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Three Central Problems

Computation Data
A billion threads, a million nodes Wide variety of data, exabytes of data

i !
Failure! Establish ZooKeeper, HBase, Hadoop do not lose

=) Resilient computation data, despite node failure

Develop consistent global state management

Robust computation techniques

/\

(e_g_ robust automata) Develop resilient distributed termination detection

> Extend core impe_rative_ ] X10: places, async, finish, at, atomic ... resilience?
calculli, lang with resilience (Agents) A,B ::==S | async A | finish A| at (p) A

= (Concurrent, Distributed, Resilient, Data-centered)
Domain specific calculii

Semantics, Static  Synthesis Compilation Runtime Debugging
Types

© 2009 IBM Corporation
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CCP for Graph Algorithms: Maximal Cliques >= L

/* Degree Filter: Delete all vertices with degree < L */
all (x:V,y:V) =>
if (bag(y:V=>edge(x,y)).size()<L, edge(x,y)) { delete(x,y) }

[* Edge Filter: Delete all edges (x,y) s.t. commonSize(x,y) < L */
all (x:V,y:V) =>
if (edge(x,y), bag(z:V=>{edge(x,z),edge(z,y)}).size()<L) { delete(x,y) }

/* Phase Rule */
all (x:V,y:V)=>
unless (delete(x,y)) if (edge(x,y)) { next edge(x,y) }

Exec‘ljjte efficiently (and resiliently) on billions of vertices, thousands of
nodes

IBM Research
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Concurrent Constraint Programming

Linear CCP (linear logic) 92, 00

Universal CCP (all) 06

Digzrete Time (next) TCC

Instantaneous pre-emption
(unless), Default TCC 95

CCP 89

(Agents) A::=c;
(Config) G
G, {val x:T; A} = G,A

G,cy,..,c,,if (c) A = G,A

::= A,.., A (multiset of agents)

G, AB = G,A,B

| if (¢) {A} | A B | {val x:T; A}

(x not free in G)

(CiyrCy |— )

Nested Tests, Agents (RCC) 05

Spatial CCP 89,12

Epistemic CCP 12

Continuous time (HCC) 96
Differential equations

© 2009 IBM Corporation
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(Agents) A,B ::=e=

(A:B):C
async A ; async B
new x new y A
newx (A ; B)
newx (A : B)

async B, async A
new y new x A

(B 15 an o--renamed version of A)

(x & var(A))
(x & var(B))

val(é,c) = val(f,o)

= f?2=h,6) — oval(g.c) — val(h,c)]
— (A"&) | &' x¢dom(o)

(newx A,6) — (A,6') | &

(A,0) — (Alsd) IG,

((async B) A .G

(ftmshA c

e

_—

_—

—_—

(4',0)

(A": B,o') | (B,c)

((asyne B) : A',) | (asyn B, <)
{async A',6’) | &

(finishA',¢") | &

— (B.d)|d B=B

IBM Research

(A,6) — (B¢} | &

=f? g=h | {var x; A} | AA | async A| finish A| at (p) A

)

(3)

4)

(5)
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X10 2.2: An APGAS language

Partitoned

. |Global
local f = T\ _M\-» Remote Address
L e il Eise
¢ Outbound Inbound (PGAS)
8|5
38
3 S~
0
@
vy,
Pl
Asychron
e async S
* points, regions,
* when (c) S distributions,
Locality Order arrays
-at(P)S « finish S
* clocks

Class-based single-inheritance OO
Structs

Closures

True Generic types (no erasures)
Constrained Types (OOPSLA 08)

stablished

s best known
S upto 3K

IX LI ows substantial
speedup over Hadoop for data analytics
kernels.

Similar performance improvement for
Main Memory Map Reduce engine
(M3R) over Hadoop.

Java-like productivity, MPI-like performance

© 2009 IBM Corporation
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But — how do we handle a billion threads”?

= X10 is (deliberately) low-level = Our belief

— Imperative — explicit — Need to raise level of
mutation, hence very “PC abstraction
centric” view of computation. — Programming model needs to

— Explicit distribution be closer to application

domain
= How do you debug a 100,000 — Implicitly concurrent
threads from a PC-centric — Statically type safe
point of view? — Declarative

«  Support semantically-based
tools, using symbolic
reasoning

— Determinate
— Efficiently implementable!

