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ABSTRACT
In addition to providing small mean response times, modern ap-
plications seek to provide users predictable service and, in some
cases, Quality of Service (QoS) guarantees. In order to understand
the predictability of response times under a range of scheduling
policies, we study the conditional variance in response times seen
by jobs of different sizes. We define a metric and a criterion that
distinguish between contrasting functional behaviors of conditional
variance, and we then classify large groups of scheduling policies.

In addition to studying the conditional variance of response times,
we also derive metrics appropriate for comparing higher condi-
tional moments of response time across job sizes. We illustrate
that common statistics such as raw and central moments are not ap-
propriate when comparing higher conditional moments of response
time. Instead, we find that cumulant moments should be used.
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1. INTRODUCTION
As size based policies have become prevalent in modern applica-

tions including routers [17, 18], web servers [9, 19], and transport
protocols [33], scheduling research has shifted to questioning the
“fairness” of such policies [1, 5, 7, 10, 17, 20, 31]. For example,
is a policy that biases towards small job sizes as fair to large jobs
as a policy without bias? To answer this question, researchers have
studied the mean conditional response time experienced by a job of
sizex under a policyP , E[T (x)]P . The typical setting for these
studies is an M/GI/1 queue with loadρ = λE[X] < 1, whereλ
is the mean arrival rate andX is a random variable distributed ac-
cording to the service (job size) distribution. One popular criterion
for fairness that has emerged is:

DEFINITION 1.1. A scheduling policy,P , is fair under service
distributionX and loadρ if for all x, E[T (x)]P /x ≤ 1/(1 − ρ).
OtherwiseP is unfair.

Definition 1.1 was introduced in [1], and has served as the basis
for the work in [5, 7, 10, 17, 31]. The definition compares the
mean response time of jobs with different sizes using themetric
E[T (x)]P /x and then uses thecriterion 1/(1 − ρ) to distinguish
between fundamentally different fairness behaviors.

In this paper, we extend the approach used to studyE[T (x)]
in order to investigate the conditional variance in response time
seen by a job of sizex under policyP , V ar[T (x)]P , and higher
conditional moments of response time acrossx under a wide range
of scheduling policies. There has been a significant amount of prior
literaturederiving V ar[T (x)] under many common policies [26,
35, 12, 13]. However, possibly due to the complicated nature of
these formulas, little work has studied thebehaviorof V ar[T (x)]
acrossx. Recently,V ar[T (x)] has been investigated under a few
common policies using simulation techniques [7]; however prior
to that, investigations focused on providing customers estimates of
response time as a function of thefull system stateat arrival under
First-Come-First-Served (FCFS) and Processor-Sharing (PS) [28,
29, 30].

We choose to studyV ar[T (x)] because we envision a situa-
tion where users know the size of the job they are submitting and
would like to minimize the difference between theirexperienced
response time,T (x), and theirexpectedresponse time,E[T (x)];
thus maximizing “predictability.” Reducing “unpredictability” in
response times can be more important to users than reducing the
response times themselves because waiting much longer than ex-
pected causes far more user frustration than simply waiting longer
on average [3, 36]. Note thatV ar[T (x)] provides a better measure
of user-perceived “predictability” than doesV ar[T ] in the situation
where the size of the job is known by the user. Further, many QoS



guarantees are of the form “90% of the time a job of sizex will have
response time< g(x),” for some functiong(·). Such guarantees
can be phrased as boundingV ar[T (x)] by applying Chebyshev’s
Inequality (see Section 2).

We define a notion of “predictability” by scalingV ar[T (x)] as
follows.

DEFINITION 1.2. A job sizex is treatedpredictably under pol-
icy P , service distributionX, and loadρ if

V ar[T (x)]P

x
≤

λE[X2]

(1 − ρ)3

Otherwise a job sizex is treatedunpredictably. A scheduling pol-
icy P is predictable if every job size is treated predictably. Other-
wiseP is unpredictable.

It may not be immediately obvious why the appropriatemetric
for our definition isV ar[T (x)]/x or why the appropriatecriterion
is λE[X2]/(1 − ρ)3. We will discuss this in detail in Section 2.

We will show that scheduling policies have many different pat-
terns of predictability. While some policies have monotonically
increasing, but bounded,V ar[T (x)]/x under all loads and ser-
vice distributions; others exhibit non-monotonic behavior where
some range of sizes is overly penalized under some or all loads and
service distributions. We introduce the following three classes of
scheduling policies in order to distinguish between these patterns
of predictability.

DEFINITION 1.3. A scheduling policyP is: (i) Always Pre-
dictable if P is predictable under all loads and service distribu-
tions; (ii) Sometimes Predictable if P is predictable under some
loads and service distributions; and unpredictable under other loads
and service distributions or (iii)Always Unpredictable if P is un-
predictable under all loads and service distributions.

Introducing these three classes allows us to analyze large groups
of policies with respect to predictability instead of focusing on any
particular individual policy. This focus provides an understand-
ing of the effects ofscheduling mechanisms and heuristicson the
functional behavior ofV ar[T (x)]P and thus is useful beyond the
scope of common idealized policies. For example, we find that non-
preemptive policies can be either Sometimes Predictable or Always
Unpredictable; whereas preemptive policies can fall into any of the
three classes (see Figure 1). We show thatPS and Preemptive-Last-
Come-First-Served (PLCFS) are Always Predictable. Further, we
concentrate on various forms of prioritization: (a) size based, (b)
age based, and (c) remaining size based. We show that all policies
in (a) are Always Unpredictable, while policies in (b) and (c) may
be Sometimes Predictable or Always Unpredictable.

After developing a classification forV ar[T (x)]/x, we then pose
the question of whether similar classifications exist for higher con-
ditional moments of response time. The difficulty is that for higher
moments the appropriate metric and criterion are even more un-
clear. For theith moment, we will find that many common statis-
tics such as raw moments, central moments, and moments of slow-
down, S(x) = T (x)/x, do not provide appropriate metrics. In-
stead, we discover that little usedcumulant momentsfacilitate the
comparison of higher conditional moments of response time. This
allows us to generalize Definitions 1.1 and 1.2 and define a metric
with which to compare the higher moments of conditional response
time across job sizes. Further, we motivate a conjecture that the
constantλE[Bi], whereB is an M/GI/1 busy period, will provide
a criterion for theith cumulant that distinguishes between funda-
mentally different functional behaviors.

Figure 1: A diagram of the main results proved about the clas-
sification of predictability. A few examples of common policies
in each class are shown.

Throughout this paper we will consider a work conserving, preempt-
resume M/GI/1 system with a continuous service distribution hav-
ing a finite third moment. We letT (x) be the steady-state re-
sponse time for a job of sizex, where the response time is the time
from when a job enters the system until it completes service. Let
ρ < 1 be the system load. That isρ = λE[X], whereλ is the
arrival rate of the system andX is a random variable distributed
according to the service (job size) distributionF (x) having den-
sity functionf(x) defined for allx ≥ 0. Let F (x) = 1 − F (x).
Define the slowdown for a job of sizex, S(x) = T (x)/x. De-
fine mi(x) =

∫ x

0
tif(t)dt and m̃i(x) = i

∫ x

0
ti−1F (t)dt. No-

tice thatmi(x)/F (x) = E[Xi|X < x] and m̃i(x) is the ith
moment ofXx = min(X, x). Further, defineρ(x) = λm1(x)
and ρ̃(x) = λm̃1(x). As introduced in [16], define the normal-

izedk-th moment fork = 2, 3 of X to beM2[X] = E[X2]

E[X]2
and

M3[X] = E[X3]

E[X2]E[X]
. Notice thatM2[X] = C2 + 1 whereC is

the coefficient of variation andM3[X] is closely related to skew-
ness. Finally, we letB be the duration of a busy period, andB(x)
be the duration of a busy period started by a job of sizex.

2. DEFINING PREDICTABILITY
It is clear thatV ar[T (x)]P is related to the “predictability” of

a scheduling policyP ; however the motivations for the metric and
criteria in Definition 1.2 are not obvious. We will first illustrate that
Definition 1.2 is mathematically grounded and that it parallels Def-
inition 1.1. We will then show that Definition 1.2 is also motivated
by the goal of providing QoS guarantees.

Relating predictability and fairness
Recall that Definition 1.1 forfairnessstems from two motivations.
First, intuitively,E[T (x)]P should be proportional tox since small
jobs should have small response times and large jobs should have
large response times.PS accomplishes this sinceE[T (x)]PS =
x/(1 − ρ). Further,PS is typically thought of as a fair policy be-
cause at every instant every job in the system receives an equal
share of the server. Thus, a scheduling policyP can be viewed
as unfair if jobs of some sizex haveE[T (x)]P > E[T (x)]PS =
x/(1 − ρ).

Second, more formally, when comparingE[T (x)]P acrossx, we
want ametricthat scalesE[T (x)]P appropriately to allow for com-
parison ofE[T (x)]P between small and largex. ForE[T (x)]P , it
is clear that1/x is an appropriate scaling factor becauseE[T (x)]P =
Θ(x) under all work conserving scheduling policies [10], and thus
we need to normalize by the growth rate. The criterion1/(1 −



ρ) stems from two formal motivations [31]. First, it provides a
min-max notion of fairness:minP maxx E[T (x)]P /x = 1/(1 −
ρ). Second,1/(1 − ρ) provides a criterion that distinguishes be-
tween patterns of behavior of policies with respect to the metric
E[T (x)]P /x. The defined metric and criterion for fairness together
allow a classification of scheduling policies as one of Always Fair,
Sometimes Fair, or Always Unfair [31].

