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Abstract

The problem of task assignment in a distributed server syseconsidered, where short jobs are
separated from long jobs, but short jobs may be run in the Johgpartition if it is idle (cycle
stealing). Jobs are assumed to be non-preemptible. Newitpes are presented for analyzing this
problem, both in the case of immediate dispatch of jobs tésharsd in the case of a central queue.
The analysis is approximate, but can be made as close to&xdetsired. Analysis is validated via
simulation. Results of the analysis show that cycle stgalan reduce mean response time for short
jobs by orders of magnitude, while long jobs are only sligipinalized.
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1 Introduction

Distributed server model

In recent years, distributed servers have become incgigsiommon because they allow for in-
creased computing power while being cost-effective andlyessalable. In a distributed server
system, jobs (tasks) arrive and must each be dispatchecttlerne of several host machines for
processing. The rule for assigning jobs to host machinesasvk as thdask assignment policy
The choice of the task assignment policy has a significaetefin the performance perceived by
users. Designing a distributed server system thus ofteresawown to choosing the “best” possible
task assignment policy for the given model and user requingsn While devising up new task as-
signment policies is easy, analyzing even the simplestieslican prove to be very difficult: Many
of the long-standing open questions in queueing theoryhevthe performance analysis of task
assignment policies.

In this paper we consider thgarticular modelof a distributed server system in which the exe-
cution of jobs isnon-preemptivérun-to-completion), i.e., the execution of a job can’t berrupted
and subsequently resumed. We consider both the case wherarflispatched immediatelypon
arrival to one of the host machines for processing, and tke edere jobs are held incentral
queueuntil requested by a host machine.

Related applications

The model assumptions above are consistent with thoseidatead stochastic models used to study
a wide range of high-volume Web sites [13, 25]. These papslyze the performance of special
event Web sites (1998 Winter Olympics) governed by IBM'sWak Dispatcher product [12], a
high-speed router which immediately routes each incomiredp \Wequests to one of several host
servers. Immediate dispatching of jobs is important in $kising for scalability and efficiency; the
router must not become a bottleneck.

Our model is also motivated by servers for high-performapaerallel computing. For these
distributed servers, each host machine is usually a mrdttgssor machine (e.g., an eight-processor
Cray J90) with a single memory, and each job submitted isalpijob, intended to run on a single
host. Typically, in the case of batch jolusiejob at a time (or a small number of jobs) occupies each
host machine. Jobs may be held in a central queue until ahoeshdy for the job, or the jobs might
be dispatched to hosts and queued at the hosts. In suchgsettia typical for users to submit an
upper bound on their job’s CPU requirement in seconds; thésjdilled if it exceeds this estimate.
Examples of distributed server systems that fit our modegjaen in Table 1.

Our model has also been used for other applications requidalable systems, such as depart-
mental computers within an organization [22] or telecomitation systems with heterogeneous
servers [5]. It has also been studied simply as a purely ¢tieaf model [24].

Previous work on Task Assignment

The analysis of task assignment policies has been the tbpiany papers. Below we provide a
brief overview. We limit our discussion to task assignmenmon-preemptiveystems.

By far the most common task assignment policy use®asind- Robi n [13, 25, 7]. The
prevalence for this policy stems from RR-DNS, [6] wherebyg task assignment at a Web site is



Name Location No. Hosts| Host Machine
Xolas [18] MIT Lab for Computer Science 8 8-processor Ultra HPC 5000 SM
Pleiades [17] MIT Lab for Computer Science 4-processor Alpha 21164 machir

J90 distributed server NASA Ames Research Lab

8-processor Cray J90 machine

JOO0 distributed server [1] Pittsburgh Supercomputing Cent

8-processor Cray J90 machine

C90 distributed server [2] NASA Ames Research Lab

NN BN

U

e

16-processor Cray C90 machine

Table 1:Examples of distributed servers described by the architatodel of this paper. The schedulers
used are Load-Leveler, LSF, PBS, or NQS. These schedutgcalty only support run-to-completion (non-
preemptive) for several reasons: First, the memory reguénts of jobs tend to be huge, making it very
expensive to swap out a job’s memory [9]. Thus timesharirtgiden jobs only makes sense if all the jobs
being timeshared fit within the memory of the host, which igkely. Also, many operating systems that
enable timesharing for single-processor jobs do not ftatfi preemption among several processors in a
coordinated fashion [21].

done based on the IP addresses chosen by the Domain Name $asound- Robi n policy is
simple, but it neither maximizes utilization of the hostsr minimizes response times.

In the case where the size of jobs are not known and we requireediate dispatch of jobs to
hosts, then th8hor t est - Queue task assignment policy —where incoming jobs are immedgiatel
dispatched to the host with the fewest number of jobs — has sle@vn to be optimal when the job
size distribution iexponentialand the arrival process is Poisson [28]. Here optimalityeneéd
as maximizing the discounted number of jobs that completedme fixed timet. Ephremides,
Varaiya, and Walrand [8] showed th@hor t est - Queue also minimizes the expected total time
for the completion of all jobs arriving by some fixed timeinder an exponential job size distribution
and arbitrary arrival process.

When a centralized queue is allowed at the dispatcheitlé k policy been proven to mini-
mize mean response time when job processing requirememis ftom an exponential distribution,
or one with Increasing Failure Rate [29]. (Note: throughitiig paper we will use the termmso-
cessing requiremenservice demandndsizeinterchangeably.) Thel G k policy holds all jobs at
the dispatcher unit in a single FCFS queue, and only whentadfiee does it receive the next job.
This policy maximizes utilization of the host machines réiy helping to minimize mean response
time. TheM G k policy is provably identical to théeast - Wor k- Rermai ni ng policy which
sends each job to the host with the least total remaining Wdrk

While policies likeM G k andShor t est - Queue perform well underexponentialjob size
distributions, they perform poorly when the job size disttion has higher variability. In such cases,
it has been shown that tiigedi cat ed policy far outperforms all these other policies with regpec
to minimizing mean response time. In tBedi cat ed policy, for example, some hosts may be
designated as the “short hosts” and others as the “long.h&tert jobs are always sent to the short
hosts and long jobs to the long hosts. The superiority ofdei cat ed policy is demonstrated
analytically in [11], and shown empirically on several ga®f supercomputing workloads in [23].
The Dedi cat ed policy is also popular in practice (e.g. Cornell Theory @enhtvhere different
host machines have different duration limitations: 0-0@rh1/2 — 2 hours, 2 —4 hours, 4 — 8 hours,
etc., and users must specify an estimated required seedeerement for each job. The intuition
behind theDedi cat ed policy is that for the case of high-variability job size disutions, it is
important to isolate short jobs from the long jobs, as wgitkehind the long jobs is very costly.

Even when the job size is not known, it has been demonstraggdatpolicy very similar to



Dedi cat ed, known as th& AGS policy (Task Assignment by Guessing Size) works almost dks we
when job sizes have high variability. Likeedi cat ed, the TAGS policy significantly outperforms
other policies that do not segregate jobs by size [10].

Motivation for Cycle Stealing

While Dedi cat ed assignment may be preferable to e k andShor t est - Queue policies
for highly variable job sizes, it is clearlgot optimal. One problem is thddedi cat ed leads to
situations where the servers are not fully utilized. Fomegle, there may be five consecutive short
jobs, with no long job, resulting in an idle long host. Thie&pecially likely in common computer
workloads, where there are many short jobs and just a fewleery jobs, resulting in longer idle
periods between the arrivals of long jobs.

