DDR3MC

NVIDIA Tegra 3 (quad Arm

NVIDIA GTX 480 processor s e + 0 m—: Corex A9 cores + GPU) An Intel MIC processor

Intel labs 48 core SCC processor

Resilient software using modular
programming techniques that nhormal

humans can use (and understand)
Tim Mattson (Intel Labs)

Cell Broadband Engine Processor

System '
Agent &
Memory |

| Processor Controller §

Graphics

." ‘ i I . "1}, Including

: " v - e DMI, Display '
! bt [EaY VEEEER®E 1 RS |

ERTE | £¥ |RIeRE H!H;‘,ﬂ&m S]] anamiscvo |

-+ Shar:

Intel Labs 80 core Research
processor

Other than the Intel lab’s research processors. Die photos from UC Berkeley CS194 lecture notes Third party names are the property of their owners

Intel “Sandybridge” processor IBM Cell Broadband engine processor

DDR3MC

NVIDIA Tegra 3 (quad Arm

NVIDIA GTX 480 processor st ictace o = Corex A9 cores + GPU) An Intel MIC processor

Intel labs 48 core SCC processor

Parallel programming principles:
Desighed around the Human

programmer (nhot the computer)
Tim Mattson (Intel Labs)

Cell Broadband Engine Processor

System '
Agent &
Memory |

| Processor Controller §

Graphics

." ‘ i I . "1}, Including

: " v - e DMI, Display '
! bt [EaY VEEEER®E 1 RS |

ERTE | £¥ |RIeRE H!H;‘,ﬂ&m S]] anamiscvo |

-+ Shar:

Intel Labs 80 core Research
processor

Other than the Intel lab’s research processors. Die photos from UC Berkeley CS194 lecture notes Third party names are the property of their owners

Intel “Sandybridge” processor IBM Cell Broadband engine processor

Psychology of Programming in one slide

« Human reasoning is model based ...
Programming is a process of successive
refinement of a problem over a hierarchy
of models.p;

« The models are informal, but detailed
enough to support simulation.

« Programmers use an informal, internal notation based on the
problem, mathematics, programmer experience, etc.

—Within a class of programming languages, the solution
generated is only weakly dependent on the language.i s

« Opportunistic Refinement:

— Progress is made at multiple levels of abstraction with effort
focused on the most productive level.

* [1] R. Brooks, "Towards a theory of the comprehension of computer programs”, Int. J. of Man-Machine Studies, vol. 18, pp. 543-554, 1983.

« [3] M. Petre and R.L. Winder, "Issues governing the suitability of programming languages for programming tasks. "People and Computers IV:
Proceedings of HCI-88, Cambridge University Press, 1988.

« [4] M. Petre, "Expert Programmers and Programming Languages", in [Hoc90], p. 103, 1990.

« [2] S. P. Robertson and C Yu, "Common cognitive representations of program code across tasks and languages”, int. J. Man-machine Studies, vol.
33, pp. 343-360, 1990.

Psychology of Programming in one slide

Human reasoning is model based ...

Programming is a process of successive
refinement of a problem over a hierarchy
of models.py Al s

1 This means our programming principles must help us:

i — Define a productivity layer for domain-specialist-programmers that
supports model-building in the application domain.

— Expose a machine model programmers can understand
(programmers run mental simulations to understand execution)

— Allow programmers to move back and forth within the hierarchy of
models (Opportunistic refinement).

— Abstract the hardware but don’t hide it!

7~

focused on the most productive level.

* [1] R. Brooks, "Towards a theory of the comprehension of computer programs”, Int. J. of Man-Machine Studies, vol. 18, pp. 543-554, 1983.
« [3] M. Petre and R.L. Winder, "Issues governing the suitability of programming languages for programming tasks. "People and Computers IV:

Proceedings of HCI-88, Cambridge University Press, 1988.

« [4] M. Petre, "Expert Programmers and Programming Languages", in [Hoc90], p. 103, 1990.
« [2] S. P. Robertson and C Yu, "Common cognitive representations of program code across tasks and languages”, int. J. Man-machine Studies, vol.

33, pp. 343-360, 1990.

Models that hide Communication and network details
are “dead on arrival”

2.5D Matmul on BG/P, 16K nodes / 64K cores

c= 16 copies

: ; Matrix multiplication on 16,384 nodes of BG/P
Jim Demmel’s group at

14 N] | | | -
UC Berkeley has - communication .
: 12 F idle -
shown dramatic . 952, reduction in comm computation mes -
performance 1F
improvements by: 0.8 | -

Communication
avoiding algorithms

Algorithms that
exploit the details of

06 [
0.4
0.2 E

Execution time normalized by 2D

] 0 i
a computer’s S . %,
network 795 5 795 5 ‘?fe::;}e ‘?fo;e
{) 'SO F 90 ' "\D.S

Distinguished Paper Award, EuroPar’11
SC’11 paper by Solomonik, Bhatele, D.

Source: Jim Demmel, UC Berkeley

We spend too much time on the less important
problems (programming models)

Modern software engineering
stresses modular development
by large distributed teams.

 The Parallel Composition problem ...

Expose resource management and
schedulers to safely mix parallel

software modules.

 Example: Heidi Pan’s dissertation

from MIT & UC Berkeley.

There will never be
“one programming
model” to rule them all
... S0 lets stop trying to
find that ideal model.

Sparse QR: using TBB & OpenMP

3.2 - I

21 B out-of-the-Box
—_ 3. . Manually Tuned
L
S 29 Lithe
Lok
£ 2.8
=27

2.6

2.5

landmark

Make the choice of programming model
irrelevant by establishing a common
Intermediate representation.

Composition across programming models.

Example: SPIR project in OpenCL based on
LLVM.

Turning Patterns expressed as Python code into AN
high performance parallel code

Asp: Who Does What?

App author Specializer author SEJITS 34 party
(PLL) (ELL) team library
Application Specializer Asp core e.g. MKL ASP ... a platform to

write domain specific

Python
Kernel = p— —‘,-’) AST fra meworkS -

DomanSpecc €3 tilities Helps turn design
¥ patterns into code.
AST [T—7 Module libraries Intel/UCB test projects:
Kernel A (1) molecular modeling.
call & (2) Data analytics
Input data
Results

=4 ASP: SEJITS for Python

Conclusion

* Put the Human (not the computer first) and create
a foundation of parallel computing principles
grounded in how programmers think.

* Models at every level must be available to the
programmer and provide insights for REAL
hardware (consider the success of communication

avoiding algorithms).
* The Parallel Composition problem is where the
most work is needed:
— Composition across software modules (e.g. Lithe)
— Composition across programming models (e.g. SPIR)