In defining predictability, Definition 1.2, while not related to the
performance ofPS (as was the case with Definition 1.1 for fair-
ness), does have other properties that parallel Definition 1.1. The
scaling factor forV ar[T (x)]P in our definition of predictability
is still 1/x. This is motivated by the growth rate ofV ar[T (x)]P ,
which is Θ(x) for common preemptive policies andO(x) for all
work conserving policies (see Theorem 2.1). Hence, scaling by
1/x makes sense; whereas using a stronger scaling such as1/x2

would causeV ar[T (x)]P /x2 → 0 asx → ∞.

THEOREM 2.1. Under all work conserving scheduling policies
P , limx→∞ V ar[T (x)]P /x ≤ λE[X2]/(1 − ρ)3. Equality holds for
P ∈ {PSJF, LAS, SRPT, PLCFS, PS}.

This result is a special case of Theorem 6.2.
The criterion λE[X2]/(1 − ρ)3 in Definition 1.2 is also moti-

vated by Theorem 2.1. Just as the criterion1/(1− ρ) used in Defi-
nition 1.1 has the property thatlimx→∞ E[T (x)]P /x = 1/(1−ρ)
under many common policies, Theorem 2.1 illustrates that the crite-
rion in Definition 1.2 also serves as the limit forV ar[T (x)]P /x un-
der many common scheduling policies. Further, the results in this
paper will illustrate that the criterion proves to be empirically useful
because it differentiates between contrastingV ar[T (x)]P /x be-
haviors. Specifically, when size based policies are unpredictable
it is becauseV ar[T (x)]P /x has a non-monotonic “hump” behav-
ior – where some mid-range job sizes are treated the most unpre-
dictably. On the other hand, when policies behave predictably it is
becauseV ar[T (x)]P /x is monotonically increasing.

It is important to observe that the criteria for fairness and pre-
dictability both derive from abusy period, they areE[B(x)]/x and
V ar[B(x)]/x respectively. In Section 6, we use this observation to
present metrics and criteria for all higher moments that generalize
fairness and predictability.

Relating predictability and QoS
Intuitively, the notion of “predictability” conveys the idea that
T (x)P − E[T (x)]P is never too large. Many QoS guarantees take
the form “90% of the timeT (x) − E[T (x)] < g(x),” or equiva-
lently P (T (x)−E[T (x)] ≥ g(x)) ≤ 10%. Chebyshev’s Inequal-
ity [22] gives us a bound of the form

P (T (x)P − E[T (x)]P ≥ g(x))) ≤
V ar[T (x)]P

g(x)2
(1)

Thus, we can provide the desired QoS guarantee by ensuring that
V ar[T (x)]/g(x)2 is not too large.1 Looking more closely at Equa-
tion 1, we need to ask “what is the smallest value ofg(x) that allows
V ar[T (x)]/g(x)2 to be bounded by a constant (10% in the above
example) for allx?”

Suppose thatg(x) = kxi for somek independent ofx and
some constanti. Then, we need to choose the smallesti that al-
lows V ar[T (x)]/g(x)2 to be bounded by a constant. Notice that

1Note that a more complex bound including other information
about the distribution ofT (x) could be used to provide QoS guar-
antees in practice. However, the simple calculation of Equation 1
provides intuition for an appropriate metric with which to study
V ar[T (x)].

we can immediately rule outi > 1 becauseT (x)P andE[T (x)]P

grow linearly inx for all P ; thus it does not make sense to bound
T (x)P − E[T (x)]P by something growing superlinearly. We can
also rule outi < 1/2 because for suchi, V ar[T (x)]P /x2i → ∞
as x → ∞ under allP . This leavesi ∈ [1/2, 1], wherei =
1/2 is the most desirable because it provides the tightest bound on
T (x) − E[T (x)] asx grows.

Definition 1.2 uses the metricV ar[T (x)]P /x, which corresponds
to choosingi = 1/2. This choice makes sense because
V ar[T (x)]P /x isO(1) under all work conserving policiesP . Thus,
any policy that is predictable will allow a QoS bound that is con-
stant acrossx. Note that choosingi ∈ (1/2, 1] is also reasonable;
however the results are less interesting.2

3. ALWAYS PREDICTABLE
We start to develop a classification of predictability by studying

the class of Always Predictable policies, policies where every job
size is treated predictably under all service distributions and sys-
tem loads. Two well known policies that are Always Predictable
arePLCFS andPS. It is immediate to see thatPLCFS is Always
Predictable sinceT (x)PLCFS = B(x), and thus

V ar[T (x)]PLCFS = V ar[B(x)] =
λxE[X2]

(1 − ρ)3

However, understanding the variance ofPS is more difficult.
Working from the transform, [35] presents the following useful rep-
resentation forV ar[T (x)]PS :

V ar[T (x)]PS =
2

(1 − ρ)2

∫ x

0

(x − t)R(t)dt

whereR(t) = 1−R(t) andR(t) = (1−ρ)
∑

∞

n=0 ρnF ∗n(t) with
F ∗n(t) =

∫
∞

0
F ∗(n−1)(t − s)dF ∗1(s),

F ∗1(t) = 1
E[X]

∫ t

0
(1 − F (s))ds, andF ∗0(t) =

{
1, x ≥ 0
0, x < 0

.

The complexity of this formula has led to mainly asymptotic
analysis of the conditional variance ofPS. However, we will be
able to exploit this asymptotic information in order to show thatPS
is predictable for allx.

THEOREM 3.1. PS is Always Predictable. Further,
V ar[T (x)]PS/x is strictly monotonically increasing inx.

PROOF. We will prove the result by showing that
d

dx

(
V ar[T (x)]PS/x

)
> 0 for all x. In combination with Theo-

rem 2.1 this will complete the proof.
d

dx

V ar[T (x)]PS

x
=

2

(1 − ρ)2
d

dx

(∫ x

0
R(t)dt −

1

x

∫ x

0
tR(t)dt

)

=
2

(1 − ρ)2

(
R(x) − R(x) +

1

x2

∫ x

0
tR(t)dt

)
> 0

It is interesting thatV ar[T (x)]PS/x is monotonically increas-
ing in x under all service distributions. This is different than
E[T (x)]PS/x = 1/(1 − ρ), which is constant acrossx, and il-
lustrates whyV ar[T (x)]PS/x is not an appropriate criterion for a
definition of predictability.
2For i ∈ (1/2, 1], V ar[T (x)]P /x2i → 0 asx → ∞ under all
P . As a result, it can quickly be seen that policies fall into one
of two classes based the bevaior ofV ar[T (x)]P as x → 0, i.e
whether limx→0 V ar[T (x)]P /x2i < ∞. This makes intuitive
sense because the bound onT (x)P − E[T (x)]P is much looser
asx grows and thus the performance of the small jobs dominates
the QoS bound.



It is important to point out that the predictability ofPS has been
studied in much more detail by Ward and Whitt [28]. While we
assume no knowledge of the system state in order to study how well
response times will match with prior user experience, Ward and
Whitt study how wellT (x)PS can be predicted given knowledge
of the system state (e.g. the number of jobs in the system upon
arrival,N ). They look at the question analytically asN → ∞ and
x → ∞ and prove that predictions can be made quite accurately
when eitherx or N is large.

4. ALWAYS UNPREDICTABLE
In this section we show that a large number of preemptive poli-

cies are Always Unpredictable, i.e. guaranteed under all system
loads and all service distributions to treat some job size unpre-
dictably. The policies in the Always Unpredictable class exhibit
fundamentally different behavior with respect toV ar[T (x)]/x than
those in the Always Predictable class. While the policies in the Al-
ways Predictable class haveV ar[T (x)]/x that is either monotoni-
cally increasing or constant inx, the policies we study here all ex-
hibit non-monotonic behavior – there is a “hump” inV ar[T (x)]/x
where a small range ofx has higherV ar[T (x)]/x than all otherx
(see Figure 2).

4.1 PSJF
Preemptive-Shortest-Job-First (PSJF) is the canonical example

of a policy that prioritizes based on size, and it will serve as the
building block for the analysis of all size based policies. Under
PSJF at every moment in time, the server is processing the job
with the smallest initial size.PSJF significantly improves on the
mean response time ofPS, and has recently been shown to be near
optimal with respect to mean response time in a very strong sense
[32]. Further,PSJF has the practical property that priorities can
be set upon arrival and then do not need to be updated; thus imple-
mentation ofPSJF is simple. The variance for a job of sizex is
[26]:

V ar[T (x)]
P SJF

=
λxm2(x)

(1 − ρ(x))3
+

λm3(x)

3(1 − ρ(x))3
+

3

4

(
λm2(x)

(1 − ρ(x))2

)2

In this section, we will first prove thatPSJF exhibits
non-monotonic behavior inV ar[T (x)]PSJF /x, where mid-range
job sizes are treated the most unpredictably. Then, we will bound
the position and size of this “hump.”

THEOREM 4.1. PSJF is Always Unpredictable. Further, under
all service distributions and all loads there exists someL such that
all x ≥ L are treated unpredictably.

