
1	

Page1

15-853:Algorithms in the Real World
Parallelism: Lecture 3

Parallel techniques and algorithms
- Contraction

15-853

Parallel Techniques
Some common themes in “Thinking Parallel”
1.  Working with collections.

–  map, selection, reduce, scan, collect
2. Divide-and-conquer

–  Even more important than sequentially
–  Merging, matrix multiply, FFT, …

3. Contraction
–  Solve single smaller problem
–  List ranking, graph contraction, Huffman codes

4. Randomization
–  Symmetry breaking and random sampling

15-853 Page2

Technique 3: Contraction
Consists of:

–  Do some work to make a smaller problem
–  Solve smaller problem recursively
–  Use result to create solution of full problem

The code for scan was based on this, i.e.:
–  Pairwise add neighbors in array
–  Solve scan that is half as large
–  Use results along with original values to

generate overall result

15-853 Page3 4

Contraction : Graph Connectivity
0

1
3

2

4

5 6

0

1
3

2

4

5 6

1

1
1

2

6

1 6

1

2

6 1

2

6 1

1

1
1

Form stars
relabel

contract
15-853

2	

5

Graph Connectivity

E = [(0,1),(0,2),(1,0),(1,3),(1,5),(2,0),(2,3),
 (3,1),(3,2),(3,4),(3,5),(3,6),(4,3),(4,6),
 (5,1),(5,3),(5,6),(6,3),(6,4),(6,5)]

Here every edge is represented once in each
direction

0

1
3

2

4

5 6

15-853

Representing a graph as an edge list:

6

Graph Connectivity

L = [0,1,2,3,4,5,6] (initially)
L = [1,1,1,1,1,1,1] (possible final)

0

1
3

2

4

5 6

15-853

Use an array of pointers, one per vertex to point to parent
in connected tree. Initially everyone points to self.

7

Graph Connectivity
0

1
3

2

4

5 6

15-853

FL = {coinToss(.5) : x in [0:#L]};
 FL = [0, 1, 0, 0, 0, 0, 1]

Randomly flip coins

8

Graph Connectivity
0

1
3

2

4

5 6

FL = [0, 1, 0, 0, 0, 0, 1]
H = {(u,v) in E | not(Fl[u]) and Fl[v]}
 H = [(0,1), (3,1), (5,1), (3,6), (4,6), (5,6)]

 15-853

0

1
3

2

4

5 6

Randomly flip coins Every edge link
from black to red

3	

9

Graph Connectivity
0

1
3

2

4

5 6

H = [, , , , ,]
L = L <- H
 L = [1, 1, 2, 1, 6, 1, 6]

 15-853

0

1
3

2

4

5 6

Randomly flip coins Every edge link
from black to red

1

1
1

6

1 6
“Hook”

2

10

Graph Connectivity
0

1
3

2

4

5 6

L = [1, 1, 2, 1, 6, 1, 6]
E = {(L[u],L[v]): (u,v) in E | L[u]\=L[v]}

 E = [(1,2),(2,1),(2,1),(1,2),(1,6),(1,6),
 (6,1),(1,6),(6,1),(6,1)]

15-853

0

1
3

2

4

5 6

Randomly flip coins Every edge link
from black to red

1

1
1

6

1 6
Relabel edges and
remove self edges

2

Graph Connectivity

11

L = Vertex Labels, E = Edge List

function connectivity(L, E) =
if #E = 0 then L
else let
 FL = {coinToss(.5) : x in [0:#L]};
 H = {(u,v) in E | not(Fl[u]) and Fl[v]}
 L = L <- H;
 E = {(L[u],L[v]): (u,v) in E | L[u]\=L[v]};
in connectivity(L,E); D = O(log n)

W = O(m log n)
15-853

List Ranking (again)

15-853 Page12

1 1 1 1 1 1 1 1 1 1

start

P = [7, 6, 0, 1, 3, 2, 9, 8, 4, 9]
W = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

4	

List Ranking

15-853 Page13

1 1 1 1 1 1 1 1 1 1

start

FL = {coinToss(.5) : x in [0:#P]};
 FL = [1, 0, 0, 1, 0, 0, 1, 0, 1, 1]

List Ranking

15-853 Page14

1 1 1 1 1 1 1 1 1 1

start

D = {FL[i] and not(FL[P[i]]) : i in [0:#P]};
 D = [1, 0, 0, 1, 0, 0, 0, 0, 1, 0]

