Tight Bounds on Expected Time to Add Correctly and Add Mostly
Correctly

Peter Gemmell* Mor Harcholt

October 7, 1993

Abstract

We consider the problem of adding two n-bit numbers which are chosen independently and
uniformly at random where the adder is a circuit of AND, OR, and NOT gates of fan-in two.

The fastest currently known worst-case adder has running time logn + O(+/logn) [Khr].

We first present a circuit which adds at least 1 — e fraction of pairs of numbers correctly and
has running time loglog (2) 4+ O(y/loglog (2)).

We then prove that this running time is optimal.

Next we present a circuit which elways produces the correct answer. We show this circuit
adds two n-bit numbers from the uniform distribution in expected %log n+ O(y/Togn) time, a
speed up factor of two over the best possible running time of a worst-case adder.

We prove that this expected running time is optimal.

*Computer Science Division, UC Berkeley, CA 94720. Supported by NSF grant number CCR-9201092.
'Computer Science Division, UC Berkeley, CA 94720. Supported by National Physical Science Consortium (NPSC)
Fellowship. Also supported by NSF grant number CCR-9201092

1 Introduction

We consider the problem of adding two n-bit numbers which are chosen independently and uniformly
at random where the adder is circuit of AND, OR, and NOT gates of unit gate delay for each gate,
fan-in of 2, and unbounded fan-out.

The fastest currently known worst-case adder is due to Khrapchenko and has running time log n +
O(y/log n) [Khr]. This nearly matches the obvious log(n) lower bound for worst-case running time.

In Section 2, we present a circuit, which we call a Near Adder, which adds at least 1 — € fraction of
pairs of n-bit numbers correctly and has running time loglog (%) + O(4/loglog (%)). Because most

additions do not involve long propagations of carries, we can achieve considerable savings in time
over worst-case adders.

In Section 3, we prove that our Near Adder’s running time is optimal.

In Section 4, we describe a model of for circuits, which always produces correct outputs, in which
the circuit may have different running times for different inputs, and where the circuit must produce
a signaling bit which indicates that it has finished. We then present a Fast Adder, which is a circuit
corresponding to the above model, for adding two n-bit numbers. We show the Fast Adder circuit
adds two n-bit numbers from the uniform distribution in expected %log n+O0(y/logn) time, a speed
up factor of two over the best possible running time of a worst-case adder. The Fast Adder circuit
combines a version of the Near Adder with a Checker which quickly deduces whether the Near
Adder has done the addition correctly.! If the Checker determines that the addition may have been
incorrect, the addition is redone using the slow-but-sure conventional adder.

In Section 5, we prove that the expected running time of the Fast Adder circuit is optimal, namely
that no circuit producing the sum of two n-bit integers chosen independently from the uniform
distribution and a bit signaling that the answer is correct has better expected running time.

2 Near Adder Circuit for Adding Most Numbers Correctly Quickly

In this section we show how to convert a conventional adder of two n-bit numbers into a much
faster, but sometimes unreliable adder, which we call a Near Adder. The Near Adder circuit is
fast, yet incorrect on a small (€) fraction of the inputs. Near Adders take advantage of the property
that, for most inputs, each of the output bits depends only on a small number of adjacent input
bits.

Definition 1 Throughout this paper when adding aias...a, to biby...b,, when we refer to a
propagate pair we mean a pair of bits (a;,b;) such that either a; = 1 and b; = 0, or a; = 0 and
b;=1.

!Note that our Checker is not a checker in the [Blum], [Blum,Kannan] sense, but really operates more like a mask
for certain “problem inputs”. (See Section 4.1).

Theorem 2 For all ¢ > 0, there exists a Near Adder that has depth loglog(“)+0O(4/loglog(%))+1
and that is correct on all but € fraction of pairs of n bit inputs.

Proof:

The structure of the Near Adder we propose is shown in Figure 1. Given two n-bit numbers,
the Near Adder divides them into % blocks of size d-bits each. The Near Adder then uses the
conventional adder to add consecutive 2d-bit blocks in parallel as shown in Figure 1. When adding
each of these 2d-bit blocks, the Near Adder assumes the carry-in to the 2d-bit block is zero. The
Near Adder returns the most significant d bits of each of these 2d-bit summands (the unshaded
parts) as the sum of the two n-bit numbers.

The running-time of the Near Adder is the time it takes for the conventional adder to add two

2d-bit numbers. Using Khrapchenko’s [Khr] circuit, this time is log(d) + 1 4+ O(+/log(d)).

The Near Adder produces an incorrect output if for any of the d-bit input blocks (excluding the
first and last blocks), the block consists exclusively of propagate pairs, and the carry-in to the block
is a 1. The problem here is that the carry-in is propagated through at least d bits, so that it goes
past the shaded part of the 2d-bit summand and into the output of the Near Adder.

Pr[Error in Near Adder]
< (no. d-bit blocks) - (Pr[carry-in 1]) - (Pr[All pairs in block are propagate pairs])
n,. 1 1

=)55

In order for to achieve the depth and error bounds described in theorem (1), we assign the block
size to be d = log(%). |

3 Lower Bound on Time To Add Most Numbers Correctly

In this section we determine a lower bound on the depth, d, of a circuit which adds 2 n-bit numbers
with confidence 1 — .