PROOF. We separate this result into two cases. First, when the
service distribution has an upper boundL, and second when the
service distribution has no such upper bound. In the case of a
bounded service distribution, it is straightforward to see that jobs
of size L will be treated unpredictably. The case of unbounded
service distributions is more complicated however. Observe that
V ar[T (x)]PSJF /x is increasing inx for smallx. Also, recall that
from Theorem 2.1 thatV ar[T (x)]PSJF /x → λxE[X2]/(1−ρ)3

asx → ∞. Hence, if we can show that the limit is approached from
above, rather than below, we will have exhibited non-monotonic
behavior. We accomplish this by showing thatd

dx

(
V ar[T (x)]PSJF /x

)

approaches 0 from below asx → ∞. By observing that

d

dx

V ar[T (x)]PSJF

x
=

x d
dx

V ar[T (x)]PSJF − V ar[T (x)]PSJF

x2

our goal reduces to showing that asx → ∞

x
d

dx
V ar[T (x)]PSJF − V ar[T (x)]PSJF < 0 (2)

Computation yields that for any distribution with finite third mo-
ment:

x
d

dx
V ar[T (x)]

P SJF
− V ar[T (x)]

P SJF

=
λxm2(x)

(1 − ρ(x))3
+ O(x

4
f(x)) − V ar[T (x)]

P SJF
< 0 asx → ∞

Thus,PSJF is unpredictable for all loads and all unbounded ser-
vice distributions.

Although there are always some sizes that are treated unpre-
dictably underPSJF, most sizes receive predictable response times.

THEOREM 4.2. LetK1 be a constant such thatm3(x) ≤ K1xm2(x).
ThenV ar[T (x)]PSJF ≤ V ar[B(x)]h1(ρ, x)PSJF where

h1(ρ, x)PSJF =
(1 − ρ)3

(1 − ρ(x))4

{(
1 +

K1

3

)
+

(
5K1

12
− 1

)
ρ(x)

}

Further, noting thatK1 ≤ 1 for all service distributions, we have

thath1(ρ, x) ≤ (1−ρ)3

(1−ρ(x))4

{
4
3
− 7

12
ρ(x)

}
.

The proof of this result follows from direct calculation.
Notice that this bound guarantees that a large percentage of job

sizes will be treated predictably. In particular, all job sizes such that

ρ(x) ≤ 1−
(

4
3
(1 − ρ)3

)1/4
. For example, if the load is 0.8, all job

sizesx such thatρ(x) ≤ 0.678 will be treated predictably. If the
job size distribution is highly variable, this is nearly all jobs (since
a small percentage of the largest jobs make up half the load).

EXAMPLE 4.1. ConsiderX ∼ Exp(1). Thus,f(x) = e−x.

Then,ρ(x) = ρ
(
1 − e−x − xe−x

)
. So,ρ(x) ≤ 1−

(
4
3
(1 − ρ)3

)1/4

whene−x + xe−x ≥ 1 −
1−( 4

3
(1−ρ)3)1/4

ρ
. This says that when

ρ = 0.8, PSJF will be predictable for at least jobs of sizex ≤ 3.3.
Thus,PSJF will be predictable for at least 96.3% of the jobs.

Further, an even larger percentage of job sizes can be shown to
be treated predictably ifK1 is bounded below 1.3

Theorem 4.2 shows that small (and in fact most) job sizes receive
predictable service, but the question still remains as to how unpre-
dictably the large jobs can be treated. The dependence of Theorem
4.2 on the boundm3(x) ≤ K1xm2(x) leads to an overestimate of
V ar[T (x)]PSJF for large job sizes. Thus, we must take a different
approach in order to obtain a tighter bound for the large jobs.

THEOREM 4.3. For jobs of sizex > K2E[X], V ar[T (x)]PSJF ≤

V ar[B(x)]h2(ρ) whereh2(ρ) =
(
1 +

M3[X]
3K2

)
+

3ρM2[X]
4K2(1−ρ)

.

The proof of this Theorem follows from direct calculation.
The combination of the Theorems 4.2 and 4.3 provides a tech-

nique for determining both (i) which job sizes are treated unpre-
dictably and (ii) how unpredictably they can be treated. We illus-
trate this process in the next example.

EXAMPLE 4.2. Returning to the case ofX ∼ Exp(1) we can
use our prior calculation to setK2 = 3.3 in the case whereρ =
0.8 in ourPSJF system. Now, noting thatM3[X] = 3 andM2[X] =
2 in the case of the exponential, we haveV ar[T (x)]PSJF ≤
3.1V ar[B(x)]. Thus, althoughPSJF is Always Unpredictable,
even in the case of an exponential service distribution withρ = 0.8,
PSJF is only unpredictable for at most4% of jobs and this small
fraction of jobs only receives a factor of 3.1 higher variance. This
agrees with the behavior shown in Figure 2.
3For instance, iff(x) is decreasing,K1 can be set to 3/4.



4.2 Preemptive size based policies
In this section we build on the analysis ofPSJF and show that

all size based policies are Always Unpredictable.

DEFINITION 4.1. Under a preemptive size based policy, the
priority of a job is assigned based on a fixed priority function that
is a bounded bijection from job sizes to priorities. Priorities are
assigned upon arrival and cannot be adjusted. The job with the
highest priority is run at all instants, and if two jobs of the same
size (and thus priority) are in the system, then the job that arrived
first is given higher priority.

Notice the generality of the definition of preemptive size based
policies. The definition includesPSJF, but it also includes
Preemptive-Longest-Job-First (PLJF) and many hybrid policies that
bias towards small jobs but also give high priority towards some
larger jobs to curb unfairness.

Although this group of policies is quite broad, there are some
limitations to the definition of preemptive size based policies that
hopefully can be addressed in future research. The class of preemp-
tive size based policies does not include policies where jobs of dif-
ferent sizes all have equivalent priorities. Further, the results in this
section do not include randomized policies. Thus, there may be a
randomized size based policy from being that is predictable under
all service distributions and all loads – though the randomization
procedure will likely need to depend on the service distribution.

THEOREM 4.4. All preemptive size based policies are Always
Unpredictable.

PROOF. We separate the proof into two cases. First, the case
where a finite job size receives the lowest priority; and second the
case where no finite job size receives the lowest priority.

First, letP be a preemptive size based policy where a finite size
s has the lowest priority. LetW be the work in the system seen by
an arrival. Then

V ar[T (s)]P = V ar[B(s + W )] > V ar[B(s)] =
λsE[X2]

(1 − ρ)3

Sos is always treated unpredictably under such a policy.
Next, letP be a preemptive size based policy where no finite job

sizes has the lowest priority. In this case there must be a sequence
of sizes with decreasing priorities{si} such that for somei, the
priority of si is less than the priority of anyx /∈ {si}. Note that
asN → ∞,

∑
i>N ρ(si) → 0 because our service distribution

is continuous. Now there are three cases to deal with. The limit of
this sequence could be 0, some finites, or infinity. (If the limit does
not exist, we can apply the same arguments to any of the points it
oscillates between.)

First consider the subcase where the limit of the sequence is zero.
Then there exists an infinite decreasing sequence of{si} such that
for all x > si, x has priority oversi. As i → ∞ we see that
V ar[T (si)]

P

si
→ V ar[B(W )]

si
= ∞, which completes this case.

The subcase where the limit approaches some finites can be re-
duced to the earlier case of a finite sizes having the lowest priority.

Finally, we consider the subcase where the limit of the sequence
is infinity. Pick ansi such that jobs of sizesi are treated unpre-
dictably underPSJF, and jobs of sizesi have lower priority than
jobs of sizet for all t < si. Note that we can always find such ansi.
Further, since jobs of sizex > si may also have higher priority than

si we haveV ar[T (si)]
P ≥ V ar[T (si)]

PSJF > λsiE[X2]

(1−ρ)3
.

4.3 LAS
The Least-Attained-Service (LAS) policy4 is the canonical ex-

ample of a policy that prioritizes based on age. UnderLAS, the job
with the least attained service gets the processor to itself. If several
jobs all have the least attained service they timeshare the server via
PS. This is a practical policy since a job’s age is always known,
though its size may not be known.LAS improves uponPS with re-
spect to mean response time and mean slowdown when the job size
distribution has a decreasing failure rate (DFR) [21] and closely
approximates the optimal policy for mean response time,SRPT,
under DFR distributions. Recently a stream of research has sug-
gested thatLAS can provide significant improvements for routers
[17, 18]. We have [34]:

V ar[T (x)]
LAS

=
λxm̃2(x)

(1 − ρ̃(x))3
+

λm̃3(x)

3(1 − ρ̃(x))3
+

3

4

(
λm̃2(x)

(1 − ρ̃(x))2

)2

In this section, we will first prove thatLAS exhibits non-monotonic
behavior inV ar[T (x)]LAS/x, where large, but not the largest, job
sizes are treated the most unpredictably. We will then bound the po-
sition and size of this “hump” through bounds onV ar[T (x)]LAS .

LEMMA 4.1. For all x, V ar[T (x)]PSJF ≤ V ar[T (x)]LAS

Combining Lemma 4.1 with Theorem 4.1, we have:

COROLLARY 4.1. LAS is Always Unpredictable. Further, un-
der all service distributions and all loads there exists someL such
that all x > L are treated unpredictably.

There are always some job sizes that are treated unpredictably
underLAS, however most job sizes receive predictable response
times.