Ideally one would like a policy which combines the variarcating benefit of th&®edi cat ed
policy with the high-utilization property o G k and Shor t est - Queue. We would like to
segregate jobs by size (short jobs go to short host, long gobt long host) so as to provide
isolation for short jobs. However during times when the |gotghost is free, we would like tsteal
the long host’s idle cycles and use those to serve excessjeher This would make our system
more efficient not only by decreasing the mean response tfrekast jobs, but also by enlarging
the stability regionof the overall system. Specifically, for highly unbalancgdtems, where the
short host is more heavily loaded, granting the short johgdid access to the long partition may be
the difference between an overloaded system and a wellbdrane. (We discuss this in greater
detail in Section 5.) Importantly, the short jobs shouldyamde the long host when that hostrse,
so that we don’starvethe long jobs, or cause them undue delay. Because jobs apeamohptible,
there will still be some penalty to the long jobs, becauseng fob may arrive to find a short job
serving at the long host, causing the long job to have to veditrid that short job.

Two cycle stealing algorithms

We propose two cycle stealing algorithms:

Cycle stealing with Immediate Dispatch CS- | nmredi at e- Di spat ch): In this algorithm, all
jobs are immediately dispatched to a host upon arrival. 8 ea designated short job host
and a designated long job host. An arriving long job is alwdigpatched to the long job
host. An arriving short job first checks to see if the long jaistis idle. If so, the short job is
dispatched to the long job host. If, however, the long jolt aot idle (either it's working
on a long job or a short job), then the arriving short job igdished to the short job host.
Jobs at a host are serviced in FCFS order. T8el mmedi at e- Di spat ch algorithm is
shown in Figure 1.

The CS- | medi at e- Di spat ch algorithm is an improvement ovéedi cat ed, since
a fraction of the arrival stream of short jobs can be offloattethe long host, while only
slightly penalizing long jobs. However, only those sholigarriving after the long host has
entered an idle period can obtain this benefit. If a short jolves just before the long host
enters an idle period, the short job is not eligible for rungnduring the idle partition. This is
the motivation behind our next cycle stealing algorithm.



Cycle stealing with Central Queue CS- Cent r al - Queue): In this algorithm, all jobs are held
in a central queue. Whenever the short job host becomestigleks the first short job in the
central queue to run. Whenever the long job host becomestigieks the first long job in the
central queue to run. However, if there is no long job, thelbast picks the first short job in
the central queue. A minor point: Whereadd8- | mredi at e- Di spat ch, the short and
long hosts are designated in advanceC8 Cent r al - Queue we allow renaming of hosts
—i.e., ifthe long host is working on a short job, and the shodt is idle, then the long host is
renamed the short host and vice versa. ThugSal mredi at e- Di spat ch, there could
be one short in front of one long job in the system with an idleo¢t) server, while this could
not happen unde€S- Cent r al - Queue. TheCS- Cent r al - Queue algorithm is shown
in Figure 2.

Short server

Short jobs first chec
_» iflong server is idle
If so, go there.

Else, come here.

N

Dispatche
Long server

Long jobs always
™ dispatched here.

Figure 1: TheCS- | mmedi at e- Di spat ch algorithm.

Short server

When free,
grab short jot

Long server

When free,
grab long job.
If no long,

grab short job

Figure 2: TheCS- Cent r al - Queue algorithm.

Removing the distinction between short and long

It is important to realize that the terms “short” and “long’eanot meant to necessarily indicate
the length of the job. There is nothing in our analysis thaunes that “short” jobs be shorter



than “long” jobs. These names are simply notational cormes to indicate which jobs/host are
the “donors” (providers of idle cycles) and which jobs/hast the “benefactors” (beneficiaries of
the idle cycles). In fact, throughout we will consider thizeses: shorts shorter than longs; shorts
indistinguishable from longs; and ( pathologically) skddnger than longs. We will find that the
“shorts” benefit in all three cases. The “longs” suffer diftexcept in the pathological case where
they could get stuck waiting behind a “short” job that is nob at all. In this case the penalty to
the “long” jobs is more significant, but still is dominated tye benefits to the “short” jobs.

Difficulty of analysis and new analytic approaches

The above cycle stealing idea is certainly not new. Politiles CS- | nmedi at e- Di spat ch
andCS- Cent r al - Queue, as well as others of a similar flavor, have been suggesteduintiess
papers. However until now the analysis of such policies hadee researchers. Observe that even
for simplest instance of our problem —where job arrivalsRoisson, short jobs are drawn i.i.d. from
one exponential distribution and long jobs are drawn ifrdm another exponential distribution —
the continuous-time Markov chain, while relatively easyléscribe, is mathematically intractable.
This is due to the fact that the stochastic process growstglfirin two dimensions and it contains
no structure that can be exploited in order to obtain an ezalttion. While truncation of the
Markov chain is possible, the errors that are introduceddgmpiing portions of the state space
(infinite in two dimensions) can be quite significant, espkgiat higher traffic intensities. Thus
truncation is neither sufficiently accurate nor robust for purposes.

This paper provides the first analysis (to our knowledgehefdS- | nedi at e- Di spat ch
andCS- Cent r al - Queue policies. In both cases, the analysis is approximate, huteamade
as close to exact as desired. Our analysis assumes a Paisgalhpsocess for short and long jobs.
For both algorithms, the service requirements of the shaitlang jobs are assumed to be drawn
i.i.d. from any general phase-type distribution. Our apptes for analyzin€S- | mredi at e-

Di spat chandCS- Cent r al - Queue are very different, but they do share one common element:
busy period approximation.

ForCS- | mmedi at e- Di spat ch, we decompose the stochastic process representing the sys-
tem into two processes, one corresponding to the short hdstrze corresponding to the long host.
We solve the stochastic process corresponding to the losigeixactly. We then derive the impact
of the long host on the short host and use this to determinagheopriate stochastic process for
the short host, which we then solve. The only approximaties in the impact of the long host's
busy period on the short host process. This approximatiarbeanade as precise as desired, since
the long host’s busy period can be estimated up to any nunflmoments. In this paper we match
three moments and verify via simulation that this is suffitién Section 6.

ForCS- Cent r al - Queue, the above technique of decomposing stochastic procesdedea
riving the impact of one on the other does not work. Here weeappo need a Markov chain that
is infinite in two dimensions, since we must keep track of kbt number of short jobs and the
number of long jobs in the system. In fact, even in the caseravibort and long jobs are in-
distinguishable, th€S- Cent r al - Queue policy becomes an M/G/2/FCFS policy, which is not
analytically tractable. Our solution is to instead use theditions between states to keep track of
the relevant information concerning the delay of long jalmgking our Markov chain infinite in
only one dimension. This is done by modeling these tramstes certain types of busy periods, for
which we can derive any number of moments. We again matchrgtdtfree moments of the busy



periods, and verify that this is sufficient via simulation Section 6.)
For both the above cycle stealing algorithms we also detadgilgy conditions in Section 5.

Outline

Section 2 presents preliminary notation. The analysi€®f1 nrredi at e- Di spat ch is given

in Section 3 and the analysis G5- Cent r al - Queue is given in Section 4. Section 5 presents
stability criteria for both cycle stealing algorithms. 8en 6 validates the analysis of both algo-
rithms against simulation and limiting cases. Finally st shows the results of the analysis,
assessing the improvement of cycle stealing @exdi cat ed assignment, while also comparing
the two cycle stealing algorithms in terms of their benefghort jobs and penalty to long jobs.

