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15-853: Algorithms in the Real World 

Locality II: Cache-oblivious algorithms 
–  Matrix multiplication 
–  Distribution sort 
–  Static searching 

I/O Model 
Abstracts a single level of the memory hierarchy 
•  Fast memory (cache) of size M 
•  Accessing fast memory is free, but moving data 

from slow memory is expensive 
•  Memory is grouped into size-B blocks of 

contiguous data 
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M/B 

B 

B 

CPU Slow 
Memory 

•  Cost: the number of block transfers (or I/Os) 
from slow memory to fast memory. 

Cache-Oblivious Algorithms 
•  Algorithms not parameterized by B or M. 
–  These algorithms are unaware of the parameters 

of the memory hierarchy 
•  Analyze in the ideal cache model — same as 

the I/O model except optimal replacement is 
assumed 
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Memory 

–  Optimal replacement means proofs may posit an 
arbitrary replacement policy, even defining an 
algorithm for selecting which blocks to load/evict. 

Advantages of Cache-Oblivious 
Algorithms 

•  Since CO algorithms do not depend on memory 
parameters, bounds generalize to multilevel 
hierarchies. 

•  Algorithms are platform independent 
•  Algorithms should be effective even when B 

and M are not static 
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Matrix Multiplication 
Consider standard iterative matrix-

multiplication algorithm 

X Y Z := 

•  Where X, Y, and Z are N×N matrices  
for i = 1 to N do 
    for j = 1 to N do 
        for k = 1 to N do 
            Z[i][j] += X[i][k] * Y[k][j]  

•  Θ(N 3) computation in RAM model. What about I/O?  

How Are Matrices Stored? 

X Y Z := 

for i = 1 to N do 
    for j = 1 to N do 
        for k = 1 to N do 
            Z[i][k] += X[i][k] * Y[k][j]  

If N ≥B, reading 
a column of Y is 
expensive ⇒ 
Θ(N) I/Os 

If N ≥M, no 
locality across 
iterations for X 
and Y ⇒ Θ(N 3) 
I/Os 

How data is arranged in memory affects I/O 
performance 

•  Suppose X, Y, and Z are in row-major order 

How Are Matrices Stored? 
 Suppose X and Z are in row-major order but Y is in 
column-major order 
–  Not too inconvenient. Transposing Y is relatively cheap  

X Y Z := 

for i = 1 to N do 
    for j = 1 to N do 
        for k = 1 to N do 
            Z[i][k] += X[i][k] * Y[k][j]  

Scan row of X 
and column of Y 
⇒ Θ(N/B) I/Os 

If N ≥ M, no 
locality across 
iterations for X 
and Y ⇒ Θ(N 3/B) 

 We can do much better than Θ(N 3/B) I/Os, even 
if all matrices are row-major.  

Recursive Matrix Multiplication 

 Summing two matrices with row-major layout 
is cheap — just scan the matrices in memory 
order.  
–  Cost is Θ(N 2/B) I/Os to sum two N×N matrices, 

assuming N ≥ B. 

X11 Y11 Z11 := 
Z12 

Z21 Z22 
X12 

X21 X22 Y21 
Y12 
Y22 

Compute 8 submatrix 
products recursively 

Z11 := X11Y11  + X12Y21 
Z12 := X11Y12  + X12Y22 
Z21 := X21Y11  + X22Y21 
Z22 := X21Y12 + X22Y21 
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Recursive Multiplication Analysis 

•  Mult(n) = 8Mult(n/2) + Θ(n 2/B) 
•  Mult(n0) = O(M/B)   

when n0 for X, Y and Z fit in memory 
The big question is the base case n0 

X11 Y11 Z11 := 
Z12 

Z21 Z22 
X12 

X21 X22 Y21 
Y12 
Y22 

Recursive algorithm: 
Z11 := X11Y11  + X12Y21 
Z12 := X11Y12  + X12Y22 
Z21 := X21Y11  + X22Y21 
Z22 := X21Y12 + X22Y21 

Recursive Multiplication Analysis 

The big question is the base case: 
•  Suppose an X, Y, and Z submatrices fit in 

memory at the same time 
•  Then multiplying them in memory is free after 

paying Θ(M/B) to load them into memory 

X11 Y11 Z11 := 
Z12 

Z21 Z22 
X12 

X21 X22 Y21 
Y12 
Y22 

Recursive algorithm: 
Z11 := X11Y11  + X12Y21 
Z12 := X11Y12  + X12Y22 
Z21 := X21Y11  + X22Y21 
Z22 := X21Y12 + X22Y21 

