
Dean Tullsen
UCSD

}  The parallelism crisis has the feel of a
relatively new problem
◦  Results from a huge technology shift
◦  Has suddenly become pervasive
◦  Carries extreme urgency – our ability to continue to

scale performance is now completely tied to our
ability to find parallelism.
◦  Many researchers rushing in to work on the

problem.
}  But it is a very old problem
◦  Smart people have been thinking about and

building parallel machines for about 6 decades.

}  We are faced with a “new”, critically urgent
problem, but with all of the low hanging fruit
stripped clean.

}  Few easy solutions remain.

}  Parallel speedup of sequential code

}  Small pockets of parallelism

}  Unpowered transistors

}  Many important algorithms inherently
sequential.

}  Amdahl’s Law tells us that eventually, the
sequential code always dominates.

}  We’ve been referring to this as “non-
traditional parallelism”

}  Simply stated – how do you use multiple
hardware contexts to run sequential code
faster than a single context?

}  Can we run sequential code faster on a
machine optimized for parallel execution
than on a machine optimized for sequential
execution?

Core	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Core	
 2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Core	
 3	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Core	
 4	

Core	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Core	
 2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Core	
 3	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Core	
 4	

Core	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Core	
 2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Core	
 3	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Core	
 4	

}  nearly any code, no matter how inherently
serial, can benefit from parallelization.

}  Much more dynamic than traditional
parallelism – threads can be added or
subtracted without significant disruption.

}  Not bound by traditional (e.g., linear)
speedup limits. We often see 10X speedup
with 2 or 4 cores.

}  Helper thread prefetching on multithreaded
machines

}  Event-driven compilation (helper threads improve
code and specialize for runtime conditions)

}  Software data spreading
}  Inter-core prefetching
}  Speculative multithreading/thread level

speculation??

}  Parallel speedup of sequential code

}  Small pockets of parallelism

}  Unpowered transistors

}  Optimized for:

Billions of instructions

• Our traditional
CPUs work great.

}  We find that we have the wrong
◦  CPUs
◦  Interconnect
◦  Memory Hierarchy
◦  Branch Predictors
◦  Etc.

}  They’re all optimized for running billions of
instructions without interruption. They
perform very poorly when running 100s of
instructions.

}  Parallel speedup of sequential code

}  Small pockets of parallelism

}  Unpowered transistors

}  The big point – it’s easy to add transistors
(cores), difficult to add more powered-up
cores.

}  Assuming expected scaling trends, larger and
larger portions of the processor must remain
unpowered (idle).

}  General: How do we add transistors/logic to
the processor that add value even when they
are not turned on?

}  Specific to today’s topic: How do we get
higher parallel speedup from n cores (out of
P*n total) than we can get from n cores (out
of n total)?

}  Heterogeneous cores. Customization,
specialization…

}  If your models can’t explain the parallel
speedups we’re achieving, then they are of
limited usefulness.
◦  Parallel speedup of sequential code
◦  Accurately accounting for overheads of spawning

computation, including sw overheads, communication,
cold start, etc.
◦  Handling highly irregular opportunities for parallelism
◦  Accounting for power and energy bounds on

computation.
◦  Smoothly handling heterogeneous computing elements.