© 2009 IBM Corporation
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Research Agenda

= Develop “broad”

programming framework

— Declarative programs (CCP)

— Fundamentally integrates
space and time

— Compiles to high-
performance imperative
programs

= Develop tools that exploit
declarative semantics

— Correctness at scale

— Correct by construction

— Partial programs, sketching
— Declarative debugging

= Directed at substantially
raising level of programmer/
productivity
— (cf R, Matlab, ... but at scale)
— “domain” programmer: HPC,
machine learning/BA

© 2009 IBM Corporation
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Constraint systems
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= Any (intuitionistic, classical)
system of partial information

= For Airead as logical
formulae, the basic
relationship is:

—A1,...,An|-A
— Read as “If each of the A1,...,
An hold, then A holds”

= |- is axiomatized through
given rules.

= Require conjunction,
existential quantification

A,B,D ::= atomic formulae | A&B |X*A
G ::= multiset of formulae

(Id) A]-A (Id)

(Cut)G|-B G'B|-D=>G,G" |-D
(Weak) G|-A=> G,B|-A

(Dup) G,A,A|-B=2>GA|-B

(Xchg) G,AB,G’ |-D = G,B,AG’ |-
D

(&R) G,AB|-D > G,A&B |- D
(&L)G|-A G|-B= G|-A&B
(A-R) G |- A[tUX] > G |- X*A
(A-L,*) GA|-D = GX*A|-D

© 2009 IBM Corporation
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Constraint system: Examples

= Gentzen = Orders
- G|-AiffAin G. = Temporal Intervals
= Hash-tables
= Herbrand = Arrays
— uninterpreted first-order terms
(labeled, fixed-arity trees) = Graphs

Finite domain
= Constraint systems (as systems

= Propositional logic (SAT) of partial information) are
ubiquitous in computer science
= = Arithmetic constraints — Type systems
§ — Naive, linear, nonlinear — Compiler analysis
3 — Symbolic computation
DEC = Interval arithmetic — Concurrent system analysis
m

© 2009 IBM Corporation
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Logic
Proposition: Operational = RCC (Jagadeesan, Nadathur,
Semantics is complete for Saraswat, FSTTCS 2005)
constraint entailment. — Unifies and subsumes CCP
(Saraswat, Lincoln 1994, and LP (forward- and
unpublished) backward-chaining).
— Provides logical expression
CCP is simply a fragment of for recursive nested guards
first-order logic. « i.e. “finish”
— Computation == Deduction — Localized augmentation of
— Unlike “Logic Programming’, programs (“assume-if’
CCP employs “forward reasoning, (P=>Q)=>R)
chaining”. — Backtracking and search

© 2009 IBM Corporation
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xcc: CCP in X10
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= Basic idea

— Concrete language is just like X10 —
classes, inheritance, interfaces,
structs, functions, fields, methods,
constructors, user-defined operators,
type inference etc.

— No var permitted, no need for atomic,
when, finish, async, at.

. Initially, finish, async, at may be
introduced as annotations to permit
efficient execution while compiler is
being developed.

= Every variable of type T is initialized

with a promise of type T.

— A promise is a “logical variable” —
nothing is known about it.

— (Herbrand) Two objects are equal iff
they are instances of the same class
and their corresponding fields are
equal.

= Assignment (=) is re-interpreted as

Tell:

— e,=e, is executed as: evaluate e, to
get a value v,, e, to get v,, and
equate the two.

= if (and ? : conditional expression
evaluator) suspends until condition
evaluates to true or false

— if = when, because of monotonicity.

= e.m(eq,-.,€,)
— e, e, ..,e, evaluated in parallel
— Once enough is known about e to

determine the class, use dynamic
lookup to determine method body

— Body executed in parallel with arg

evaluation

. Return value is an anonymous
promise constrained by return
statements.

© 2009 IBM Corporation
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Can computations deadlock?

= Semantic characterization:

= Yes.

— when(a) b is canonical
deadlocked agent.

— Intuitively, program quiesces
but can produce more when
given more.

= Deadlock is a “natural” state.

— Simply means the system
has quiesced.

— If you supply more
information, you may get
more information back.

