2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)

The Gittins Policy in the M/G/1 Queue

Ziv Scully”
Carnegie Mellon University
Pittsburgh, PA, USA
zscully @cs.cmu.edu

Abstract—The Gittins policy is a highly general scheduling
policy that minimizes a wide variety of mean holding cost metrics
in the M/G/1 queue. Perhaps most famously, Gittins minimizes
mean response time in the M/G/1 when jobs’ service times
are unknown to the scheduler. Gittins also minimizes weighted
versions of mean response time. For example, the well-known
“cu rule”, which minimizes class-weighted mean response time
in the multiclass M/M/1, is a special case of Gittins.

However, despite the extensive literature on Gittins in the
M/G/1, it contains no fully general proof of Gittins’s optimality.
This is because Gittins was originally developed for the multi-
armed bandit problem. Translating arguments from the multi-
armed bandit to the M/G/1 is technically demanding, so it has
only been done rigorously in some special cases. The extent of
Gittins’s optimality in the M/G/1 is thus not entirely clear.

In this work we provide the first fully general proof of Gittins’s
optimality in the M/G/1. The optimality result we obtain is
even more general than was previously known. For example, we
show that Gittins minimizes mean slowdown in the M/G/1 with
unknown or partially known service times, and we show that
Gittins’s optimality holds under batch arrivals. Our proof uses a
novel approach that works directly with the M/G/1, avoiding the
difficulties of translating from the multi-armed bandit problem.

I. INTRODUCTION

Scheduling to minimize mean holding cost in queueing
systems is an important problem. Minimizing metrics such as
mean response time, weighted mean response time, and mean
slowdown can all be viewed as special cases of minimizing
holding cost [1].! In single-server queueing systems, specifi-
cally the M/G/1 and similar systems, a number of scheduling
policies minimize mean holding cost in various special cases.
Two famous examples are the Shortest Remaining Processing
Time (SRPT) policy, which minimizes mean response time when
service times are known to the scheduler, and the “cy rule”,
which minimizes weighted mean response time in the multiclass
M/M/1 with unknown service times.

It turns out that there is a policy that minimizes mean holding
cost in the M/G/1 under very general conditions. This policy,
now known as the Gittins policy after one of its principal
creators [2], has a relatively simple form. Gittins assigns each
job an index, which is a rating roughly corresponding to how
valuable it would be to serve that job. A job’s index depends
only on its own state, not the state of any other jobs. Gittins

“Supported by NSF grant nos. CMMI-1938909 and CSR-1763701 and a
Google Faculty Award.

'A job’s response time is the amount of time between its arrival and
completion. Jobs may be sorted into classes which are weighted by importance.
A job’s slowdown is the ratio between its response time and service time.

Mor Harchol-Balter”
Carnegie Mellon University
Pittsburgh, PA, USA
harchol @cs.cmu.edu

TABLE 1.1
GITTINS OPTIMALITY RESULTS FOR M/G/1-LIKE QUEUES

Holding Cost Model Preemption Service Times Prior Proofs®
All equal M/G/1 allowed known
M/Gyp/1 allowed see Section IIT 11
By class M/G/1 allowed unknown 4,8
M/G/1+fbkP not allowed unknown 6,9
M/M/1+fbk> allowed unknown 7,9, 10
By class and M/G/1 not allowed known 2
service time® M/G/1 allowed known 3
M/G/1 allowed unknown 5

2 A list of prior proofs appears in Section II.

b Here “fbk” stands for feedback, meaning that whenever a job exits the
system, it has some probability of being replaced by another job.

¢ This includes minimizing mean slowdown, in which a job’s holding cost is
the reciprocal of its service time.

then serves the job of maximal index at every decision time.
The “magic” of Gittins is in how it determines each job’s
index, which we describe in detail in Section IV. SRPT and
the cp rule are both special cases of Gittins.

Given its generality, it is perhaps unsurprising that the Gittins
policy has been discovered several times. Similarly, there
are several proofs of its optimality under varying conditions.
Table 1.1 summarizes several M/G/1-like settings in which
Gittins has been studied, and Section II gives a more detailed
overview. In light of this substantial body of prior work, the
optimality of Gittins for minimizing mean holding cost in the
M/G/1 is widely accepted in the literature [3-7].

We ourselves are researchers whose work often cites Gittins’s
optimality in the M/G/1. However, in reviewing the literature,
we found that there is no complete proof of Gittins’s optimality
in its full generality. This is in part because Gittins was
originally developed not for the M/G/1 but for the Markovian
multi-armed bandit problem [8]. There are elegant arguments
for Gittins’s optimality in the multi-armed bandit problem, but
they do not easily translate to the M/G/1. Results for the M/G/1
thus suffer from a variety of limitations (Section II), so the
extent of Gittins’s optimality in the M/G/1 is not entirely clear.

In this work, we give a unifying presentation of the Gittins
policy in M/G/1-like systems, resulting in the most general
definition of Gittins (Definition IV.2) and optimality theorem
(Theorem V.1) to date. Our approach deals directly with the
M/G/1, avoiding the difficulties of translating from the multi-
armed bandit problem. As a result, we actually extend the
known scope of Gittins’s optimality, such as including systems

Authorized licehSHB Ns8 188490 T hit@ /M2 I@n20R érityRibraries. Downloaded on May 26,2025 at 17:40:29 UTC from IEEE Xplore. Restrictions apply.

2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)

with batch arrivals. We make the following contributions:

« We discuss many prior proofs of Gittins’s optimality,
detailing the limitations of each one (Section II).

« We give a new general definition of the Gittins policy (Sec-
tion IV). This involves introducing a new generalization
of the M/G/1 called the Mp/Gpp/I queue (Section III).

