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Resilient software using modular 

programming techniques that normal 
humans can use (and understand) 

 
 

Tim Mattson (Intel Labs)   
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Parallel programming principles: 

Designed around the Human 
programmer (not the computer)   

 
 

Tim Mattson (Intel Labs)   
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Psychology of Programming in one slide 

• Programmers use an informal, internal notation based on the 
problem, mathematics, programmer experience, etc. 

–Within a class of programming languages, the solution 
generated is only weakly dependent on the language.[2] [3] 

• Opportunistic Refinement:[4] 

–Progress is made at multiple levels of abstraction with effort 

focused on the most productive level.   

 • [1] R. Brooks, "Towards a theory of the comprehension of computer programs", Int. J.  of Man-Machine Studies, vol. 18, pp. 543-554, 1983. 

• [3] M. Petre and R.L. Winder, "Issues governing the suitability of programming languages for programming tasks. "People and Computers IV: 

Proceedings of HCI-88, Cambridge University Press, 1988. 

• [4] M. Petre, "Expert Programmers and Programming Languages", in [Hoc90], p. 103, 1990. 

• [2] S. P. Robertson and C Yu, "Common cognitive representations of program code across tasks and languages", int. J. Man-machine Studies, vol. 

33, pp. 343-360, 1990. 

• Human reasoning is model based … 

Programming is a process of successive 

refinement of a problem over a hierarchy 

of models.[1] 

• The models are informal, but detailed 

enough to support simulation. 
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• This means our programming principles must help us: 
– Define a productivity layer  for domain-specialist-programmers that  

supports  model-building in the application domain. 

– Expose a machine model programmers can understand 
(programmers run mental simulations to understand execution) 

– Allow programmers to move back and forth within the hierarchy of 
models (Opportunistic refinement). 

– Abstract the hardware but don’t hide it! 



Models that hide Communication and network details 
are “dead on arrival” 

• Jim Demmel’s group at 
UC Berkeley has 
shown dramatic 
performance 
improvements by: 

1. Communication 
avoiding algorithms 

2. Algorithms that 
exploit the details of 
a computer’s 
network 

 

Source: Jim Demmel, UC Berkeley 



We spend too much time on the less important 
problems (programming models) 

• There will never be 
“one programming 
model” to rule them all 
... So lets stop trying to 
find that ideal model. 

• Modern software engineering 
stresses modular development 
by large distributed teams. 

• Make the choice of programming model 
irrelevant by establishing a common 
Intermediate representation. 

• Composition across programming models. 

• Example: SPIR project in OpenCL based on 
LLVM. 

Sparse QR: using TBB & OpenMP 

• The Parallel Composition problem … 
Expose resource management and 
schedulers to safely mix parallel 
software modules. 

• Example:  Heidi Pan’s dissertation 
from MIT & UC Berkeley. 



Turning Patterns expressed as Python code into 
high performance parallel code 
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ASP … a platform to 
write domain specific 

frameworks.   
 

Helps turn design 
patterns into code. 

 
Intel/UCB test projects: 
(1) molecular modeling. 

(2) Data analytics  

ASP: SEJITS for Python 



Conclusion 
• Put the Human (not the computer first) and create 

a foundation of parallel computing principles 
grounded in how programmers think. 

• Models at every level must be available to the 
programmer and provide insights for REAL 
hardware (consider  the success of communication 
avoiding algorithms). 

• The Parallel Composition problem is where the 
most work is needed: 
– Composition across software modules (e.g. Lithe) 

– Composition across programming models (e.g. SPIR) 