— E.g. almost all interesting
programs would deadlock on

IBM Research

— P does not deadlock on input
a if all fixed points of P above
a are stable.
b >=P(a) implies b in P
— Observation: if P does not
deadlock on d, then for any b,
P(d&b)=P(d)&P(b)

Open problem:

|dentify static type system
that guarantees deadlock-
freedom and permits useful
idioms to be expressed.

© 2009 IBM Corporation
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Declarative Debugging

= Declarative debugging = Debugging
techniques can be applied to — Query oracle (user, specification)
logic programs, functional whether data with node is
programs, CCP. correct.
— Ueda 98 (CCP) — Identify node with incorrect data
— Fromherz 93 whose children have correct data
— Falaschi et al ICLP 07 .... BUG!

= Basic idea is to summarize an
execution through an execution

tree

— Node = procedure call

— Children = calls made in the
body.

— Node associated with some data
about subtree, e.g. pair of input/
output constraints.

IBM Research

© 2009 IBM Corporation
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Timed CCP: Basic Results
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= TCC = fragment of first-order
linear temporal logic

= Rich algebra of defined temporal
combinators (cf Esterel):
— always A
— do A watching c
— whenever c do A
— time Aonc

= A general combinator can be
defined
— time A on B: the clock fed to A is
determined by (agent) B

= Discrete timed synchronous
programming language with
the power of Esterel

— present is translated using
defaults

* Proof system

= Compilation to automata

© 2009 IBM Corporation
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Programming matter

= Vijay Saraswat, IBM Researc |
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Programmable matter

I !‘_arge collection of = Desired computations
computing atoms” (catoms) — Form a particular shape

that can — Sense a particular shape
— Compute

— Communicate locally
(wireless)

— Sense
— Move
— Adhere to each other (bond)

— Change physical/chemical
properties based on state

= cf sensor networks

IBM Research

How do you compute with 10° computers/cubic centimeter?

© 2009 IBM Corporation
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The computational substrate
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= No shared clock.

= No shared gobal coordinate
system.

= No unique ids (but random
variables permitted).

= No shared mutable state (shared
memory).

= Catoms randomly distributed in
3D (2D).

= Some small subset are “dead on
arrival”.

= Catoms can sense connections
with neighboring catoms and
send/receive messages.

= Catoms can broadcast locally.

= Assume boundary conditions
are supplied in some fashion.

= Catoms are (re-)programmed by
“beaming in” code.

= Catoms have limited power?

Cf Amorphous computing

© 2009 IBM Corporation
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The programming matter challenge

How do you move from a global description to local actions?

= Our approach: Program globally,

= What is the programming implement locally
model for programmable — Treat programmable matter as
) matter
matter — Study how matter “computes”
= Global program - Physics
— Specifies constraints on ) g.hem's“'y .

i ) i . iology — developmental biology
desired interactions of system — Study mathematical descriptions of
with environment. these processes (continuous

space, time, differential eqns,
stochasticity)
= Local program: Catom’ s view — Build programming model on these
S fies h h cat : descriptions
peciiies _O_V\_’ each catom In — Compile such global programs to
ensemble initiates/responds to local catom programs: “correct” by
messages received from the construction!

environment.

IBM Research

From analysis to programming

© 2009 IBM Corporation
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Constraint systems

= Any (intuitionistic, classical)

system of partial
information
= For A, read as logical
formulae, the basic
relationship is:
— AL A -A
— Read as “If each of the A,,
..., A, hold, then A holds”
= Require conjunction,
existential quantification

Saraswat, LICS 91

A,B,D ::= atomic formulae | A&B |X*A
G ::= multiset of formulae

(Id) A]-A (Id)

(Cut)G|-B G'B|-D=>G,G" |-D
(Weak) G|-A=> G,B|-A

(Dup) G,A,A|-B=2>GA|-B

(Xchg) G,AB,G’ |-D > G,BAG’ |-
D

(&R) G,AB|-D > G,A&B |- D
(&L)G|-A G|-B= G|-A&B
(A-R) G |- A[tUX] > G |- X*A
(A-L,*) GA|-D = GX*A|-D

© 2009 IBM Corporation
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Constraint system: Examples

cll
f

il
il

|0 ||
f
'

|
T}

= Gentzen
= Herbrand
— Lists
= Finite domain
= Propositional logic (SAT)
= Arithmetic constraints
— Naive
— Linear
— Nonlinear
= |Interval arithmetic
= Orders
= Temporal Intervals