Array storage 
•  How many blocks does a size-N array occupy? 
•  If it’s aligned on a block (usually true for cache-

aware), it takes exactly ⎡N/B⎤ blocks 

•  If you’re unlucky, it’s ⎡N/B⎤+1 blocks. This is 
generally what you need to assume for cache-
oblivious algorithms as you can’t force alignment 

•  In either case, it’s Θ(1+N/B) blocks 

15-853 Page 11 

block 

•  If you look at the full matrix, it’s just a single 
array, so rows appear one after the other 

Row-major matrix 
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…	


N 

N 

the matrix 
layout of matrix in slow memory 

•  So entire matrix fits in ⎡N 2/B⎤+1=Θ(1+N 2/B) blocks 
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•  In a submatrix, rows are not adjacent in 
slow memory 

Row-major submatrix 
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…	


N 

N 

the matrix 
layout of matrix in slow memory 

•  Need to treat this as k arrays,  
•  so total number of blocks to store 

submatrix is k(⎡k/B⎤+1) = Θ(k+k2/B) 

k 

k 

Row-major submatrix 
•  Recall we had the recurrence  

  Mult(N) = 8 Mult(N/2) + Θ(N 2/B)           (1) 
•  The question is when does the base case occur 

here? Specifically, does a Θ(√M)×Θ(√M) matrix 
fit in cache, i.e., does it occupy at most M/B 
different blocks? 

•  If a Θ(√M)×Θ(√M) fits in cache, we stop the 
analysis at a Θ(√M) size — lower levels are free. 
  i.e., Mult(Θ(√M)) = Θ(M/B)                      (2) 

•  Solving (1) with (2) as a base case gives  
  Mult(N) =  Θ(N 2/B + N 3/B√M) 

15-853 Page 14 

load full 
submat in 
cache 

Is that assumption correct? 
Does a Θ(√M)×Θ(√M) matrix occupy at most Θ(M/B) 
different blocks? 
•  We have a formula from before. A k × k submatrix 

requires Θ(k + k 2/B) blocks,  
•  so a Θ(√M) × Θ(√M) submatrix occupies roughly 

√M + M/B blocks 
 
•  The answer is “yes” only if Θ(√M + M/B) = Θ(M).  

iff √M ≤ M/B, or M ≥ B 2. 
•  If “no,” analysis (base case) is broken — recursing 

into the submatrix will still require more I/Os. 

15-853 Page 15 

Fixing the base case 

Two fixes: 
1.  The “tall cache” assumption: M≥B 2.   

Then the base case is correct, completing 
the analysis. 

2.  Change the matrix layout.   

15-853 Page 16 
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Without Tall-Cache Assumption 

Try a better matrix layout 
•  The algorithm is recursive. Use a layout that 

matches the recursive nature of the 
algorithm 

•  For example, Z-morton ordering: 
-  The line connects elements that are 

adjacent in memory 
-   In other words, construct the 

layout by storing each quadrant of 
the matrix contiguously, and 
recurse 

Recursive MatMul with Z-Morton  

The analysis becomes easier 
•  Each quadrant of the matrix is contiguous in 

memory, so a c√M ×c√M  submatrix fits in 
memory 
–  The tall-cache assumption is not required to make 

this base case work 
•  The rest of the analysis is the same 
 

Searching: binary search is bad 

•  Search hits a a different block until reducing 
keyspace to size Θ(B). 

•  Thus, total cost is log2N – Θ(log2B) = 
Θ(log2(N/B)) ≈ Θ(log2N) for N >>B 

A C D E F G H I J K L M N O 

Example: binary search for element A 
with block size B = 2 

B 

Static cache-oblivious searching 
Goal: organize N keys in memory to facilitate 

efficient searching.   (van Emde Boas layout) 
1.  build a balanced binary tree on the keys 
2.  layout the tree recursively in memory, 

splitting the tree at half the height 

…	
  

N 

√N 

√N 

memory layout 
N √N 
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Static layout example  
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Cache-oblivious searching: 
Analysis I 

•  Consider recursive 
subtrees of size √B to B on 
a root-to-leaf search path. 

