15-853: Algorithms in the Real World

Locality IT: Cache-oblivious algorithms
— Matrix multiplication
— Distribution sort
— Static searching

I/0 Model

Abstracts a single level of the memory hierarchy

Fast memory (cache) of size M

Accessing fast memory is free, but moving data
from slow memory is expensive

Memory is grouped into size-B blocks of

contiguous data
[Py ——Fast—| ¢=black = | Slow
\’M /8 Memory Memory
H_}
8

Cost: the number of block transfers (or I/0s)
from slow memory to fast memory.

Cache-Oblivious Algorithms

+ Algorithms not parameterized by B or M.
— These algorithms are unaware of the parameters
of the memory hierarchy
* Analyze in the ideal cache model — same as
the I/0 model except optimal replacement is
assumed

B
 / \‘ = (_H
[cPu Fast ¢=_block = Slow
h 4

—/B Memory Memory

— Optimal replacement means proofs may posit an
arbitrary replacement policy, even defining an
algorithm for selecting which blocks to load/evict.

Advantages of Cache-Oblivious
Algorithms

Since CO algorithms do not depend on memory
parameters, bounds generalize to multilevel
hierarchies.

Algorithms are platform independent

Algorithms should be effective even when B
and M are not static

4/9/13

Matrix Multiplication

Consider standard iterative matrix-
multiplication algorithm

Z = X y

* Where X, Y, and Z are NxN matrices

fori=1to Ndo
for j=11o Ndo
for k=1to Ndo

Z[L)1 += XK * YIKIL]
* O(N3) computation in RAM model. What about I/0?

How Are Matrices Stored?

How data is arranged in memory affects I/0
performance

* Suppose X, ¥, and Zare in row-major order

Z | = [x|[7¥
for i=1to Ndo If NzM,no
for j=1to Ndo If N8, reading | °¢alify across
for k=110 Ndo a column of Yis iterations for'3X
Z[ALK] += X[ALK * YIKIL]) [expensive = ?‘_?g /= o0
O(N) I/0s s

How Are Matrices Stored?

Suppose X and Zare in row-major order but Yis in
column-major order
— Not too inconvenient. Transposing Y is relatively cheap

4 = X y

for i=1to Ndo If N2 M, no
for j=1to Ndo Iocali';y across
for k=1to Ndo } Scan row of X iterations for X

ZLAIK] = XU * YIKWL [oo | and v = on+/e)

We can do much better than ©(N3/B) I/0s, even
if all matrices are row-major.

Recursive Matrix Multiplication

Compute 8 submatrix
Zu|Zio| [XulXia | Ya| Va2 products recursively
Z.|1z - X000 vy Zy = XYy + XY
21422 21N22| | 7211 722] | Zy5 = X Y1e * X15Y 20
Zy = XYy + X55Y 5
Zyy = Xo1Y12 + X55Y 21

Summing two matrices with row-major layout
is cheap — just scan the matrices in memory
order.

— Cost is O(N?/B) I/0s to sum two NxN matrices,
assuming N> B.

4/9/13

Recursive Multiplication Analysis

Recursive algorithm:
Zu| Ly [Xul X | Yul Va2 %11 = >><<u\\;u +§12;21
- 12 2= XV + X
Z1|Lo, X1 Xz2] | Ya1| Y22 z; =)(21y121 + x;zyz;
Zyp = XotY12 + XY 2

* Mult(n) = 8Mult(n/2) + ©(n?/B)
* Mult(ny) = O(M/B)
when ny for X, Y and Z fit in memory

The big question is the base case n,

Recursive Multiplication Analysis

Recursive algorithm:
Zu| Ly [Xul X | Yul Y2 %11 = >><<u\\;u +§12;21
- 12 2= XV + X

L1\ Lo, Xo1Xz3] | Ya1| Y22 z; =)(21y121 + x;zyz;
Zyp = XotY1o + XY 2

The big question is the base case:

* Suppose an X, Y, and Z submatrices fit in
memory at the same time

*+ Then multiplying them in memory is free after
paying ©(M/B) to load them into memory

Array storage

+ How many blocks does a size-N array occupy?
+ If it’s aligned on a block (usually true for cache-
aware), it takes exactly [N/ B] blocks

na——

+ If you’ re unlucky, it’ s [N/B]+1 blocks. This is
generally what you need to assume for cache-
oblivious algorithms as you can’ t force alignment

[‘ Y R Y ‘ }
X X DN

+ Ineither case, it’s ©(1+N/B) blocks

15-853 Page 11

Row-major matrix

+ If you look at the full matrix, it’s just a single
array, so rows appear one after the other

the matrix
layout of matrix in slow memory

N __3

H_J
N
+ So entire matrix fits in [N2/B]+1=0(1+N?2/B) blocks

15-853 Page 12

4/9/13

Row-major submatrix

* In asubmatrix, rows are not adjacent in
slow memory

the matrix

layout of matrix in slow memory
(o s———
* Need to treat this as karrays,

- so total humber of blocks to store
submatrix is k([k/B]+1) = O(k+k>/B)

15-853 Page 13

+ Recall we had the recurrence

+ The question is when does the base case occur

+ If a O(MxO(M) fits in cache, we stop the

Row-major submatrix

Mult(N) = 8 Mult(N/2) + O(N 2/ B) ®

here? Specifically, does a ©(/ M)xO(/ M) matrix
fit in cache, i.e., does it occupy at most M/B
different blocks?

analysis at a ©(Y M) size — lower levels are free.
i.e., Mult(6(YM)) = 6(M/B 2
+ Solving (1) with (2) as a base case give
Mult(N) = O(N?3/B+ N3/BIM)

15-853 Page 14

Is that assumption correct?

