
Resource Management of Highly Configurable Tasks
�

Jeffery P. Hansen
�

Sourav Ghosh
�

Ragunathan Rajkumar
�

John Lehoczky
�

Abstract

In this paper we present an extension to our QoS opti-
mization algorithm, Q-RAM[7][11], that can improve opti-
mization time by several orders of magnitude when manag-
ing highly configurable tasks. A highly configurable task is
one with a large number of QoS dimensions and/or a large
number of quality levels on those dimensions. For example,
an application that has ten QoS dimensions with ten qual-
ity levels each will have ���	��
 setpoints, or ways in which
it can be configured. While the existing Q-RAM algorithm
has been shown to be a very effective resource management
tool, it must still explicitly perform computations on all of
the setpoints for each task. For tasks with ���	��
 setpoints
or more, this is clearly impractical. The key idea presented
here is a new approximation algorithm for the concave ma-
jorant step in Q-RAM. By using this algorithm in a filter-
ing step, the best performing subset of the setpoints can be
quickly found without explicitly examining all of the set-
points. The idea is validated using a phased array radar
system as an example application.

1 Introduction
Resource management is an important consideration in

any large heterogeneous system in which tasks compete
for resources. Without effective resource management, re-
sources can be overburdened leading to poor and unpre-
dictable task performance. One part of the resource man-
agement problem is QoS optimization. In QoS optimization
we have a collection of tasks competing for resources, with
each task receiving some benefit from those resources. The
goal is to allocate the resources to tasks in such a way as
to optimize the total benefit received by all the tasks. This
benefit is often called “utility”[6]. A larger QoS for a task

This work was supported by the DoD Multidisciplinary University Re-

search Initiative (MURI) program administered by the Office of Naval Re-
search under Grant N00014-01-1-0576�

Carnegie Mellon University, Institute for Complex Engineered Sys-
tems, hansen@cmu.edu�

Carnegie Mellon University, Dept. of Electrical and Computer Engi-
neering, sourav@cs.cmu.edu�

Carnegie Mellon University, Dept. of Electrical and Computer Engi-
neering, raj@ece.cmu.edu�

Carnegie Mellon University, Dept. of Statistics, jpl@stat.cmu.edu

generally requires a larger amount of resources and results
in larger utility. Furthermore, the QoS-utility curve usually
saturates at high QoS levels with further increases in QoS
yielding smaller increases in utility [11].

Many approaches to resource managament have been
proposed with varying system models, goals and applica-
tion domains[1][5][13] [12][10][14]. The approach taken
in this paper is an extention of the methodology proposed
by the Q-RAM project[11][8][4]. Q-RAM is a QoS man-
agement framework that enables system developers and ap-
plication developers to quantitatively define QoS, and to
analytically plan and allocate resources. The system re-
sources get distributed among multiple applications at dif-
ferent quality levels such that the net utility that accrues to
the end-users is maximized.

In Q-RAM we assume that applications have parameters
that can be adjusted to tune the QoS and the resource de-
mands of the application. Each parameter has a fixed num-
ber of possible values and we call each combination of pa-
rameter value settings a “setpoint”. The basic QoS opti-
mization goal is to choose a setpoint for each application
so as to maximize the total benefit to the system. As the
number of parameters increases, the number of setpoints
increases dramatically. For example if an application has
��� parameters with ��� possible settings for each parameter
then there would be ������
 different setpoints. Clearly, this is
problematic for any optimization algorithm if each setpoint
of each application must be explicitly examined.

In this paper we will show that in many cases it is pos-
sible to prune the setpoint space without explicitly examin-
ing most of the points in that space. The technique will be
illustrated using a phased-array radar tracking application
as an example. The radar system is modeled as a set con-
sisting of a radar antenna, a shared power source, and an
bank of processors to run signal and track processing algo-
rithms. Resources modeled in the system include not only
traditional resources such as CPU and radar bandwidth, but
constraint-model resources such as energy utilization.