Hash-tables
Arrays
Graphs

Constraint systems are
ubiquitous in computer
science

— Type systems (checking,
inference)

— Static analysis

— Symbolic computation

— Concurrent system
analysis

© 2009 IBM Corporation
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Concurrent Constraint Programming

= Use constraints for (Agents)A :=c
communication and control

if (c) A
between concurrent agents ()
operating on a shared store. A,B

= Two basic operations {x:T; A}

— Tell c: Add c to the store
— Ask c then A: If the store is
strong enough to entail c,

(Config)G::=A,..,A
G,{x:T;A} =2 G,A (x notfree in G)

reduce to A. G, if (¢) A>G,Aa (s(G)[-¢)
[[A]] = set of fixed points of a closure
operator

Operational semantics is complete
for logical entailment of constraints.

Saraswat 89;: POPL 87, POPL 90, POPL 91

© 2009 IBM Corporation
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Default CCP
= A ::= unless(c) A = [A] = set S of pairs (c,d)
— Run A, unless c holds at end satisfying
— askcVA — S4={c| (c,d)in S} denotes

— Leads to nondet behavior
= unless(c) c
— No behavior
= unless(c;) c,, unless(c,)
C,
— gives ¢, 0rc,
= unless(c) d :givesd
" ¢, unless(c) d :givesc

T

non-monotonicity

a closure operator.

— We still have a simple
denotational semantics!
Operational implementation:

— Backtracking search

— Compile-time determinacy
analysis (not implemented)
— Open question:

« Efficient compile-time
analysis (cf causality
analysis in Esterel)

- Use negation as failure

© 2009 IBM Corporation
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Discrete Timed CCP (1993)
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0 1

Environment

stimulus * *

System L _____

computation = | i
Bound on

computation

= Synchrony principle
— System reacts instantaneously to
the environment
— Implemented by ensuring

computation at each time instant is
bounded.

= Semantic idea

— Run a Default CCP program at each
time point

— Add a single new combinator:
A ::= hence A (run A at every
subsequent instant.)

— No connection between the store at
one point and the next.

— Semantics: Sets of sequences of
(pairs of) constraints

Proof system

The usual temporal combinators can be
programmed:

— always(A) = {A; hence A;}
— do A watching c

— time A on B: theclock fed to A is
determined by (agent) B

unless can be_ used to retract
hence constraints

— next(A) =
{X:boolean;
hence {
unless (X=true) A;
hence X=true;

}

}
Compilation to automata

© 2009 IBM Corporation
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Hybrid Systems

Traditional Computer Science

— Discrete state, discrete
change (assignment)

— E.g. Turing Machine
— Brittle:

«  Small error > major impact
* Devastating with large code!
Traditional Mathematics

— Continuous variables (Reals),
with continuous functions
(e.g. sum, multiplication).

— Smooth state change

*  Mean-value theorem
* e.g. computing rocket
trajectories
— Robustness in the face of
change

— Stochastic systems (e.g.
Brownian motion)

Hybrid Systems combine both
— Discrete control

— Continuous state evolution
— Intuition: Run program at

every real value.

*  Approximate by:
— Discrete change at an instant
—  Continuous change in an interval

Primary application areas
— Engineering and Control

systems
«  Paper transport
*  Autonomous vehicles...

— Biological Computation.
— Programmable Matter

Emerged in early 90s in the work of Nerode, Kohn, Alur, Dill, Henzinger...

© 2009 IBM Corporation
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HCC: Move to Continuous time (1995)

0.0 0.529 2578 4.06

Systemn
computation

Bound on
computation

= Point phase
— Result determines initial conditions for
evolution in the subsequent interval

= No new combinator needed
— Constraints are now permitted to

vary with time (e.g. = =v) phase and hence constraints in effect
= Semantic intuition in subsequent phases.
— Run default CCP at each real time " Interval phase
instant, starting with t=0. — Any constraints asked of the store

recorded as transition conditions.

