
4/9/13	

1	

15-853: Algorithms in the Real World

Locality II: Cache-oblivious algorithms
–  Matrix multiplication
–  Distribution sort
–  Static searching

I/O Model
Abstracts a single level of the memory hierarchy
•  Fast memory (cache) of size M
•  Accessing fast memory is free, but moving data

from slow memory is expensive
•  Memory is grouped into size-B blocks of

contiguous data

Fast
Memory

block

M/B

B

B

CPU Slow
Memory

•  Cost: the number of block transfers (or I/Os)
from slow memory to fast memory.

Cache-Oblivious Algorithms
•  Algorithms not parameterized by B or M.
–  These algorithms are unaware of the parameters

of the memory hierarchy
•  Analyze in the ideal cache model — same as

the I/O model except optimal replacement is
assumed

Fast
Memory

block

M/B

B

CPU Slow
Memory

–  Optimal replacement means proofs may posit an
arbitrary replacement policy, even defining an
algorithm for selecting which blocks to load/evict.

Advantages of Cache-Oblivious
Algorithms

•  Since CO algorithms do not depend on memory
parameters, bounds generalize to multilevel
hierarchies.

•  Algorithms are platform independent
•  Algorithms should be effective even when B

and M are not static

4/9/13	

2	

Matrix Multiplication
Consider standard iterative matrix-

multiplication algorithm

X Y Z :=

•  Where X, Y, and Z are N×N matrices
for i = 1 to N do
 for j = 1 to N do
 for k = 1 to N do
 Z[i][j] += X[i][k] * Y[k][j]

•  Θ(N 3) computation in RAM model. What about I/O?

How Are Matrices Stored?

X Y Z :=

for i = 1 to N do
 for j = 1 to N do
 for k = 1 to N do
 Z[i][k] += X[i][k] * Y[k][j]

If N ≥B, reading
a column of Y is
expensive ⇒
Θ(N) I/Os

If N ≥M, no
locality across
iterations for X
and Y ⇒ Θ(N 3)
I/Os

How data is arranged in memory affects I/O
performance

•  Suppose X, Y, and Z are in row-major order

How Are Matrices Stored?
 Suppose X and Z are in row-major order but Y is in
column-major order
–  Not too inconvenient. Transposing Y is relatively cheap

X Y Z :=

for i = 1 to N do
 for j = 1 to N do
 for k = 1 to N do
 Z[i][k] += X[i][k] * Y[k][j]

Scan row of X
and column of Y
⇒ Θ(N/B) I/Os

If N ≥ M, no
locality across
iterations for X
and Y ⇒ Θ(N 3/B)

 We can do much better than Θ(N 3/B) I/Os, even
if all matrices are row-major.

Recursive Matrix Multiplication

 Summing two matrices with row-major layout
is cheap — just scan the matrices in memory
order.
–  Cost is Θ(N 2/B) I/Os to sum two N×N matrices,

assuming N ≥ B.

X11 Y11 Z11 :=
Z12

Z21 Z22
X12

X21 X22 Y21
Y12
Y22

Compute 8 submatrix
products recursively

Z11 := X11Y11 + X12Y21
Z12 := X11Y12 + X12Y22
Z21 := X21Y11 + X22Y21
Z22 := X21Y12 + X22Y21

4/9/13	

3	

Recursive Multiplication Analysis

•  Mult(n) = 8Mult(n/2) + Θ(n 2/B)
•  Mult(n0) = O(M/B)

when n0 for X, Y and Z fit in memory
The big question is the base case n0

X11 Y11 Z11 :=
Z12

Z21 Z22
X12

X21 X22 Y21
Y12
Y22

Recursive algorithm:
Z11 := X11Y11 + X12Y21
Z12 := X11Y12 + X12Y22
Z21 := X21Y11 + X22Y21
Z22 := X21Y12 + X22Y21

Recursive Multiplication Analysis

The big question is the base case:
•  Suppose an X, Y, and Z submatrices fit in

memory at the same time
•  Then multiplying them in memory is free after

paying Θ(M/B) to load them into memory

X11 Y11 Z11 :=
Z12

Z21 Z22
X12

X21 X22 Y21
Y12
Y22

Recursive algorithm:
Z11 := X11Y11 + X12Y21
Z12 := X11Y12 + X12Y22
Z21 := X21Y11 + X22Y21
Z22 := X21Y12 + X22Y21

