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THE MULTICORE ERA

• Multicores have arrived and the multicore era represents a paradigm shift in
general-purpose computing.

• Algorithms research needs to address the multitude of challenges that come
with this shift to the multicore era.
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THE PAST: THE VON NEUMANN ERA

An algorithm in the von Neumann model assumes a single processor that
executes unit-cost steps with unit-cost access to data in memory.

• A very simple abstract model

• Has been very successful for the past several decades

• Has facilitated development of good portable code whose performance by
and large matched the theoretical analysis:

– Sorting: Quick-sort, Merge-sort, Heap-sort

– Graph algorithms: minimum spanning tree, shortest paths, maximum flow
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THE PRESENT INTO THE FUTURE: MULTICORE ERA

• p cores, each with private cache of size M

• An arbitrarily large global shared memory

• Data organized in blocks of size B.
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MULTICORE WITH MULTI-LEVEL CACHE HIERARCHY
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PARALLEL MODELS AND MULTICORE MODELING

• Theoretical model: PRAM

• Realistic Theoretical Models (communication costs included)

– Fixed interconnection networks

– Bridging Models:
BSP, LogP (distributed memory), QSM (shared memory)

• Modeling Multicores:

– Bulk-synchronous with caching:
Multi-BSP

– HBP Multithreaded algorithms [Cole-Ramachandran 2010, 2012]
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BALANCED PARALLEL (BP) MULTITHREADED COMPUTATIONS

M-Sum(A[1..n], s) % Returns s =
∑n

i=1 A[i]

if n = 1 then return s := A[1] end if
fork(M-Sum(A[1..n/2], s1); M-Sum(A[n2 + 1..n], s2))

join: return s = s1 + s2

• Sequential execution computes recursively in a dfs traversal of this
computation tree.

• Forked tasks can run in parallel.

• Runs on p ≥ 1 cores in O(n/p+ log p) parallel steps by forking log p times to
generate p parallel tasks.

M-Sum is an example of a Balanced Parallel (BP) computation.
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HIERARCHICAL BALANCED PARALLEL (HBP) COMPUTATIONS

Depth-n-MM(X,Y, Z, n) % Returns n× n matrix Z = A ·B

if n = 1 then return Z ← Z +X · Y end if
fork(

DEPTH-N-MM(X11, Y11, Z11, n/2);
DEPTH-N-MM(X11, Y12, Z12, n/2);
DEPTH-N-MM(X21, Y11, Z21, n/2);
DEPTH-N-MM(X21, Y12, Z22, n/2) )

join
fork(

DEPTH-N-MM(X12, Y21, Z11, n/2)

DEPTH-N-MM(X12, Y22, Z12, n/2)

DEPTH-N-MM(X22, Y21, Z21, n/2)

DEPTH-N-MM(X22, Y22, Z22, n/2) )
join

Depth-n-MM is an example of Hierarchical Balanced Parallel (HBP) computation.
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MULTITHREADED COMPUTATIONS

• Many programming languages support multithreading.

• Current run-time environments have run-time schedulers that schedule
available parallel tasks on idle cores.

Typically, a core is not left idle if there is an available parallel task.

– Multithreaded computations can be scheduled by most run-time
schedulers since a thread generates a parallel task in its task queue at
each fork in the computation.

– Bulk-synchronous computations impose a specific scheduler for the
algorithms; cores may often idle at the global synchronization point,
waiting for all other cores to complete the synchronization.
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COMMUNICATION COSTS: CACHE MISSES AND FALSE SHARING

Cache Miss. A cache miss occurs in a computation if the data item being read
is not in cache.

This results in a delay while the block that contains the data item is read into
cache (by evicting a data item present in cache – we assume an optimal cache
replacement policy).

Cache misses can occur in both sequential and parallel executions.

False Sharing . False sharing occurs if the same block of data is accessed by
two or more processors in a parallel environment, and at least one of these
processors writes into a location in the block.
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Each of P1 and P2 could incur the cost of B/2 cache misses as the block
ping-pongs between their caches in order to serve their write requests.

• False-sharing is an inherent consequence of shared-memory architecture,
where data is pre-packaged in blocks.
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HBP AND BLOCK-RESILIENT HBP

[Cole-Ramachandran 2010, 2012]

• Hierarchical Balanced Parallel (HBP) computations use balanced fork-join
trees and build richer computations through sequencing and recursion.

• Design HBP with good sequential cache complexity, and good parallelism.

• Incorporate block resilience in the algorithm to guarantee low overhead due
to false sharing.