— ODE'’s integrated to evolve time-
dependent variables.

— Evolution of system is piecewise
continuous: system evolution
alternates between point phase

.S _ — Phase ends when any transition

= and interval phase. _ condition potentially changes status.

0 — In each phase program determines — (Limit) value of variables at the end of
o) output of that phase and program the phase can be used by the next point
; to be run in next phase. phase.

m

Gupta, Jagadeesan, Saraswat SCP 1998

© 2009 IBM Corporation
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Systems Biology
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Work subsumes past work on

mathematical modeling in

biology:

— Hodgkin-Huxley model for
neural firing

— Michaelis-Menten equation
for Enzyme Kinetics

— Gillespie algorithm for Monte-
Carlo simulation of stochastic
systems.

— Bifurcation analysis for
Xenopus cell cycle

— Flux balance analysis,
metabolic control analysis...

This is not the first time...

Why Now?

Exploiting genomic data

Scale

* Across the internet, across
space and time.

Integration of computational
tools

Integration of new analysis
techniques

Collaboration using markup-
based interlingua (SBML)

Moore’s Law!

© 2009 IBM Corporation
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Chemical Reactions

Conservation of Mass

When multiple reactions, sum
mass flows across all sources
and sinks to get rate of change.

= Cells host thousands of
chemical reactions (e.g. citric
acid cycle, glycolis...)

" Chemical Reaction = Same analysis useful for
— X+Yo0 —ko=> XYo enzyme-catalyzed reactions
— XYo0—k-0 2 X+Yo — Michaelis-Menten kinetics
= Law of Mass Action = May be simulated
— Rate of reaction is — Using “deterministic”
proportional to product of means.

— Using stochastic means

f t
conc of components (Gillespie algorithm).

— [XT'= -ko[X][Y] + k-o[XYo]
— [YI'=[X]
— [XYT=ko[X][Y]-K-0[XY0]

At high concentration, species concentration can be modeled as a
continuous variable.

IBM Research

© 2009 IBM Corporation
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Quorum sensing (V. fischeri)

IBM Research

Model due to Alur et al

© 2009 IBM Corporation
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Cell division: Delta-Notch signaling in X. Laevis

= Consider cell differentiationina = Experimental Observations:

population of epidermic cells. — Delta (Notch) concentrations
= Cells arranged in a hexagonal show typical spike at a
lattice. threshold level.

— At equilibrium, cells are in
only two states (D or N
expressed; other inhibited).

= Cells interacts concurrently
with its neighbors.

= Delta and Notch proteins in
each cell vary continuously.

= Cell can be in one of four
states: {Delta, Notch} x
{inhibited, expressed}

Ghosh, Tomlin: “Lateral inhibition through Delta-Notch signaling: A piece-
wise affine hybrid model”, HSCC 2001

© 2009 IBM Corporation
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Delta-Notch Models

= Model:
— Vp, Vi concentration of Delta
and Notch protein in the cell. if (UN(i,j) < HN) VN’ = -MN*VN,
— Up, Uy Delta (Notch) production _ - )
capacity of cell. if (UN(i,j)>=HN) VN' =RN-MN*VN,
— 3N=su\r/n_i (neighbors) VD(I) if (UD(I,])<HD) VD’ =-MD*VD,
_ Parameters: if (UD(ij)>=HD) VD’ =RD-MD*VD,

Threshold values: HD,HN
Degradation rates: MD, MN
Production rates: RD, RN

— Cellin 1 of 4 states: {D,N} x
{Expressed (above), Inhibited
(below)}
= Stochastic variables used to set
random initial state.
Results: Simulation confirms observations. Tiwari/Lincoln prove that
States 2 and 3 are stable.

© 2009 IBM Corporation
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Other examples

= Bouncing ball = Paper path model
= Thermostat controller

= Square waves = Aercam model

= Sine waves...

IBM Research

© 2009 IBM Corporation
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Concrete HCC language
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Arithmetic variables are interval valued.
Arithmetic constraints are non-linear
algebraic equations, over +, *, A, etc.
Users can add own operators as C
libraries.

Various combinators translated to basic
combinators e.g.

do A watching ¢ = execute A, abort it
when ¢ becomes true

when c do A - start A at the first
instant when c holds

wait N do A - start A after N time units
forall C(X) do A(X) = execute a copy of
A for each object X of class C

B Arithmetic expressions compiled to byte
code

B Further compiled to machine code.

