algorithm.?

In Section 2 we will prove that Name-Dropper terminates in O(log? n) rounds with high probability
whereas the random pointer jump algorithm can take Q(n) rounds. As a consequence, we will also
conclude that the network communication complexity of Name-Dropper is very low: The connection
communication complexity is O(nlog?n) and the pointer communication complexity is O(n?log? n).
All these bounds are within polylogarithmic factors of optimal.

The Name-Dropper algorithm has been implemented within the Laboratory of Computer Science
at MIT as part of a project to build a large-scale distributed cache. The project enables certain
machines on the Internet to cooperate in caching information. In order for these machines to cooperate
they must first locate each other — this is where the Name-Dropper resource discovery algorithm is
used. The Name-Dropper algorithm has been licensed to Akamai Technologies, which is building an
Internet-wide distributed caching system.

*Name-Dropper derives its name from the following social behavior commonly called “name dropping.” A newcomer
approaches a group of people and introduces himself. During the ensuing conversation, the newcomer inserts into the
conversation all the names of the people he knows, usually in the belief that he will profit from his associations, however
this aspect of the social behavior is irrelevant to our algorithm :)

1.3 Previous Work

The Flooding algorithm which we describe in Section 1.1.1 is used today by routers on the Internet,
see the Internet request for comments number 1583 [7].

Communication and broadcast by local queries has been extensively studied under the name “gos-
siping” [6, 4, 2, 9]. The “classical” gossiping problem assumes that either all machines know about
each other, or that there is a fixed communication network. Gossiping is used to broadcast informa-
tion from every machine to every machine. In [6], a survey of general lower bounds on the number
of connections that need to be made to broadcast information from every machine to every other
machine can be found. In addition, [6] describes tight upper bounds for gossiping on fixed specific
communication networks.

In contrast to the classical gossiping problem, we address the problem of broadcasting in networks
where machines may not initially know about each other. Our results show that if we allow machines
to learn about other machines during the gossip process, then gossiping can be done efficiently starting
from any weakly connected graph.

Gossip type algorithms have been used in various practical distributed systems and algorithms
[1, 3, 5, 9, 8, 10]. For example, in [1, 3], gossiping is used to maintain consistency in a distributed
replicated database. Recently [10], gossiping has been used to gather information about failures in a
network of machines. Most of these gossiping algorithms assume that all the machines on the network
are already aware of each other, and that information needs to be broadcast from one or more of the
machine to the others. This broadcast is carried out by an algorithm similar to the Name-Dropper:
choose a random neighbor and tell him your information.

In [10], it is assumed for simplicity that only a single machine gossips at every round, and the
authors give empirical evidence that information is propagated to all machines in linear time. Our
analysis proves that even if machines are not aware of each other at the start, after O(log?n) parallel
rounds of gossiping, information has propagated to the whole network.

2 Performance Analysis of Name-Dropper
The main theorem in this paper is as follows:

Theorem 2 Let G be any weakly connected directed graph on n vertices. Then, after O(log?n) rounds
of the Name-Dropper algorithm, the graph evolves into a complete graph with probability greater than

1
-~y

Observe that there is a lower bound of logn steps for any resource discovery algorithm since the
diameter of the graph can at most halve with every round. We conjecture that this lower bound can
be achieved with high probability using the Name-Dropper algorithm; however we have not been able
to find a proof nor a counterexample to this conjecture.

As a corollary to Theorem 2, we obtain an upper bound on the network communication complexity
required by the Name-Dropper algorithm.

Corollary 1 The connection communication complexity of Name-Dropper is O(nlog2 n). The pointer
communication complexity of the Name-Dropper algorithm is O(n?log?n).

Proof: With respect to connection communication complexity, during each round, each of n machines
only makes one connection, and there are O(log?n) rounds.

With respect to pointer communication complexity, each round may require each machine to
transfer O(n) pointers. Thus the pointer communication complexity is upper bounded by n? times

O
oF
O

()

Figure 4: (i) Before Name-Dropper. Node A chooses a random neighbor, here the neighbor is labeled
by B. (ii) After one round of the Name-Dropper algorithm. A has passed to B all of its neighbors
and B has added edges to these neighbors. In addition, B learns about A. The edges added to the
graph are dashed.

the number of rounds. n

The rest of this section is devoted to proving Theorem 2. We begin with an overview of the proof.