2 QoS Model

Let us assume a distributed system with a set of shared
resources and a set of � independent tasks � ����������� ��� . Each
task is assumed to have a set of parameters that can be

1

changed to configure its QoS and resource demands. We
will call these operational dimensions. Some operational
dimensions may also be QoS dimensions. A QoS dimen-
sion is a single aspect of task quality that is of direct rele-
vance to the user; for example, the frame rate of a video-
conference application. Other operational dimensions may
be transparent to the user with respect to quality, but may
affect resource demands. For example, the selection of a
video coding algorithm, or the path through the network.
Still other operational dimensions may affect both quality
and resource demand, but may not be of direct relevance to
the user. An example is the dwell period of a radar tracking
task. While a shorter dwell period will increase both track-
ing quality and resource demand, the dwell period itself is
not directly of interest to the user. In such applications, the
QoS dimensions may not be directly aligned with the opera-
tional dimensions. In fact, the task quality may even depend
on factors in the environment in addition to the operational
setting of a task. For example, in a radar tracking task the
tracking quality can depend not only on the configuration of
the task, but on factors such as the distance to the target as
well as its speed and type.

Because of the possibile disparity between the QoS ob-
jectives of the user and the configuration options of the task
we separately define an operational space, a quality space
and an environment space. For a task ��� we define the op-
erational space as:

� ��� � � � �����	�
� � ����
� (1)

where
� ��� is the � th operational dimension, we define the

quality space as:
� ��� � � � ��������� � ������ (2)

where
� ��� is the � th QoS dimension, and we define the en-

vironment space as:
� ��� � � � ���	����� � ������ (3)

where
� ��� is the � th environment dimension. We also define

a shared resource space as:
� � �

�
��������� ��� (4)

where
���

is the th shared resource dimension.
For some types of tasks, the operational dimensions and

quality dimensions may be equivalent and there may be no
environment dimensions (e.g., a videoconferencing task),
but in general we say that there is a quality function ! �#"� � � � ��$ � � mapping each point in the cross product of the
operational space and environment space to a point in the
quality space. We assume that the operational dimensions
are discrete having a fixed number of possible values for
each dimensions. The QoS and environment dimensions
may or may not be discrete.

Rather than concern ourselves with the semantics of the
values that can be taken on by the operational dimensions,
we assume each operational dimension can be character-
ized by an index value between 1 and %'&)(+*��� . For operational
dimensions that affect application quality (e.g., frame-rate)
we assume 1 to be the lowest quality with increasing index
values representing increasing quality. For other types of
operational dimensions (e.g., the video compression algo-
rithm to use) the mapping between the index value and its
semantics is arbitrary. We call each possible combination
of index values ,	%-� � � ����� � % ���.
�0/ a setpoint. The number of

setpoints for a task � � is 1 �
��32 � %4&)(3*��� .

For each task, the user may specify a utility function5 � " � � $76 mapping each point in the quality space with
a real number which we call the task utility. Usually task
utility is defined in terms of the weighted sum of a set of
dimension-wise utility functions 5 ���#" � ���8$96 . The sys-
tem utility is then simply the sum of the individual task util-
ities. Note that for a given environmental condition : � , it
is straightforward to map a setpoint % � in the operational
space to a utility value using the quality function ! and the
utility function 5 . Using this mapping, a resource manager
can only concern itself with selecting a setpoint in the op-
erational space and need not directly consider points in the
quality space.

In order for a task to operate at a particular setpoint%;� , it generally requires resources. We define a function< � " � � $ �
specifying the amount of resources required

for a task to operate at each setpoint. We also define a quan-
tity =->� we call compound resource in terms of a compound
resource function ? " � $@6 mapping a resource require-
ment of a task to a value representing the overall demand on
the system for a particular set of resource requirements. A
typical compound resource function[8] is:

?�A �0B �
CDDE
�F
� 2

A ���HGI�;B+J (5)

where
G

is a penalty vector representing the relative
scarcity of the resources. For brevity, we will also write?�AK% � B to represent the compound resource required of a task
� � operating at setpoint % � .

An operational dimension
� ��� of task �L� is said to be

monotonic if for all points in the environment space an in-
crease in the operational index value results in increasing
utility and non-decreasing resource requirements across all
resource dimensions. All other operational dimensions are
said to be non-monotonic. Monotonic operational dimen-
sions typically include direct QoS-like dimensions such as
video frame-rate, as well as indirect QoS-like dimensions
such as the dwell period in radar tracking.