« We state (Section V) and prove (Sections VI and VII)
Gittins’s optimality in the Mp/Gyp/1.

II. HISTORY OF THE GITTINS POLICY IN THE M/G/1

In this section we review prior work on the Gittins policy
in M/G/1-like queues. This includes work on special cases
of Gittins, such as SRPT in the case of known service times,
that are not typically thought of as instances of the Gittins
policy. Unfortunately, every prior proof of Gittins’s optimality is
limited in some way. Most limitations are one of the following:

(1) Job finiteness. Most proofs assume some type of “finite-
ness” of the job model. This manifests as one of

(i-a) all service times being less than some finite bound,

(i-b) service time distributions being discrete with finitely

many support points, or

(i-c) finitely many job classes.

(ii) Simple job model or metric. Some proof techniques that
work for simple job models do not readily generalize.
This includes models with

(ii-a) known service times,

(ii-b) unknown, exponentially distributed service times, or

(ii-c) unknown, generally distributed service times with

nonpreemptive service.

(iii) Only considers index policies. Some proofs only show
that Gittins is an optimal index policy, as opposed to
optimal among all policies. An index policy is one that,
like Gittins, assigns each job an index based on the job’s
state and always serves the job of maximum index.

We now present prior work on the Gittins policy in rough
chronological order. Due to space limitations, we only briefly
summarize most prior proofs.

A. 1960s and 1970s: Initial Developments in Queueing

Prior Proof 1. Schrage [9].

Model: Preemptive single-server queue, known service times.
Holding costs: Same for all jobs.

Limitations: (ii-a).

Prior Proof 2. Fife [10, Section 4].

Model: Nonpreemptive M/G/1, known service times.
Holding costs: Based on class and service time.
Limitations: (i-b), (i-c), (ii-a), and (ii-c)

Prior Proof 3. Sevcik [11, Theorem 4-1].

Model: Preemptive M/G/1, known service times.

Holding costs: Based on class and service time.

Limitations: (ii-a) and (iii). Sevcik [11, Conjecture 4-1] argues
informally that an index policy should be optimal.

Prior Proof 4. Sevcik [11, Theorem 4-2].
Model: Preemptive M/G/1, unknown service times.

Holding costs: Based on class.
Limitations: (i-b), (i-c), and (iii). Sevcik [11, Conjecture 4-3]
argues informally that an index policy should be optimal.

Prior Proof 5. Von Olivier [12].

Model: Preemptive M/G/1, unknown service times.
Holding costs: Based on class and service time.
Limitations: (i-b), (i-¢), and (iii).

One unique aspect of the von Olivier [12] result deserves
highlighting: jobs’ holding costs can depend on their unknown
service times. This allows minimizing metrics like mean
slowdown even when service times are unknown. However, this
result is not widely known in the queueing theory community,
perhaps in part because it has only been published in German.

Klimov [13] studied a nonpreemptive M/G/1 with feedback,
denoted M/G/1+fbk. In systems with feedback, whenever a
job exits the system, it has some probability of immediately
returning as another job, possibly of a different class.

Prior Proof 6. Klimov [13].

Model: Nonpreemptive M/G/1+fbk, unknown service times.
Holding costs: Based on class.

Limitations: (i-c) and (ii-c).

B. 1980s and 1990s: Connection to Multi-Armed Bandits

Prior Proof 7. Lai and Ying [14].

Model: Preemptive M/M/1+fbk, unknown service times.
Holding costs: Based on class.

Limitations: (i-c) and (ii-b).

Prior Proof 8. Gittins [2, Theorem 5.6].

Model: Preemptive M/G/1, unknown service times.
Holding costs: Based on class.

Limitations: (i-a) and (i-c).

Gittins’s result [2] is often cited in the literature as proving
the Gittins policy’s optimality in the M/G/1 [3-7]. As such, it
deserves some more detailed discussion.

Prior Proof 8 has two main steps. The first step simplifies
the problem by assuming the scheduler can only preempt jobs
in a discrete set of states? [2, Theorem 3.28]. The set can be
countable in principle, but the proof assumes a side condition
that is only guaranteed to hold if the set is finite. The condition
comes from translating multi-armed bandit results to the M/G/1.

The second step uses a limit argument to allow unrestricted
preemption [2, Theorem 5.6]. However, because the first step
is limited to finitely many job states, the second step’s result
is also limited. Specifically, it requires finitely many classes
and that all service times be less than some finite bound.

Prior Proof 9. Achievable region approaches. See Bertsimas

[15], Dacre et al. [16], and references therein.

Model: Preemptive M/M/1+fbk or nonpreemptive M/G/1+fbk,
unknown service times.

Holding costs: Based on class.

Limitations: (i-c), (ii-b), and (ii-c).

%In this setting, a job’s state is the pair of its class and attained service.

Authorized licehSHB Ns8 188490 T hit@ /M2 I@n20R érityRibraries. Downloaded on May 26,2025 at 17:40:29 UTC from IEEE Xplore. Restrictions apply.

2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)

C. 2000s and 2010s: Analyzing Gittins and Its Performance

The 2000s and 2010s did not, for the most part, see new
proofs of Gittins’s optimality. Researchers instead studied
properties of the Gittins policy [3] and analyzed its perfor-
mance [5-7, 17]. One performance analysis based on dynamic
programming also gave a new optimality proof [17], but it did
not expand the known scope of Gittins’s optimality.

Prior Proof 10. Whittle [17].

Model: Preemptive M/M/1+fbk, unknown service times.
Holding costs: Based on class.

Limitations: (i-c) and (ii-b).

D. 2020: Modeling Jobs as General Markov Processes

Prior Proof 11. Scully et al. [18, Theorem 7.3].