2 Notation

Throughout we assume that short (respectively, long) jokigeaaccording to a Poisson process
with rate Ag (respectively,\;). The size, a.k.a. service requirement, of short jobs éesely,
long jobs) is denoted by the random variable (respectively,X;). Thei*» moment of the size
of a short (respectively, long) job is therefor$ X ] (respectively,E[X}]). For readability, we
will usually start out by showing the case where job sizeseamonentially distributed, and will
useug (respectivelyur) to denote the service rate of short (respectively, long jovhereus =
1/E[Xg]landu, = 1/E[X]. We definepg (respectivelyp; ) to be the load created by short jobs
(respectively, long jobs), wheres = \s - E[Xg] andp;, = Ar, - E[X]. We assume that the
first three moments of the busy periods are finite, and theaguare stable. We discuss stability in
greater depth in Section 5.

The Laplace Transforni(s) of a non-negative Lebesgue integrable functfgr) (on the pos-
itive real axis) is defined as

oo
Ly (s) =aist / e SLf(t)dt, s > 0.
J0

The Laplace Transform of a continuous RX/, often denoted byX (s) refers to the Laplace trans-
form Ly (s), of its pdf f(z), in which casel(s) = E[e **].

3 Cycle Stealing under Immediate Dispatch

The CS- | mmedi at e- Di spat ch algorithm is shown in Figure 1. Und&S- | nmredi at e-

Di spat ch, all long jobs are immediately dispatched to the long hostnugrrival. When a short
job arrives, it is dispatched to the long host if that hostdis.i Otherwise, it is dispatched to the
short host.

Our analytic approach involves a three step process. Thet@sis to derive the mean response
times for the long jobs only. We do this in two different wafysst using Matrix Geometric methods
and then using virtual waiting time analysis. We confirm thath methods yield the same result.

Figure 3(a) depicts a Markov chain describing the long hostler the assumption that job
sizes are exponentially-distributed. Each state reptegba number of long jobs and the number
of short jobs. Figure 3(b) is the same chain generalizedd@#se of phase-type job sizes (a two-
phase Coxian is shown). Observe that the number of shorgjdbe long host is either 0 or 1. Long

6
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Figure 3: Markov chain for long host. (a) Shown where job siaee exponentially-distributed. (b)
Shown where job sizes have a phase-type distribution (fnasg Coxian).

jobs arrive with rate\;, at every state. Short jobs arrive only when the long hostlés id/e solve
the chain in Figure 3(b) to obtain the steady-state mean sumilong jobs exactly using Matrix
Geometric methods. We then apply Little’s Law [19] to obtdia mean response time of long jobs.

The Matrix Geometric method is due to Neuts [20] and desdr#édso in [16]. It is a compact
and fast method for solving QBD (quasi-birth-death) Markbrains which are infinite in only one
dimension, where the chain repeats itself after some pdihe repeating portion is represented
as powers of a generator matrix which can be added, as oneaagielsmetric series, to produce
a single matrix. Every plot in this paper which used MatrixoBetric analysis (to solve multiple
instances with different parameter values) was produc#dma couple of seconds using the Matlab
6 environment.

An alternative way to deduce the mean response time for tiggjtbs is to use virtual waiting
time analysis. We include this analysis in the Appendix. oBelve simply state its resultz'(")
represents the response time of long jobs.

- s+ g — Xg(s)A —
T = P TS ),
s— AL+ Xr(s)Ar
E[X? E[X?
E[T(TJ} — PL [ L] + PSs [ S] —|—E[XL],
1—-pr QE[XL} 1—|—p52E[X5}

where
1 —pr

1+ ps’
represents the fraction of time that the long host is idle.

T —



The second step is to derive all moments for the busy and @tieds of the long host, for use in
our analysis of the short host. The long host idle time is agptially-distributed with rata;, + As.
To derive the length of the busy period for the long host, wedni® distinguish between two types
of busy periods: (1) A busy period made up entirely of longsjdhe duration of which we represent
by the r.v.Br,; and (2) A busy period started by one short job followed by zmrmore long jobs,
the duration of which we represent by the Bg,. We then have the following:

Br(s) = Xp(s+Ap—ALBr(s));
BSL(S) = Xs(S—F)\L*)\LBL(S)).

From these transforms we compute the first three momentscbftgpe of busy period as fol-
lows:

E{BL} = El{iXpLL}; E{BSL}:El{iX;L};
E{x?
E{B%} N (1£PL)}3;
B} = b fo s e,
5y _ SM(E{AZ))?  E{Xj}
BB = a0 T
s _ A E{Xs)-3-(E{X7})*  E{X}}
BB = 1y T )
+3>\LE{X%}+E{X§}+>\LE{XS}E{X2}
(1 —pr)* '

To obtain the moments of a general busy period for the long, lbbserve that a busy period is of
type By, with probability As/(As + Ar) and of typeB;, with probability Az, /(As + Az). Hence,
denoting byB the duration of a general busy period, we have

A AL
E{B'} = » f)\LE{Béh} + )\S;ALE{BQ}.

We now construct a phase-type distribution to match as mamyents of the long host’s busy
period as are of interest. Many methods exist for matchingnamis to phase-type distributions:
[14, 4, 15]. We find that simply fitting a two-phase Coxian dligition to the first three moments of
the long host’s busy period works sufficiently well for ourpaoses.

Our last step is to analyze the short host. The arrival rateeashort host is\s only during
times when the long host is busy. When the long host is idéeathival rate at the short host is zero.
To represent the short host, we therefore need a way of eqieg the duration of a busy period
at the long host. Figure 4(a) is a simplified view of the Markdain model of the short host. It
assumes that the job sizes are exponentially-distributeidshows the busy period duration for the
long host is shown as a bold transition markedFigure 4(b) is the Markov chain that we actually
solve for the short host. Here the job sizes are drawn fromoapisase Coxian, used to match the
first three moments of the respective job size distributiiso the length of the busy period for the
long host is matched for the first three moments by a two-pGas@an distribution.



Figure 4: MC for short host. (a) Where job sizes are expoakyilistributed. (b) Where job sizes
are Coxian.

We solve the Markov chain in Figure 4(b) for the number of slmlys at the short host using
Matrix Geometric methods. Then via Little’s Law, we obtane imean response time of small jobs
which serve at the short host. Aggregating short jobs at bogis, we then have by PASTA:

E[ Time for short jobg =
Pr{Long host idlé - E[Xs] 4+ Pr{Long host busy - E[ Time at short hot

Observe that while the mean response time for long jobs istetkee mean response time for short
jobs depends on the accuracy of the approximation of the peggd of the long host. We have
matched the first three moments of the busy period of the low. hGreater accuracy can be
achieved by matching more moments of the busy period, usiniglteer degree Coxian, until in
theory the results are arbitrarily close to the actual gtiast

4 Cycle Stealing under Central Queue

The CS- Cent r al - Queue algorithm is shown in Figure 2. Und@&S- Cent r al - Queue, all
jobs are kept in a central queue in the order they arrive. WWineshort host is free, it grabs the next
short job and runs it. When the long host is free, it grabs t long job and runs it. If there is no
long job, it grabs the next short job.

Observe that the technique we used for soMi®y | medi at e- Di spat ch (where we split
the problem into two chains where one was a function of therdthill not work here. The reason



Notation | Definition

By, Busy period consisting of only long jobs, and started by glsifong job (of sizeX).
E exponential random variable with ratgg
Bg Busy period consisting of only long jobs, and started by glsijob of sizeE.