2

Compound Resource
0.0 0.2 0.4 0.6 0.8 1.0

U
ti

lit
y

0.0

0.2

0.4

0.6

0.8

1.0

���������
	���
�������������	���������� �!�#"%$'&(�!)+*-,�	
.0/21 35476985:<;�=2>?=A@�BC;�=A4�D

We can now define the problem of QoS-based resource
allocation as follows. For each task � � in the set � � ��������� � � ,
assign a setpoint % � such that the system utility is maximized
and no resource utilization exceeds its maximum. Formally,
we write this as:

maximize: 5 AK% � ��� � � � % � B
subject to: E

�GF
�
F �IH �GF � F � =	� � � < � � AK%;� BE

�GF
�
F � J ���2 � =	�

�LK = ��MGN�
While finding the optimal resource allocation is NP-hard,
the Q-RAM algorithm[4][7] is able to find a near optimal
solution to this problem with � tasks and O setpoints per
task in P A �(O QSR�T �(O B time. Q-RAM uses a concave majorant
computation as a pre-processing step to reduce the number
of setpoints that must be considered for a task. The con-
cave majorant is computed in the space of compound re-
source versus utility where compound resource is a value
representing the total resource demand of a task. In the
context of Q-RAM, the concave majorant is the smallest
subset of setpoints defining a concave curve under which
all of the other setpoints lay. An example is shown in Fig-
ure 1. Setpoints not on the concave majorant need not be
considered since they represent operating points for which
an increase in utility can be achieved with no increase in
resource requirements[11].

The steps of the basic Q-RAM algorithm[11][8][6][7]
can be summarized as:

1. For each setpoint of each task compute the compound
resource and utility values. The compound resource
is measure of the impact on the system of a particular
resource requirement vector.

2. Compute the concave majorant of the setpoints in the
compound resources versus utility space and eliminate
all setpoints not on the concave majorant.

3. Each task is initialized to the lowest utility setpoint.

4. Choose the task with the highest marginal utility be-
tween its current point and the next point up its con-
cave majorant and make that the new current point for
that task. The marginal utility is defined as the in-
crease in utility divided by the increase in compound
resource.

5. Repeat the previous step until all resources have been
allocated.

The basic algorithm shown here works best when all op-
erational dimensions are monotonic. Extensions to this al-
gorithm for handling non-monotonic dimensions have also
been presented in the literature[4]. These heuristics have
proven to be very effective at quickly finding resource al-
locations that are near optimal for tasks with reasonable
numbers of setpoints. However, for systems with highly
configurable tasks (i.e., tasks with a “large” number of set-
points) the optimization time can increase dramatically due
to the time required to do the concave majorant computa-
tion. Even though the number of setpoints remaining after
the concave majorant step may be small, a direct computa-
tion requires that one first determine the compound resource
and utility values for all of the setpoints. Since an applica-
tion with U operational dimensions and V index values per
dimension has a total of O � VCW setpoints, the number of set-
points can quickly become unmanageable when there are a
large number of operational dimensions.

3 Concave-Majorant Approximation
The best known algorithm for computing the concave

majorant of a set of O points is P A�OXQYR�T7O B . Even though
this is a relatively benign complexity, when O is large it can
still be prohibitively expensive. In this section, several new
heuristics for approximating the concave majorant will be
presented. These heuristics can be applied without explic-
itly performing computations on all of the setpoints. For
simplicity, we will first assume all tasks have only mono-
tonic operational dimensions. Later we discuss the general
case in which some tasks have operational dimensions that
are non-monotonic.Z�/21 60[A4�:]\!^`_aB(bX\�cedgf�B�h�\�fibXBj[lk�6�d5m

Let the minimum setpoint for a task � � for which
all operational dimensions are monotonic be defined as%4&0n o� � , � ������� � � / , and let the maximum setpoint be
defined as % &)(3*� � ,	% &)(+*� � ��������� % &)(+*����
� / . Clearly all of

the setpoints in the utility/compound resource space that
lie below a “terminating” line from A 5 AK% &0n o� B

� ?�A % &0n o� B+B
toA 5 A % &)(+*� B

� ?�A % &)(+*� B+B
as shown in Figure 1 can not be on the

concave majorant. These points can be eliminated immedi-
ately without being passed on to the concave majorant step.
We call this heuristic “slope-based traversal” (ST). While
this heuristic can reduce the time to compute the concave