We break the evolution of the graph into stages that are each O(logn) rounds long. We then
show that, with high probability, the distance between every two nodes (measured after undirecting
the edges) goes down by a constant factor every stage. Therefore, after O(logn) stages, the graph is
complete since the distance between every two nodes is one with high probability.

The main step in showing that a stage is successful (namely that the distance between every two
nodes goes down by a constant factor) is to show that every node on a shortest path makes a “pointer
jump” with high probability. More specifically, if v — u — w is a subsequence of a shortest path,
then we show that after O(logn) rounds, v has an edge to w with high probability.

In fact,we’ll show that ewvery triple v — u — w has a very good chance of making a pointer
jump within O(logn) rounds. Then we’re done by the following argument: Pick one shortest path
between each of the n? pairs of nodes. Each of these shortest paths has at most n triples. Thus we
have n? triples which we care about, and each of these makes a pointer jump with probability 1 — #,
where ¢ is a constant. Assuming ¢ is high enough (in this case > 4), then all the n? triples will make
a pointer jump with probability at least 1 — nl_l

We will use the above type of union-bound argument repeatedly in our analysis. To avoid extensive
notation we will always denote the above constant by ¢, however it is important to realize that each
time we use this type of argument the constant ¢ needs to be chosen appropriately.

We now prove Theorem 2:

Let G = (V, E) be the graph. We abuse notation and always denote the edge set of the graph
by E, although it may increase at every step. A directed edge from u to v is denoted by (u,v). The
following lemma is the main step in proving Theorem 2.

Lemma 2.1 Given any u,v,w € V such that (w,u) € E and (w,v) € E. Then for any constant c,
with probability greater than 1 — ﬁ after O(clogn) steps of the Name-Dropper algorithm we have
(u,v) € E and (v,u) € E.

Figure 5 shows the setup of Lemma 2.1.

For now we simply assume Lemma 2.1 to be true and continue with our proof of Theorem 2. Our
original graph G = (V. E) is weakly connected. As a first step, we will prove that the graph will
become strongly connected after O(logn) steps of the name dropper algorithm. In fact we will prove
something stronger, namely that for every edge in F, an edge in the opposite direction will be created.

(i) (if)
Figure 5: (i) The setup of the nodes u, v, and w in Lemma 2.1. (ii) The configuration guaranteed to
occur with high probability by Lemma 2.1 after O(logn) steps of the Name-Dropper algorithm.

Lemma 2.2 If (u,v) € E, then with probability at least 1 — ﬁ, after O(clogn) steps the edge
(v,u) € E.

Proof: We will apply Lemma 2.1. Suppose there exists a node w € V such that (w,u) € E and
(w,v) € E. In this case, Lemma 2.1 immediately applies and we are done. Now suppose there does
not exist such a node w. In this case, either u contacts v directly in the next round, forming the edge
(v,u), or else u contacts some other node w in the next round. In the latter case, w will now get a
pointer back to u and a pointer to all of u’s neighbors, including v. At this point, w will satisfy the
condition for Lemma 2.1. [

So by running Name-Dropper for O(clogn) steps, the graph becomes strongly connected with
1

probability at least 1 — —5r;. After this first stage, we divide the evolution of the graph into stages
consisting of O(logn) rounds each. At the beginning of each stage we measure the distance between
each pair of nodes (note that since the graph is already strongly connected, there is a path between
each pair of nodes). Our goal is to show that after O(clog n) rounds, or one stage, the distance between
each pair of nodes is at most half of what it was at the beginning of the stage, with probability 1— ﬁ.
We will focus on one particular pair of nodes v and v and show that the above statement is true for
that pair. Then, since there are only O(n?) paths, we can use a union bound to show that all the
paths shrink by the desired amount with probability greater than 1 — ﬁ.