THEOREM 4.5. LetK1 be a constant such thatm3(x) ≤ K1xm2(x).
ThenV ar[T (x)]LAS ≤ V ar[B(x)]h1(ρ, x)LAS where

h1(ρ, x)LAS =
(1 − ρ)3

(1 − ρ̃(x))4

{(
1 +

K1

3

)
+

(
2K1

3
− 1

)
ρ̃(x)

}

Further, noting thatK1 ≤ 1 for all service distributions we have

thath1(ρ, x)LAS ≤ (1−ρ)3

(1−ρ̃(x))4

{
4
3
− 1

3
ρ̃(x)

}
.

The proof follows using Lemmas A.1 and A.2.
This bound guarantees that a large percentage of job sizes will be

treated predictably. In particular, all job sizes such thatρ̃(x) ≤ 1−(
4
3
(1 − ρ)3

)1/4
. Thus, ifρ = 0.8, all jobs such that̃ρ(x) ≤ 0.678

will be treated predictably. However, the question still remains as
to how unpredictably the large jobs can be treated.

THEOREM 4.6. For jobs of sizex > K2E[X], V ar[T (x)]LAS ≤

E[B(x)]h2(ρ), whereh2(ρ) =
(
1 + M3[X]

3K2

)
+ 3ρM2[X]

4K2(1−ρ)
.

Note that this is the same bound on the hump size as underPSJF.
The difference will come in the application because the bound on
the position of the hump is in terms of̃ρ(x) underLAS instead of
ρ(x) as underPSJF, soK2 will be smaller. We illustrate this using
our running example.

4Note thatLAS is sometimes referred to by two other names:
Foreground-background (FB) and Shortest-Elapsed-Time (SET).
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Figure 2: The conditional variance ofPLCFS,SRPT,PSJF, and
LAS are shown. The service distribution is exponential with
mean 1. The dotted line shows the criterion for predictability.
Notice that when load is low (left column),SRPT is predictable,
but when load is high (right column)SRPT is unpredictable. In
contrastPSJF andLAS are Always Unpredictable. However, as
seen in the bottom row, they are only unpredictable to a small
percentage of the large jobs.

EXAMPLE 4.3. Again considerX ∼ Exp(1). Then,ρ̃(x) =

ρ
(
1 − e−x

)
. So,ρ̃(x) ≤ 1 −

(
4
3
(1 − ρ)3

)1/4
whene−x ≥ 1 −

1−( 4
3
(1−ρ)3)1/4

ρ
. This says that whenρ = 0.8, LAS will be pre-

dictable for at least jobs of sizex ≤ 1.8. Thus,LAS will be pre-
dictable for at least 83.4% of the jobs.

We can use this result to setK2 = 1.8 in the case whereρ = 0.8,
which givesV ar[T (x)]PSJF ≤ 4.9V ar[B(x)]. Thus, although
LAS is Always Unpredictable, whenρ = 0.8, LAS is only unpre-
dictable for at most17% of jobs and this fraction of jobs only re-
ceives at most a factor of 5 higher variance. Note that although this
is not nearly as good as what we saw underPSJF, LAS is operat-
ing without knowledge of job sizes. This agrees with the behavior
shown in Figure 2.

5. SOMETIMES PREDICTABLE
In this section we show that many policies (e.g.SRPT, FCFS)

fall into the Sometimes Predictable class. That is many policies can
be predictable for all job sizes under some loads and service distri-
butions and unpredictable for some job size under other loads and
service distributions. The policies that are Sometimes Predictable
have more complicated behavior with respect toV ar[T (x)] than
we observed in the cases of the Always Predictable and Always
Unpredictable classes. For instance, we show that under all ser-
vice distributions,SRPT maintains monotonicV ar[T (x)]/x for
low loads similarly to policies in the Always Predictable class; but
under high enough load,SRPT exhibits the same non-monotonic
behavior seen underPSJF andLAS. Interestingly, load has the op-
posite effect for non-size based non-preemptive policies such as
FCFS, which are predictable under high loads and unpredictable
under low loads. These behaviors are illustrated in Figures 2 and 3.
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Figure 3: The conditional variance ofPLCFS, FCFS, and SJF
are shown. The service distribution is exponential with mean
1. The dotted line shows the criterion for predictability. Notice
that when load is low, the hump inSJF stays below the cri-
terion for predictability, but when load is high the jobs in the
hump of V ar[T (x)]SJF /x are treated unpredictably. In con-
trast, V ar[T (x)]FCFS/x is always monotonically decreasing.
However, as seen in the bottom row,FCFS treats a significant
percentage of small jobs unpredictably; whereas, especially un-
der high load,SJF only treats a small percentage of jobs unpre-
dictably.

5.1 Preemptive age based policies
In this section we build on the analysis ofLAS and show that age

based policies are either Sometimes Predictable or Always Unpre-
dictable.

DEFINITION 5.1. Under a preemptive age based policy, the
priority of a job is assigned based on a fixed priority function that
is a bounded bijection from ages to priorities. The priority of a job
is updated as the age (attained service) of the job changes. The job
with the highest priority is preemptively given service, and if two
jobs have the same age (and thus priority), the job that attained
that age first is given higher priority.

It is important to point out the generality of the definition of pre-
emptive age based policies. Not only does this definition include
LAS, but it also includesFCFS and an array of hybrid policies that
bias towards small ages but also give some larger ages high prior-
ity in order to curb unfairness. As with the definition of size based
policies in Section 4.2, there are some limitations to the definition
of age based policies that are left for future work.

THEOREM 5.1. All preemptive age based policies are either
Sometimes Predictable or Always Unpredictable. Further, all age
based policies where no finite age receives the lowest priority are
Always Unpredictable.

PROOF. We again separate the proof into two cases. First, the
case where a finite age receives the lowest priority; and second, the
case where no finite age receives the lowest priority.

Let P be a preemptive age based policy where a finite agea > 0
has the lowest priority. Now, consider a jobjs of sizes = a + ε



whereε → 0. First notice that all of the jobs in the system whenjs

arrives will complete or achieve age at leasts while js is in the sys-
tem, sincejs will get stuck with agea. Further, all jobs that arrive
while js is in the system will either complete or get worked on up
to at least agea while js is in the system. Notice thatV ar[T (s)] in
this system is larger thanV ar[T (s)]LAS in a system having a dis-
tribution with finite support truncated ats. Further,V ar[T (s)]LAS

in the system with finite support is worse thanV ar[T (s)]PSJF in
the system with the same service distribution. Finally, note that we
have already shown that aPSJF system where a finite sized job
receives the lowest priority is Always Unpredictable, thus we can
conclude thatP is unpredictable in this case.

Note that this proof technique fails for the case wherea = 0 be-
cause when we truncate the service distribution we are left with a
degenerate distribution, for which our prior results forPSJF do not
apply. To handle the case ofa = 0, note that allP such that jobs
with zero age have the lowest priority are non-preemptive. Finally,
we show in Theorem 5.5 that all non-preemptive policies are un-
predictable under service distributions that are defined on a neigh-
borhood around zero.

Next letP be a preemptive age based policy where no finite age
has lowest priority. This case can be dealt with symmetrically to
the argument used in Theorem 4.4.

5.2 SRPT
SRPT is perhaps the most important of the remaining size based

policies due to the fact that it has been shown to be optimal with
respect to mean response time [23]. UnderSRPT, at every moment
in time, the server is processing the job with the smallest remaining
processing time. RecentlySRPT has received a lot of attention [1,
15, 31, 17, 7] due to results showing that usingSRPT in web servers
can decrease user response times dramatically [9, 19]. However, in
this stream of research the behavior ofV ar[T (x)]SRPT has only
been evaluated using trace-based simulation [7]. Thus, we believe
this paper represents the first analytic study of the behavioral prop-
erties of the conditional variance of response time underSRPT. The
variance of response time for a job of sizex underSRPT is [24]:

V ar[T (x)]SRPT =

∫ x

0

λm2(t)

(1 − ρ(t))3
dt +

λm̃3(x)

3(1 − ρ(x))3

+
3

4

(
λm̃2(x)

(1 − ρ(x))2

)2

−
λ2x2m̃2(x)F (x)

(1 − ρ(x))4

We will start the section by showing thatSRPT provides pre-
dictable response times for all job sizes at low load, regardless of
the service distribution. Then, we show that under any service
distribution, when the load is high enough,SRPT will be unpre-
dictable to some job size. Finally, we show that, even whenSRPT
might not provide predictable response times for all job sizes, only
a tiny percentage of the jobs receive unpredictable response times,
and this unpredictability is not too bad.

THEOREM 5.2. LetK1 be a constant such that
m3(x) ≤ K1xm2(x). Under all service distributionsSRPT is pre-
dictable whenρ < 0.4. Further, for x such thatρ(x) > 0.4,
V ar[T (x)]SRPT ≤ V ar[B(x)]h1(ρ, x)SRPT where

h1(ρ, x)SRPT =
(1 − ρ)3

(1 − ρ(x))4

{(
1 −

2

3
K1

)
+

(
5

3
K1 − 1

)
ρ(x)

}

Noting that for all distributionsm3(x) ≤ xm2(x), we can set

K1 = 1 and obtainh1(ρ, x) ≤ (1−ρ)3

(1−ρ(x))4

{
1
3

+ 2
3
ρ(x)

}
.