B Common sub-expressions are recognized.
B Copying garbage collector

B Speeds up execution

B Allows snapshotting of state.

M API from Java/C to use Hybrid cc as a
library. System runs on Solaris, Linux,
SGIl and Windows NT.

Carlson, Gupta “Hybrid CC with Interval Constraints”

© 2009 IBM Corporation
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HCC Implementation outline
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= Constraint techniques

Use constraints to narrow intervals of variables,
one variable at a time. Suppose f(x,y) = 0.

Indexicals: Rewrite as x =g(y). Setxelng(J),
where x €l and y € J. (y can be a vector of
variables.)

Interval splitting: If x € [a, b], use binary search
to find min c in [a,b] such that 0 € f([c,c], J),
where y € J. Similary determine max such d in
[a,b], and set x € [c,d].

Newton-Raphson: Get min and max roots of f(x,J)
=0, where y € J. Set x as above.

Simplex: Given the constraints on x, find its min
and max values, and set it as above. Treat
non-linear terms as separate variables.

= Integration techniques

Treat differential equations as ordinary algebraic
equations on variables and their derivatives e.g. f
=m*a’’,x’ +d*x +k*x=0.

Various integrators are provided --- Euler, 4th
order Runge Kutta, 4th order Runge Kutta with
adaptive stepsize, Bulirsch-Stoer with polynomial
extrapolation. Others can be added if necessary.

Integrators modified to integrate implicit
differential equations, over interval valued
variables.

Determine points of discrete changes (end of an
interval phase) using cubic Hermite
interpolation.

Carlson, Gupta “Hybrid CC with Interval Constraints”
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Integration of symbolic reasoning

= Use state of the art = Predicate abstraction
constraint solvers techniques.
— ICS from SRI = Develop bounded model
— Shostak combination of checking.
theories (SAT, Herbrand, = Parameter search
RCF, linear arithmetic over techniques.
integers). — Use/Generate constraints
= Finite state analysis of on parameters to rule out
hybrid systems portions of the space.

Integrate QR work

— Qualitative simulation of
hybrid systems

— Generate code for HAL

IBM Research
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Spatial HCC: Move to continuous space

= Add A::= atOther A

Run A at all other points.
(athll A = A, atOther
A

Constraints may now use
partial derivatives.

All variables now implicitly
depend on space
parameters (e.g. x,y,2)

= Semantic intutions
— Computation now uniformly

extended across space.

— At each point, run a Default

CC program.

— Program induces its own

discretization of space (into
open and closed regions).

Programming intuition

Program with vector fields, specifying
how they vary across space-time.

Programming Matter realization

Catoms represent dense
computational grid.

Signals represented as memory cells
in each catom

Catoms use epidemic algorithms to
diffuse signals (possibly with non-zero
gradients) across space.

Catoms use neighborhood queries to
sense local minima

Catoms integrate PDEs by using
chaotic relaxation (Chazan/Mirankar).
Compiler produces FSA for each
catom from input program.

© 2009 IBM Corporation
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Some basic programming idioms

// coord system
R=(0,0,0),

atAll grad(R)=(1,1,1)

// define

at(L) A :: at(R=L) A
at(I:J) A:: at(I<R&R<J) A

Abbreviation:
at (boolean b) A ::
atAll if (b) A

Research

// vibrating 1-d string
u=0, at(R=L)u=0,

at (O<KR && R<L)u=f

atAll u''t = c*c*u''x

We will also use neighborhood queries:
min {e | b} (max,..)
e is an expression, b a boolean

min evaluated over a sphere of radius r
(execution-time parameter). Also max,...