Bgyo, Busy period consisting of only long jobs, and started by agbize X, + E.

N = Ag | Number of long jobs which arrive during

B 11 Busy period consisting of only long jobs, and started by ayblose size is the sum @f + 1 long jobs.

Table 2:Notation necessary for analyzit@s- Cent r al - Queue

is that the decision of which job the long host takes depemdenowing the exact number of long
and short jobs in the system: There is no way to decomposeysitens into two chains. We will
instead look for asingle Markov chain which represents this system and yet is infinitenly one
dimension.

There will be a lot of notation in this section. We will intnock it as we go along. For the
reader’s convenience, the notation is summarized in Tabl@v.

4.1 Formulating the Markov chain for CS- Cent r al - Queue

In Figure 5(a) we show a chain representi®® Cent r al - Queue. The first entry of each state
denotes the number of small jobs, which ranges from zerditatyy The second entry of each state
denotes the number of long jobs. This is eithér, 1L, or a special state denoted by + 1)L.
The third entry of each state, when present, denotes theofyjpb in service at the long host. The
service time for the long job is assumed to be generallyidiged. For simplicity in specifying
the Markov chain, the service time for the small job is assimeebe exponential, with rateg,
although this is straightforward to generalize.

The logic behind the chain is as follows: Let's start in regih and consider a long arrival.
This causes a transition to region 3, and that long arrieatst long busy period, whose length is
denoted byB;,. We will return to regions 1 or 2 only after tim@;,. During this busy period, many
smalls can arrive. These will only be served at gatesince the long host is occupied by a long job.

Next consider a long arrival into region 2. This causes astti@m into region 5. Before the
long arrival can run, it must first wait for one of the small goto finish, since the small jobs are
occupying both hosts. When one of the small jobs completedpng job will move to occupy that
host (that host will be renamed the long host) and we movegiomet. Thus, we sit in region 5 for
time £ ~ Exp(2us), waiting for one of the small jobs to complete. During tithe N new long
jobs arrive. At the moment one of the short jobs completestheeN + 1 long jobs in the system,
and a long starts service. We now enter a busy period camgisfilong jobs, started by a job of
sizezi]\jl Xg). The length of this busy period is denoted By; ;. At the end of this busy period,
we return to region 1 or 2. During our time in region 4, smadltlga@an of course arrive and depart.
Such small jobs are served with rate since there is a long job occupying one host.

Observe that the only time that the small jobs are servede2sg is when there are zero long
jobs in the system, or when a long job finds that there are@jrgamall jobs serving.

The chain in Figure 5(a) uses two types of busy period triansif denoted by3;, and By 1.
We can derive all the moments of these busy periods and eqirte busy period transitions by a
Coxian distribution. Figure 5(b) is identical to Figure h(except that the busy period transitions
have been replaced by two-phase Coxian distributions, lwhilows us to model the first three
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moments of each busy period. More moments could be modelad ashigher-degree Coxian,
however we will see that three moments provide sufficientiaazy.

There is still one problem: The chain in Figure 5 is not a stMarkov chain. The problem
is that F/, the time required to transition from region 5 to region 4n@ independent 0By 1,
the time required to transition from region 4 to region 1 ofTAis is because the number of long
arrivals duringF, N, is correlated with and with By 1. For Figure 5 to be a Markov chain, we
would need to havé& and By be independent.

To address this problem, we define a new random varidBle, Bg is the length of a busy
period consisting of only long jobs, started by a job of sizeNext defineBr_ ;, to be the length
of a busy period consisting of only long jobs, started by agbbize E + X ;.. Observe that

By, =daist Be + By,

Observe also thaB . ;, represents the total time required to transition from nedido region 1 or
2, and thatBg 1, is exact — the dependencies betwéeand By, are inherent in it.

We could imagine creating a single transition from regioo Begion 1 or 2 of duratioB, ..
This would not suit our needs, however: While it is not diffido compute the moments df5. 1,
and create a Coxian random variable represenfing ;,, using a single transition from region 5 to
region 1 or 2 would not capture the fact that the rate at whichllsjobs are served is initiall@u.g
but laterug.

Therefore we choose instead to exprBss, ;, as a sum of two independent random varialiles
andU where

By, =E+U

Given the moments dBr, ;, and the moments df, we will be able to then derive the moments
of U as follows:
We first write out the following equations, which assumendU are independent:

Bgyr = E+U,
E[Bgyr] = E[E]+ E[U],
E[B}.;) = E[E* +2E[E)E[U]+ E[UY],
E[By,;] = E[E® +3E[E’|E[U] + 3E[E|E[U?] + E[U?].

Next we solve these equations for the moments @is follows:

E[U} = E[BEHJ - E[EL
E[U?] = E[Bj, |~ BE[E’] - 2E[E|E[U],
E[U°] = E[Bj, | - 3E[E®|E[U] - 3E[E|E[U®] - E[E°).

We now find a two-phase Coxian which matches these first thmments ofU. The resulting
Markov chain, shown in Figure 6, is almost identical to Fey&; except that the CoxiaBy 1
random variable has been replaced by the random vartabidereU is defined according to the
above equations and is independenttbf~ Exp(2us). Thus we have a well-defined Markov
Chain. Note: Computationally, performance-wise the clairigure 5 isvirtually identicalto the
chain in Figure 6.
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Reglon 3

\/
Reglon 1
_ Gsa

Region 4

(b)

Figure 5: (a) Chain corresponding t&S- Cent r al - Queue. The notatior:S, j L represents
short jobs andj long jobs. The third field in the state denotes whether a gbbror a long job is

in service at the long host. Light arrows represent expaatmates. Bold arrows represent busy
periods. By, is a busy period consisting of only long jobs, and started bingle long job.By 1 is

a busy period consisting of only long jobs and started\by 1 long jobs, whereV is the number

of long arrivals duringEzp(2us). (b) Expanded version of chain in (a) where busy periods have
been replaced by Coxian distributions.
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Figure 6:(a) Markov chain corresponding 8S- cent r al

Region 3 Ag Ag s

Cosu oy >Csn

Hs
AL B AL L
A .
Region 1 S Region 2
/N A @ o oo
\_/
u AL
Region 4 /\ , boo

@)

- queue. This is identical to the chain

in Figure 5(a), except that the transitioBy_; has been replaced by whereU is independent
of E ~ Exp(2us). (b) Same Markov chain as in (a), but bold transitions haverbeeplaced by

two-phase Coxians matching the first three moments.
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4.2 Deriving the necessary busy periods for the chain

In order to specify the Markov chain, we need to compute tist firee moments aB;, and the
first three moments aB ;. These will in turn give us the first three momentgofin this section
we complete these derivations:

By, simply represents a busy period made up of only long jobsnétsents were computed in
Section 3 and are repeated below for reference:

——
2
BBY = %

(L—pr)? (1 —pr)?

Next we derive the moments &fy where By represents the length of a busy period started by
ajob of sizeF ~ Exp(2us), and consisting of only long jobs.

Bp(s) = E(s—+ A, — ABL(s)).
Therefore
E[Bg| = E[E]+ M\ E[B1|E[E],
E[Bf| = E[E?|+ A\ E|E|E[B]] + (A E[BL))’ E[E®| + 2\ E[B[ | E[E?,
E[Bj;| = E[E®]+ )\ E|E|E[B]] + 3)\] E[E*|E|BI]E[Br] + (A E[Br))’ E[E’],
+3X\1, E[E?|E[B%]) + 3(\. E[B1))*E[E®] + 3\, E[BL|E[E®].