PROOF. Most of the proof is purely algebraic calculation, so we
will only present the major steps. First, we upper bound
V ar[T (x)]SRPT using Lemmas A.1 and A.3

V ar[T (x)]SRPT ≤ V ar[B(x)]P
(

1 +
m̃3(x)(5ρ(x) − 2)

3xE[X2](1 − ρ(x))

)

From this, we see thatV ar[T (x)]SRPT ≤ V ar[B(x)] for all x
such that5ρ(x) − 2 < 0, i.e. ρ(x) ≤ 0.4. Then, we apply Lemma
A.2 in the case whenρ(x) > 0.4 to finish the proof.

Using this theorem, we can see that most job sizes will be treated
predictably underSRPT even under high load. Forx such that
ρ(x) > 0.4, V ar[T (x)]SRPT ≤ V ar[B(x)] wheneverρ(x) ≤

1 − (1 − ρ)3/4. Notice that this gives a much better range than the
ρ(x) < 0.4 whenρ is high. Whenρ = 0.8, SRPT is predictable
for all job sizesx that haveρ(x) ≤ 0.7 regardless of the service
distribution.

We now show that, thoughSRPT can provide predictable re-
sponse times for all job sizes under low loads,SRPT will be un-
predictable for some job size under high enough load.

THEOREM 5.3. SRPT is Sometimes Predictable. For every ser-
vice distribution, there exists someρcrit and L such that, for all
ρ > ρcrit, SRPT is unpredictable for all jobs of sizex ≥ L.

PROOF. We will prove the result only in the case of an un-
bounded service distribution. The proof of the bounded case is
similar. In what follows, defineδx = λm2(x)/x = ρ(x) m2(x)

xm1(x)
.

We will prove the result by taking advantage of the Lemmas A.4
and A.5. Defineεx > 0 as

εx =
λxE[X2]

(1 − ρ)3
−

λxm2(x)

(1 − ρ(x))3
+

λ2x2m̃2(x)F (x)

(1 − ρ(x))4

Jobs of sizex are treated unpredictably if the following formula
is negative. Using Lemmas A.4 and A.5 we have:

V ar[B(x)] − V ar[T (x)]SRPT

=
λxm2(x)

(1 − ρ(x))3
−

∫ x

0

λm2(t)

(1 − ρ(t))3
dt

−
λm̃3(x)

3(1 − ρ(x))3
−

3λ2m̃2(x)2

4(1 − ρ(x))4
+ εx

≤

(
3λ2m2(x)2

(1 − ρ(x) + δx)3(1 − ρ(x))3
−

3λ2m2(x)2

4(1 − ρ(x))4
+ εx

)

+

(
λm3(x)

(1 − ρ(x) + δx)3
−

λm3(x)

3(1 − ρ(x))3

)
(3)

Now, we will show that asx → ∞ the above equation ap-
proaches 0 from below whenρ is higher than someρcrit < 1. This
will complete the proof because it will guarantee the existence of
a ρcrit such that, for allρ > ρcrit, all x larger than someL will
be treated unpredictably. TheL comes from the fact that we show
the limit converges from below asx → ∞, so there must exist aL
such that allx > L are treated unpredictably whenρ > ρcrit.

In what remains, the following notation will be used to simplify

the calculations. Letε∗x = εx(1−ρ(x))(1−ρ(x)+δx)3

3λ2m2(x)2
> 0. It will be

important thatxε∗x → 0 asx → ∞, so we show this in Lemma
A.6. We applyε∗x in order to continue our main calculations from
Equation 3. We will start by showing the first term approaches 0
from below, and then move to the second term.

Working with the first term, we have

3λ2m2(x)2

(1 − ρ(x) + δx)3(1 − ρ(x))3
−

3λ2m2(x)2

4(1 − ρ(x))4
+ εx < 0

4(1 − ρ(x)) + ε∗x < (1 − ρ(x) + δx)3



Noting thatδx = λm2(x)/x ≤ ρ(x), and thus(1−ρ(x)+δx) ≤ 1,
we can work with the simpler formula

3(1 − ρ(x)) + ε∗x < ρ(x)
m2(x)

xm1(x)
(

E[X]

m1(x)

)(
3x + xε∗x

3x + m2(x)
m1(x)

)
< ρ

(
1 +

x
∫

∞

x
tf(t)dt

xm1(x)

)(
1 −

m2(x)
m1(x)

− xε∗x

3x + m2(x)
m1(x)

)
< ρ

We will now show that the Left Hand Side (LHS) approaches 1
from below asx → ∞. And thus show that, for large enoughρ,
the first term in Equation 3 is negative.

We can see that the LHS approaches 1 from below by realiz-
ing that,limx→∞ x

∫
∞

x
tf(t)dt ≤ limx→∞

∫
∞

x
t2f(t) = 0 while

limx→∞
m2(x)
m1(x)

− xε∗x = E[X2]
E[X]

.
Thus, for large enoughx the LHS approaches 1 from below be-

cause the first piece of the LHS converges to 1 from above with rate
o(1/x) while the second piece converges to 1 from below with rate
Θ(1/x). Thus, the limit of the product is 1 and it is approached
from below.

We now analyze the second term in Equation 3.

λm3(x)

(1 − ρ(x) + δx)3
−

λm3(x)

3(1 − ρ(x))3
< 0

31/3(1 − ρ(x)) < (1 − ρ(x) + δx)

Noting that31/3 < 2, we can work with the simpler equation

2(1 − ρ(x)) <

(
1 − ρ(x) +

m2(x)ρ(x)

xm1(x)

)

(
1 +

x
∫ x

0
tf(t)dt

xm1(x)

)(
1 −

m2(x)
m1(x)

x + m2(x)
m1(x)

)
< ρ

Thus, to complete the proof we need to show that the LHS ap-
proaches 1 from below asx → ∞. We again see that the first piece
of the LHS converges to 1 from above with rateo(1/x) while the
second piece converges to 1 from below with rateΘ(1/x). Thus,
the limit of the product is 1 and it is approached from below.

Putting the two calculations together, we see that asx → ∞
there exists aρcrit < 1 and anL such that for allρ > ρcrit jobs of
sizex > L are treated unpredictably.

The prior theorems give bounds on the position and existence of
the hump inV ar[T (x)]SRPT /x; to bound the height of the hump
it turns out to be effective to use the same bound that we have used
for PSJF andLAS.

LEMMA 5.1. For all x, V ar[T (x)]SRPT ≤ V ar[T (x)]LAS

Lemma 5.1 allows us to use the bound already derived forLAS in
Theorem 4.6. As in the cases ofPSJF andLAS, the combination
of the above theorems provides tight bounds on the position and
size of the hump inV ar[T (x)]SRPT /x.

EXAMPLE 5.1. Again considerX ∼ Exp(1). ρ(x) ≤ 1 −

(1 − ρ)3/4 whene−x + xe−x ≥ 1 − 1−(1−ρ)3/4

ρ
. This says that

whenρ = 0.8, SRPT will be predictable for at least jobs of size
x ≤ 3.6, which is at least 97.2% of the jobs.

We can use this result to setK2 = 3.6 in the case whereρ = 0.8
which givesV ar[T (x)]SRPT ≤ 2.9V ar[B(x)]. Thus, although
SRPT can be unpredictable, in the case of an exponential service

distribution withρ = 0.8, SRPT is only unpredictable for at most
3% of jobs and this fraction of jobs only receives at most a factor of
3 higher variance. Note both of these bounds are better than were
obtained for eitherPSJF or LAS.

5.3 Preemptive remaining size based policies
In this section we build on the analysis ofSRPT and show that all

remaining size based policies are either Sometimes Unpredictable
or Always Unpredictable.

DEFINITION 5.2. Under apreemptive remaining size based pol-
icy, the priority of a job is assigned based on a fixed priority func-
tion that is a bounded bijection from remaining sizes to priorities.
The priority of a job is updated as the remaining size of the job
changes, and the job with the highest priority is preemptively given
service. If two jobs have the same remaining size, the job that at-
tained that remaining size first is given higher priority.

Again it is important to point out the breadth of this definition.
Not only does this definition include policies such asSRPT and
Longest-Remaining-Processing-Time (LRPT), it also includes many
hybrid policies where small remaining sizes receive high priority
and some large remaining sizes also receive high priority in order
to curb unfairness.

THEOREM 5.4. All preemptive remaining size based policies
are Sometimes Predictable or Always Unpredictable.

PROOF. We again separate the proof into two cases. First, the
case where a finite remaining size receives the lowest priority. Let
P be a preemptive remaining size based policy such that a non-
zero remaining sizer receives the lowest priority. We will return
to the case where there is no suchr. We will consider a service
distribution having upper boundr. Consider a jobjr of original
sizer. Then, whilejr is in the system, at least all jobs that arrived
earlier and have original size less thanr will complete, sincejr will
be stuck at remaining sizer. Further, whenjr has remaining size
t at least all arrivals of size< t will complete beforejr. Thus, the
system has higherV ar[T (r)] than anSRPT system with a service
distribution truncated atr. Finally, we saw that there are situations
whereSRPT will give jobs of sizer unpredictable service. Thus,
P is unpredictable in this case.

Second, the case where there is no finite job size that receives the
lowest priority can be dealt with in the same manner as in the proof
of Theorem 4.4.

