
Parallel Algorithms for the Multicore Era

Vijaya Ramachandran
Department of Computer Science

University of Texas at Austin

0-0

THE MULTICORE ERA

• Multicores have arrived and the multicore era represents a paradigm shift in
general-purpose computing.

• Algorithms research needs to address the multitude of challenges that come
with this shift to the multicore era.

1

THE PAST: THE VON NEUMANN ERA

An algorithm in the von Neumann model assumes a single processor that
executes unit-cost steps with unit-cost access to data in memory.

• A very simple abstract model

• Has been very successful for the past several decades

• Has facilitated development of good portable code whose performance by
and large matched the theoretical analysis:

– Sorting: Quick-sort, Merge-sort, Heap-sort

– Graph algorithms: minimum spanning tree, shortest paths, maximum flow

2

THE PRESENT INTO THE FUTURE: MULTICORE ERA

• p cores, each with private cache of size M

• An arbitrarily large global shared memory

• Data organized in blocks of size B.

3

MULTICORE WITH MULTI-LEVEL CACHE HIERARCHY

4

PARALLEL MODELS AND MULTICORE MODELING

• Theoretical model: PRAM

• Realistic Theoretical Models (communication costs included)

– Fixed interconnection networks

– Bridging Models:
BSP, LogP (distributed memory), QSM (shared memory)

• Modeling Multicores:

– Bulk-synchronous with caching:
Multi-BSP

– HBP Multithreaded algorithms [Cole-Ramachandran 2010, 2012]

5

BALANCED PARALLEL (BP) MULTITHREADED COMPUTATIONS

M-Sum(A[1..n], s) % Returns s =
∑n

i=1 A[i]

if n = 1 then return s := A[1] end if
fork(M-Sum(A[1..n/2], s1); M-Sum(A[n2 + 1..n], s2))

join: return s = s1 + s2

• Sequential execution computes recursively in a dfs traversal of this
computation tree.

• Forked tasks can run in parallel.

• Runs on p ≥ 1 cores in O(n/p+ log p) parallel steps by forking log p times to
generate p parallel tasks.

M-Sum is an example of a Balanced Parallel (BP) computation.

6

HIERARCHICAL BALANCED PARALLEL (HBP) COMPUTATIONS

Depth-n-MM(X,Y, Z, n) % Returns n× n matrix Z = A ·B

if n = 1 then return Z ← Z +X · Y end if
fork(

DEPTH-N-MM(X11, Y11, Z11, n/2);
DEPTH-N-MM(X11, Y12, Z12, n/2);
DEPTH-N-MM(X21, Y11, Z21, n/2);
DEPTH-N-MM(X21, Y12, Z22, n/2))

join
fork(

DEPTH-N-MM(X12, Y21, Z11, n/2)

DEPTH-N-MM(X12, Y22, Z12, n/2)

DEPTH-N-MM(X22, Y21, Z21, n/2)

DEPTH-N-MM(X22, Y22, Z22, n/2))
join

Depth-n-MM is an example of Hierarchical Balanced Parallel (HBP) computation.

7

MULTITHREADED COMPUTATIONS

• Many programming languages support multithreading.

• Current run-time environments have run-time schedulers that schedule
available parallel tasks on idle cores.

Typically, a core is not left idle if there is an available parallel task.

– Multithreaded computations can be scheduled by most run-time
schedulers since a thread generates a parallel task in its task queue at
each fork in the computation.

– Bulk-synchronous computations impose a specific scheduler for the
algorithms; cores may often idle at the global synchronization point,
waiting for all other cores to complete the synchronization.

8

COMMUNICATION COSTS: CACHE MISSES AND FALSE SHARING

Cache Miss. A cache miss occurs in a computation if the data item being read
is not in cache.

This results in a delay while the block that contains the data item is read into
cache (by evicting a data item present in cache – we assume an optimal cache
replacement policy).

Cache misses can occur in both sequential and parallel executions.

False Sharing . False sharing occurs if the same block of data is accessed by
two or more processors in a parallel environment, and at least one of these
processors writes into a location in the block.

9

Each of P1 and P2 could incur the cost of B/2 cache misses as the block
ping-pongs between their caches in order to serve their write requests.

• False-sharing is an inherent consequence of shared-memory architecture,
where data is pre-packaged in blocks.

10

HBP AND BLOCK-RESILIENT HBP

[Cole-Ramachandran 2010, 2012]

• Hierarchical Balanced Parallel (HBP) computations use balanced fork-join
trees and build richer computations through sequencing and recursion.

• Design HBP with good sequential cache complexity, and good parallelism.

• Incorporate block resilience in the algorithm to guarantee low overhead due
to false sharing.

• Design resource-oblivious algorithms (i.e., with no machine parameters in
the algorithms) that are analyzed to perform well (across different
schedulers) as a function of the number of parallel tasks generated by the
scheduler.