Finally, we compute the moments Bfz 1,

Bgir = Bg+ By,
E[Bgy+1] = E[Bg|+ E[BL],
E[(Bry1)’] = E[BR]+2E[Bg]E[BL] + E[Bj],

(
E|( E[BY] + 3E[B%|E[B;] + 3E[Bg|E|B%] + E[B}].

Bpy1)?]

4.3 Deriving the performance of short and long jobs
Response time for short jobs

The expected response time for short jobs is easy to com@irtgaly derive the limiting probabili-
ties for the chain shown in Figure 6. The chain is analyzal@eMatrix-Analytic methods, since it
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is infinite in only one dimension and repeats in structuretisgat the third column. Its generator
matrix has the form:

BOO B0l — -
o— | B Bl A12
| - A1 41 Ao

— — A2 Al

From the limiting probabilities we deduce the expected nemdd short jobs in the system.
Finally we divide by\, to get the mean response time for short jobs.

Response time for long jobs

For long jobs, computing the expected response time idaditbre involved. From the long jobs’
perspective, they see an M/G/1 queue where, at times, thgfirgn a busy period must wait until
a short job finishes (as short jobs occupy both servers). Maceinctly, assuming that short job
service requirements are exponentially-distributed watie 1.5, the response time for long jobs is
the response time under an M/G/1 queue with setup fmdere

pr{Region 1}

0 with prObabiIityal = pr{Region 1 or 2

pr{Region 2
pr{Region 1 or 2

E = Exp(2us) with probabilitya, =

Observe that is defined entirely by what the first job to start a busy perieelss The expected
waiting time for an M/G/1 queue with only long jobs and a sdiope of S is known [26]:
2E[S] + A\LE[S?] & ALE[X?]
200+ AE[S]) 21 —p1)’

E[W]M/Gﬂ/SetupS —
We thus have:

E[Time for lond = E[X ] + E[W]M/G/I/Set7¢p5“

5 Stability under CS-Immediate-Dispatch and CS-Central-Queue

For Dedi cat ed assignment it is required that, < 1 andps < 1, wherep,, (respectively,os)
denotes the load made up of long jobs (respectively, shios) jd-orCS- | rmedi at e- Di spat ch
we will see that the region of stability is much wider, and @3- Cent r al - Queue wider still.
Let py;, (respectivelypys) denote the load at the long host (respectively, short hBsih these
quantities must clearly be 1.
For CS- Cent r al - Queue stability conditions are trivial:

pr < 1,
ps < 2—pr.

Therefore the rest of this section will be devoted to analyzihe stability conditions foCS-
| mredi at e- Di spat ch.
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We can deducey,;, from the following equation:

pnt, = ps(l —pur) + pr,
ps + pr,
= PhL = W

We therefore have the constraint that

ps + pr,
1+ ps

just as inDedi cat ed andCS- | nmedi at e- Di spat ch. Next we deducey,s:

<1l < pr <1,

phs = ps-pur <1,

or, equivalently,
_Ps + oL

< 1.
1+ ps

This is in turn equivalent to:
1
pr < —+1—ps.
ps

So that ultimately it it is required that
. 1
pr < min(l, — + 1 — pg).
ps

The above constraint gy, is depicted graphically in Figure 7.

Stability condition on rhol
1 T

— CentralQueue
- - ImmedDispatch

B
0.9 Y Dedicated
v

0.8F

0.71

0 02 04 06 08 1 12 14 16 18 2
rhos

Figure 7: Stability constraint op;, for Dedi cat ed, CS- | nmedi at e- Di spat ch, andCS-
Central - Queue

We can also turn the above constraint into a constrainisoas follows:

1—pr+(1—pr)?+4
5 )

ps <

The restriction omg for each of the three task assignment policies is shown irEi§. Observe
the advantage of cycle stealing in extending the stabiéigian. Wheryp,, is near zerops can be
as high as about.6 underCS- | nmedi at e- Di spat ch and as high a8 underCS- Cent r al -

Queue.
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Stability condition on rhos

- Dedicated
—— Immed-Disp
-- Central-Q

1.5¢

rhos
=

0.5r

0 0.2 0.4 0.6 0.8 1
rhol

Figure 8: Stability constraint opg for Dedi cat ed, CS- | medi at e- Di spat ch, andCS-
Central - Queue.

6 Validation of Analysis

As we are proposing a new analytical scheme to arrive atexst calculations of waiting times, it
is of paramount importance that we demonstrate the corsstof our proposed method. In both the
analysis ofCS- | nredi at e- Di spat chandCS- Cent r al - Queue, we approximate the length
of a busy period, consisting of long jobs or primarily londp$o by its first three moments. In this
section, we validate the accuracy of our methods in two ways:

1. Validation against known limiting cases: We compare the output of our algorithm with
exact results from the literature when these exist. Duedatimplexity of our system, this
is possible only in a limited number of special cases; spdifi when the traffic intensity
of one of the customer classes approaches either zero oatin@tson point of the system
(this saturation point may be strictly greater than oneliergmall jobs who have access to a
second server). Depending on the model, and whether tlfie iraénsity approaches zero or
saturation, the system approaches either an M/G/1 queld/@f./queue with initial setup
time, or an M/G/2 queue. The performance of the first two ad¢éhmodels for general service
times are known, while the third is only available in therktiire only for exponential service
times. Given these known results, these comparisons magrkiea out for any stable traffic
intensity.

2. Validation against simulation: Having evaluated our approximation methods for limiting
cases approaching saturation and approaching zero, weisexiomputer simulation to test
our analytical results over a broad range of loads. Sinanatare limited only by the fact that
simulation accuracy decreases as the relative trafficgittes approach saturation [3, 27].

For both types of validation we consider three definitionssbbrt” and “long.”
e Shorts have mean size 1; Longs have mean size 1
e Shorts have mean size 1; Longs have mean size 10

e Shorts have mean size 10; Longs have mean size 1

17



Although our cycle-stealing algorithms were designed withsecond case above in mind (short
jobs shorter than long jobs), there is no reason why the sisadjrouldn’t work as well for the first
and third cases above, and thus for completeness we validdes all cases.

6.1 Validation against known limiting cases

We have four limiting cases, described below, which we useviduate our analysis. In all cases
illustrated below we assume that short jobs are exponbnadatributed and that long jobs are
drawn from a Coxian distribution with? = 8. Other distributions of job sizes and loads were also
evaluated, all showing similar limiting behavior.

Limiting Case 1: Fix pg, take p;, — 1. Under this case, for bot@S- | medi at e- Di spat ch
andCS- Cent r al - Queue it becomes increasingly difficult for the short jobs to gaicess
to the long server. Thus, the mean response timsffort jobsunder both cycle-stealing algo-
rithms should approach that of an M/G/1 queue with IpadThis is in fact the case, as shown
in Figure 9(row 1), where we fixg = 0.9 and evaluate both cycle stealing algorithms with
respect to mean response time for short jobgats set progressively closer o Observe
thatCS- | nmedi at e- Di spat chis alittle faster to converge tha&s- Cent r al - Queue.
This is because more short jobs sneak into the long server @& Cent r al - Queue.