•  Each subtree is contiguous 
and fits in O(1) blocks. 

•  Each subtree has height 
Θ(lgB), so there are 
Θ(logBN) of them. 

memory 

size-B block 

size-O(B) subtree 

…

Cache-oblivious searching: 
Analysis II 

…	
  

N 

√N 

√N 
memory layout 

N √N 

•  S(N) = 2S(√N) + O(1) 
•  base case S(<B) = 0. 

Analyze using a recurrence 

Solves to O(logBN) 

or 

Counts the # of 
random accesses 

•  S(N) = 2S(√N) 
•  base case S(<B) = 1. 

Distribution sort outline 

Analogous to multiway quicksort 
 
1.  Split input array into √N contiguous subarrays 

of size √N.  Sort subarrays recursively 

  

… 

√N, sorted 

N 
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Distribution sort outline 
2.  Choose √N  “good” pivots p1 ≤ p2 ≤ … ≤ p√N-1.  

3.  Distribute subarrays into buckets, according to 
pivots 

… 

Bucket 1 Bucket 2 Bucket √N 
≤ p1 ≤ ≤ p2 ≤ … ≤ p√N-1 ≤ 

√N ≤ size ≤ 2√N 

Distribution sort outline 

4.  Recursively sort the buckets 

5.  Copy concatenated buckets back to input 
array 

Bucket 1 Bucket 2 Bucket √N 
≤ p1 ≤ ≤ p2 ≤ … ≤ p√N-1 ≤ 

√N ≤ size ≤ 2√N 

sorted 

Distribution sort analysis sketch 
•  Step 1 (implicitly) divides array and sorts √N size-

√N subproblems 
•  Step 4 sorts √N buckets of size √N ≤ ni ≤ 2√N, with 

total size N  
•  Step 5 copies back the output, with a scan 

Gives recurrence: 
 T(N) = √N T(√N) + ∑ T(ni) + Θ(N/B) + Step 2&3 
         ≈ 2√N T(√N) + Θ(N/B) 

Base: T(<M) = 1 
    

         = Θ((N/B) logM/B (N/B)) if M ≥ B2 

Missing steps 
2.  Choose √N  “good” pivots p1 ≤ p2 ≤ … ≤ p√N-1.  

3.  Distribute subarrays into buckets, according 
to pivots 

… 

Bucket 1 Bucket 2 Bucket √N 
≤ p1 ≤ ≤ p2 ≤ … ≤ p√N-1 ≤ 

√N ≤ size ≤ 2√N 

(2) Not too hard in Θ(N/B) 
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Naïve distribution 

•  Distribute first subarray, then second, then 
third, … 

•  Cost is only Θ(N/B) to scan input array 
•  What about writing to the output buckets? 
–  Suppose each subarray writes 1 element to each 

bucket. Cost is 1 I/O per write, for N total! 

… 

Bucket 1 Bucket 2 Bucket √N 
≤ p1 ≤ ≤ p2 ≤ … ≤ p√N-1 ≤ 

Better recursive distribution 

Given subarrays s1,…,sk and buckets b1,…,bk 
1.  Recursively distribute s1,…,sk/2 to b1,…,bk/2 
2.  Recursively distribute s1,…,sk/2 to bk/2,…,bk 
3.  Recursively distribute sk/2,…,sk to b1,…,bk/2 
4.  Recursively distribute sk/2,…,sk to bk/2,…,bk 
Despite crazy order, each subarray operates left 

to right. So only need to check next pivot. 

s1 s2      sk … 

b1 b2 bk 
≤ p1 ≤ 

sk-1 

≤ p1 ≤ ≤ … ≤ 

Distribute analysis 

Counting only “random accesses” here 
•  D(k) = 4D(k/2) + O(k) 
Base case: when the next block in each of the k 

buckets/subarrays fits in memory 
(this is like an M/B-way merge) 
•  So we have D(M/B) = D(B) = free 

Solves to D(k) = O(k2/B) 
⇒ distribute uses O(N/B) random accesses — the 

rest is scanning at a cost of O(1/B) per element  

Note on distribute 

If you unroll the recursion, it’s going in Z-
morton order on this matrix: 

subarray # 

bucket # 

•  i.e., first distribute s1 to b1, then s1 to b2, 
then s2 to b1, then s2 to b2, and so on. 