11

Block Resilient HBP Algorithm f(r) L(r) T∞ Q(n,M,B)

KNOWN

Scans (MA, PS) 1 1 O(log n) O(n/B)

Matrix Transposition (in BI) 1 1 O(log n) O(n/B)

Strassen’s MM (in BI) 1 1 O(log2 n) O(nλ/(B ·M
λ
2
−1))

RM to BI
√
r 1 O(log n) O(n2/B)

Direct BI to RM
√
r

√
r O(log n) O(n2/B)

MODIFIED

BI-RM (gap RM)
√
r gap O(log n) O(n2/B)

FFT
√
r 1 O(logn · log logn) O(n

B
logM n)

List Ranking
√
r 1 O(log2 n · log log n) O(n

B
logM n)

Connected Comp.∗
√
r 1 O(log3 n · log log n) O(n

B
logM n · logn)

Depth-n-MM 1 1 O(n) O(n3/(B
√
M))

NEW

BI-RM for FFT∗ √
r 1 O(log n) O(n

2

B
logM n)

Sort (SPMS)
√
r 1 O(logn · log logn) O(n

B
logM n)

12

BOUNDS FOR RANDOMIZED WORK STEALING (RWS)

Block Resilient RWS Expected # Steals, S Cache Misses with FS Misses

HBP Algorithm with FS Misses [Cole-R12c] S Steals [Cole-R12a] [Cole-R12b]

Scans, MT p · (log n+ b
s
B) Q+ S [FS06,CR12a] S ·B

RM to BI p · (log n+ b
s
B) Q+ S ·B S ·B

MM, Strassen p · (log2 n+ b
s
B logn) Q+ S

1
3 n2

B
+ S S ·B

Depth-n-MM p · (n+ b
s
n
√
B) Q+ S

1
3 n2

B
+ S [FS06,CR12a] S ·B

I-GEP p · (n · log2 n+ b
s
n
√
B) Q+ S

1
3 n2

B
+ S [FS06,CR12a] S ·B

BI to RM for p · (log n+ b
s
B) Q+ S ·B + n2

B
log logB n S ·B

MM and FFT

LCS p(1 + b
s
) · nlog2 3 Q+ n

√
S/B + S [FS06,CR12a] S ·B

FFT, sort p · (log n · log log n Csort = O(Q+ S ·B S ·B

+ b
s
B logB n) + n

B
logn

log[(n logn)/S]
)

List Ranking p · logn · log log n Q+ Csort · logn S ·B

·(log n+ b
s
B)

13

BOUNDS FOR A SIMPLE CENTRALIZED SCHEDULER SC

Block Resilient L(r) Fs Misses with S Value of S for Cache Misses w/ S

HBP Algorithm Parallel Tasks Scheduler SC Parallel Tasks

Scans (PS, MT) 1 B · S p Q+ S

Depth-n-MM 1 B · S p3/2 Q+ S
1
3 n2

B
+ S

MM, Strassen 1 B · S p log p Q+ S
1
3 n2

B
+ S

RM to BI 1 B · S p Q+ S ·B

Direct BI to RM
√
r n√

p
B · S p Q+ S ·B

BI-RM (gap RM) gap min{ n√
p
, B log2 B}BS p Q+ S ·B

BI-RM for FFT 1 B · S p · log logn
log(n2/p)

Q+ SB + n2

B
log logB n

FFT, SPMS Sort 1 B · S p · logn
log(n/p)

Q+ SB + n
B

logn

log
[
(n log n)

S

]

14

BSP AND MULTI-BSP

15

BULK-SYNCHRONOUS VERSUS MULTITHREADED ALGORITHMS

• Bulk-synchronous parallel and cache-efficient algorithms.

– Bulk synchronous programming style does not exploit the available
support for run-time schedulers that can be used to minimize idling
processors. (Use multithreaded algorithms instead.)

• Multi-BSP model [Valiant 2008]: Bulk-synchronous with caches but uses L

and g instead of cache misses.

– Bulk-synchronous programming style.

– Communication Cost. l (L) and g versus cache and false sharing misses.

• False-sharing is an inherent consequence of shared-memory architecture,
where data is pre-packaged in blocks.

– Block-resilient algorithms [CR12] address this feature, and use
block-resiliency in algorithms to reduce the cost of false-sharing.

16

HETEROGENEOUS COMPUTING ENVIRONMENTS

Most parallel computing environments are not homogeneous:

• Supercomputers are often heterogeneous, e.g., a network of multicores.

– Many HBP algorithms have complementary ‘network-oblivious’
algorithms [CSBR10], and so can port across distributed and shared
memory environments.

• A multicore typically runs multiple tasks (e.g., o.s. tasks run concurrently
with the application parallel algorithm).

– Multithreaded algorithms offer flexibility to distribute tasks to processors
according to their availability for this computation (in contrast to
synchronous or bulk synchronous parallel algorithms).

• The block resilient techniques for minimizing false sharing reduce the data
boundaries at which parallel tasks interact, and this offers the promise of
efficient data accesses across heterogeneous platforms.

17

CHALLENGES AHEAD

Our Initial Contributions:

• A suitable framework for efficient multicore algorithms: HBP multithreaded
algorithms.

• Suitable cost measures: good parallelism with work- and cache-efficiency
(including false sharing).

• Portable algorithms independent of machine parameters: resource-oblivious
algorithms

The Work Ahead:

• Design a collection of algorithmic techniques that give rise to efficient
multicore algorithms for important computational problems.

• Analyze and develop efficient run-time schedulers that schedule the
available parallel tasks efficiently, in a distributed environment.

• Develop framework, techniques and analyses to address heterogeneity in
parallel computing environments, fault-tolerance, energy efficiency, . . .

18