List Ranking

15-853 Page15

1 1 1 1 1 1 1 1 1 1

start

D = [1, 0, 0, 1, 0, 0, 0, 0, 1, 0]
NI = plusScan({not(x) : x in D});
 NI = [0, 0, 1, 2, 2, 3, 4, 5, 6, 6]

0 1 2 3 4 5 6

List Ranking

15-853 Page16

1 1 2 1 2 1 1 2 1 1

NI = [0, 0, 1, 2, 2, 3, 4, 5, 6, 6]
if D[P[i]] then
 (W[i] + W[P[i]], NI[P[P[i]]])
else (W[i],NI[P[i]])

0 1 2 3 4 5 6

Add (shortcut)
remove

5	

List Ranking

15-853 Page17

1 2 2 1 1 2 1

start

W = [1, 2, 2, 1, 1, 2, 1]
P = [4, 5, 0, 1, 6, 2, 6]

0 1 2 3 4 5 6

List Ranking

15-853 Page18

1 2 2 1 1 2 1

start

LR = listRank(W’,P’);

3 9 5 10 2 7 1 LR =

List Ranking

15-853 Page19

1 1 2 1 2 1 1 2 1 1

If D[i] then LR[NI[P[i]]]+W[i]
 else LR[NI[i]]

0 1 2 3 4 5 6
3 9 5 10 2 7 1 LR =

NI =

3 9 5 10 2 7 1 R = 8 4 6

function listRank(W, P) =
if #P == 1 then [W[0]]
else let
 FL = {coinToss(.5) : i in [0:#P]};
 D = {FL[i] and not(FL[P[i]]) : i in [0:#P]};
 NI = plusScan({not(x) : x in D});

 (W’,P’) = unzip {
 if D[P[i]] then (W[i] + W[P[i]], NI[P[P[i]]])
 else (W[i],NI[P[i]])

 : i in [0:#P] | not(D[i])};
 LR = listRank(W’,P’);
 in {if D[i] then LR[NI[P[i]]]+W[i]

 else LR[NI[i]]
 : i in [0:#P]};  
"

 
in  
 up_v = list_rank(new_i->idx,new_v->idx)); in
{select(keep,up_v,up_v+v):keep;up_v;v in up_v->p}; "

15-853 Page20

List Ranking

6	

15-853 Page 21

Greedy: Huffman Codes
Huffman Algorithm:
Each p in P is a probability and a tree
function Huffman(P) =
if (#P == 1) then return
else let

 ((p1,t1),(p2,t2),P’) = extract2mins(P)
 pt = (p1+p2, newNode(t1,t2))

 in Huffman(insert(pt,P’))

15-853 Page 22

Example
p(a) = .1, p(b) = .2, p(c) = .2, p(d) = .5

a(.1) b(.2) d(.5) c(.2)

a(.1) b(.2)

(.3)

a(.1) b(.2)

(.3) c(.2)

a(.1) b(.2)

(.3) c(.2)

(.5)
(.5) d(.5)

(1.0)

a=000, b=001, c=01, d=1

0

0

0

1

1

1
Step 1

Step 2
Step 3

15-853 Page 23

Greedy: Huffman Codes
Huffman Algorithm:
How do we do it in parallel?
Function Huffman(P) =
if #P == 1 then return
else let

 ((p1,t1),(p2,t2),P’) = extract2mins(P)
 pt = (p1+p2, newNode(t1,t2)

 in Huffman(insert(pt,P))

Primes Sieve

function primes(n) =
if n == 2 then [] int
else
 let sqr_primes = primes(ceil(sqrt(float(n))));
 sieves = flatten{[2*p:n:p]: p in sqr_primes};
 flags = dist(t,n) <- {(i,f): i in sieves};
 in drop({i in [0:n]; flags | flags}, 2) ;

24

€

W (n) = O(n loglogn)

€

D(n) = D(n) +O(logn)
= O(logn)

15-853

7	

Parallel Techniques
Some common themes in “Thinking Parallel”
1.  Working with collections.

–  map, selection, reduce, scan, collect
2. Divide-and-conquer

–  Even more important than sequentially
–  Merging, matrix multiply, FFT, …

3. Contraction
–  Solve single smaller problem
–  List ranking, graph contraction, Huffman codes

4. Randomization
–  Symmetry breaking and random sampling

15-853 Page25