Model: Preemptive M/Gyp/1, i.e. the preemptive Mg/Gyp/1
(Section IIT) without batch arrivals.

Holding costs: Same for all jobs.

Limitations: Assumes equal holding costs and that jobs are
preemptible in any state.

Our work can be seen as a significant extension of Prior
Proof 11. Specific aspects we address that Scully et al. [18] do
not include varying holding costs, nonpreemptible or partially
preemptible jobs, and batch arrivals.

III. SYSTEM MODEL: THE Mg/Gpyp/1 QUEUE

We study scheduling in a generalization of the M/G/1 queue
to minimize a variety of mean holding cost metrics. The average
job arrival rate is A, the service time distribution is .S, and the
load is p = AE[S]. We assume p < 1 for stability.

We call our model the Mp/Gyp/1 queue. The “Mg” indicates
that jobs arrive in batches with Poisson arrival times. The “Gyp”
indicates generally distributed service times, with each job’s
service time arising from an underlying Markov process.

The main feature of the Mp/Gyp/1 is that it models jobs as
Markov processes. The key intuition is:

A job’s state encodes all information the scheduler
knows about the job.

This means that the job Markov process differs depending
on what information the scheduler knows. For example, to
model the perfect-information case where the scheduler is told
every job’s service time when it arrives, a job’s state might be
its remaining service time, and the Markov process dynamics
would be deterministic (Example III.1). On the other extreme, if
the scheduler knows nothing other than the overall service time
distribution .S, then a job’s state might be the amount of service
it has received so far, and the Markov process dynamics would
be stochastic (Example II1.2). The Mg/Gyp/1 thus encompasses
a wide variety of M/G/1-like queues.

This section explains the Mg/Gyp/1 queue in more detail.
The model’s main feature is that the information the scheduler
knows about a job may change as the job receives service
(Section III-A). A job’s preemptibility (Section III-B) and
holding cost (Section III-E) may also change during its service.

A. Markov-Process Jobs

We model jobs as absorbing continuous-time strong Markov
processes. The state of a job encodes all information that the
scheduler knows about the job. Without loss of generality, we
assume all jobs share a common state space X and follow the
same stochastic Markovian dynamics. However, the realization
of the dynamics may be different for each job. In particular,
the initial state of each job is drawn from a distribution X e,
so different jobs may start in different states.

While a job is in service, its state stochastically advances
according to the Markovian dynamics. This evolution is
independent of the arrival process and the evolution of other
jobs. A job’s state does not change while waiting in the queue.

In addition to the main job state space X, there is one
additional final state, denoted zg4one. When a job enters
state Tgone, it completes and exits the system. One can think of
a service time S as the stochastic amount of time it takes for
a job to go from its initial state, which is drawn from X,
to the final state xqone. Because we assume E[S] < oo, every
job eventually reaches x4one With probability 1. For ease of
notation, we follow the convention that zgone & X.

Example III.1. To model known service times, let a job’s state
be its remaining service time. The state space is X = (0, c0),
the initial state distribution X, is the service time distribu-
tion S, and the final state is z4one = 0. During service, a job’s
state decreases at rate 1.

Example III.2. To model unknown service times, let a job’s
state be its attained service, meaning the amount of time it
has been served so far. The state space is X = [0, c0), all jobs
start in initial state X,., = 0, and the final state Z4one iS an
isolated point. During service, a job’s state increases at rate 1,
but it also has a chance to jump to Zgone. The jump probability
depends on the service time distribution S: the probability a
job jumps while being served from state x to state y > x is
PS<y|S>axl]

B. Preemptible and Nonpreemptible States

Every job state is either preemptible or nonpreemptible. The
job in service can only be preempted if it is in a preemptible
state. We write Xp for the set of preemptible states and
Xnp = X\ Xp for the set of nonpreemptible states. Naturally,
we assume the scheduler knows which states are preemptible.

We assume all jobs start in a preemptible state, i.e.
Xnew € Xp with probability 1. This means that all jobs in the
queue are in preemptible states, and only the job in service
can be in a nonpreemptible state.

We assume preemption occurs with no cost or delay. Because
a job’s state only changes during service, our model is preempt-
resume, meaning that preemption does not cause loss of work.

C. Batch Poisson Arrival Process

In the Mp/Gyp/1, jobs arrive in batches. We represent a
batch as a list of states, where the ¢th state is the initial state
of the 7th job in the batch. The batch vector has distribution
Xpatch = (Xbatch,la R aXbatch,B), where B is the distribution

Authorized licehSHB Ns8 188490 T hit@ /M2 I@n20R érityRibraries. Downloaded on May 26,2025 at 17:40:29 UTC from IEEE Xplore. Restrictions apply.

2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)

of the number of jobs per batch. The batch arrival times are
a Poisson process of rate A\/E[B], with each batch drawn
independently from Xy,ich. The initial state distribution X ey
is an aggregate distribution determined by picking a random
element from a length-biased sample of Xpatch-

We allow Xpatch to be an arbitrary distribution over lists of
preemptible states. That is, the starting states of the jobs within
a batch can be correlated with each other or with the size of a
batch. However, after arrival, jobs’ states evolve independently
of each other (Section III-A).

Our Mg/Gpp/1 model differs from the traditional M/G/1 with
batch Poisson arrivals, often denoted MX/G/1, in an important
way. In the MX/G/1, service times within a batch are drawn
ii.d. from S. The Mg/Gyp/1 is more general in that starting
states within a batch can be correlated, so service times within
a batch can also be correlated.

D. System State

The state of the system can be described by a list
(z1,...,2,). Here n is the number of jobs in the system, and
z; € X is the state of the ith job. We denote the equilibrium
distribution of the system state as (X1, ..., Xy), where N is
the equilibrium distribution of the number of jobs.