Does a O(/ M)xO(/ M) matrix occupy at most O(M/B)

different blocks?

- We have a formula from before. A kx k submatrix
requires O(k + k?/B) blocks,

+ so a O(/ M) x O(/ M) submatrix occupies roughly
JM+ M/Bblocks

+ The answer is “yes” only if (/M + M/B) = O(M).
iff IM< M/B,or M2 B2

+ If “no,” analysis (base case) is broken — recursing
into the submatrix will still require more I/0s.

15-853 Page 15

Fixing the base case

Two fixes:

1. The “tall cache" assumption: M2B2.
Then the base case is correct, completing
the analysis.

2. Change the matrix layout.

15-853 Page 16

4/9/13

Without Tall-Cache Assumption

Try a better matrix layout

* The algorithm is recursive. Use a layout that
matches the recursive nature of the
algorithm

* For example, Z-morton ordering:

- The line connects elements that are
adjacent in memory
- Inother words, construct the

layout by storing each quadrant of
the matrix contiguously, and
recurse

Recursive MatMul with Z-Morton

The analysis becomes easier

* Each quadrant of the matrix is contiguous in
memory, so a ¢/M xc/M submatrix fits in
memory

— The tall-cache assumption is not required to make
this base case work

* The rest of the analysis is the same

Searching: binary search is bad

[= Y Y A
lalelclolE[F[e|H[I[T[K[L[M[N]O]

Example: binary search for element A
with block size B=2

+ Search hits a a different block until reducing
keyspace to size O(B).

* Thus, fotal cost is log,N - O(log,B) =
O(log,(N/ B)) = ©(log,N) for N>>B

Static cache-oblivious searching

Goal: organize N keys in memory to facilitate
efficient searching. (van Emde Boas layout)

1. build a balanced binary free on the keys

2. layout the tree recursively in memory,
splitting the tree at half the height

/N

—>

/N

memory layout

N N ECE | | |

4/9/13

Static layout example

HiolL|elalc|FlE]e|T]z]K|NIM]O]
\%

Cache-oblivious searching:
Analysis T

+ Consider recursive
subtrees of size /B to Bon
a root-to-leaf search path.

+ Each subtree is contiguous
and fits in O(1) blocks.

+ Each subtree has height
O(lgB), so there are

6(]093/\/) Of them. size-O(B) subtree

A
memory | AU | -~ [\
—

size-B block

Cache-oblivious searching:

Analysis IT
/N
=
N
/N
memory layout -
‘ N ‘ L/N [~ Counts the # of ﬂ

__random accesses -~
Analyze using a recurrence

C SN=2SUN) e SN 2S(/N) + O
* base case S(xB) = 1. * base case S(xB) = 0.
Solves to O(logyN)

Distribution sort outline

Analogous to multiway quicksort

1. Split input array into /N contiguous subarrays
of size /N. Sort subarrays recursively

| [T - [
H_J

IN, sorted

\ J

Z<

4/9/13

Distribution sort outline

2. Choose /N "good" pivots p; < p, < ... < pract-

3. Distribute subarrays into buckets, according to
pivots

Bucket 1 Bucket 2 Bucket VN

N
JN<¢size < 2IN

Distribution sort outline

4. Recursively sort the buckets
I:. Lpis DSP2£-~~SPJN-1$ I:I
Bucket 1 Bucket 2 Bucket /N

—
JN<¢size < 2IN

5. Copy concatenated buckets back to input
array

B sorted |

Distribution sort analysis sketch

« Step 1 (implicitly) divides array and sorts VN size-
IN gubgro%lemsy) 4

+ Step 4 sorts /N buckets of size /N< n;< 2/ N, with
total size N

+ Step b copies back the output, with a scan

Gives recurrence:
TIN)=INTWN) +X T(n)+ O(N/B) + Step 243
R 2INTWN) + O(N/B)
Base: T(«M) =1

= O((N/B) log,y 5 (N/B)) if M B2

Missing steps

2. Choose /' N "good" pivots p; < ps < ... < Pyact-
(2) Not too hard in ©(N/B)

3. Distribute subarrays into buckets, according
to pivots

P2t L Prn s I:I

Bucket 1 Bucket 2 Bucket VN

—
JN<¢size < 2IN

4/9/13

Ndive distribution

<pesospmas []

Bucket 1 Bucket 2 Bucket VN

+ Distribute first subarray, then second, then
third, ...

* Cost is only ©(N/B) to scan input array

* What about writing to the output buckets?

— Suppose each subarray writes 1 element to each
bucket. Cost is 1 I/0 per write, for N total!

Better recursive distribution

Given subarrays sy,...,s, and buckets b;,...,by

1. Recursively distribute s;,...,s,, to by,...,by/»
2. Recursively distribute sy, ...,s,/, to by/s,...,.by
3. Recursively distribute s,5,...,sy to by,....by/»
4. Recuf‘sively distribute sk/z Sk to bk/z,...,bk

Despite crazy order, each subarray operates left
to right. So only need to check next pivot.

Distribute analysis

Counting only “random accesses" here

« D(K) = 4D(k/2) + O(K)

Base case: when the next block in each of the k
buckets/subarrays fits in memory

(this is like an M/B-way merge)

« So we have D(M/B) = D(B) = free

Solves to D(k) = O(k%/B)

= distribute uses O(N/B) random accesses — the
rest is scanning at a cost of O(1/B) per element

Note on distribute

If you unroll the recursion, it's going in Z-

morton order on this matrix:
bucket #

subarray #

* i.e, first distribute s; to b; thens; o b,,

then s, to by, then s, to b,, and so on.

4/9/13

