15-853:Algorithms in the Real World

Data Compression ITI

15-853 Page 1

Compression Outline

Introduction: Lossy vs. Lossless, Benchmarks, ...
Information Theory: Entropy, etc.
Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others
‘ Lempel-Ziv Algorithms:

- LZ77, gzip,

- LZ78, compress (Not covered in class)
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...
Compressing graphs and meshes: BBK

15-853

Page 2

Lempel-Ziv Algorithms

LZ77 (Sliding Window)
Variants: LZSS (Lempel-Ziv-Storer-Szymanski)
Applications: gzip, Squeeze, LHA, PKZIP, ZOO

LZ78 (Dictionary Based)
Variants: LZW (Lempel-Ziv-Welch), LZC

Applications: compress, GIF, CCITT (modems),
ARC, PAK

Traditionally LZ77 was better but slower, but the
gzip version is almost as fast as any LZ78.

15-853 Page 3

LZ77: Sliding Window Lempel-Ziv

Cursor

alalclalalclalblclalblalblalc

Dictionary Lookahead
(previously coded) Buffer

Dictionary and buffer "windows" are fixed length
and slide with the cursor
Repeat:

Output (p, I, ¢) where
p = position of the longest match that starts in
the dictionary (relative to the cursor)
I = length of longest match
¢ = next char in buffer beyond longest match

Advance window by I + 1

15-853 Page 4

LZ77: Example

aaca!acabca alalalc
I
acaa!cabca alalalc
I
aaca!bca alalalc
I
ala cla a|aac

I Dictionary (size = 6)

|
! Buffer (size = 4)

15-853

C

(_,0,a)
(1,1,c)
(3,4,b)
(3,3,a)

(1,2,c)

Longest match

Next character

Page 5

LZ77 Decoding

Decoder keeps same dictionary window as encoder.

For each message it looks it up in the dictionary and
inserts a copy at the end of the string

What if [> p? (only part of the message is in the
dictionary.)
E.g. dict = abcd, codeword = (2, 9, e)

Simply copy from left to right
for (1 = 0; i < length; i++)
out [cursor+i] = out[cursor-offset+i]

Out = abcdcdcdcedcedce

15-853 Page 6

LZ77 Optimizations used by gzip

LZSS: Output one of the following two formats
(O, position, length) or (1,char)
Uses the second format if length < 3.

aca|acabcabaaac (1,a)

T
Q
@)
Q
Q
al
Q
O
@)
Q
Q
Q
Q
@)

b (1,a)

I
-caac!abcabaaac (1, c)

I
-aaca!bcabaaac (0,3,4)

15-853 Page 7

Optimizations used by gzip (cont.)

Huffman code the positions, lengths and chars
Non greedy: possibly use shorter match so that

next match is better

Use a hash table to store the dictionary.

Hash keys are all strings of length 3 in the
dictionary window.

Find the longest match within the correct
hash bucket.

Puts a limit on the length of the search within
a bucket.

Within each bucket store in order of position

15-853 Page 8

The Hash Table

1011

12/13[14[1516[17]138/192021

a cl19 clalbll5 |alclalll
a cl10 clalbll?2 |clalal9
a cl’/ alclals8

15-853

Page 9

Theory behind LZ77

Sliding Window LZ is Asymptotically Optimal
[Wyner-Ziv,94]

Will compress long enough strings to the source
entropy as the window size goes to infinity.

1
H, = X;n p(X)log e

H=lmH,

n—> 0

Uses logarithmic code (e.g. gamma) for the position.
Problem: "long enough” is really really long.

15-853 Page 10

Comparison to Lempel-Ziv 78

Both LZ77 and LZ78 and their variants keep a
“dictionary” of recent strings that have been seen.

The differences are:
- How the dictionary is stored (LZ78 is a trie)

- How it is extended (LZ78 only extends an existing
entry by one character)

- How it is indexed (LZ78 indexes the nodes of the
trie)
- How elements are removed

15-853 Page 11

Lempel-Ziv Algorithms Summary

Adapts well o changes in the file (e.g. a Tar file with
many file types within it).

Initial algorithms did not use probability coding and
performed poorly in terms of compression. More
modern versions (e.g. gzip) do use probability
coding as "second pass” and compress much better.

The algorithms are becoming outdated, but ideas are
used in many of the newer algorithms.

15-853 Page 12

Compression Outline

Introduction: Lossy vs. Lossless, Benchmarks, ...
Information Theory: Entropy, etc.
Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
‘ Other Lossless Algorithms:

- Burrows-Wheeler

- ACB
Lossy algorithms for images: JPEG, MPEG, ...
Compressing graphs and meshes: BBK

15-853 Page 13

Burrows -Wheeler

Currently near best "balanced” algorithm for text

Breaks file into fixed-size blocks and encodes each
block separately.

For each block:

- Sort each character by its full context.
This is called the block sorting transform.

- Use move-to-front transform to encode the
sorted characters.

The ingenious observation is that the decoder only
needs the sorted characters and a pointer to the
first character of the original sequence.

15-853 Page 14

Burrows Wheeler: Example

Let's encode: d,e,c;0,d e,
We've numbered the characters to distinguish them.
Context "wraps” around. Last char is most significant.

Context Char Context Output
ecodes; d; dedecs 04
coded; e, Sort coded; e,
odede, c, Context go-o5d. e
dedecs 04 — odede, cC;
edeco, ds ecodes d; =
decods eg edeco, ds

15-853

Page 15

Burrows-Wheeler (Continued)

Theorem: After sorting, equal valued characters
appear in the same order in the output as in the

most significant position of the context.

Proof sketch: Since the chars have -~ 1oyt
equal value in the most-significant-
position of the context, they will
be ordered by the rest of the
context, i.e. the previous chars.
This is also the order of the output
since it is sorted by the previous
characters.

C3
d;

15-853

Output

Burrows-Wheeler: Decoding

Consider dropping all but the last Context Output
character of the context.

- What follows the
underlined a ?

- What follows the
underlined b?

- What is the whole string?

v o O | QO

Q O O 9 o O

Answer:. b, a, abacab

Q

15-853 Page 17

Burrows-Wheeler: Decoding

What about now?

Answer. cabbaa

Can also use the "rank”.

The "rank” is the position
of a character if it were
sorted using a stable
sort.

15-853

Context

Output Rank

Q O O 9 © W
¥ ® O O

C <

ad

0

w N O b~

Page 18

Burrows-Wheeler Decode

Function BW_Decode(In, Start, n)
S = MoveToFrontDecode(In,n)
R = Rank(S)
J = Start
for /i=1to ndo
Out[/] = S[j]
j = RIj)

Rank gives position of each char in sorted order.

15-853 Page 19

Decode Example

Rank(S)

6 S6
4 d;
5> i 2
1 Oz
2 /(a.
3

15-853

Page 20

Overview of Text Compression

PPM and Burrows-Wheeler both encode a single
character based on the immediately preceding
context.

LZ77 and LZ78 encode multiple characters based on
matches found in a block of preceding text

Can you mix these ideas, i.e., code multiple
characters based on immediately preceding
context?

- BZ does this, but they don't give details on how
it works - current best compressor

- ACB also does this - close to best

15-853 Page 21

ACB (Associate Coder of Buyanovsky)

Keep dictionary sorted by context
(the last character is the most

significant) Context Contents
Find longest match for context decode
Find longest match for contents dec ode
. Code d ecode
- Distance between matches in decg: io de
the sorted order
deco de

* Length of contents match

Has aspects of Burrows-Wheeler,
and LZ77

15-853 Page 22