When discussing the equilibrium distribution of quantities
under multiple scheduling policies, we use a superscript 7, as
in N7, to refer to the distribution under scheduling policy 7.

E. Holding Costs and Objective

We assume that there each job incurs a cost for each unit of
time it is not complete. Such a cost is called a holding cost,
and it applies to every job. A job’s holding cost depends on its
state, so it may change during service. We denote the holding
cost of state © € X by hold(z). Holding costs have dimension
COST/TIME. We assume that holding costs are deterministic,
positive,3 and known to the scheduler. For ease of notation,
we also define hold(2gone) = 0.

Let H = Zfil hold(X;) be the equilibrium distribution of
the total holding cost of all jobs in the system. Our objective
is to schedule to minimize mean holding cost E[H].

F. What Does the Scheduler Know?

The scheduler also knows, at every moment in time, the
current state of all jobs in the system. This assumption is
natural because the intuition of our model is that a job’s state
encodes everything the scheduler knows about the job.

We assume the scheduler knows a description of the job
model: the state space X, the subset of preemptible states
Xp C X, and the Markovian dynamics that govern how a
job’s state evolves. This assumption is necessary for the Gittins
policy, as the policy’s definition depends on the job model.

Finally, we assume that the scheduler knows the holding
cost hold(z) of each state z € X. However, it is possible to
transform some problems with unknown holding costs into
problems with known holding costs. A notable example is

3The holding cost of nonpreemptible states does not impact minimizing mean
holding cost (Lemma VIIL.2), so one could have hold(z) < 0 for z € Xyp.

minimizing mean slowdown when service times are unknown to
the scheduler (Example V.2). After transforming such problems
into known-holding-cost form, one can apply our results.

G. Technical Foundations

We have thus far avoided discussing technical measurability
conditions that the job model must satisfy. For example, if the
job Markov process has uncountable state space X, one should
make some topological assumptions on X and Xp, as well
as some continuity assumptions on holding costs. As another
example, when discussing subsets Y C Xp (Definitions VI.1
and IV.2), one should restrict attention to measurable subsets.
See Scully et al. [18, Appendix D] for additional discussion.

We consider these technicalities outside the scope of this
paper. All of our results are predicated on being able to
apply basic optimal stopping theory to solve the Gittins game
(Section VI). Optimal stopping of general Markov processes
is a broad field, and the theory has been developed under
many different types of assumptions [19]. Our main result
(Theorem V.1) can be understood as proving Gittins’s optimality
in any setting where optimal stopping theory of the Gittins
game has been developed.

IV. THE GITTINS POLICY

We now define the Gittins policy, the scheduling policy that
minimizes mean holding cost in the Mg/Gyp/1 (Section III).

Before defining Gittins, we discuss its intuitive motivation.
Suppose we are scheduling with the goal of minimizing mean
holding cost. How do we decide which job to serve? Because
our objective is minimizing mean holding cost, our aim should
be to quickly lower the holding cost of jobs in the system.
We can lower a job’s holding cost by completing it, in which
case its holding cost becomes hold(zg4one) = 0, or by serving
it until it reaches a state with lower holding cost.

The basic idea of Gittins is to always serve the job whose
holding cost we can decrease the fastest. To formalize this
description, we need to define what it means for a job’s holding
cost to decrease at a certain rate.

A. Gittins Index

As a warm-up, consider the setting of Example III.1: the
scheduler knows every job’s service time, and a job’s state is its
remaining service time. Suppose that every state is preemptible.

How quickly can we decrease the holding cost of a job
in state z, meaning x remaining service time? Serving a job
from state z to state y takes z — y time and decreases the
job’s holding cost by hold(z) — hold(y), so the holding cost
decreases at rate (hold(z) — hold(y))/(x — y). To find the
fastest possible decrease, we optimize over y:

(maximum holding cost> hold(z) — hold(y)

decrease rate from x vel0,o) T—y

The above quantity is called the (Gittins) index of state x. A
state’s index is the maximum rate at which we can decrease
its holding cost by serving it for some amount of time.

To generalize the above discussion to general job models,
we need to make two changes. Firstly, because a job’s state

Authorized licehSHB Ns8 188490 T hit@ /M2 I@n20R érityRibraries. Downloaded on May 26,2025 at 17:40:29 UTC from IEEE Xplore. Restrictions apply.

2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)

dynamics can be stochastic, we need to consider serving it until
it enters a set of states Y. Secondly, because we cannot stop
serving a job while it is nonpreemptible, we require Y C Xp.

Definition IV.1. For all x € X and Y C Xp, let

__ (service needed for a job starting in
Serve(z,Y) = (state x to first enter Y U {Zgone })’
serve(z,Y) = E[Serve(z,Y)],
__ (holding cost of a job starting in state x
Hold(, Y) = (when it first enters Y U {Zdone } ’
hold(z,Y) = E[Hold(z, Y)].

To clarify, Serve(x,Y) and Hold(z,Y) are distributions. If
x €Y, then Serve(z,Y) = 0 and Hold(z, Y) = hold(z).

If we serve a job from state x until it enters Y, its holding
cost decreases at rate (hold(z) — hold(x,Y))/ serve(z,Y) on
average. We obtain a state’s Gittins index by optimizing over Y.

Definition IV.2. The (Gittins) index of state x € X is

hold(z) — hold(z,Y)
serve(z,Y) '

index(x) = sup

YCXp

When we say that a job has a certain index, we mean that the
job’s current state has that index.

Given the definition of the Gittins index, the Gittins policy
boils down to one rule: at every moment in time, unless the
job in service is nonpreemptible, serve the job of maximal
Gittins index, breaking ties arbitrarily.