Let w — wy — we —> ... —> v be the shortest path between v and v at the start of a stage.
We show that with probability greater than 1 — ﬁ every node on the path executes a “pointer
jump” after O(clogn) steps, for every constant ¢. We focus on one particular node, s, in the path,
and prove that it does a pointer jump with probability at least 1 — ﬁ after O(clogn) rounds. Since
there are at most n nodes in the path, a union bound suffices to show the result.

Let s — t — 2z be three nodes in the path. We first invoke Lemma 2.2 to show that after
O(clogn) rounds, with probability greater than 1 — ﬁ, the edge (t, s) is added to the graph. Now
we have exactly the configuration of Lemma 2.1, and thus the edge (s, z) is added to the graph with
probability greater than 1 — ﬁ after O(clogn) steps.

Since there can be at most O(log n) stages where distances go down by a constant factor, the graph
must be complete with probability greater than 1 — ﬁ in O(log?n) steps.

The only thing that remains is proving Lemma 2.1.
Proof:[Proof of Lemma 2.1] Let A denote the set of nodes that have edges to both nodes u and v.
The set A is not empty by the assumption of the lemma, w € A. By symmetry it suffices to focus on
one of the edges (u,v), (v,u), say (u,v). The overview of the proof is as follows: We will show that
during every round one of two things are true: Either

1. The probability that the edge (u,v) is formed is at least some constant, or
2. The probability that the set A grows by some constant factor is at least some constant.

This suffices to prove the lemma since (2) can happen at most O(logn) times and if (1) happens
O(clogn) times then the probability that the edge (u,v) is formed is at least 1 — ﬁ.

Observe that the only way that the edge (u,v) can be formed is if some node in A contacts u. Let
d; denote the degree of node 7 in A. Then,

Pr{edge (u,v) is formed} = 1-— Pr{edge (u,v) is not formed}

1
- toen(-3)

> 1 ¢ Lieadm

So, if the probability that (u,v) is formed is less than 1 — 67%, then:

1
E — <
ieAdi

=

This in turn implies that at least half of the nodes in A have degree greater than 2|A|. We now
show this last statement in turn implies that the size of A will increase by a constant factor with
constant probability at the next step. In particular we show that at least % nodes that were not in
A are contacted by a node in A with probability at least %

Denote by the “special set” the set of ‘Qﬂ nodes in A that have degree at least 2|A|. Each of the
nodes in the special set point to at least |A| nodes that are not in A. Thus, each node in the special
set contacts a node not in A that no other node in the special set contacts with probability at least
%. Thus, the ezpected number of new nodes in A is at least "21‘ . % = "gi.

We now use a “bounded Markov argument” to show that the probability that the number of new

nodes in A is less than % is less than %.
Bounded Markov Argument Let X be a random variable that is bounded from below by 0 and

from above by U. That is, 0 < X < U. Then for ¢t < U,

U E{X}

Pr{X <t} <
X st s =5

Thus by the bounded Markov argument we see that

Al 14

. [A] [—
Pr {Number of new nodes in 4 < 6 } < - % 15

We have shown that at every round either there is a constant probability that the edge (u,v)
is formed or a constant probability that the set A grows by a constant factor. A simple Chernoff
argument will now show that if an event has a constant probability at every step of occurring and
there is independence between the steps then after O(clogn) steps the event will happen O(logn)
times with probability greater than 1 — ﬁ.

This concludes the proof of Lemma 2.1 and thus the proof of Theorem 2 as well. [

3 Conclusion and Future Work

In this paper we consider the problem of resource discovery in a distributed network and propose
several natural and simple distributed algorithms to solve the problem. All of our algorithms involve
machines making local queries to one or more neighboring machines, whereby a machine transfers its
neighbor list, or part thereof to a neighboring machine. Our analysis shows that the Name-Dropper
algorithm achieves near-optimal performance both with respect to time complexity and with respect
to the network communication complexity.

One thing that makes this result peculiar is that the Name-Dropper algorithm is almost identical
to the Random Pointer Jump algorithm, however the worst-case performance of the Random Pointer
Jump algorithm is very poor (Q2(n) rounds are required by Random Pointer Jump as compared with
O(log2 n) rounds for Name-Dropper). In both the Name-Dropper and the Random Pointer Jump
algorithms, during each round, each machine a chooses one, random machine b from its neighbor list
at random. In the case of Name-Dropper, a sends to b a pointer to each machine on a’s neighbor list
(which includes itself). In the case of Random Pointer Jump, b sends to a a pointer to each machine
on b’s neighbor list.