Theorem 3 For any circuit which adds two n-bit numbers with confidence 1 — ¢, the depth d must
be at least 1glg(3:) — 1 .

Proof:

Let d be the depth of any circuit which adds two n-bit numbers with confidence 1 — ¢. Assume the
2 n-bit inputs are independently and uniformly distributed.

We divide the n-bit numbers into 2;:_1 blocks, each of size 2% + 1. We also divide the output

bits into blocks of size 29 4 1. Denote by block; the rightmost (least significant) input block and

denote by by the most significant output bit of this block. Denote by block; the 2%t input bit pairs
associated with the ith rightmost (least significant) block and denote by b; the most significant
output bit of the ¢th block. Let ¢b; equal the correct value of the most significant output bit of the
1th block.

Let F; be the event that b; is not equal to ¢b;.

The proof has three main parts:

1. We construct a set S, |5 > (

ﬁl)?’ such that Vi,j € 5,7 < 1, output bit b; is not connected

to any input bit from block;.

To do this, we start by putting 1, the index for the least significant block, in 5. Then we
throw out block; and all the blocks on which b; depends. Next, we put in .5 the index of the
least significant remaining block. Then we throw out this block and all the blocks on which
the most significant output bit of that block depends. We repeat this process until there are
no blocks remaining. Because we throw out at most 27 + 1 blocks for every block we place in
S, we have || > W.

2. We observe that block; is independent of event F;, Vj < 4, where 7,5 € 5.

This follows from the following argument: Let 7 < ¢ and ¢,7 € 5. Let all input bits be set
arbitrarily. Now look at b; and cb; for this setting. Either we have b; = cb;, or we have
b; # cb;. Now altering the bits in block; can’t affect cb; by definition of addition. Altering
the bits in block; can’t affect b; because, by definition of 5, b; is not connected to block;.
3. We show that Vi € S, Pr[Ei|(;iies Ej] > deﬁ'

Because the circuit is restricted to having depth d and because the block size is 2¢ + 1, we
know that there is at least one pair of input bits in block; such that neither of these input
bits affects the value of the output bit b;. Let p; denote the leftmost such pair. If p; is the
kth pair of bits in block; (looking from left to right), then there will be an error if the first
k — 1 pairs (looking from left to right) are all propagates and either the kth pair is (1,1) or
(0,0). (If b; = 1, the pair (0,0) implies ¢b; = 1; if b; = 0, the pair (1,1) implies ¢b; = 0).
So Pr[E;] > Qk% > deﬁ‘ Since by (2) above, the setting of block; is independent of event
E;¥j < i, we have PrlE| jciies E;] = PrE] > —

= 92d41°

The probability of union of the events F; lower bounds the total error ¢ and this yields a lower
bound on the depth:

¢ > Pr[Error in Output]
> Pri{J E]
1€ES
= 1- Pr[ﬂ £
1€ES
> 1—(1- S)BT

d
92%41. _ n .1
= 1 (2441)2 42d41

I=0= Za7)

. n 1
L— e O (by (1-4)F < et

v

> 1—e 2% (true for d > 3)

So,

e—1 > —6_22;+1
1—¢ < ¢
1 n

hl(l—G) > 29T
n < 22d+1

hl(lie B
d > lglg(———)—1

d > lglg(%)—l (true for e < 1)

4 Fast Adder Circuit For Adding Correctly in Fast Expected
Time

We consider a model of circuits with variable-running times. We will call such circuits VRTC
(Variable Running Time Correct) circuits because they may have different running times on different
inputs, but are guaranteed to produce the correct answer. The model for these circuits is as follows:

Definition 4 An VRTC circuit C for a function f takes f’s inputs as its inputs and has the
outputs for [as well as one extra bit called a signal bit. The signal bit is set to 0 initially; at some
time after the inputs are introduced, it must be set to 1. When the signal bit is set to 1, the output
bits must be correct.

We assume that the circuit €' may incorporate a clock of some kind (perhaps a chain of gates each
of unit delay) so that it may select bits from different subcircuits to output at different times.

We will derive upper and lower bounds on the expected running time of VRTC circuits for adding
two n-bit numbers (by running time we mean time until the signal bit is set to 1). In this section
we give an upper bound, by describing a VRTC circuit which we call the Fast Adder, which has
expected running time 1log(n) + O(y/Iogn). In Section 5 we prove a lower bound of 1log(n) — 1
on the expected running time of any VRTC addition circuit.

The Fast Adder circuit consists of two subcircuits which are run in parallel. The first subcircuit is
the Near Adder described in section 2. The second subcircuit is a Checker which will determine if

the output of the Near Adder is correct. If the Checker circuit determines the output of the Near
Adder to be correct, the Fast Adder outputs the output of the Near Adder. If, on the other hand,
the Checker circuit determines the output of the Near Adder to be incorrect, the Fast Adder uses
the third subcircuit, Khrapchenko’s [Khr] worst-case adder, to determine the output of the Fast
Adder. In subsection 4.1 below, we describe the Checker, and in subsection 4.2 we analyze the
expected running time of the Fast Adder. Note that it is important to set parameters in the Fast
Adder such that the running time of the Checker is low, and such that the probability of error in
the Near Adder is very low.