Array storage
•  How many blocks does a size-N array occupy?
•  If it’s aligned on a block (usually true for cache-

aware), it takes exactly ⎡N/B⎤ blocks

•  If you’re unlucky, it’s ⎡N/B⎤+1 blocks. This is
generally what you need to assume for cache-
oblivious algorithms as you can’t force alignment

•  In either case, it’s Θ(1+N/B) blocks

15-853 Page 11

block

•  If you look at the full matrix, it’s just a single
array, so rows appear one after the other

Row-major matrix

15-853 Page 12

…
	

…	

N

N

the matrix
layout of matrix in slow memory

•  So entire matrix fits in ⎡N 2/B⎤+1=Θ(1+N 2/B) blocks

4/9/13	

4	

•  In a submatrix, rows are not adjacent in
slow memory

Row-major submatrix

15-853 Page 13

…
	

…	

N

N

the matrix
layout of matrix in slow memory

•  Need to treat this as k arrays,
•  so total number of blocks to store

submatrix is k(⎡k/B⎤+1) = Θ(k+k2/B)

k

k

Row-major submatrix
•  Recall we had the recurrence

 Mult(N) = 8 Mult(N/2) + Θ(N 2/B) (1)
•  The question is when does the base case occur

here? Specifically, does a Θ(√M)×Θ(√M) matrix
fit in cache, i.e., does it occupy at most M/B
different blocks?

•  If a Θ(√M)×Θ(√M) fits in cache, we stop the
analysis at a Θ(√M) size — lower levels are free.
 i.e., Mult(Θ(√M)) = Θ(M/B) (2)

•  Solving (1) with (2) as a base case gives
 Mult(N) = Θ(N 2/B + N 3/B√M)

15-853 Page 14

load full
submat in
cache

Is that assumption correct?
Does a Θ(√M)×Θ(√M) matrix occupy at most Θ(M/B)
different blocks?
•  We have a formula from before. A k × k submatrix

requires Θ(k + k 2/B) blocks,
•  so a Θ(√M) × Θ(√M) submatrix occupies roughly

√M + M/B blocks

•  The answer is “yes” only if Θ(√M + M/B) = Θ(M).

iff √M ≤ M/B, or M ≥ B 2.
•  If “no,” analysis (base case) is broken — recursing

into the submatrix will still require more I/Os.

15-853 Page 15

Fixing the base case

Two fixes:
1.  The “tall cache” assumption: M≥B 2.

Then the base case is correct, completing
the analysis.

2.  Change the matrix layout.

15-853 Page 16

4/9/13	

5	

Without Tall-Cache Assumption

Try a better matrix layout
•  The algorithm is recursive. Use a layout that

matches the recursive nature of the
algorithm

•  For example, Z-morton ordering:
-  The line connects elements that are

adjacent in memory
-  In other words, construct the

layout by storing each quadrant of
the matrix contiguously, and
recurse

Recursive MatMul with Z-Morton

The analysis becomes easier
•  Each quadrant of the matrix is contiguous in

memory, so a c√M ×c√M submatrix fits in
memory
–  The tall-cache assumption is not required to make

this base case work
•  The rest of the analysis is the same

Searching: binary search is bad

•  Search hits a a different block until reducing
keyspace to size Θ(B).

•  Thus, total cost is log2N – Θ(log2B) =
Θ(log2(N/B)) ≈ Θ(log2N) for N >>B

A C D E F G H I J K L M N O

Example: binary search for element A
with block size B = 2

B

Static cache-oblivious searching
Goal: organize N keys in memory to facilitate

efficient searching. (van Emde Boas layout)
1.  build a balanced binary tree on the keys
2.  layout the tree recursively in memory,

splitting the tree at half the height

…	

N

√N

√N

memory layout
N √N

4/9/13	

6	

Static layout example

A C

B

D L

H

E G

F

I K

J

M O

N

0

1 2
3

4 5

6

7 8

9 12

10 11 13 14

H D L B A C F E G J I K N M O

Cache-oblivious searching:
Analysis I

•  Consider recursive
subtrees of size √B to B on
a root-to-leaf search path.