Because the Gittins index depends on the job model, it might
be more accurate to view Gittins not as one specific policy but
rather as a family of policies, with one instance for every job
model. When we refer to “the” Gittins policy, we mean the
Gittins policy for the current system’s job model.

B. Gittins Rank

Some work on the Gittins policy refers to the (Gittins) rank
of a state [6, 11, 18, 20], which is the reciprocal of its index:

1
index(z)

Gittins thus always serves the job of minimal rank.

The Gittins rank sometimes has a more intuitive interpreta-
tion than the Gittins index. For instance, when jobs have known
service times and constant holding cost 1, Gittins reduces to
SRPT, and a job’s rank is its remaining service time.

We use both the index and rank conventions in this work.
This section mostly uses the index convention. Sections VI
and VII, which prove Gittins’s optimality, use the rank
convention because it better matches the authors’ intuitions,
though this choice is certainly subjective.

rank(z) =

V. SCOPE OF GITTINS’S OPTIMALITY

Our main result is that Gittins is optimal in the Mg/Gyp/1
with arbitrary state-based holding costs. Specifically, Gittins
is optimal among nonclairvoyant scheduling policies, which

are policies that make scheduling decisions based only on the
current and past system states.

Theorem V.1. The Gittins policy minimizes mean holding cost
in the Mg/Gyp/1. That is, for all nonclairvoyant policies T,

E[HGittinS] S E[Hﬂ']

All of the prior optimality results discussed in Section II
are special cases of Theorem V.1. This makes Theorem V.1 a
unifying theorem for Gittins’s optimality in M/G/1-like systems.
Theorem V.1 also holds in scenarios not covered by any prior
result. For instance, no prior result handles batch arrivals or
holding costs that change during service.

A. Mean Slowdown and Unknown Holding Costs

Recall from Section III-E that we assume that the holding
cost of every job state is known to the scheduler. However,
some scheduling problems involve unknown holding costs. An
important example is minimizing mean slowdown, in which a
job’s holding cost is the reciprocal of its service time. Unless
all service times are known to the scheduler, this involves
unknown holding costs.

Fortunately, we can transform many problems with unknown
holding costs into problems with known holding costs. Suppose
a job’s current unknown holding cost depends only on its
current and future states. Then for all job states x € X, let

unknown holding cost
of a job in state x

job reached

hold(z) = E
state x

}, (V.1)

where the expectation is taken over a random realization of a
job’s path through the state space. The mean holding cost of
nonclairvoyant policies is unaffected by this transformation.

Example V.2 (Gittins for mean slowdown). Consider the
system from Example III.2. It has unknown service times,
and a job’s state x is its attained service. Suppose all states
are preemptible. To minimize mean slowdown, we give a job
with service time s holding cost s~'. This turns (V.1) into
hold(z) = E[S™! | S > «], and the Gittins index becomes

index(z) = su E[51(5<y)| 5>l
N y>€ Emin{S,y} —z | S >]

VI. THE GITTINS GAME

In this section we introduce the Gittins game, which is an
optimization problem concerning a single job. The Gittins game
serves two purposes. Firstly, it gives an alternative intuition
for the Gittins rank. Secondly, its properties are important
for proving Gittins’s optimality. We define the Gittins game
(Section VI-A), study its properties, (Sections VI-B—VI-D),
and explain its relationship to the Gittins rank (Section VI-E).

A. Defining the Gittins Game

The Gittins game is an optimal stopping problem concerning
a single job. We are given a job in some starting state € X and
a penalty parameter v > 0, which has dimension TIME? /COST.
The goal of the Gittins game is to end the game as soon
as possible. The game proceeds as follows. We begin by

Authorized licehSHB Ns8 188490 T hit@ /M2 I@n20R érityRibraries. Downloaded on May 26,2025 at 17:40:29 UTC from IEEE Xplore. Restrictions apply.

2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)

serving the job. The job’s state evolves as usual during service
(Section III-A). If the job completes, namely by reaching
state Zdone, the game ends immediately. Whenever the job’s
state is preemptible, we may give up. If we do so, we stop
serving the job, and the game ends after deterministic delay
r hold(y), where y € Xp is the job’s state when we give up.

We assume the job’s current state is always visible. Playing
the Gittins game thus boils down to deciding whether or not
to give up based on the job’s current state.

Because the job’s state evolution is Markovian, the Gittins
game is a Markovian optimal stopping problem. This means
there is an optimal policy of the following form: for some
give-up set Y C Xp, give up when the job’s state first enters Y.
The strong Markov property implies that this set Y need not
depend on the starting state, though it may depend on the
penalty parameter. We use this observation and Definition IV.1
to formally define the Gittins game.

Definition VI.1. The Gittins game is the following optimiza-
tion problem. The parameters are a starting state * € X and
penalty parameter 7, and the control is a give-up set Y C Xp.
The cost of give-up set Y is

game(z,7,Y) = serve(z,Y) + 7 hold(z, Y).

The objective is to choose Y to minimize game(z,r,Y). The
optimal cost or cost-to-go function of the Gittins game is

game(z,r) = Yig}f{P game(z,r,Y). (VL1)

B. Shape of the Cost-To-Go Function

To gain some intuition for the Gittins game, we begin by
proving some properties of the cost-to-go function, focusing
on its behavior as the penalty parameter varies.

Lemma VI.2. For all x € X and r > 0, the cost-to-go
Sunction game(x, r) is (i) nondecreasing in r, (ii) concave in T,
(iii) bounded by game(x,r) < serve(x,Xp) + r hold(z, Xp),
(iv) bounded by game(z,r) < serve(z,). When x € Xp,
property (iii) becomes game(x,r) < rhold(x).