4.1 The Design of a Checker for our Near Adder

Our Checker is very different from the class of checkers described in [Blum,Kannan], [Blum]. It
merely checks if the input is of a particular nice form, and it’s output does not depend on the
Near Adder’s result at all. The Checker will always output FAIL if the input is of a form that
will cause the Near Adder to add incorrectly. However, the Checker may output FAIL even if the
computation of the Near Adder is correct.

Recall that the input to the Near Adder is divided into 4 d-bit blocks. The Checker is based on
the following observation: If any input block consists of all propagate pairs and the carry-in to that
block is a 1, then the Near Adder output will be incorrect (This is actually true for any block except
the first and last). Therefore, ideally, the checker should check if any input block consists only of
propagate pairs. For the sake of speed, our Checker will only examine ¢ (arbitrarily chosen) pairs
in each block. If for any block all ¢ pairs examined were propagate pairs, the Checker will output
FAIL. Also, the Checker ignores the carry-in altogether.

Our Checker is illustrated in Figure 2. It takes as its inputs the two n-bit operands. It then uses
XOR gates (denoted by X), to check if pairs of bits are propagate pair. An AND gate is then used
to check if all ¢ pairs within a block are propagate pairs. The Checker outputs FAIL if for any
block all ¢ pairs examined were propagate pairs.

1

Pr [Checker detects a possible error] < % "

The running time for the checker is constant to do all the XOR operations in parallel plus loge¢ to
do all the AND operations plus log(%) to do the NOR operation.

Running time for checker = 1 4 log ¢ 4+ logn — logd

Note that the computation of the Checker in no way interferes with the computation of the Near
Adder, and therefore the computation of the Checker may be overlapped with the computation of
the Near Adder.

4.2 Combining the Near Adder and Checker into the Fast Adder

The Fast Adder Circuit consists of first running the Checker and Near Adder circuits in parallel.
If the Checker outputs PASS, then the Near Adder computation must be correct, so the signal bit

goes on. If the Checker outputs FAIL, then the conventional adder is run on the input, and the
signal bit doesn’t go on until the conventional adder computation is complete.

Theorem 5 The expected running time of the Fast Adder Circuit is % log(n) + O(+/log(n)).

Proof:
The total expected running time for the Fast Adder is :
max(TimeNear Adder, T1MEChecker) + TiMe€convadder - Pr[Checker outputs FAIL]
I
max (logd + O(y/log d), 1 4 log ¢ + logn — log d) + (logn + O(\/@)) . (% . ;)

By setting the block size, d, to be y/n and the number of bits checked per block, ¢, to be log(n),
we get the expected time to compute the sum of two n bit numbers to be 1log(n)+ O(y/log(n)). ®

5 Lower Bound on Expected Time to Add Correctly

In this section we prove:

Theorem 6 Any fan-in 2 VRTC circuit adder for 2 n-bit numbers, which are independently chosen
from the uniform distribution must have expected running time > %log n— 1.

Proof:

Given any VRTC addition circuit, let T denote its expected running time. Suppose that T <
%log n — 1. Then there exists a setting of the input bits which causes the signal bit of the adder to
go on after < %log n time.

Divide the summands and output into blocks of size 27 4 1. Let b; be the most significant bit in
the i block. Observe that there are more than v/n blocks.

Since at most 27 < \/n bits can influence the signal bit of the adder by time T, there is at least
one block, block;, such that no bit in that block influences the signal bit by time 7.

Also, since at most 27 bits can influence b; (the most significant output bit in block;), there is at
least one pair, p;, of input bits in block; which doesn’t influence b;.

Now we know from the assumption that there exists a setting of the input bits which causes the
signal bit to go on after T" time. Let’s change just block; of this setting such that all pairs of bits
within block; are propagates, except for p;. Note, altering block; doesn’t change the signal bit.
Even without setting p;, the signal bit is still on, and b; is set to some value. By setting p; we can
switch the value of b;. That is, there is a setting of p; which causes b; to be wrong. In this case,
the signal bit is still on, but b; is incorrect.

Therefore, we must have that 7 > £log(n) — 1. |

References

[Blum] M. Blum. Designing Programs to Check their Work. Submitted to the C'ACM for publica-
tion.

[Blum,Kannan] M. Blum, S. Kannan. Unbounded Programs that Check their Work. 21st Sympo-
sium on the Theory of Computation, Seattle, 1989.

[Khrapchenko] V.M. Khrapchenko. Asymptotic Estimation of Addition Time of a Parallel Adder.
Systems Theory Research vol. 19, pp. 107-125, 1967.

INPUT

JO

} OUTPUT

Figure 1: Near Adder

l INPUT

WYY

AN LSS

Figure 2: Checker for Near Adder