3

Composite Resource

U
ti

lit
y

<1,1,*>

<1,*,5>

<*,7,5>
Con

ve
x

M
aj

or
an

t

�������j� 	��(
������ "��<� ����	i�����!,
majorant by a constant factor, it must still scan all of the
setpoints to determine if they are above or below the termi-
nating line.Z�/�. �<B(b ; dgfiB�h�\�fibXBj[� \�;�
74�cab

We now consider a set of fast traversal heuristics that
do not require computations on all of the setpoints. Again,
for now we will assume that all operational dimensions are
monotonic. The key observation is that when observing
the actual concave majorant generated using all of the set-
points for typical tasks, the concave majorant tends to be
comprised of runs of setpoints which vary in only one di-
mension at a time with occasional jumps between runs of
points. This suggests we can use local search to follow the
setpoints up the concave majorant. For all of these methods
we know that % &0n o� will always be the first point on the con-
cave majorant and % &)(3*� will always be the last. The differ-
ent methods presented here differ primarily in the method
used to perform the local search.

As an example, consider a task with three operational
dimensions. If we consider the subset of the setpoints �
� � � �

��
 consiting of all the setpoints for which dimensions
1 and 2 have index value 1, these points will tend to form a
line as shown in Figure 2. The concave majorant will tend
to follow such a line until it switches to some other line, in
this case � � �

�
�
�
 followed by � �

�
�
�
�
 .

While the fast traversal heuristics presented in this sec-
tion are not guaranteed to find the exact concave majorant,
in Section 5 we will show that these heuristics produce good
approximations to the concave majorant and more impor-
tantly that the drop in system utility from using the approx-
imations is negligible.

3.2.1 First-Order Fast Traversal (FOFT)
In first-order forward traversal (FOFT) we keep a current
point % � for each task � � which we initialize to % &0n o� . We
then compute the marginal utility for all the setpoints adja-
cent to %;� . A setpoint is adjacent if all of its index values ex-

cept for one are identical, and the one that differs varies by
only one (i.e., they have a Manhattan distance of one). We,
in fact, need only consider positive index value changes. We
then choose the point that has the highest marginal utility,
add it to the concave majorant and make that point the cur-
rent point. Formally, if % � is the current point we choose
the next current point %��� � % ����� � where � maximizes the
marginal utility:

5 A %;� ��� � B�� 5 A %;� B
?�A %;� ��� � B�� ?�A %;� B (6)

and where � � is a vector that is zero everywhere except in
dimension � where it is equal to 1. We repeat this step until
we reach % &)(3*� . After we have generated this set of points,
the resulting curve may not be a concave majorant so we
perform a final concave majorant operation.

The number of setpoints generated before the final con-
cave majorant step will be the Manhattan distance between

%4&0n o� and % &)(3*� which is: J �
��32 � A % &)(3*��� � % &0n o��� B
. Ignoring

boundary conditions, at each point we consider ���� possi-
ble next setpoints. This means that when we have U dimen-
sions and index levels per dimensions then the complexity
of this algorithm is P A !U J B .
3.2.2 Higher Order Fast Traversal Methods
We can generalize the FOFT algorithm to an � -step V -order
Fast Traversal algorithm as follows. Just as in the FOFT
heuristic, initialize the current point % � to %4&0n o� . Then choose
the next point % �� � % ��� � where �"!$#&% � such that the
marginal utility is maximized and # % � is defined as:

�� � '
� F � F �
 H �GF � F �

,H � � / (7)

# % � � ,)(�	* " (!+# �� � *,!-# %/. ��
� (10 *32 � /54 # %/. ��

(8)

That is, we look at the all next setpoints that can be reached
from the current setpoint by increasing up to V dimensions
up to � steps. For the FOFT algorithm described above we
would use # �� . As with FOFT, we need to perform a final
concave majorant operation on the raw points generated by
this heuristic. In this paper, in addition to FOFT we will
only consider 2-Step First-Order Fast Traversal (# �J) which
we will call 2-FOFT, and 1-step, Second-Order Fast Traver-
sal (# J �) which we will call SOFT.Z�/ Z 6 4-D0^)� 4-D74�;�4-D<=87:9 =A>?\#D7b�=A4-D7b

The fast traversal algorithms described above assume
that all of the operational dimensions are monotonic. Un-
like monotonic dimensions, non-monotonic operational di-
mensions generally do not have structure that can be easily
exploited. For this reason, if some of the operational dimen-
sions are non-monotonic, we simply apply the fast traversal
algorithms above to the subset that is monotonic for all com-
binations of index values of the non-monotonic dimensions.