© 2009 IBM Corporation




[fsa]]
KA
"l | |
#W
Tll]

NSF Workshop Principles of Parallel Programming, CMU June 2012

Nagpal’ s Origami Operator(1): perp

3 0
O

P1
agent perp (boolean isPO, agent perp (boolean isPO,
boolean isP1, boolean isP1,
vec R, // global coord system
boolean line) { boolean line) {
at (isP0) { at (isP0) {
vec(2) DO=R, atAll grad(D0)=0.0, vec(2) D0=0.0, atAll grad(D0)=1.0,
at(isPl) { at(isPl) {
vec(2) D1=R, atAll grad(D1)=0.0, vec(2) D1=0.0, atAll grad(D1l)=1.0,
at (norm(D1-D0)<=eps) at (norm(D1-D0)<= eps)
line=true line=true
e
o }}} }}}
®©
)
o
o Use global coordinate system. Use local coordinate systems!
=
M

Global coordinate systems can be banned by requiring initial agent is atAl1l A.

© 2009 IBM Corporation
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Nagpal’ s Operator(1): perp

3 0
@)

P1
agent perp (boolean isPO, agent perp (boolean isPO,
boolean isP1, boolean isP1,
boolean line) { boolean line) {
at (isP0) { at (isP0) {

vec(2) D0=0.0, atAll grad(D0)=1.0, vec(l) D0=0.0,atAll grad(D0)=(1.0,0.0),
at(isPl) { at(isPl) {
vec(2) D1=0.0, atAll grad(D1l)=1.0, vec(l) D1=0.0,atAll grad(D1l)=(1.0,0.0),

at (norm(D1-D0) <= eps) at (norm(D1-D0) <= eps)
line=true line=true
}}} }}}

e

o

3

@ Local coordinate system. Local polar coordinate system.

DEC Propagates 2-d vectors with Propagates scalars with unit radial
@) unit gradient. gradient, zero angular gradient.

© 2009 IBM Corporation
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Nagpal’ s Operator(2): conn o o
PO P1
agent conn(boolean isPO, agent conn(boolean isPO,
boolean isP1, boolean isP1,
boolean line) { boolean line) {
at(isPl) { at(isPl) {

vec(2) D1=0.0, atAll grad(D1l)=1.0, vec(2) D1=0.0,atAll grad(D1)=(1.0,0.0),
at (isP0) { at (isP0) {
vec(2) DO=D1, atAll grad(D0)=0.0, vec(2) D0=0.0,atAll grad(D0)=(1.0,0.0),

at (norm(D1.unit-D0.unit)<= eps) at (DO+D1-min{DO0+D1l} )<= eps)
line=true}} line=true}}

Propagates 2-d vectors with Propagate scalars.

unit gradient. Use neighborhood minima queries.

IBM Research

© 2009 IBM Corporation




IBM Research

[fose]
IHTHL
"l ] |
..:;|l'
pestl]y

NSF Workshop Principles of Parallel Programming, CMU June 2012

Nagpal Operator (3): alt eo

agent alt (boolean isPO,

. . PO
boolean isline, |

AN
-

k!

boolean line, boolean crossing) { ;

=N =5
7 _/
at (isP0) { X X

vec(2) D0=0.0,atAll grad(D0)=(1.0,0.0),

* Find the point P1 on the line
— that is closest to PO

— in its local neighborhood,
considering only points on
the line.

= Draw the line from PO to P1

at(isLine & (DO-min{isLine | DO}<= eps)) {
crossing=true, atOther crossing=false,

conn (isP0,crossing,line) }}

Local coordinate system.
Propagate scalars.

Use conditional neighborhood minima queries.

© 2009 IBM Corporation
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Nagpal Operator(4): Bisection

L1 L2

agent bisect(boolean isLinel,
boolean isLine2,
boolean line) {
at(isLinel & isLine2) {
boolean isP=true,
vec(l) P=0.0, atAll grad(P)=(1.0,0.0),
at (isLinel& (P0-5.0)<eps) {

boolean isPLl=true,

at (isLine2& (P0-5.0)<eps) { P

5 boolean isPL2=true,atOther isPL2=false

o b Local coordinate system.
P oolean temp,

é conn (isPL1l,isPL2, temp), Propagate scalars.

% alt(isP,temp,line)}}}} Use other constructions.