• Design resource-oblivious algorithms (i.e., with no machine parameters in
the algorithms) that are analyzed to perform well (across different
schedulers) as a function of the number of parallel tasks generated by the
scheduler.
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Block Resilient HBP Algorithm f(r) L(r) T∞ Q(n,M,B)

KNOWN

Scans (MA, PS) 1 1 O(log n) O(n/B)

Matrix Transposition (in BI) 1 1 O(log n) O(n/B)

Strassen’s MM (in BI) 1 1 O(log2 n) O(nλ/(B ·M
λ
2
−1))

RM to BI
√
r 1 O(log n) O(n2/B)

Direct BI to RM
√
r

√
r O(log n) O(n2/B)

MODIFIED

BI-RM (gap RM)
√
r gap O(log n) O(n2/B)

FFT
√
r 1 O(logn · log logn) O( n

B
logM n)

List Ranking
√
r 1 O(log2 n · log log n) O( n

B
logM n)

Connected Comp.∗
√
r 1 O(log3 n · log log n) O( n

B
logM n · logn)

Depth-n-MM 1 1 O(n) O(n3/(B
√
M))

NEW

BI-RM for FFT∗ √
r 1 O(log n) O(n

2

B
logM n)

Sort (SPMS)
√
r 1 O(logn · log logn) O( n

B
logM n)
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BOUNDS FOR RANDOMIZED WORK STEALING (RWS)

Block Resilient RWS Expected # Steals, S Cache Misses with FS Misses

HBP Algorithm with FS Misses [Cole-R12c] S Steals [Cole-R12a] [Cole-R12b]

Scans, MT p · (log n+ b
s
B) Q+ S [FS06,CR12a] S ·B

RM to BI p · (log n+ b
s
B) Q+ S ·B S ·B

MM, Strassen p · (log2 n+ b
s
B logn) Q+ S

1
3 n2

B
+ S S ·B

Depth-n-MM p · (n+ b
s
n
√
B) Q+ S

1
3 n2

B
+ S [FS06,CR12a] S ·B

I-GEP p · (n · log2 n+ b
s
n
√
B) Q+ S

1
3 n2

B
+ S [FS06,CR12a] S ·B

BI to RM for p · (log n+ b
s
B) Q+ S ·B + n2

B
log logB n S ·B

MM and FFT

LCS p(1 + b
s
) · nlog2 3 Q+ n

√
S/B + S [FS06,CR12a] S ·B

FFT, sort p · (log n · log log n Csort = O(Q+ S ·B S ·B

+ b
s
B logB n) + n

B
logn

log[(n logn)/S]
)

List Ranking p · logn · log log n Q+ Csort · logn S ·B

·(log n+ b
s
B)
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BOUNDS FOR A SIMPLE CENTRALIZED SCHEDULER SC

Block Resilient L(r) Fs Misses with S Value of S for Cache Misses w/ S

HBP Algorithm Parallel Tasks Scheduler SC Parallel Tasks

Scans (PS, MT) 1 B · S p Q+ S

Depth-n-MM 1 B · S p3/2 Q+ S
1
3 n2

B
+ S

MM, Strassen 1 B · S p log p Q+ S
1
3 n2

B
+ S

RM to BI 1 B · S p Q+ S ·B

Direct BI to RM
√
r n√

p
B · S p Q+ S ·B

BI-RM (gap RM) gap min{ n√
p
, B log2 B}BS p Q+ S ·B

BI-RM for FFT 1 B · S p · log logn
log(n2/p)

Q+ SB + n2

B
log logB n

FFT, SPMS Sort 1 B · S p · logn
log(n/p)

Q+ SB + n
B

logn

log
[
(n log n)

S

]
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BSP AND MULTI-BSP
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BULK-SYNCHRONOUS VERSUS MULTITHREADED ALGORITHMS

• Bulk-synchronous parallel and cache-efficient algorithms.

– Bulk synchronous programming style does not exploit the available
support for run-time schedulers that can be used to minimize idling
processors. (Use multithreaded algorithms instead.)

• Multi-BSP model [Valiant 2008]: Bulk-synchronous with caches but uses L

and g instead of cache misses.

– Bulk-synchronous programming style.

– Communication Cost. l (L) and g versus cache and false sharing misses.

• False-sharing is an inherent consequence of shared-memory architecture,
where data is pre-packaged in blocks.

– Block-resilient algorithms [CR12] address this feature, and use
block-resiliency in algorithms to reduce the cost of false-sharing.
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HETEROGENEOUS COMPUTING ENVIRONMENTS

Most parallel computing environments are not homogeneous:

• Supercomputers are often heterogeneous, e.g., a network of multicores.

– Many HBP algorithms have complementary ‘network-oblivious’
algorithms [CSBR10], and so can port across distributed and shared
memory environments.

• A multicore typically runs multiple tasks (e.g., o.s. tasks run concurrently
with the application parallel algorithm).

– Multithreaded algorithms offer flexibility to distribute tasks to processors
according to their availability for this computation (in contrast to
synchronous or bulk synchronous parallel algorithms).

• The block resilient techniques for minimizing false sharing reduce the data
boundaries at which parallel tasks interact, and this offers the promise of
efficient data accesses across heterogeneous platforms.
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CHALLENGES AHEAD

Our Initial Contributions:

• A suitable framework for efficient multicore algorithms: HBP multithreaded
algorithms.

• Suitable cost measures: good parallelism with work- and cache-efficiency
(including false sharing).

• Portable algorithms independent of machine parameters: resource-oblivious
algorithms

The Work Ahead:

• Design a collection of algorithmic techniques that give rise to efficient
multicore algorithms for important computational problems.

• Analyze and develop efficient run-time schedulers that schedule the
available parallel tasks efficiently, in a distributed environment.

• Develop framework, techniques and analyses to address heterogeneity in
parallel computing environments, fault-tolerance, energy efficiency, . . .
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