Limiting Case 2: Fix p;, take ps — 0. Under this case, for bot@S- | medi at e- Di spat ch
and CS- Centr al - Queue it becomes increasingly unlikely that a long job will be ob-
structed by a short job. Thus the mean response timifigy jobsunder both cycle-stealing
algorithms should approach that of an M/G/1 queue with lpgd This is in fact the case,
as shown in Figure 9(row 2), where we fix = 0.9 and evaluate both cycle stealing al-
gorithms with respect to mean response time for long johssas set progressively closer
to 0. Observe that this tim€S- Cent r al - Queue is a little faster to converge tha@S-
| medi at e- Di spat ch. To understand why, we need to consider how many short jebs in
terfere with long jobs. Consider times when the long hodlles iObserve that ags — 0, the
short host is usually idle. A new arrival undés- Cent r al - Queue will go to either queue
and that will be named the short queue. However a new arrivdénCS- | mredi at e-

Di spat ch will always try to go to the long host first (and there is no mn&). Thus
fewer short arrivals will interfere with a long job undé€g- Cent r al - Queue, than under
CS- | medi at e- Di spat ch.

Limiting Case 3: Fix pr, and let ps — stability-condition under CS-Central-Queue. The mean
response time fdong jobsshould approach an M/G/1 queue where the first job in a busy pe-
riod experiences a setup castwhereS = min(Ezcess(Xg), Excess(Xg)). The reason is
that an arriving long job which sees no other long jobs, ikitly see both servers occupied
by short jobs. If the short job at the long host finishes fitsg ibong host will go there. If
the short job at the short host finishes first, the long job gdlithere and the short host will
be renamed to be the long host. In the case whé&fas exponential, as we have assumed,
Excess(Xg) = X and thus we should have simpl§:= min(Xg, Xg). This is in fact the
case, as shown in Figure 9(row 3), where we hgldixed arbitrarily atp;, = .6 and setg
progressively closer td — p;, = 1.4, the stability condition foCS- Cent r al - Queue.
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Limiting Case 4: Let p;, — 0 under CS-Central-Queue. UnderCS- Cent r al - Queue, asp;, —
0, the mean response time felort jobsshould approach an M/M/2 queue. This is in fact the
case, as shown in Figure 9(row 4), where we hgjdixed at 1.89, and sei;, progressively
closer to zero.

Having validated cases with traffic intensity approachiegozor saturation, we next consider
intermediate values of traffic intensity. These are evaldiaia simulation.

6.2 Validation against simulation

We performed event-driven simulations of our cycle stepéifgorithm in C on a 700MHz Pentium
Il processor with 256 MB RAM. We experimented with a rangdazds (g, pr), various defini-
tions of short and long, and different job size distribuidexponential and Coxian with? = 8).
Each experiment consisted of measuring mean response viené(§ arrivals with a warmup pe-
riod of 50,000 arrivals. Each experiment was then replitétaty times (using different seeds) and
the average of the thirty replications was compared withattaytically-predicted value from our
algorithm.

In Figure 10 we show just small subsedf our experiments, restricted to exponential job sizes,
wherepg is held fixed at0.9 and py, is allowed to range over all stable values. Almost all of
our simulation results were within 1-2 percent of predichalysis; in some cases the simulation
numbers were a little higher than analysis and in some cakitie &ower. Simulation replications
were quite consistent at low loads, but exhibited high \mlitg at higher loads, even under an
exponential job size distribution. When the job size disttion was Coxian (wittC? = 8), the
variation within the simulation results increased furthée do not show the Coxian plots, but we
do include those results in our discussion below.

Over all our simulation experiments, we found that with exggo mean response timelohg
jobs, there is no visible discrepancy between analysis and aiioual under either cycle stealing
algorithm. To understand why this is the case@® | mredi at e- Di spat ch, recall that under
CS- | medi at e- Di spat ch there are two Markov chains, one for the long host and onehfor t
short. The Markov chain representing the state at the losgib@xact (it involves no busy period
approximations). Thus it is understandable that there diseyepancy for the long jobs. Undés-
Cent r al - Queue there is a single Markov chain, which does involve busy geaipproximations.
The busy periods are up-down arrows in this chain. Nonetkelecall that the performance of
the long jobs, as described in Section 4.3 depends only opdhemeters:; andas, which are
the probabilities of being in Region 1 versus Region 2. Tistgonary probabilities are averages,
which are likely less sensitive to the very high moments alémgths of the busy periods.

With respect to mean response timeshbrt jobs there was more discrepancy between analysis
and simulation. This discrepancy was limited to the casegif lnad and was more prevalent in the
case where long jobs were very long. It is easy to see why ghtustare more greatly impacted by
the long busy period approximations under both cycle stgadigorithms: The length of the busy
period of the long jobs affects the left/right motion of th&m which represents the number of small
jobs. Since we only match the length of the busy period tcethmements, we may be creating error
in the number of short jobs. Furthermore, observe that shmese busy periods consist primarily of
long jobs, the variability in the length of these busy pesibcomes more pronounced when long
jobs are very long and loads are very high. To fully captueedfiect of these busy periods, we
will need to match more moments. Using more sophisticatedilsition technigues to ameliorate
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Figure 9:Validation of analysis against four limiting cases. Inrowd = 0.9. Asp;, — 1, response
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the variability in simulation results caused by the higlfficantensity will likely help as well.One
should note that over all the simulation experiments thatamethe difference between analysis and
simulation was never more tha%, and that difference occurred rarely and only at high traffic
intensity.

It is worth pointing out that for each graph in Figure 10, tirawdation portion required close
to an hour to generate, whereas the analysis portion reblgéiss than a second to compute.

7 Results of Analysis

Recall that the motivation behind cycle-stealing alganigis to improve the performance of “short”
jobs without inflicting too much penalty on “long” jobs. Sormpenalty to long jobs is inevitable, of
course, since our model is non-preemptive, meaning that@ dorival can't interrupt a short job
running at its server.

In this section we will study the results of our analysis af tivo cycle-stealing algorithms,
CS- | mredi at e- Di spat chandCS- Cent r al - Queue. All figures will be organized into two
parts, where the first part will show the benefit to short jobd the second part will show the
penalty to long jobs. In order to evaluate these benefitalfiea we compare with theedi cat ed
algorithm which involves no cycle stealing.

In Figure 11 and 12, we hold;, (the load at the long server) fixed at two representativeeglu
and consider the full range pf. Recall from Section 5, foDedi cat ed we can never haves >
1. However forCS- Cent r al - Queue, pg is allowed as high a8 — p;. ForCS- | nmredi at e-

Di spat ch, pg is allowed as high as some intermediate value shown in Figuwéhich is not as
high as2 — p;, and yet is higher thaBedi cat ed.

Figure 11 shows analytical results in the case where bottissand longs come from an expo-
nential distribution. In row 1 and row 2 we fix, = 0.5 and varypgs over all stable values. In row
3 and row 4 we fixp;, = 0.8 and varyps over all stable values.

Looking at Figure 11 row 1, column (a) (where shorts and Idmg&e mean sizé and we fix
o1 = 0.5), we see that the short jobs benefit tremendously from cyelalisg. Forps > 0.8,
the mean improvement of cycle stealing algorithms dedi cat ed servers is over an order of
magnitude. Ass — 1, the mean response time undaedi cat ed goes to infinity, whereas it
is only around 4 unde€S- | nmedi at e- Di spat ch and only around 3 unde€S- Cent r al -
Queue. (Graphs have been truncated so as to fit on the page). Thissshe huge benefit that
short jobs obtain by being able to steal idle cycles from timg lhost.