4

(a) Radar Layout

Pi

Ci

Ci’

Ai

(b) Dwell Parameters��� ����� 	��(
��%����� � � ����	i,

We then form the union of all these results and apply a con-
cave majorant. In the worst case that a task has only non-
monotonic dimensions this simply reduces to a full concave
majorant operation. However, most tasks of interest tend to
have more monotonic dimensions and furthermore tasks in
which most or all of the dimensions are non-monotonic are
not well suited to Q-RAM optimization anyway.

4 Radar Tracking Problem
To validate our Fast Traversal heuristics, we will use

radar tracking in a phased array radar system as an example.
Unlike a traditional fixed antenna radar, a phased array radar
has an electronically controllable beam. This allows differ-
ent targets to be tracked at different update rates and with
different amounts of radar energy depending on their im-
portance. In an actual radar, there are different types tasks
including search tasks for acquiring targets and confirma-
tion tasks to determine if some radar return really is a target
and if so to determine its type. Other radar problems can in-
clude track merging when we determine that two tracks are
actually the same target and track resolution when we must
decide between multiple candidate tracks for a target. Since
this paper is primarily concerned with the resource man-
agement issues, we will ignore most of this complexity and
concentrate primarily on tracking tasks of known targets.

We assume a ship-board radar system comprised of �
radar antennas oriented at 90 � to each other as shown in
Figure 3(a). We also assume that each antenna is capable of
tracking targets over a �
	 ��� arc. This means that there are
regions of the sky that are capable of being tracked by only
one radar antenna, as well as regions that can be tracked by
two antennas. The antennas are assumed to share a pool of
�
	
� processors used for tracking and signal processing al-
gorithms and a common power source to supply energy to
the antennas.

A single instance of sending a radar signal and receiving
the echo for a particular tracking task � � is called a dwell
(Figure 3(b)). A dwell consists of multiple short pulses
transmitted and received over a period. The duration of this
dwell is called the dwell time (� �). The time between two
successive dwells is called the dwell period (

G �). For sim-

Dimension Values
Radar (� �) 1,2,3,4
Algorithm (� �) Kalman, Least Sqr., �����
Period (

G �) 120ms, 180ms, 240ms, ����� , 720ms
Dwell Time (� �) 0.6ms, 1.2ms, 1.8ms, ����� , 30ms
Power (� �) � � � U�� , � � 	�U�� , � �

� U�� , ����� , � � U���<���-,�	 ��
�� *7	i� � "��������!,! ��) 	I��� � �����
plicity, we model all short transmitting pulses in the form
of a single long pulse sent over a transmit time (����). Data
from the radar return is then passed to a tracking algorithm
(� �) that processes the data and computes beam steering
commands for the next radar dwell.

In our model of the radar tracking problem we consider
the operational dimensions shown in Table 1. The dimen-
sion �8� specifies the radar antenna to which the track is
assigned. Note that due to the orientation of the radars,
each target can be tracked by only one or at most two of
the radars depending in its position. The tracking algorithm
� � is one of three commonly used tracking algorithms. The
period

G � and dwell time � � are as described above, and
the power � � is the transmit power in Watts. Note that
since required power increases as the fourth power of dis-
tance, we specify the actual power levels as a function of
the distance U (in miles) to the target. We also use an envi-
ronmentally dependent maximum power coefficient of � � .
The value of � � is chosen at the point where increasing
power has little additional benefit for a particular target.
Typically it is no larger than about 1.5. This gives us up
to 	 � � � � � � � � � � � � ��" �

� � � setpoints for targets
that can be tracked by two radars and 24,750 setpoints for
targets that can be tracked by only one radar.

The dimensions
G � , � � and � � are monotonic operational

dimensions in that increases in the value on these dimen-
sions result in increased tracking quality and increased re-
source demand. The radar selection dimension � � is clearly
a non-monotonic dimension since it is merely choosing
from among a set of resources. While selection of a tracking
algorithm (� �) affects tracking quality, the best algorithm to
use also depends on environmental properties of the targets.
For this reason we consider this to be a non-monotonic di-
mension.

