The High Hanging Fruit
Dean Tuullég_[r;

The Dilemma

» The parallelism crisis has the feel of a

relatively new problem

- Results from a huge technology shift

- Has suddenly become pervasive

- Carries extreme urgency - our ability to continue to
scale performance is now completely tied to our
ability to find parallelism.

- Many researchers rushing in to work on the
problem.

» But it is a very old problem

- Smart people have been thinking about and
building parallel machines for about 6 decades.

As a result

» We are faced with a “new”, critically urgent
problem, but with all of the low hanging fruit
stripped clean.

» Few easy solutions remain.

Some deep reservoirs of untapped
parallelism

» Parallel speedup of sequential code
» Small pockets of parallelism

» Unpowered transistors

Sequential Code Will Always Be
Critically Important

» Many important algorithms inherently
sequential.

» Amdahl’s Law tells us that eventually, the
sequential code always dominates.

Parallel Speedup of Sequential
Code

» We've been referring to this as “non-
traditional parallelism”

» Simply stated - how do you use multiple
hardware contexts to run sequential code
faster than a single context?

» Can we run sequential code faster on a
machine optimized for parallel execution
than on a machine optimized for sequential
execution?

Traditional Parallelism

Corea Core 2 Core 3 Core 4

Traditional Parallelism

Corea Core 2 Core 3 Core 4

Non-Traditional Parallelism (one
model)

Corea Core 2 Core 3 Core 4

P

<

Things we like about non-
traditional parallelism

» nearly any code, no matter how inherently
serial, can benefit from parallelization.

» Much more dynamic than traditional
parallelism - threads can be added or
subtracted without significant disruption.

» Not bound by traditional (e.qg., linear)
speedup limits. We often see 10X speedup
with 2 or 4 cores.

Some examples of non-traditional
parallelism

>

Helper thread prefetching on multithreaded
machines

Event-driven compilation (helper threads improve
code and specialize for runtime conditions)

Software data spreading
Inter-core prefetching

Speculative multithreading/thread level
speculation??

Some deep reservoirs of untapped
parallelism

» Parallel speedup of sequential code
» Small pockets of parallelism

» Unpowered transistors

Traditional CPUs

» Optimized for:

P

N

SUOI1dNJISUI JO suol||ig

When parallel code looks like:

*Our traditional
CPUs work great.

P

When parallel code looks like:
][] AL

P

Then

» We find that we have the wrong
> CPUs
> |nterconnect
- Memory Hierarchy
> Branch Predictors
> Etc.

» They’re all optimized for running billions of
instructions without interruption. They
perform very poorly when running 100s of
Instructions.

Some deep reservoirs of untapped
parallelism

» Parallel speedup of sequential code
» Small pockets of parallelism

» Unpowered transistors

Parallelism and Dark Silicon

» The big point - it’s easy to add transistors
(cores), difficult to add more powered-up
cores.

» Assuming expected scaling trends, larger and
larger portions of the processor must remain
unpowered (idle).

The Dark Silicon Question

» General: How do we add transistors/logic to

the processor that add value even when they
are not turned on?

» Specific to today’s topic: How do we get
higher parallel speedup from n cores (out of

P*n total) than we can get from n cores (out
of n total)?

Answers we know today...

» Heterogeneous cores. Customization,
specialization...

Algorithms and Theory?

» If your models can’t explain the parallel
speedups we’re achieving, then they are of
limited usefulness.

- Parallel speedup of sequential code

- Accurately accounting for overheads of spawning
computation, including sw overheads, communication,
cold start, etc.

- Handling highly irregular opportunities for parallelism

- Accounting for power and energy bounds on
computation.

- Smoothly handling heterogeneous computing elements.

Thank you