Again looking at Figure 11 row 1, column (a) we see that therompment ofCS- Cent r al -
Queue overCS- | mredi at e- Di spat chis also vast. Aps — 1.3, the mean response time un-
derCS- | nmedi at e- Di spat ch goes to infinity whereas itis only around 7 un@8- Cent r al -
Queue. This makes sense since und&s- | nmedi at e- Di spat ch only newshort arrivals can
benefit from idle cycles, whereas unde®- Cent r al - Queue the long host, when seeing no long
jobs, can take on short jobs already waiting.

Looking at Figure 11 row 1, columns (b) and (c), we see thaidgeare similar to column (a),
with only the absolute magnitude of the numbers growing.

Next we look at Figure 11 row 2, column (a) (where shorts andg$chave mean sizZeand we
fix p; = 0.5) and find that the penalty imposed on long jobs by cycle stgadi relatively small. The
penalty increases withg, but even whemwg = 1, the penalty to long jobs is only 20% undes-
Cent r al - Queue and 50% unde€S- | nmedi at e- Di spat ch (compared with the unbounded
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improvement for the shorts). For the case of column (b), elsrorts are shorter than longs,
this penalty drops to only 2% undé&S- Cent r al - Queue and 5% undeiCS- | nredi at e-

Di spat ch. For the case of column (c), where shorts are longer thars|dhg penalty is greater.
This is to be expected since jobs are not preemptible andgajnmay now get stuck waiting
behind a short job ten times its size. It's important to obsehowever, that for all values ok, the
penalty to long jobs is low compared with the tremendousgoerdnce improvement available to
short jobs.

One interesting observation is that the penalty to long gdpears lower und&s- Cent r al -
Queue than underCS- | nredi at e- Di spat ch. At first this seems quite contrary, since under
CS- Cent r al - Queue it seems that more idle time is given to short jobs, thus thg jobs should
suffer more. The reason this is not true is that ur€®r Cent r al - Queue the servers are renam-
able. This means that a long job arriving to find both serversisg short jobs need only wait for
the firstof the two servers to free up undés- Cent r al - Queue.

Considering Figure 11 rows 3 and 4, where we nowfix= 0.8, we see that results are largely
similar to the case; = 0.5, except that the benefits to short jobs are not quite as gnehthe
penalty to long jobs is also not as high. This is to be expesitece now there are fewer idle cycles
to steal. Still the performance improvement of cycle stwpbverDedi cat ed servers is orders
of magnitude for higheps.

Figure 12 is the counterpart to Figure 11, where now long presdrawn from a Coxian dis-
tribution with the appropriate mean add¥ = 8, representing higher variability in the long jobs
(short jobs are still drawn from an exponential distribojiolncreasing the variability of the long
job service time does not seem to have much effect on the nmaxaafibthat cycle stealing offers
to short jobs. With respect to the impact on long jobs, theylfmbs end up with higher overall
response times due to their higher variability, but siméhsolute increase. The impact of cycle
stealing on the long jobs is therefore considerably lessereen the variability in long job service
times is increased. In fact, even fas = 1, under the case where shorts are shorter than longs (case
(b)), the penalty to long jobs is less tha under both cycle stealing algorithms. For the case
where shorts are indistinguishable from longs (case (@@)ptnalty to longs is still under 10% for
CS- I nredi at e- Di spat ch and under 5% fo€S- Cent r al - Queue.

Until now we have not considered the case whgye the load at the long host, is close to 1. It
is interesting to ask what the penalty of cycle stealing tml@bs looks like agy,;, gets closer to
1. To investigate this question, we again consider the setijigure 12, except that this time we
look at response time as a functiongf, where we fixos = 1.2 and laterps = 1.5 and consider
the full range ofpr,, as shown in Figure 13.

To understand these plots, it helps to first recall that Eguiimits the range g6, under which
CS- I nedi at e- Di spat chandCS- Cent r al - Queue are stable. Specifically, Figure 7 shows
that whenps = 1.2, CS- | rmedi at e- Di spat ch is only stable forp; < .65 (approximately)
andCsS- Cent r al - Queue is only stable fop;, < 0.8 (approximately). Fops = 1.5, the stability
criteria onp;, are even more stringent, particularly f68- | rmedi at e- Di spat ch. Figure 13
row 1 shows the mean response time for the short jobs undéwtheycle stealing algorithms as
a function ofp;, when we fixps = 1.2. Observe that as each algorithm nears its stability asymp-
tote with respect te;,, the response time shoots up to infinity (all graphs have bemcated).
Thus, becaus€S- Cent r al - Queue has a bigger stability region, its performance also appears
far superior toCS- | medi at e- Di spat ch. Observe that we couldn’t show the performance of
Dedi cat ed because it is unstable over the entire region.

26



Figure 13 row 2 considers the performance of the long jobsfasaion of p;, where we again
fix ps = 1.2. Observe that the prior stability criterion @ was only based on keeping tebort
host stable. The long host, on the other hand, is stable [fealales ofp;, underDedi cat ed and
under both cycle stealing algorithms. Figure 13 row 2 shdwas tycle stealing does not penalize
the long jobs, except in the case where the short jobs are toager than the long jobs. In this
case, cycle stealing penalizes the long jobs for lower lgdds penalty goes away for higher loads,
since the short jobs can't get in to steal. Resultsfpe= 1.5 are similar in trend.

In summary, we have seen that short jobs are tremendoughedhdly cycle stealing, and
that CS- Cent r al - Queue offers greater improvements to short jobs 0@3- | nmredi at e-

Di spat ch. We have also seen that, provided that short jobs are noddmgelong jobs, the impact
of cycle stealing to long jobs is negligible. Even when thersjobs are actually longer than the long
jobs, the penalty to the long jobs is less, proportionaligntthe benefit to the shorts. Furthermore,
this impact is greater undeZS- | nmedi at e- Di spat ch than underCS- Cent r al - Queue.
ThusCS- Cent r al - Queue is always a better strategy th&s- | mredi at e- Di spat ch, and
both are far better thabedi cat ed.

8 Conclusion

The purpose of this paper is to analytically derive the bepéfiycle stealing where jobs normally
destined for one machine may steal the idle cycles of anotlaehine (the “donor” machine, a.k.a.
“long” host). The motivation is that the jobs doing the sitegl(the “beneficiaries, a.k.a. “short”
jobs) will benefit immensely, while the donor jobs experewnery little penalty, since (primarily)
only their idle cycles are stolen. The paper considers tgordghms for cycle stealing: Immediate-
Dispatch — where only newly arriving jobs can steal idle egcl and Central-Queue — where the
beneficiaries include both newly arriving jobs and alreadgwed jobs.

At the onset of the paper we assumed that arriving jobs had designated as being either
“short” or “long”, where “short” jobs were the ones permitt® do the stealing. However through-
out the paper we also evaluate the case where “short” ang™lmis are indistinguishable — a
perhaps more applicable case — as well as the pathologisal vihere “shorts” are longer than
“longs.”

Our results show that the beneficiaries (the shorts) carfibéyean order of magnitude under
both cycle stealing algorithms. The donors (the longs) aralized only by a small percentage, so
long as shorts aren’t longer than longs on average. Even thieeshort jobs are actually longer than
the long jobs, the short jobs benefit more than the long jobganalized. Our results also show
thatCS- Cent r al - Queue is a superior strategy 16S- | nmredi at e- Di spat ch both from the
perspective of the benefit to short jobs and from the periygest the impact on long jobs.