Proof. Properties (i) and (ii) follow from (VI.1), which ex-
presses game(z,) as an infimum of nondecreasing concave
functions of r. Properties (iii) and (iv) follow from the fact that
two possible give-up sets are Xp, meaning giving up as soon as
possible, and &, meaning never giving up. The simplification
when x € Xp is due to Definition IV.1. O

C. Optimal Give-Up Set

We now characterize one possible solution to the Gittins
game. Because the Gittins game is a Markovian optimal
stopping problem, we never need to look back at past states
when deciding when to give up. This means we can find
an optimal give-up set that depends only on the penalty
parameter . We ask for each preemptible state: is it optimal
to give up immediately if we start in this state? The set of
states for which we answer yes is an optimal give-up set.

Definition V1.3. The optimal give-up set for the Gittins game
with penalty parameter r is

Y*(r) = {x € Xp | game(x,r) = r hold(x)}.

Noe that Y*(0) = Xp. We also let Y*(co) = @. For simplicity
of language, we call Y*(r) “the” optimal give-up set, even
though there may be other optimal give-up sets.

Basic results in optimal stopping theory [19] imply that
game(z,r) = game(x,r, Y*(r)), so the infimum in (VL1) is
always attained, namely by Y*(r).

The sets Y*(r) are monotonic in r, i.e. Y*(r) D Y*(r’) for
all » < 7’. This is because increasing the penalty makes giving
up less attractive, so giving up is optimal in fewer states.

For most of the rest of this paper, when we discuss the
Gittins game, we consider strategies that use optimal give-up
sets, so we simplify the notation for that case.

Definition VI.4. For all x € X and r > 0, let
Serve(x, r) = Serve(z, Y*(r))
and similarly for serve(z,), Hold(z,r), and hold(x,r).

D. Derivative of the Cost-To-Go Function

Suppose we solve the Gittins game for penalty parameter 7,
then change the penalty parameter to r & ¢ for some small
€ > 0. One would expect that the give-up set Y*(r) is nearly
optimal for the new penalty parameter r+¢, which would imply
game(x,r+e) ~ serve(z,r) + (r £¢) hold(z,). One can use
Lemma VI.2 and a classic envelope theorem [21, Theorem 1]
to formalize this argument. For brevity, we omit the proof. See
Scully et al. [18, Lemma 5.3] for a similar proof.

Lemma VL5. For all x € Xp, the function r — game(x,r)
is differentiable almost everywhere with derivative

% game(x,r) = hold(z,).

E. Relationship to the Gittins Rank

The Gittins game and the optimal give-up set are closely
related to the Gittins rank. In fact, we can use the Gittins game
to give an alternative definition of a state’s rank. For brevity,
we simply state the connection below.

Lemma VL.6.
(i) For all r > 0, we can write the optimal give-up set as
Y*(r) = {x € Xp | rank(z) > r}.
(ii) For all x € Xp, we can write the Gittins rank of x as

rank(z) = max{r > 0|z € Y*(r)}.

VII. PROVING GITTINS’S OPTIMALITY

We now prove Theorem V.1, namely that Gittins minimizes
mean holding cost in the Mp/Gpp/1. Our proof has four steps.
We begin by showing that minimizing mean holding cost E[H]
is equivalent to minimizing the mean preemptible holding
cost E[Hp|, which only counts the holding costs of jobs in
preemptible states (Section VII-A). We define a new quantity
called r-work, the amount of work in the system “below rank r”

Authorized licehSHB Ns8 188490 T hit@ /M2 I@n20R érityRibraries. Downloaded on May 26,2025 at 17:40:29 UTC from IEEE Xplore. Restrictions apply.

2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)

(Section VII-B). We show how to relate an integral of r-work
to the preemptible holding cost Hp, (Section VII-C) with
more r-work implying higher holding cost. We show that
Gittins minimizes mean r-work for all » > 0, so it also
minimizes E[H] (Section VII-D).

A. Preemptible and Nonpreemptible Holding Costs

Definition VIL.1. The system’s preemptible holding cost
is the total holding cost of all jobs in the system
whose states are preemptible. It has equilibrium distribution
Hp = SN 1(X; € Xp) hold(X;),, where 1 is the indicator
function. The nonpreemptible holding cost is defined analo-
gously as Hyp = Y1, 1(X; € Xyp) hold(X;).

Our goal is to show that Gittins minimizes mean holding
cost E[H| = E[Hp| + E[Hyp|. The lemma below shows that
E[Hyp] is unaffected by the scheduling policy. Minimizing
E[H] thus amounts to minimizing E[Hp].

Lemma VIL2. In the Mg/Gyp/I, the mean nonpreemptible
holding cost has the same value under all scheduling policies:

E[Hyp] = AE {total cost a job accrues while in a}

nonpreemptible state during service

Proof. By a generalization of Little’s law [1],

E[Hyp] = \E {total cost a job accrues whlle}

in a nonpreemptible state

The desired statement follows from the fact that if a job’s state is
nonpreemptible state, it must be in service (Section III-B). [

B. Defining r-Work

Definition VIL3. The (job) r-work of state x is Serve(zx,r),
namely the amount of service it requires to either complete or
enter a preemptible state of rank at least . The (system) r-work
is the total r-work of all jobs in the system. Its equilibrium
distribution, denoted W (r), is

N

W(r) = Z Serve(X;,r),
i=1
where (Xi,...,Xy) is the equilibrium system state (Sec-

tion III-D). In particular, we can think of W (0) as the amount
of nonpreemptible work in the system.

Lemma VIL4. For all r > 0,

N
Z serve(X;, r)] .
i=1

Proof. This follows from the law of total expectation and the
fact that E[Serve(X;,r) | X;] = serve(X,,r). O

EW(r)] = E

“#Strictly speaking, Definitions IV.1 and VL4 introduce Serve(z,r) as a
distribution, so the r-work of a job in state « is not Serve(z, r) itself but
rather a random variable with distribution Serve(z, 7).