5.4 Non-preemptive policies
We now move to a discussion of the predictability under non-

preemptive policies.5 Non-preemptive policies have very different
behavior than the preemptive policies we have considered in this
work so far. We will see in Section 6.3 that large job sizes see
nearly deterministic response times under non-preemptive policies,
because once they begin service they cannot be interrupted. How-
ever, one result of this bias towards large job sizes is that small job
sizes can receive extremely variable service because they may have
to wait behind the excess of a much larger job.

In fact, whenever the service distribution includes arbitrarily small
jobs, these small jobs will receive unpredictable response times un-
der non-preemptive policies.

THEOREM 5.5. Non-preemptive policies are either Sometimes
Predictable or Always Unpredictable. All non-preemptive policies
are unpredictable for all loads if the service distribution includes
arbitrarily small job sizes.
5Note that there is some overlap between non-preemptive policies
and age based policies, e.g.FCFS is in both groups.



PROOF. Let P be a work conserving non-preemptive policy.
The response time of a jobjx of size x underP is the sum of
the work in the system that will serve ahead ofjx, Wjx , and all
arrivals whilejx is in the system that serve ahead ofjx. This sec-
ond piece can be viewed as a busy period,Bjx(Wjx). We can
boundWjx from below by the excess of the job at the server upon
the arrival ofjx, E . Further, we can boundV ar[Bjx(Wjx)] ≥
V ar[Wjx ] ≥ V ar[E ]. Finally, we can complete the proof by ob-

serving thatlimx→0
V ar[T (x)]P

x
≥ limx→0

V ar[E]
x

= ∞.

However, in many real world cases there is some lower bound
that can be placed on the size of a service request. In this case, non-
preemptive policiescanprovide predictable service. We illustrate
this using the examples ofFCFS and non-preemptive Shortest-Job-
First (SJF). Note that [26]

V ar[T (x)]
F CF S

=
λE[X3]

3(1 − ρ)
+

λ2E[X2]2

4(1 − ρ)2

V ar[T (x)]
SJF

=
λE[X3]

3(1 − ρ(x))3
+

λ2m2(x)E[X2]

(1 − ρ(x))4
−

λ2E[X2]2

4(1 − ρ(x))4

THEOREM 5.6. FCFS is Sometimes Predictable. (i) For all ser-
vice distributions with no non-zero lower bound,FCFS is unpre-
dictable. (ii) For all service distributions with lower boundL 6= 0,
there exists aρcrit such that for allρ ∈ (ρcrit, 1) FCFS is pre-
dictable.

THEOREM 5.7. SJF is Sometimes Predictable. (i) For all ser-
vice distribution with no non-zero lower bound,SJF is unpredictable.
(ii) For service distributions with lower boundL 6= 0, SJF is pre-
dictable whenM3[X]

3
+ 3ρM2[X]

4(1−ρ)
≤ L

E[X]
.

The proofs of these theorems are straightforward, and are there-
fore omitted.

These two examples illustrate the strange effects of size based
prioritization. WhileFCFS and all non-size based non-preemptive
policies haveV ar[T (x)]/x that is strictly decreasing inx, size
based non-preemptive policies, such asSJF, exhibit non-monotonic
behavior similar to that seen under preemptive policies such as
SRPT, LAS, andPSJF.

6. HIGHER MOMENTS
The similarities between the metrics and criteria for fairness and

predictability beg the question of how higher conditional moments
of response times vary acrossx. In this section we begin to ask the
question of how to generalize the metrics and criteria for fairness
and predictability to higher moments.

We study the limiting case ofx → ∞ due to the role it played
in developing Definitions 1.1 and 1.2. This limiting case provides
insight into how conditional moments scale withx under a range of
scheduling policies, and this scaling factor will motivate an appro-
priate metric and criterion for comparing higher conditional mo-
ments acrossx. However, this case is also interesting in its own
right because of intuitive worries that large jobs receive larger, more
variable response times under policies that bias towards small jobs
[2, 25, 27].

There has been prior work on the question of analyzing the lim-
iting distribution ofT (x) asx → ∞. Motivated by fairness con-
cerns, some of this has focused on the metric of slowdown and
showed that under all work conserving policies, the asymptotic
slowdown of large jobs is bounded almost surely by1/(1 − ρ)

[10]. Slowdown was considered because the focus was on unfair-
ness; however, in terms of understanding the distribution of the re-
sponse times of large jobs, we will illustrate that the scaling factor
in the slowdown metric is too heavy handed and hides all informa-
tion about the variability of the limiting distribution.

Our goal is to find a scaling factor that provides information
about the variability (and all higher moments) in the limiting distri-
bution ofT (x) asx → ∞.

6.1 Busy periods
In order to illustrate the issues in finding the appropriate scaling

factor for the limit asx → ∞, we will begin by looking at the
asymptotic behavior ofB(x). Busy periods are fundamental to
the analysis of many size based scheduling policies, and we will
find that the correct scaling factor forB(x) will match the scaling
necessary for response times under many policies.

The Laplace transform ofB(x), LB(x)(s), is:
LB(x)(s) = e−x(s+λ−λLB(s)) whereLB(s) is the Laplace trans-
form of a standard M/GI/1 busy period. We can proceed to calculate
the moments ofB(x) using the following notation:h(s) = −x(s+

λ−λLB(s)). Thus,h′(0) = − x
1−ρ

, h(i)(0) = (−1)iλxE[Bi]. It
is important to notice that in each of these terms,x has degree one
sinceE[Bi] does not depend onx. Usingh(s), we can derive the
moments ofB(x). E[B(x)] = h′(0) andE[B(x)2] = h′′(0) +
h′(0)2. This illustrates the heavy handedness of the slowdown met-

ric because we can see thatE[B(x)i/xi] = E[B(x)i]

xi , which leads
to a degenerate limiting distribution:limx→∞ V ar[B(x)/x] =
limx→∞ V ar[B(x)]/x2 = 0.

Instead of using slowdown, another natural suggestion is to try
to normalize the raw moments ofB(x). However, as can be seen
through differentiation of the Laplace transform,E[B(x)i] = Θ(xi).
Thus, only scaling byxi is enough to keep the limit asx → ∞ from
going to∞; however this scaling leads to a degenerate limiting dis-
tribution.

A third natural suggestion for an appropriate scaling factor is to
consider the central moments ofB(x), E[(B(x)−E[B(x)])i]. Up
until the third central moment, it seems that central moments can
be scaled appropriately usingE[(B(x) − E[B(x)])i]/x. How-
ever, beyond the third central moment the central moments be-
come convoluted, and it becomes apparent that there is no sim-
ple, appropriate scaling factor for the central moments either. For
i = 2, 3, E[(B(X)−E[B(X)])i] = λxE[Bi]; however fori = 4,
E[(B(X) − E[B(X)])4] = λx

(
E[B4]

)
+ 3(λxE[B2])2.

6.2 Introducing cumulants
The observation that the first three central moments are well be-

haved is important however. It hints that cumulants might provide
the correct asymptotic metric. Cumulants have appeared sporadi-
cally in queueing [4, 6, 14], tending to be used in large deviation
limits. Cumulants are a descriptive statistic similar to moments.
Formally, the cumulant moments of a random variableX, κi[X]
i = 1, 2, . . . , are defined in terms of the moments ofX, E[Xi], as
follows:

eκ1[X]t+
κ2[X]t2

2!
+... = 1 + E[X]t +

E[X2]t2

2!
+ . . .

From this definition it follows that the cumulants ofX can be gen-
erated from the cumulant generating function,KX(s) = log(LX(s)).
That is,(−1)iK

(i)
X (0) = κi[X].

Although not immediately evident from the definition, cumu-
lants have many properties that both raw and central moments lack.
For instance, lettingc be a constant,κ1[X + c] = κ1[X] + c but



for i ≥ 2, κi[X + c] = κi[X]. Thus the first cumulant is shift-
equivariant, but all others are shift-invariant. Other nice properties
of cumulants include homogeneity and additivity. Homogeneity
states thatκi[cX] = ciκi[X]. Additivity states that for indepen-
dent random variablesX andY , κi[X + Y ] = κi[X] + κi[Y ].
These properties make cumulants very attractive.

Practically, the cumulants capture many of the standard descrip-
tive statistics. Each of the first four cumulants has a useful interpre-
tation. The first cumulant is the mean; the second cumulant is the
variance; the third cumulant measures the skewness of the distri-
bution; and the fourth cumulant measures the kurtosis of the distri-
bution. See [11] for tables of the relationships between cumulants,
moments, and central moments.

6.3 Asymptotic convergence
In contrast to raw and central moments, the cumulants ofB(x)

have a very simple form.

KB(x)(s) = log(LB(x)(s)) = −x(s + λ − λLB(s))

Calculating the cumulant moments through differentiation:

κi[B(x)] =

{
x/(1 − ρ) for i = 1
λxE[Bi] for i > 1

Thus, usingκi/x, it is possible to capture the variability in the
limiting distribution of response time.

We will now see that this scaling factor is appropriate for a large
number of preemptive scheduling policies.

We will first prove an upper bound on the asymptoticith cumu-
lant moment ofT (x) that holds for all work conserving schedul-
ing policies. We will then show that this bound is tight, and that
many common scheduling policies have limiting response times
that match this bound. We will next illustrate that there are how-
ever policies that have lower asymptotic cumulants, e.g. all non-
preemptive policies.