© 2009 IBM Corporation
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Nagpal Operator(5): PontoL

K]
T
‘.|l|
T

agent bisect (boolean isPO,
boolean isP1,
boolean isLline,
boolean line) {
at (isP0) {
vec(l) P0=0.0, atall grad(P0)=(1.0,0.0),
at(isPl) {
vec (1) P1P0=PO, atAll grad(P1P0)=0.0,
vec(l) P1=0.0, atAll grad(P1)=(1.0,0.0),
at (isLineé& (P1-P1P0)<eps) {
boolean isPOImage=true,
boolean temp, conn(isP0O,isPOImage, temp),

alt(isPl,temp,line)}}}}

© 2009 IBM Corporation
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Nagpal Operator(6): POP1ontoLOL1

| 0|
unu"
Wl |
.nl]'l'
el

agent lineToLines (boolean isPO,

boolean isPl, ib
boolean isLO, —
boolean isll,
boolean isFold) {
at (isLO) {
boolean isIO=true, atOther isIO=false,
boolean isFoldC, perp(isP0O, isIO, isFoldC),
boolean isAltl, boolean isCrossl, .
alt (isPl, isFoldC, isAltl, isCrossl), ?
at (isAltlsisLl) { N
vec(l) orig=0.0,
atAll grad(orig)=(1.0,0.0),
at (isCrossl) {
vec(l) K = orig,
atAll grad(crosslD)=0.0,
at (isPl&norm(orig-2*K)<eps)
atAll isFold = isFoldC
11}

L1

L1

— b isReldo— —_

© 2009 IBM Corporation
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Flocking

IBM Research
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How do u realize this on Progg Matter?

= Work in progress!
= Basic intuitions

— Require propagation over
space takes time.

— Dilate time, dilate space.

— Try establishing
computational substrate has,
at each point, same velocity
of flow (in a particular
direction) over time, +/- delta,
with some probability p.

— Therefore from each point,
sufficiently widely spaced
waves are guaranteed to
arrive at all other points in
sequence.

© 2009 IBM Corporation
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Conclusion

1]
Il

]
""Il"
Tll]

5
T}

We believe biological system
modeling and analysis will be a
very productive area for
constraint programming and
programming languages

Handle continuous/discrete
space+time

Handle stochastic descriptions
Handle models varying over
many orders of magnitude
Handle symbolic analysis

Handle parallel
implementations

© 2009 IBM Corporation
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Controlling Cell division:
The p53-Mdm2 feedback loop

ol

= 1/ [p53] =[p53]o —[p53]* [Mdm2]*deg -dps3*[p53]
= 2/ [Mdm2]’ =p1+p2max*(1*n)/(KAn+I*n)-dmamz:[Mdm2]
— | is some intermediary unknown mechanism; induction of [Mdm2] must be
steep, n is usually > 10.
— May be better to use a discontinuous change?
= 3/[I]’ =a*[p53]-kdelay*|
— This introduces a time delay between the activation of p53 and the induction

of I\1{dm2. There appears to be some hidden “gearing up” mechanism at
work.

= 4] a=c1*sig/(1+c2*[Mdm2]*[p53])
= 5/ sig’ =-r*sig(t)
— Models initial stimulus (signal) which decays rapidly, at a rate determined by
repair.
= 6/ deg=degbasal-[kdeg*sig-thresh]
= 7/ thresh’ =-kdamp*thresh*sig(t=0)

IBM Research

© 2009 IBM Corporation
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The p53-Mdm2 feedback loop

= Biologists are interested in: = There is a more elaborate
— Dependence of amplitude model of the kinetics of the G2
and width of first wave on DNA damage checkpoint
different parameters system.
— Dependence of waveform on — 23 species, rate equations
delay parameter. — Multiple interacting cycles/
= Constraint expressions on pathways/regulatory
parameters that still lead to networks:
desired oscillatory waveform - Signal transduction
would be most useful! *  MPF
«  Cdc25
- Wee1

IBM Research

Aquda “A quantitative analysis of the kinetics of the G2 DNA damage checkpoint
© 2009 IBM Corporation
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Integration of symbolic reasoning techniques

= Use state of the art = Predicate abstraction
constraint solvers techniques.
— ICS from SRI = Develop bounded model
— Shostak combination of checking.
theories (SAT, Herbrand, = Parameter search
RCF, linear arithmetic over techniques.
integers). — Use/Generate constraints
= Finite state analysis of on parameters to rule out
hybrid systems portions of the space.

Integrate QR work

— Qualitative simulation of
hybrid systems

— Generate code for HAL

IBM Research
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