C. Relating r-Work to Holding Cost

Theorem VILS. In the Mg/Gyp/1, under all nonclairvoyant
policies,

Proof. By Lemma VIIL.4 and the definition of Hp it suffices
to show that for all z € Xp,

h0|d(3;‘) = / serve(z,r) ;2 serve(zx, 0) dr.
0

(VIL1)

Because z € Xp, it is optimal to give up in state z when

playing the Gittins game with penalty parameter 0, so
serve(z,0) = 0, hold(x,0) = hold(x).

Using Lemma VL5, we compute

d game(z, 1)

_ rhold(z,7) — game(x,r) —serve(x,r)

dr r r2 r2
This means the integral in (VIL.1) becomes a difference between
two limits. Using Lemmas VI.2 and VL5, we compute

/ serve(x,) dr — Tim game(z,r)
0

& lim game(x,r)
r r—0 r

r—00 T

= hold(z,0) — 0 = hold(z). O

Theorem VIL.5 implies that to minimize E[Hp], it suffices to
minimize E[W (r)] — E[W(0)] for all » > 0. It turns out that
E[W(0)], much like E[Hyp], is unaffected by the scheduling
policy, so it suffices to minimize mean r-work E[W (r)]. We
omit the proof, as it is very similar to that of Lemma VIIL.2.

Lemma VIL6. In the Mp/Gyp/I, the mean 0-work E[W (0)]
has the same value under all scheduling policies.

D. Gittins Minimizes Mean r-Work

Lemmas VII.2 and VIL.6 and Theorem VIIL.5, together imply
that if a scheduling policy minimizes mean r-work E[W (r)] for
all > 0, then it minimizes mean holding cost E[H]. We show
that Gittins does exactly this, implying Gittins’s optimality.

Theorem VIL.7. The Gittins policy minimizes mean r-work in
the Mg/Gyp/1. That is, for all scheduling policies m and r > 0,

E[W S ()] < B[W™(r)].

Before proving Theorem VII.7, we introduce the main ideas
behind the proof. For the rest of this section, fix arbitrary » > 0.
We classify jobs in the system into two types.

o A job is r-good if it is nonpreemptible or has Gittins rank

less than r, i.e. its state is in X \ Y*(r).
e A job is r-bad jobs if it has Gittins rank at least r, i.e.
its state is in Y*(r).
During service, a job may alternate between being r-good
and r-bad. Gittins minimizes r-work because the jobs that
contribute to r-work are exactly the r-good jobs, and Gittins
always prioritizes r-good jobs over r-bad jobs. This means
that whenever the amount of r-work in the system is positive,
Gittins decreases it at rate 1, which is as quickly as possible.

Authorized licehSHB Ns8 188430 T hit@ /M2 I@n20R érityRibraries. Downloaded on May 26,2025 at 17:40:29 UTC from IEEE Xplore. Restrictions apply.

2021 19th International Symposium on Modeling and Optimization in Mobile, Ad hoc, and Wireless Networks (WiOpt)

Given that Gittins decreases r-work as quickly as possible,
does Theorem VII.7 immediately follow? The answer is no:
we need to look not just at how r-work decreases but also at
how it increases. Two types of events increase r-work.

o Arrivals can add r-work to the system.

« During service, a job can transition from being r-bad to
being r-good as its state evolves. Using the terminology
of Scully et al. [6, 18], we say call this r-recycling the
job. Every r-recycling adds r-work to the system.

Arrivals are outside of the scheduling policy’s control, but
r-recyclings occur at different times under different scheduling
policies. Because Gittins prioritizes r-good jobs over r-bad
jobs, all r-recyclings occur when there is zero r-work. It turns
out that because the batch arrival process is Poisson, this
r-recycling timing minimizes mean r-work.

Proof of Theorem VII.7. We are comparing Gittins to an arbi-
trary scheduling policy 7. It is convenient to allow 7 to be more
powerful than an ordinary policy: we allow 7 to devote infinite
processing power to r-bad jobs. This has two implications:

o Whenever there is r-work in the system, 7 controls at
what rate it decreases, where 1 is the maximum rate.

e Regardless of the rate at which r-work is decreasing,
whenever there is an r-bad job in the system, 7 controls at
what moment in time it either completes or is r-recycled.

A straightforward interchange argument shows that it suffices to
only compare against policies 7 which are “r-work-conserving”,
meaning they decrease r-work at rate 1 whenever r-work is
nonzero. Gittins is also r-work-conserving.

It remains only to show that among r-work-conserving
policies, mean r-work is minimized by only r-recycling jobs
when r-work is zero. This follows from classic decomposition
results for the M/G/1 with generalized vacations [22]. We first
explain how to view the r-work in the Mg/Gyp/1 as the virtual
work in a vacation system.’

o Interpret a batch adding s r-work to the Mg/Gyp/1 as an

arrival of service time s in the vacation system.

« Interpret an r-recycling adding v r-work to the Mg/Gyp/1
as a vacation of length v in the vacation system.

Using the above interpretation, a vacation system result of
Miyazawa [22, Theorem 3.3] implies

r-work sampled immediately

E[W7(r)] = a1 + E before 7 r-recycles a job

)

where ¢y and ¢ are constants that depend on the system
parameters but not on the scheduling policy 7. Because Gittins
prioritizes r-good jobs over r-bad jobs, Gittins only r-recycles
when r-work is zero. This means the expectation on the
right-hand side is zero under Gittins. But the expectation is
nonnegative in general, so Gittins minimizes mean r-work. [

VIII. CONCLUSION
We have given the first fully general statement (Theorem V.1)
and proof of Gittins’s optimality in the M/G/1. This simulta-
neously improves upon, unifies, and generalizes prior proofs,

SVirtual work in a vacation system is total remaining service time of all
jobs in the system plus, if a vacation is in progress, remaining vacation time.

all which either apply only in special cases or require limiting
technical assumptions (Section II).

