
1 1

Resilient software using modular

programming techniques that normal
humans can use (and understand)

Tim Mattson (Intel Labs)

Intel Labs 80 core Research
processor

Intel labs 48 core SCC processor

VRC

2
1

.4
m

m

26.5mm

System Interface + I/O

D
D

R
3

 M
C

D
D

R
3

 M
C

D
D

R
3

 M
C

D
D

R
3

 M
C

PLL

TILE

TILE

JTAG

IBM Cell Broadband engine processor

NVIDIA GTX 480 processor

Intel “Sandybridge” processor

NVIDIA Tegra 3 (quad Arm
Corex A9 cores + GPU)

Other than the Intel lab’s research processors. Die photos from UC Berkeley CS194 lecture notes Third party names are the property of their owners

An Intel MIC processor

2 2

Parallel programming principles:

Designed around the Human
programmer (not the computer)

Tim Mattson (Intel Labs)

Intel Labs 80 core Research
processor

Intel labs 48 core SCC processor

VRC

2
1

.4
m

m

26.5mm

System Interface + I/O

D
D

R
3

 M
C

D
D

R
3

 M
C

D
D

R
3

 M
C

D
D

R
3

 M
C

PLL

TILE

TILE

JTAG

IBM Cell Broadband engine processor

NVIDIA GTX 480 processor

Intel “Sandybridge” processor

NVIDIA Tegra 3 (quad Arm
Corex A9 cores + GPU)

Other than the Intel lab’s research processors. Die photos from UC Berkeley CS194 lecture notes Third party names are the property of their owners

An Intel MIC processor

Psychology of Programming in one slide

• Programmers use an informal, internal notation based on the
problem, mathematics, programmer experience, etc.

–Within a class of programming languages, the solution
generated is only weakly dependent on the language.[2] [3]

• Opportunistic Refinement:[4]

–Progress is made at multiple levels of abstraction with effort

focused on the most productive level.

 • [1] R. Brooks, "Towards a theory of the comprehension of computer programs", Int. J. of Man-Machine Studies, vol. 18, pp. 543-554, 1983.

• [3] M. Petre and R.L. Winder, "Issues governing the suitability of programming languages for programming tasks. "People and Computers IV:

Proceedings of HCI-88, Cambridge University Press, 1988.

• [4] M. Petre, "Expert Programmers and Programming Languages", in [Hoc90], p. 103, 1990.

• [2] S. P. Robertson and C Yu, "Common cognitive representations of program code across tasks and languages", int. J. Man-machine Studies, vol.

33, pp. 343-360, 1990.

• Human reasoning is model based …

Programming is a process of successive

refinement of a problem over a hierarchy

of models.[1]

• The models are informal, but detailed

enough to support simulation.

Psychology of Programming in one slide

• Programmers use an informal, internal notation based on the
problem, mathematics, programmer experience, etc.

–Within a class of programming languages, the solution
generated is only weakly dependent on the language.[2] [3]

• Opportunistic Refinement:[4]

–Progress is made at multiple levels of abstraction with effort

focused on the most productive level.

 • [1] R. Brooks, "Towards a theory of the comprehension of computer programs", Int. J. of Man-Machine Studies, vol. 18, pp. 543-554, 1983.

• [3] M. Petre and R.L. Winder, "Issues governing the suitability of programming languages for programming tasks. "People and Computers IV:

Proceedings of HCI-88, Cambridge University Press, 1988.

• [4] M. Petre, "Expert Programmers and Programming Languages", in [Hoc90], p. 103, 1990.

• [2] S. P. Robertson and C Yu, "Common cognitive representations of program code across tasks and languages", int. J. Man-machine Studies, vol.

33, pp. 343-360, 1990.

• Human reasoning is model based …

Programming is a process of successive

refinement of a problem over a hierarchy

of models.[1]

• The models are informal, but detailed

enough to support simulation.

• This means our programming principles must help us:
– Define a productivity layer for domain-specialist-programmers that

supports model-building in the application domain.

– Expose a machine model programmers can understand
(programmers run mental simulations to understand execution)

– Allow programmers to move back and forth within the hierarchy of
models (Opportunistic refinement).

– Abstract the hardware but don’t hide it!

Models that hide Communication and network details
are “dead on arrival”

• Jim Demmel’s group at
UC Berkeley has
shown dramatic
performance
improvements by:

1. Communication
avoiding algorithms

2. Algorithms that
exploit the details of
a computer’s
network

Source: Jim Demmel, UC Berkeley

We spend too much time on the less important
problems (programming models)

• There will never be
“one programming
model” to rule them all
... So lets stop trying to
find that ideal model.

• Modern software engineering
stresses modular development
by large distributed teams.

• Make the choice of programming model
irrelevant by establishing a common
Intermediate representation.

• Composition across programming models.

• Example: SPIR project in OpenCL based on
LLVM.

Sparse QR: using TBB & OpenMP

• The Parallel Composition problem …
Expose resource management and
schedulers to safely mix parallel
software modules.

• Example: Heidi Pan’s dissertation
from MIT & UC Berkeley.

Turning Patterns expressed as Python code into
high performance parallel code

7

ASP … a platform to
write domain specific

frameworks.

Helps turn design
patterns into code.

Intel/UCB test projects:
(1) molecular modeling.

(2) Data analytics

ASP: SEJITS for Python

Conclusion
• Put the Human (not the computer first) and create

a foundation of parallel computing principles
grounded in how programmers think.

• Models at every level must be available to the
programmer and provide insights for REAL
hardware (consider the success of communication
avoiding algorithms).

• The Parallel Composition problem is where the
most work is needed:
– Composition across software modules (e.g. Lithe)

– Composition across programming models (e.g. SPIR)