•  Each subtree is contiguous
and fits in O(1) blocks.

•  Each subtree has height
Θ(lgB), so there are
Θ(logBN) of them.

memory

size-B block

size-O(B) subtree

…

Cache-oblivious searching:
Analysis II

…	

N

√N

√N
memory layout

N √N

•  S(N) = 2S(√N) + O(1)
•  base case S(<B) = 0.

Analyze using a recurrence

Solves to O(logBN)

or

Counts the # of
random accesses

•  S(N) = 2S(√N)
•  base case S(<B) = 1.

Distribution sort outline

Analogous to multiway quicksort

1.  Split input array into √N contiguous subarrays

of size √N. Sort subarrays recursively

…

√N, sorted

N

4/9/13	

7	

Distribution sort outline
2.  Choose √N “good” pivots p1 ≤ p2 ≤ … ≤ p√N-1.

3.  Distribute subarrays into buckets, according to
pivots

…

Bucket 1 Bucket 2 Bucket √N
≤ p1 ≤ ≤ p2 ≤ … ≤ p√N-1 ≤

√N ≤ size ≤ 2√N

Distribution sort outline

4.  Recursively sort the buckets

5.  Copy concatenated buckets back to input
array

Bucket 1 Bucket 2 Bucket √N
≤ p1 ≤ ≤ p2 ≤ … ≤ p√N-1 ≤

√N ≤ size ≤ 2√N

sorted

Distribution sort analysis sketch
•  Step 1 (implicitly) divides array and sorts √N size-

√N subproblems
•  Step 4 sorts √N buckets of size √N ≤ ni ≤ 2√N, with

total size N
•  Step 5 copies back the output, with a scan

Gives recurrence:
 T(N) = √N T(√N) + ∑ T(ni) + Θ(N/B) + Step 2&3
 ≈ 2√N T(√N) + Θ(N/B)

Base: T(<M) = 1

 = Θ((N/B) logM/B (N/B)) if M ≥ B2

Missing steps
2.  Choose √N “good” pivots p1 ≤ p2 ≤ … ≤ p√N-1.

3.  Distribute subarrays into buckets, according
to pivots

…

Bucket 1 Bucket 2 Bucket √N
≤ p1 ≤ ≤ p2 ≤ … ≤ p√N-1 ≤

√N ≤ size ≤ 2√N

(2) Not too hard in Θ(N/B)

4/9/13	

8	

Naïve distribution

•  Distribute first subarray, then second, then
third, …

•  Cost is only Θ(N/B) to scan input array
•  What about writing to the output buckets?
–  Suppose each subarray writes 1 element to each

bucket. Cost is 1 I/O per write, for N total!

…

Bucket 1 Bucket 2 Bucket √N
≤ p1 ≤ ≤ p2 ≤ … ≤ p√N-1 ≤

Better recursive distribution

Given subarrays s1,…,sk and buckets b1,…,bk
1.  Recursively distribute s1,…,sk/2 to b1,…,bk/2
2.  Recursively distribute s1,…,sk/2 to bk/2,…,bk
3.  Recursively distribute sk/2,…,sk to b1,…,bk/2
4.  Recursively distribute sk/2,…,sk to bk/2,…,bk
Despite crazy order, each subarray operates left

to right. So only need to check next pivot.

s1 s2 sk …

b1 b2 bk
≤ p1 ≤

sk-1

≤ p1 ≤ ≤ … ≤

Distribute analysis

Counting only “random accesses” here
•  D(k) = 4D(k/2) + O(k)
Base case: when the next block in each of the k

buckets/subarrays fits in memory
(this is like an M/B-way merge)
•  So we have D(M/B) = D(B) = free

Solves to D(k) = O(k2/B)
⇒ distribute uses O(N/B) random accesses — the

rest is scanning at a cost of O(1/B) per element

Note on distribute

If you unroll the recursion, it’s going in Z-
morton order on this matrix:

subarray #

bucket #

•  i.e., first distribute s1 to b1, then s1 to b2,
then s2 to b1, then s2 to b2, and so on.