We believe Gittins’s optimality holds even more generally
than we have shown. For example, our proof likely generalizes
to settings with “branching” jobs or additional priority con-
straints on the scheduler [23, Section 4.7]. It is also sometimes
possible to strengthen the sense in which Gittins is optimal.
For example, SRPT is optimal for non-Poisson arrival times,
and Gittins sometimes stochastically minimizes holding cost
in addition to minimizing the mean.

REFERENCES

[1] S. L. Brumelle, “On the relation between customer and time averages in
queues,” J. Appl. Probab., vol. 8, no. 3, pp. 508-520, 1971.

[2] 1. C. Gittins, Multi-Armed Bandit Allocation Indices, 1st ed., ser. Wiley-
Interscience Series in Systems and Optimization. Chichester, UK: Wiley,
1989.

[3] S. Aalto, U. Ayesta, and R. Righter, “On the Gittins index in the M/G/1
queue,” Queueing Syst., vol. 63, no. 1-4, pp. 437-458, Dec. 2009.

, “Properties of the Gittins index with application to optimal
scheduling,” Prob. Eng. Inf. Sci., vol. 25, no. 3, pp. 269-288, Jul. 2011.

[5] E. Hyytid, S. Aalto, and A. Penttinen, “Minimizing slowdown in
heterogeneous size-aware dispatching systems,” SIGMETRICS Perform.
Eval. Rev., vol. 40, no. 1, pp. 29-40, Jun. 2012.

[6] Z. Scully, M. Harchol-Balter, and A. Scheller-Wolf, “SOAP: One clean

analysis of all age-based scheduling policies,” Proc. ACM Meas. Anal.

Comput. Syst., vol. 2, no. 1, Apr. 2018.

Z. Scully, L. van Kreveld, O. J. Boxma, J.-P. Dorsman, and A. Wierman,

“Characterizing policies with optimal response time tails under heavy-

tailed job sizes,” Proc. ACM Meas. Anal. Comput. Syst., vol. 4, no. 2,

Jun. 2020.

[8] J. C. Gittins, “Bandit processes and dynamic allocation indices,” J. R.
Statist. Soc. B, vol. 41, no. 2, pp. 148-164, Jan. 1979.

[9]1 L. E. Schrage, “A proof of the optimality of the shortest remaining

processing time discipline,” Oper. Res., vol. 16, no. 3, pp. 687-690, Jun.

1968.

D. W. Fife, “Scheduling with random arrivals and linear loss functions,”

Manag. Sci., vol. 11, no. 3, pp. 429-437, Jan. 1965.

K. C. Sevcik, “The use of service time distributions in scheduling,” Ph.D.

dissertation, University of Chicago, Chicago, IL, Aug. 1971.

G. von Olivier, “Kostenminimale priorititen in wartesystemen vom typ

M/G/1 [Cost-minimum priorities in queueing systems of type M/G/1],”

Elektron. Rechenanl., vol. 14, no. 6, pp. 262-271, Dec. 1972.

G. P. Klimov, “Time-sharing service systems. I,” Theory Probab. Appl.,

vol. 19, no. 3, pp. 532-551, 1974.

T. L. Lai and Z. Ying, “Open bandit processes and optimal scheduling

of queueing networks,” Adv. Appl. Probab., vol. 20, no. 2, pp. 447-472,

1988.

D. Bertsimas, “The achievable region method in the optimal control of

queueing systems; formulations, bounds and policies,” Queueing Syst.,

vol. 21, no. 3, pp. 337-389, Sep. 1995.

M. Dacre, K. D. Glazebrook, and J. Nifio-Mora, “The achievable region

approach to the optimal control of stochastic systems,” J. R. Statist. Soc.

B, vol. 61, no. 4, pp. 747-791, 1999.

P. Whittle, “Tax problems in the undiscounted case,” J. Appl. Probab.,

vol. 42, no. 3, pp. 754-765, Sep. 2005.

Z. Scully, I. Grosof, and M. Harchol-Balter, “The Gittins policy is nearly

optimal in the M/G/k under extremely general conditions,” Proc. ACM

Meas. Anal. Comput. Syst., vol. 4, no. 3, Nov. 2020.

G. Peskir and A. N. Shiryaev, Optimal Stopping and Free-Boundary

Problems, ser. Lectures in Mathematics. ETH Ziirich. Basel: Birkhduser

Verlag, 2006.

K. C. Sevcik, “Scheduling for minimum total loss using service time

distributions,” J. ACM, vol. 21, no. 1, pp. 6675, Jan. 1974.

P. Milgrom and I. Segal, “Envelope theorems for arbitrary choice sets,”

Econometrica, vol. 70, no. 2, pp. 583-601, Mar. 2002.

M. Miyazawa, “Decomposition formulas for single server queues with

vacations : A unified approach by the rate conservation law,” Commun.

Statist.—Stochastic Models, vol. 10, no. 2, pp. 389-413, Jan. 1994.

J. C. Gittins, K. D. Glazebrook, and R. Weber, Multi-Armed Bandit

Allocation Indices, 2nd ed. Chichester, UK: Wiley, 2011.

[4]

[7

—

[10]
(11]
[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]
[21]

(22]

(23]

Authorized licehSHB Ns8 188490 T hit@ /M2 I@n20R érityRibraries. Downloaded on May 26,2025 at 17:40:29 UTC from IEEE Xplore. Restrictions apply.