THEOREM 6.1. Under any work conserving policyP ,

lim
x→∞

κi[T (x)]P

x
≤

{
1/(1 − ρ) for i = 1
λE[Bi] for i > 1

PROOF. Let P be a work conserving policy. Then,T (x)P ≤
B(x + V ) becauseB(x + V ) = B(x) + B(V ) corresponds to
the time it would take to finish all the work in the system whenx
arrived in addition to all the arriving work whilex is in the system.
Thus, asx → ∞

KB(x+V )(s)/x = log(LB(x+V )(s))/x

= log(LB(x)(s))/x + log(LB(V )(s))/x

→ s + λ − λLB(s)

which yieldslimx→∞ κ1[B(x + V )]/x = 1
1−ρ

and

limx→∞ κi[B(x + V )]/x = λE[Bi] for i > 1; from which the
result follows.

Next, we illustrate that this upper bound is tight and that many
common policies have limiting response times that match the bound.

THEOREM 6.2. For P ∈ {PSJF, LAS, SRPT, PLCFS},

lim
x→∞

κi[T (x)]P

x
=

{
1/(1 − ρ) for i = 1
λE[Bi] for i > 1

The proof of this theorem is a sequence of straightforward cal-
culations using the cumulant generating functions (c.g.f.) for each
policy. Normalizing the c.g.f. byx and lettingx → ∞ shows that
the c.g.f. of each of these policies converges to the c.g.f ofB(x).

REMARK 6.1. We conjecture thatPS has the same limiting be-
havior as the above policies; however known asymptotics are only
tight enough to show the convergence of the first and second cu-
mulants. In particular, it is known that [37]:E[T (x)i]PS =

xi

(1−ρ)i + λxi−1E[X2]i(i−1)

2(1−ρ)i+1 + o(xi−1), which proves the result for

κ1[T (x)]PS andκ2[T (x)]PS . However, information about higher
cumulants is lost in theo(xi−1) term.

The combination of Theorems 6.1 and 6.2 serves to motivate
the metrics and criteria in Definitions 1.1 and 1.2 for fairness and
predictability. Further, these theorems suggest that similar met-
rics and criteria exist for higher conditional cumulants as well.
In particular, we conjecture thatλE[Bi] will serve as criterion
for κi[T (x)]/x that distinguishes between fundamentally different
functional behaviors. The similarities between the classifications
for κ1[T (x)]/x (fairness) andκ2[T (x)]/x (predictability) suggest
that similar classifications exist for higher cumulants.

Although many common policies have equivalent distributions
for T (x) as x → ∞, the limit of Theorem 6.2 is not the only
possibility.

THEOREM 6.3. Under any non-preemptive work conserving pol-
icy P ,

lim
x→∞

κi[T (x)]P

x
=

{
1 for i = 1
0 for i > 1

The proof of this result mimics the proof of Theorem 6.1.
We have now seen examples of two possible limiting behaviors;

however these are not the only possibilities. It is straightforward
to show that class based preemptive priority policies can achieve
arbitraryκi[T (x)]/x less thanλE[Bi].

7. CONCLUSION
In many modern computer systems improving the predictability

of response times is more important than improving response times
on average. This is because users expect certain response times
based on past experience and become frustrated if they must wait
longer than expected. So, an important goal for a scheduling pol-
icy is to provide identical jobs nearly identical response times. In
order to understand how “predictable” scheduling polices are, we
introduce a two part definition of predictability (Definition 1.2) that
uses the metricV ar[T (x)]/x and the criterionλE[X2]/(1 − ρ)3

in order to classify which policies provide all job sizes predictable
response times. Definition 1.2 parallels the definition of fairness in
prior work and is further motivated by the goal of providing QoS
guarantees.

We build on Definition 1.2 to develop a classification of pre-
dictability (see Figure 1). Interestingly, the classification of pre-
dictability that we derive has many parallels to the classification of
fairness in [31]. For instance,PS andPLCFS are both Always Fair
and Always Predictable. Similarly,SRPT is both Sometimes Fair
and Sometimes Predictable and exhibits the same interesting non-
monotonic (hump shaped) behavior under both measures. In fact,
the entire class of remaining size based policies receives a parallel
classification under the two measures. Further, size based policies
are both Always Unfair and Always Unpredictable.

Although there are many similarities between the predictability
and fairness classifications, there are also some important differ-
ences. Both age based and non-preemptive non-size based policies
can be Sometimes Predictable but are Always Unfair. Further, al-
thoughPS is both Always Fair and Always Predictable, it has much
better predictability than fairness properties – whileE[T (x)]PS/x



is constant,V ar[T (x)]PS/x is monotonically increasing which
means thatPS provides less variable response times for small job
sizes without increasing the variability of the large job sizes.

In classifying scheduling policies with respect to predictability,
we find thatV ar[T (x)]P /x can exhibit four different patterns of
functional behavior (see Figures 2 and 3). Some policies, e.g.
PS, haveV ar[T (x)]P /x that grows monotonically and is bounded
by a constant acrossx; whereas other policies, e.g.FCFS, have
V ar[T (x)]P that decreases monotonically inx and is unbounded
asx → 0. Further, it seems that prioritization, be it age based,
size based or remaining size based, leads to non-monotonic be-
havior in normalized conditional response times. In particular, un-
der PSJF, LAS, andSRPT mid-range job sizes have the largest
V ar[T (x)]P /x. Further,SJF has a similar hump behavior for
mid-range jobs; however the smallest job sizes still receive un-
boundedV ar[T (x)]P /x. Our work illustrates that the criterion
λE[X2]/(1− ρ)3 in Definition 1.2 for predictability distinguishes
between these functional behaviors. If a policy has monotonically
increasing, boundedV ar[T (x)]P /x under some service distribu-
tions and loads then the policy is Always or Sometimes Predictable;
otherwise the policy is Always Unpredictable because under all ser-
vice distributions and loads eitherV ar[T (x)]P /x is unbounded or
some mid-range job sizes receive significantly worseV ar[T (x)]/x
than other job sizes.

The parallels between the classifications of fairness and predictabil-
ity beg the question of whether similar classifications exist for higher
conditional moments. In this work, we take the first step towards
answering this question by studying the higher conditional mo-
ments ofT (x) as x → ∞ in order to derive appropriate met-
rics and criteria. We find that the natural extension to the defi-
nitions used for fairness and predictability are the little used cu-
mulant moments, in particularκi[T (x)]/x. Further, we find that
κi[T (x)]/x → λE[Bi] asx → ∞ for all i > 1 (recall thatE[Bi]
is theith moment of a busy period). This suggests thatκi[T (x)]/x
will serve asmetricsandλE[Bi] will serve as acriteria in defini-
tions of classifications for higher conditional moments. We conjec-
ture that these definitions for higher moments will lead to classifi-
cations that parallel the work in this paper.

8. REFERENCES
[1] N. Bansal and M. Harchol-Balter. Analysis of SRPT scheduling:

Investigating unfairness. InProceedings of ACM Sigmetrics, 2001.
[2] M. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch

metrics for scheduling continous job streams. InProceedings of the
9th Annual ACM-SIAM Symposium on Discrete Algorithms, 1998.

[3] B. Dellart. How tolerable is delay? consumers evaluations of internet
web sites after waiting.J. of Interactive Marketing, 13:41–54, 1999.

[4] N. Duffield, W. Massey, and W. Whitt. A nonstationary offered-load
model for packet networks.Telecommunication Systems,
13:271–296, 2001.

[5] E. Friedman and S. Henderson. Fairness and efficiency in web server
protocols. InProceedings of ACM Sigmetrics, 2003.

[6] G.L.Choudhury and W. Whitt. Heavy-traffic asymptotic expansions
for the asymptotic decay rates in the BMAP/G/1 queue.Stochastic
Models, 10:453–498, 1994.

[7] M. Gong and C. Williamson. Quantifying the properties of SRPT
scheduling. InIEEE/ACM Symposium on Mod., Anal., and Sim. of
Comp. and Telecomm. Sys. (MASCOTS), 2003.

[8] I. Gradshteyn and I. Ryzhik.Tables of Integrals, Series, and
Products. Academic Press, 2000.

[9] M. Harchol-Balter, B. Schroeder, N. Bansal, and M. Agrawal.
Implementation of SRPT scheduling in web servers.ACM
Transactions on Computer Systems, 21(2), May 2003.

[10] M. Harchol-Balter, K. Sigman, and A. Wierman. Asymptotic
convergence of scheduling policies with respect to slowdown.
Performance Evaluation, 49(1-4):241–256, 2002.

[11] M. Kendall.The Advanced Theory of Statistics. Griffin, London,
1945.

[12] L. Kleinrock.Queueing Systems, volume I. Theory. John Wiley &
Sons, 1975.

[13] L. Kleinrock.Queueing Systems, volume II. Computer Applications.
John Wiley & Sons, 1976.

[14] T. Matis and R. Feldman. Using cumulant functions in queueing
theory.Queueing Systems, 40:341–353, 2002.

[15] R. Nunez-Queija. Queues with equally heavy sojourn timeand
service requirement distributions.Ann. Oper. Res, 113:101–117,
2002.

[16] T. Osogami and M. Harchol-Balter. A closed-form solution for
mapping general distributions to minimal PH distributions. In
Modelling Tools and Techniques for Comp. and Comm. System Perf.
Eval., 2003.