None of the dimensions from Table 1 are of direct rele-
vance to the user in assessing the tracking quality. For this
reason we model a tracking error QoS dimension to assess
tracking quality. The tracking error is a function of the op-
erational dimensions as well as a number of environmen-
tal dimensions. We consider distance, acceleration, noise
(e.g., due to electronic counter-measures), speed and bear-
ing from the ship as environmental properties of the tar-
gets. Details of the track error computation are given in
Appendix A.

The radar problem resource space consists of the follow-

5

ing resource dimensions: radar bandwidth, radar power and
computing resources. Radar resources consumption is mod-
eled by a utilization value � � for each radar given by:

� � � F
������� � �G � (9)

where � � is the set of tracks that are mapped to radar . We
assume that for each radar there is a utilization bound � &)(3*�
such that � � can not exceed this bound. While �0&)(+*� can
not exceed 1 (corresponding to 100% utilization) in some
cases we may need a value less than 1 to model limitations
of the dwell scheduler. For the purposes of this paper we
will assume that ��&)(+*� � � .

In addition to utilization, radars typically have limita-
tions on how much power can be dissipated as well. Too
much power dissipation risks damaging the radar antenna.
There are typically both short-term and long-term con-
straints, but for simplicity in this paper we will only model
the long-term constraints. We define the average power for
a radar as: � � � F

�����
	 � �� � �G � (10)

This power must be less than some specified bound
� &)(3*�

for each radar.
In addition to the radar resource, each tracking task re-

quires computing resources to process the radar data, and
predict the next location of the target. The computing re-
sources required depend on the tracking algorithm ��� used,
and the period

G � . We assume that the required CPU is
of the form ��� �
� G � where ��� � is the coefficient represent-
ing the computational cost of algorithm ��� . For simplicity
we treat the bank of �
	
� processors as a single processing
resource (QoS optimization with processor mapping is ad-
dressed in [4]). We then define the CPU utilization as:

��� � F
� ��� �
� G � (11)

and define ��&)(+*� as the resource bound for CPU.

5 Experimental Results
In order to validate the fast traversal methods, a se-

ries of experiments were performed using randomly gen-
erated radar tracking scenarios. A 2.0GHz Pentium IV with
256MB of memory was used for the experiments. The num-
ber of tracking tasks was varied between � and

� �
	 with re-
sults averaged over fifty runs for each scenario size. The
track parameters were generated randomly from the envi-
ronmental dimensions shown in Table 2 with the mapping to
utility values being performed as described in Appendix A.

For the purpose of these experiments, the fast traversal
algorithms were implemented as a pre-processing step to

Parameter Value(s)

Type helicopter, jet, missile
Distance � � � - ��� mi.
Acceleration � � � � �

< -
� <

Noise � - � levels� � - � � � kts. (helicopter)
Speed � � � - " � � kts. (jet)

� � � -
� 	 � � kts. (missile)

Bearing � � - ��� � ��<���-,�	 �C
-$'�#�(��� ����) 	I�#" �!,! ��) 	I��� � �����

the Q-RAM algorithm. We used a compound resource ex-
pression:

= > ��� A =�� � = &)(+*� B+J � AK=�� � = &)(+*� B J � AK=�� � = &)(+*� B J
to evaluate the resource cost of each setpoint for each task.= � , = � and = � are the total amount of radar bandwidth,
power and computational resource required by each task ir-
respective of the particular radar and cpu to which it was
mapped. =H&)(+*� , = &)(3*� and = &)(3*� are the total resource capac-
ities for radar, power and cpu.

N
u

m
b

er
 o

f
S

et
p

o
in

ts

101

102

103

104

105

All

Majorant ST

FOFT 2-FOFT SOFT

���������
	��j
��l��	�� �!��	�� ��)��<	��l� �"!j	�"$# *7�����#" �
The bar-graph in Figure 4 shows the average number

of setpoints per task averaged for all of the generated
tasks both before the concave majorant generation (labeled
“All”), after the concave majorant generation (labeled “Ma-
jorant”), and after each of the of the concave majorant gen-
eration heuristics. The tasks had an average of 13,794 set-
points which was reduced to 91 setpoints after the concave
majorant operation. As expected, the ST algorithm did not
significantly affect the number of setpoints. Note that the
heuristics FOFT, 2-FOFT and SOFT produced approximate
concave majorant curves that have slightly fewer points than
the actual concave majorant.