As mentioned earlier, the Name-Dropper algorithm is currently being implemented within the
Laboratory of Computer Science at the Massachusetts Institute of Technology as part of a project
to build a large-scale distributed cache, whereby certain machines on the Internet can cooperate in
caching information. In order for these machines to cooperate they must first locate each other, which
is where the Name-Dropper resource discovery algorithm is used. The Name-Dropper algorithm has
been licensed to an LCS startup company, Akamai Technologies, which is building an Internet-wide
distributed caching system.

There are many issues which we have not explored in this paper. For one thing, our analysis has
assumed that the network is static, i.e., that there are no machines being added or removed while the
algorithm is running. In reality, a machine can unexpectedly crash and be brought back online, can
change location, or can become temporarily unavailable. Such circumstances are likely to occur in large
systems with no centralized control, and resource discovery algorithms should be capable of operating
in such environments. Currently the time for one or more new machines to be fully incorporated into
the network is the running time of the algorithm, but that assumes that no new machines are added
to the network during the time the algorithm is running. We have some preliminary results for the
running time of the algorithm in the presence of ongoing births. However we are finding the presence
of deaths more difficult to analyze.

A second, somewhat related problem, is the question of how the cooperating machines know that
they have all discovered each other (and can thus stop running the algorithm). In particular, there
might be more machines out there which just haven not been discovered yet. Unfortunately, knowing
when to stop depends on first knowing the number of machines which are out there, which is a related
problem of interest proposed by Lipton [Personal communication, 1998].

Thirdly, one weakness of our current model is that it allows for the possibility that in some given
round, many machines in the network might all choose to contact the same one particular host. In
reality that host could only maintain a small number of simultaneous connections and would have
to deny access to all the other machines trying to contact it. Even under those more stringent
circumstances, however, we conjecture that the Name-Dropper algorithm would still converge to a
complete graph in O(log?n) rounds.

Finally, an interesting open problem is whether the running time of the Name-Dropper algorithm
can be shown to be O(log n) rounds, or whether the 2(log n) lower bound on the running time of the
Name-Dropper algorithm can be raised.

10

References

1]

[10]

Divyakant Agrawal, Amr El Abbadi, and R. Steinke. Epidemic algorithms in replicated databases. In Pro-
ceedings of the Sizteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 161 172, Tucson, Arizona, 12 15 May 1997.

Susan Assmann and Daniel Kleitman. The number of rounds needed to exchange information within a
graph. SIAM Discrete Applied Math, 6:117-125, 1983.

Alan J. Demers, Daniel H. Greene, Carl Hauser, Wes Irish, and John Larson. Epidemic algorithms for
replicated database maintenance. In Proceedings of the Sizth Annual ACM Symposium on Principles of
Distributed Computing, pages 1 12, Vancouver, British Columbia, Canada, 10 12 August 1987.

S. Even and B. Monien. On the number of rounds necessary to disseminate information. In Proceedings of
the ACM Symposium on Parallel Algorithms and Architectures, pages 261-266, 1989.

Mark Hayden and Kenneth Birman. Probabilistic broadcast. Cornell CS Technical Report TR96-1606,
1998.

Sandra Hedetniemi, Stephen Hedetniemi, and Arthur Liestman. A survey of gossiping and broadcasting in
communication networks. Networks, 18:319-349, 1988.

John Moy. Ospf version 2, rfc 1583. Available from
http://www.dsi.unive.it/Connected/RFC/1583/index.html, 1994.

Derek C. Oppen and Yogen K. Dalal. The clearinghouse: A decentralized agent for locating named objects
in a distributed environment. ACM Transactions on Office Information Systems, 1(3):230 253, July 1983.

Andrzej Pelc. Fault-tolerant broadcasting and gossiping in communication. Networks, 28(3):143-156,
October 1996.

Robbert van Renesse, Yaron Minsky, and Mark Hayden. A gossip-style failure detector. 1998.

11