[17] I. Rai, G. Urvoy-Keller, and E. Biersack. Analysis of LAS scheduling
for job size distributions with high variance. InProceedings of ACM
Sigmetrics, 2003.

[18] I. A. Rai, G. Urvoy-Keller, M. Vernon, and E. W. Biersack.
Performance modeling of LAS based scheduling in packet switched
networks. InProc. of ACM Sigmetrics-Performance, 2004.

[19] M. Rawat and A. Kshemkalyani. SWIFT: Scheduling in web servers
for fast response time. InSymp. on Network Computing and App.,
2003.

[20] D. Raz, H. Levy, and B. Avi-Itzhak. A resource-allocation queueing
fairness measure. InProc. of ACM Sigmetrics-Performance, 2004.

[21] R. Righter, J. Shanthikumar, and G. Yamazaki. On externalservice
disciplines in single stage queueing systems.J. of Applied
Probability, 27:409–416, 1990.

[22] S. Ross.Introduction to Probability Models. Academic Press, 1997.
[23] L. E. Schrage. A proof of the optimality of the shortest remaining

processing time discipline.Operations Research, 16:678–690, 1968.
[24] L. E. Schrage and L. W. Miller. The queue M/G/1 with the shortest

remaining processing time discipline.Operations Research,
14:670–684, 1966.

[25] A. Silberschatz and P. Galvin.Operating System Concepts, 5th
Edition. John Wiley & Sons, 1998.

[26] H. Takagi.Queueing Analysis: Volume 1: Vacation and Priority
Systems. North-Holland, 1991.

[27] A. Tanenbaum.Modern Operating Systems. Prentice Hall, 1992.
[28] A. Ward and W. Whitt. Predicting response times in

processor-sharing queues. InProc. of the Fields Institute Conf. on
Comm. Networks, 2000.

[29] W. Whitt. Improving service by informing jobs about anticipated
delays.Managemet Science, 45:870–888, 1999.

[30] W. Whitt. Predicting queueing delays.Management Science,
45:192–207, 1999.

[31] A. Wierman and M. Harchol-Balter. Classifying scheduling policies
with respect to unfairness in an M/GI/1. InProceedings of ACM
Sigmetrics, 2003.

[32] A. Wierman and M. Harchol-Balter. Nearly insensitive bounds on
SMART scheduling. InProc. of ACM Sigmetrics, 2005.

[33] S. Yang and G. de Veciana. Enhancing both network and user
performance for networks supporting best effort traffic. volume 12,
pages 349–360, 2004.

[34] S. Yashkov. Processor sharing queues: Some progress in analysis.
Queueing Systems, 2:1–17, 1987.

[35] S. Yashkov. Mathematical problems in the theory of shared-processor
systems.J. of Soviet Mathematics, 58:101–147, 1992.

[36] M. Zhou and L. Zhou. How does waiting duration information
influence customers’ reactions to waiting for services.J. of Applied
Social Psychology, 26:1702–1717, 1996.

[37] A. Zwart and O. Boxma. Sojourn time asymptotics in the M/G/1
processor sharing queue.Queueing Sys. Thry. and App., 35:141–166,
2000.



APPENDIX

A. USEFUL LEMMAS

LEMMA A.1. λ2m̃2(x)2 ≤ 4
3
λm̃3(x)ρ̃(x)

PROOF.

λ
2
m̃2(x)

2
≤ 4λ

2

(∫ x

0

(tF (t)
1/2

)
2
dt

) (∫ x

0

(F (t)
1/2

)
2
dt

)

=
4

3
λm̃3(x)ρ̃(x)

LEMMA A.2. LetK1 be such thatm3(x) ≤ K1xm2(x). Thenm̃3(x) ≤
K1xE[X2].

PROOF.

m̃3(x) = m3(x) + x3F (x)

≤ K1xm2(x)

(
1 +

x2
∫
∞

x f(t)dt

m2(x)

)

≤ K1xm2(x)

(
1 +

∫
∞

x t2f(t)dt

m2(x)

)

= K1xm2(x)

(
1 +

E[X2] − m2(x)

m2(x)

)
= K1xE[X2]

LEMMA A.3.

V ar[R(x)]SRPT =

∫ x

0

λm2(t)

(1 − ρ(t))3
dt ≤

λxE[X2]

(1 − ρ(x))3
−

λm̃3(x)

(1 − ρ(x))3

PROOF.
∫ x

0

λm2(t)

(1 − ρ(t))3
dt ≤

∫ x
0

λm2(t)dt

(1 − ρ(x))3
=

λxm2(x) − λm3(x)

(1 − ρ(x))3

≤
λxE[X2]

(1 − ρ(x))3
−

λx3F (x)

(1 − ρ(x))3
−

λm3(x)

(1 − ρ(x))3

=
λxE[X2]

(1 − ρ(x))3
−

λm̃3(x)

(1 − ρ(x))3

LEMMA A.4.

V ar[R(x)]
SRP T

=

∫ x

0

λm2(t)

(1 − ρ(t))3
dt ≥

λxm2(x) − λm3(x)
(
1 − ρ(x)

(
1 −

m2(x)

xm1(x)

))3

PROOF. We show this using Chebyshev’s Integral Inequality [8]. The
following holds fori = 1, 2, 3.
(∫ x

0

1 − ρ(t)dt

) (∫ x

0

λm2(t)

(1 − ρ(t))i
dt

)
≥ x

∫ x

0

λm2(t)

(1 − ρ(t))i−1
dt

Thus,

∫ x

0

λm2(t)

(1 − ρ(t))3
dt ≥

x3
∫ x
0

λm2(t)dt
(∫ x

0
1 − ρ(t)dt

)3

=
λxm2(x) − λm3(x)

(
1 − ρ(x)

(
1 −

m2(x)

xm1(x)

))3

LEMMA A.5. Defineδx = λm2(x)/x = ρ(x)
m2(x)

xm1(x)
Then

λxm2(x)

(1 − ρ(x))3
−

∫ x

0

λm2(t)

(1 − ρ(t))3
dt

≤
3λ2m2(x)2

(1 − ρ(x) + δx)3(1 − ρ(x))3
+

λm3(x)

(1 − ρ(x) + δx)3

PROOF. Let γ =
λm3(x)

(1−ρ(x)+δx)3
. Then

λxm2(x)

(1 − ρ(x))3
−

∫ x

0

λm2(t)

(1 − ρ(t))3
dt

≤
λxm2(x)

(1 − ρ(x))3
−

λxm2(x) − λm3(x)
(
1 − ρ(x)

(
1 −

m2(x)

xm1(x)

))3

=
λxm2(x)

(1 − ρ(x) + δx)3
{

(1 − ρ(x))3 + 3(1 − ρ(x))2δx + 3(1 − ρ(x))δ2
x + δ3

x

(1 − ρ(x))3
− 1

}
+ γ

=
λxm2(x)

(1 − ρ(x) + δx)3

{
3δx

(1 − ρ(x))
+

3δ2
x

(1 − ρ(x))2
+

δ3
x

(1 − ρ(x))3

}
+ γ

=

3λ2m2(x)2
{

(1 − ρ(x))2 + δx(1 − ρ(x)) +
δ2
x
3

}

(1 − ρ(x) + δx)3(1 − ρ(x))3
+ γ

We can complete the proof by noting thatδx = λm2(x)/x ≤ ρ(x), which
gives us that

(1 − ρ(x))2 + δx(1 − ρ(x)) +
δ2
x

3

≤ 1 − 2ρ(x) + ρ(x)2 + ρ(x) − ρ(x)2 +
ρ(x)2

3
≤ 1

LEMMA A.6. limx→∞ xε∗x = 0.

PROOF.

xε
∗

x =
xεx(1 − ρ(x))(1 − ρ(x) + δx)3

3λ2m2(x)2
≤

xεx

3λ2m2(x)2

=
1

3λ2m2(x)2

(
λx2E[X2]

(1 − ρ)3
−

λx2m2(x)

(1 − ρ(x))3
+

λ2x2m̃2(x)F (x)

(1 − ρ(x))4

)

=
1

3λ2m2(x)2

(
λx2

∫
∞

x
t2f(t)dt

(1 − ρ)3

+
λx2m2(x)

(1 − ρ)3
−

λx2m2(x)

(1 − ρ(x))3
+

λ2x2m̃2(x)F (x)

(1 − ρ(x))4

)

Thus, asx → ∞ it is clear that the last term disappears because the
service distribution is taken to have a finite third moment. Further, letting
γx = λ

∫
∞

x tf(t)dt we can that the 2nd and 3rd terms cancel.

lim
x→∞

x2

(
1

(1 − ρ)3
−

1

(1 − ρ(x))3

)

= lim
x→∞

x2

(
(1 − ρ + γx)3 − (1 − ρ)3

(1 − ρ)3(1 − ρ(x))3

)

= lim
x→∞

x2γx

(
3(1 − ρ)2 + 3(1 − ρ)γx + γ2

x

(1 − ρ)3(1 − ρ(x))3

)
= 0

where the last equality follows using L’Hopital’s Rule

lim
x→∞

x2γx = lim
x→∞

∫
∞

x t2f(t)dt

x−2

= lim
x→∞

x2f(x)

2x
= lim

x→∞
xf(x) = 0

Finally, the limit of the first term can seen to be 0 using a similar application
of L’Hopital’s Rule as above.