While the fact that the heuristic concave majorants have
fewer setpoints than the actual concave majorant imply that

6

some desirable setpoints have been eliminated, experiments
show that the actual impact on system utility is negligible.
Figure 5 shows the system utility as a function of the num-
ber of tasks. Each point on the curves is the average over the
fifty runs. As can be seen all of the performance curves us-
ing the heuristic concave majorants with Q-RAM are nearly
coincident with the performance curve generated using the
full concave majorant. This shows that even though the con-
cave majorant curves generated by the heuristics are not ex-
act, the effect on optimization quality are very small.

Number of Tracks
0 100 200 300 400 500 600

U
ti

lit
y

0
100
200
300
400
500
600
700
800
900

1000

Majorant
ST
FOFT
2-FOFT
SOFT

���������
	��(
�����)+*-� � � ����� � ���%"���, � "��

Number of Tracks
0 100 200 300 400 500 600

C
P

U
 T

im
e

(s
ec

.)

10-2

10-1

100

101

102

103

Majorant
ST
FOFT
2-FOFT
SOFT

���������
	��(
	� # � �%� $ &(I���j"������ ����) 	
Figure 6 shows a plot of the overall execution time in-

cluding concave majorant generation time and solution gen-
eration time for Q-RAM using each of the concave majo-
rant techniques. The top curve is for a concave majorant
generated using a full concave majorant algorithm, and the
doted line underneath is for the slope-based traversal tech-
nique. The slope-based traversal technique results in ap-
proximately a factor of two speedup over the full concave
majorant algorithm. The execution time curves for Q-RAM
using the fast traversal heuristics are nearly identical to each
other and much less for Q-RAM using the full concave ma-

jorant or the slope-based traversal method. For example,
with 512 tracking tasks, the execution time using the full
concave majorant algorithm is 134 seconds, but is only 4.3
seconds using the FOFT heuristic.

6 Conclusion
In this paper we have presented a set of heuristics for

rapidly generating an approximation to the concave majo-
rant of a set of task operating points by exploiting structure
in the tasks’ QoS space. Of the three fast traversal heuris-
tics FOFT, 2-FOFT and SOFT, it was found that all per-
formed nearly identically and required nearly an identical
amount of cpu time to execute. It was shown that for a
set of tasks with approximately 14,000 different configura-
tions, the time required to find a near-optimal configuration
for all of the tasks was reduced by a factor of over 30. It
was also shown that the quality of the solution was negligi-
bly affected by the use of the heuristics. It is anticipated that
this performance gap would be even larger when presented
tasks with even larger numbers of possible configurations.

Appendix A Tracking Error Computation

Since we are primarily focused on evaluating the re-
source management algorithm, we assume a simple model
of tracking error. We make no effort to create a precise
model of actual radar tracking error but merely to capture
the key features to the extent necessary to evaluate the fast
traversal heuristics. We make the following assumptions
about tracking error:

0 Increases in target speed (%-�), target range (= �), target
acceleration (� �) or generated target noise (���) result
in increased tracking difficulty.

0 The power (� �) required to obtain similar tracking
quality increases as the ��

� power of the range (= �).
0 Tracking can be improved by using shorter dwell peri-

ods (
G �) and/or longer dwell times (� �). More distant

target will require longer dwell times due to speed-of-
light limitations.

0 The Kalman algorithm works best for noisy but non-
maneuvering (low acceleration) targets. The � ��� al-
gorithm works best for maneuvering (high accelera-
tion) but non-noisy targets. The Least Squares al-
gorithm is a compromise with moderate performance
against maneuvering and noise.

Based on the above assumptions, we assume the follow-
ing error estimation equation:

� � � G �
�����

%;� �
�
W = � �

� M � � G �

7

�
�
��� �3A � �

�
% = ��

� �
B � � �

���
=	�

� �
�

(12)

Where the coefficients are those shown in Table 3. Targets
generated for the experiments have environmental dimen-
sion values generated at random from the values shown in
Table 2. Three types of targets are generated: helicopters,
fighter-jets, and missiles. We use a function of the form:

� A � � B ��� �3A � � : .����
	 � B (13)

where � is a constant to map the tracking error into a utility
value and � � is a weight function of the form:

� � � �
 A % �
= � �

��� B
� (14)

providing an estimate of the importance of a particular tar-
get. The

� �
term represents the importance based on the

target type, and the right-most term represents the time-to-
intercept (i.e., the time that would be required for a target to
reach the ship if flying directly toward it).

