
Hierarchies, Clouds, and 
Specialization 

  
Phillip B. Gibbons 

Intel Labs Pittsburgh 
 

June 28, 2012 
 
 

NSF Workshop on Research Directions in 
the Principles of Parallel Computation 

Hi-Spade 



2 

up to 1 TB Main Memory 

4 
… 

24MB Shared L3 Cache 

2 HW 
threads 

32KB 

256KB 

2 HW 
threads 

32KB 

256KB 

8 
… 

socket 
Research Direction #1: Hierarchies 

24MB Shared L3 Cache 

2 HW 
threads 

32KB 

256KB 

2 HW 
threads 

32KB 

256KB 

8 
… 

socket 

Attach: Magnetic Disks & Flash Devices 
Xeon 7500 Series (Nehalem) 



3 

Hierarchy Trends 

•  Good performance [energy] increasingly  
   requires effective use of hierarchy 

•  Hierarchy getting richer 
– More levels of cache 
– More cores 
– New memory/storage technologies 
•  Flash/SSDs, emerging PCM 
•  Bridge gaps in hierarchies – can’t just  
  look at last level of hierarchy 

 

 



4 

How to Model the Hierarchy? 

… 

… 

… 
… … 
… … 

… 
… … 
… … 

… 

… 
… … 
… … 

… 
… … 
… … 

 
… 

 
… 

 
… 

General Abstraction: Tree of Caches 

Specific 
Example: 

 

Xeon 7500 

PMH model [ACF93] 



5 

How to Design Algorithms? 
Design to Tree-of-Caches abstraction: 

•  Multi-BSP Model [L.G. Valiant, ESA’08] 
–  4 parameters/level: 

cache size, fanout, 
latency/sync cost,  
transfer bandwidth 

–  Bulk-Synchronous 

Our Goal:  
• ~ Simplicity of Cache-Oblivious Model 

–  Handles dynamic, irregular parallelism 
–  Co-design with smart thread schedulers 

… 
… 

… … 
… … 

… 
… … 
… … 

Fundamentals: Spatial locality, Temporal locality,  
Constructive sharing, Minimize communication 



6 

What is Algorithm Designer’s Model? 

Memory	
  

M,B	
  

P	
  

Assuming	
  
this	
  task	
  fits	
  
in	
  cache	
  

All	
  three	
  
subtasks	
  
start	
  with	
  
same	
  state	
  

Merge	
  state	
  
and	
  carry	
  
forward	
  

Carry	
  forward	
  cache	
  state	
  according	
  
to	
  some	
  sequen<al	
  order	
  

Differs from CO model in how cache state is carried forward 
Parallel Cache-Oblivious Model 

If task does not fit, subtasks start with empty cache 



7 

What is the Right Scheduler? 

•  Following [CSBR10], we study “Space-Bounded  
   Schedulers” 

–  Pin tasks to cache where fits 
–  Allocate work to cores sharing that cache 

•  Can prove good cache bounds, but overheads in  
   current implementation too high:   

–  Faster to use Work-Stealing Scheduler 

What algorithm model + thread scheduler 
can rule the world? 



8 

Research Direction #2: Clouds 

•  Trend: Most computing is moving to the Cloud 

•  Trend: Large-scale Parallel Computing done  
              using MapReduce/Hadoop or follow-ons 

–  Bulk-synchrony is more popular than ever J 

•  Trend: Computations span client to cloud 
–  Moving towards tiered clouds 

•  Trend: Multi-tenancy using 
               virtual machines 

–  Impact on alg. design / schedulers? 



9 

Dealing with Multi-tenancy & VMs? 

•  Algs must be suited for dynamic resources 
–   Avoid HPC-think: don’t know network topology 

•  Schedulers must provide throughput + fairness 
–  Failed steal attempts not useful work 
–  Yielding at failed steal attempts leads to unfairness 
–  BWS [Eurosys’12] decreases average unfairness 

from 124% to 20% and increases thruput by 12% 
• How is VM an obstacle to high level performance 

abstractions? 
–  What hooks are needed to remove the obstacles? 
–  Algs/PL community has vision of goal—can inform 



10 

Research Direction #3: Specialization 

Specialization is key to cloud efficiency 
• Data center with mix  

of server architectures 
• Heterogeneity within 

each processor 
 
 

 

Algorithm designers should study specialization 
• For algorithms to be run in the cloud 
• For algs that support cloud infrastructure  



11 

BACK-UP SLIDES: 
REFERENCES 



12 © Phillip B. Gibbons 

References - I 

  Smart thread schedulers can enable simple,  
hierarchy-savvy abstractions 
•  PDF scheduler for shared caches [SPAA’04] 

•  Scheduling for constructive sharing [SPAA’07] 

•  Controlled-PDF scheduler [SODA’08] 
•  Work stealing overheads beyond fork-join [SPAA’09] 
•  Hierarchy-savvy parallel algorithms [SPAA’10] 

•  Parallel cache-oblivious model & scheduler [SPAA’11] 

  Tools, Hooks, Determinism simplify programming 
•  Memory-block transactions [SPAA’08] 
•  Semantic space profiling /visualization [ICFP’08, JFP2010] 
•  Efficient internal determinism [PPoPP’12] 



13 © Phillip B. Gibbons 

  Flash/PCM-savvy (database) systems maximize  
benefits of Flash/PCM 
•  Flash-savvy algorithms [VLDB’08, PVLDB 2010] 
•  Flash-based OLTP transactional logging [SIGMOD’09] 
•  Non-blocking joins for Data Warehouses [SIGMOD’10] 
•  Efficient online updates for Data Warehouses [SIGMOD’11] 

•  PCM-savvy database algorithms [CIDR’11] 

  Cloud Computing / Specialization 
•  Scheduling for multi-tenancy [EuroSys’12] 

•  Cloud ISTC whitepaper [
www.istc-cc.cmu.edu/publications/papers/2011/ISTC-Cloud-
Whitepaper.pdf] 

References - II 

See www.pittsburgh.intel-research.net/people/gibbons/gibbons-cv.pdf 
for authors & paper titles of each reference 