This paper presents the first analysis of cycle stealing.ahladysis is an approximation, since it
depends on approximating a busy period by a finite number ofiembs. The analysis can be made
as precise as desired by using more moments — in this papesentnee. Still, even with just three
moments, the analysis agrees well with simulation res#listhermore, whereas generating a plot
of simulation results requires an hour, generating a planaflytical results requires only a couple
seconds.

In this paper we make the assumption that jobs are not préamptt is interesting to com-
pare our task assignment policy with other non-preemptoicips. A natural non-preemptive
policy which comes to mind is1 G/ 2/ SJF. Here it is assumed that there isentralqueue where
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jobs are held at the dispatcher, and short jobs are alwags gikeference over long jobs at both
hosts. It turns out that from the perspective of both thetstwod long jobs, thé! G 2/ SIF pol-
icy sometimes outperforms our cycle stealing algorithnts sometimes does worse, depending on
conditions likepgs, p;,, and the job size distributions. On the plus siG 2/ SJF offers the
short jobs two servers, where both servers prioritize imffaxf shorts. On the negative size, be-
causeM G 2/ SJF does not offer a dedicated short server, the short jobs §oeeend up getting
stuck behind two long jobs, one at each host. With respediddang jobs, on the negative side,
M G 2/ SJF penalizes long jobs at both servers, but on the positive kidg jobs may benefit in
situations whereg is low and two long jobs end up capturing both hosts.

A natural followup problem to this paper is the situationwbthosts, both of which help each
other. That is, both hosts are donarsd beneficiaries. This problem is open as of the time of this
paper.

9 Appendix

This section includes the virtual waiting time analysiscute derive the Laplace transform of the
waiting time for long jobs unde€S- | medi at e- Di spat ch, denoted byTg‘). The response
time for long jobsI'(") is defined as

T =T 4 Xy,
Summary of Results

N s+ Asg *Xs(s))\s

7 (s) = - 0,
@ () s— AL+ Xp(s)Ar ’
@y, _ _pr BIX}] ps  E[XF]
lpr QE[XL] 1+ps QE[XS‘]
BTy = P E[X]] ps  E[X{] pL_ E[XF] ( pr_ EIXi] _pn BIXY] )
Q@ lpr BE[XL] 1+ps 3E[X§] ].pr E[XL] lpr QE[XL] ].pr QE[XS‘]
where
Ty = 1= pr
0 1+ps=

represents the fraction of time that the long host is idle.

Analysis of Long Host

Let W (t) be the virtual waiting time at time That is, a job arrival at timewould waitW (¢) before we start
processing the job. We follow the following steps to obt&i@ moments otV = lim;_, ., W (¢):

1. Set up the differential equation for (, s).

. Lett — oc; then,dW;fs) = 0 (W (s) is expressed by,).

2
3. EvaluatdV (s = 0) to obtainry.
4

. DifferentiatelV (s) to obtain moments dfi’.
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Figure 14: Virtual waiting time: relationship betwe®n(¢) andW (¢t + At)

We first set up a differential equation. For this purpose, aefully examine the relationship between
W(t) andW (t + At).
If W(t) > At,

(t) — At with probability 1 — A At,

w
W(t+ At) = { W(t) + X1, — At with probability Az, At.

If 0 < W(t) < At,

0 with probability 1 — A, At — AgeAt,
W(t+ At) =< W(t) + Xp — e At with probability A At,
Xg — e At with probability AgeAt.

Note thate; ande, are random variables with < ¢;, e, < 1.

W (t + At, s)
E[efsW(H-At)]

3

/ h Ele WAV W (1) = 2]dPr(W () < )

Jr=0

- (e*s(Z*Aﬂ(l LA + E[e*s(z*At“LXL)]/\LAt) dPr(W (t) < )

¥ ((1 COALAE - AgeAt) + Elec e+ Xrma Ay Ay E[e*”s*zm)]xgem) dPr(W () < z)

Jr=0+

+ (1 = ApAt — AgAt) + Ele *FHXe—a A\ At 4 E[e*S(XS*QAt)]ASAt) Pr(W (t) = 0),

I

/OC (1 + (s = AL+ AL XL(s) At + o(At)) e~ dPr(W () < z)

=0

At
+ / {1 (A + Ase)At + Ele e X (1 + O(A1) AL At + E[e*¥5 (1 + O(At))| AseAt
T +

Jx=0
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- (1 F (5= A+ ALX1(s)AL + o(At)) e*sw} dPr(W (1) < z)
+{(1 = AL At — AsAt) + E[e ¥ (1 + O(At))]A\ At + E[e *¥5 (1 + O(At))|As At
- (1 + (s — Az + A XL (s) At + o(At)) } Pr(W (1) = 0),
At
- (1 (s A+ ALXL(s))At) W(t,s) + /_ O(At)dPr(W (1) < z)

+(~As + Xs(s)hs — ) APL(W () = 0) + o(At).

W(t+ At,s) — W(t,s)
At

_ (s — AL+ ALX,,(S)) W(t,s) + /i O(1)dPr(W () < )

o(At)
At

n (45 + Xg(s)hs — .s) Pr(W(t) = 0) +

Letting At — 0 in the above formula,

dW(x, ) _ (s - AL+ ALXL(S)) W(t,s)+ (—/\5 + Xs(s)As — s) Pr(W(t) = 0).
Lett — co. Then,W(Ls) _;
(s — AL+ XL(S)/\L) W(s) = (s + Ag — f(s(s)/\s) Pr(W(t) = 0),

VNV(S) = S+/\S 7{(5(8))\571'0,
s—Ap + XL(S)/\L

wherer, = Pr(W (t) = 0) andlim;_,, W (t,s) = W (s). Next, we will obtainm, by evaluatingi’(s) at
s =0:

1 = W),
1_ %,\S
= = LOB
1 + dXdLs(S) AL s=0
1+ E[Xs]As -
T 1-EXiA
The second equality is by L'Hopital’s rule.
1 - ALE[X]]
T = ———
1+ AsE[X¢]

We will differentiate’? (s) and evaluate at = 0 to obtain the moments d#/, which is the time in queue
TCSL) for the large jobs. Let

h(s) = s+ As—AsXs(s).
g(s) = s—/\L—l—/\LXL(s).
&) = h(s)
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Then,

f0) = p—
0
h(0) = g(0) = O.
Since
) h'"(0) — f(0)g"(0)
7'0) STIOR
" _ h"(0) —3f'(0)g"(0) — f(0)g"'(0)
and
h(S) = S-I-)\S*)\SA)ZS(S),
R'(s) = 1—AsX4(s),
B'(s) = —AsXU(s),
B(s) = —AsXU(s),
(S) = S—/\L+/\LXL(S),
g'(s) = 1+ A.X[(s),
) = ML)
g"(s) = A X['(s),
W) = 1+ps,
W'(0) = -AsE[X3],
B0) = AsE[XZ,
gl(o) = lian
g"(0) = A,E[X]]
9"(0) = —ALE[X}],
we have
, ~AsE[X2] - LA, E[X})]
7' ey i
) AsB[X}] - 3= B BIXG] + L ALELYS)
7o) = 30— o) |
BT = —f(0)m,
. g BIXE | ps  EIX3]
1—p.2E[X,] ' 1+ ps2E[Xs]’
E[(1)] = f"(0)mo,
__pL BIXJ) ps _ E[XY] PL E[X%]< pr_ E[X}] pr_ E[XF]
1—pr3E[XL]  1+ps3E[Xs]  1—pr E[XL] \1—pr2E[XL] 1- pr2E[X{]
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