Constant Name Values

Speed (

� �
) � � 	

� � � � .�

Distance (

�
W) 	 � ��� .�

Kalman :
� � � � . �

Acceleration (

� M
) Least Squares :

� � � � .��
����� : � � ���

Kalman :
� � � � . �

Noise (

�
�) Least Squares :

� � � � .��
� ��� : � � ��� .�

Power (

�
%) � � ��� . J

Dwell (

���
)

� � ��� . J
Intercept (

� �
)

�
(helicopter) 1.2

Type (

�
) (jet) 1.4
(missile) 1.6�a���-,�	��j
0� ��� � " ���#")� ��� $'�
�
���%$��C���!" �����

References

[1] T.D. Braun, et.al. “A Comparison of Eleven Static
Heuristics for Mapping a Class of Independent Tasks
onto Heterogeneous Distributed Computing Systems”
In Journal of Parallel and Distributed Computing, 61:
810-837, 2001

[2] R. Baugh, Computer Control of Modern Radars.,
RCA M&SR-Moorestown Library, 1973

[3] D.R. Billetter, Multifunction Array Radar, Artech
House, 1989

[4] S. Ghosh, R. Rajkumar, J. Hansen, J. Lehoczky. “Scal-
able Resource Allocation for Multi-Processor QoS
Optimization”, In Proceedings of the International
Conference on Distributed Computing Systems, May
2003

[5] J.K. Kim, et.al. “Dynamic Mapping in a Heteroge-
neous Enviornment with Tasks Having Priorities and
Multiple Deadlines”, In Proceedings 12th Heteroge-
neous Computing Workshop, April 2003

[6] C. Lee On Quality of Service Management, PhD
Thesis, August 1999

[7] C. Lee and J. Lehoczky and D. Siewiorek and R. Ra-
jkumar and J. Hansen, “A Scalable Solution to the
Multi-Resource QoS Problem”, In Proceedings of the
IEEE Real-Time Systems Symposium, December 1999

[8] C. Lee, J. Lehoczky, R. Rajkumar, and D. Siewiorek,
“On quality of service optimization with discrete QoS
options”, In Proceedings of the IEEE Real-time Tech-
nology and Applications Symposium, June 1998

[9] J.P. Hansen, J. Lehoczky and R. Rajkumar, “Opti-
mization of Quality of Service in Dynamic Systems”,
In Proceedings of the 9th International Workshop on
Parallel and Distributed Real-Time Systems, April
2001

[10] G. Nutt, S. Brandt, A. Griff, S. Siewert, T. Berk, and
M. Humphrey, “Dynamically Negotiated Resource
Management for Data Intensive Application Suites”,
In IEEE Transactions on Knowledge and Data Engi-
neering, 12(1):78-95, January/February 2000

[11] R. Rajkumar, C. Lee, J. Lehoczky and D. Siewiorek,
“A Resource Allocation Model for QoS Manage-
ment”, In Proceedings of the IEEE Real-Time Systems
Symposium, December 1997

[12] S. Sivasubramanian and G. Manimaran, “FARM: A
Feedback-based Adaptive Resource Management for
Autonomous Hot-Spot Convergence System”, In Pro-
ceedings of WPDRTS 2002, April 2002

[13] L. Wang, H.J. Siegel and V.P. Roychowdhury, “A
Genertic-Algorithm-Based Approach for Task Match-
ing and Scheduling in Heterogeneous Computing En-
vironments”, In 5th Heterogeneous Computing Work-
shop, April 1996

[14] L.R. Welch, B. Shirazi, B. Ravindran, C. Bruggeman,
“DeSiDeRaTa: QoS Management Technology for Dy-
namic, Scalable, Dependable, Real-time Systems”, In
Proceedings 15th IFAC Workshop - Distributed Com-
puter Control Systems (DCCS ’98), pp. 7-12, Septem-
ber 1998

8

