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15-853:Algorithms in the Real World 

Linear and Integer Programming I 
–  Introduction 
–  Geometric Interpretation 
–  Simplex Method 
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Linear and Integer Programming 
Linear or Integer programming 
      maximize    z  = cTx     cost or objective function 
      subject to  Ax = b       equalities 
                        x ≥ 0         inequalities 
                        c ∊ ℝn,   b ∊ ℝm,    A ∊ ℝm×n 
Linear programming: 
     x ∊ ℝn       (polynomial time) 
Integer programming: 
     x ∊ ℤn       (NP-complete) 

Extremely general framework, especially IP 
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Related Optimization Problems 
Unconstrained optimization 

max{f(x) : x ∊ ℝn} 
Constrained optimization 

max{f(x) : gi(x) ≤ 0, hj(x) = 0} 
Quadratic programming 

max{1/2xTQx + cTx : Ax ≤ b, Ex = d} 
Zero-One programming 

max{cTx : Ax = b, x ∊ {0,1}n, c ∊ ℝn, b ∊ ℝm} 
Mixed Integer Programming 

max{cTx : Ax = b, x ≥ 0, xi ∊ ℤn, i ∊ I, xr ∊ ℝn, r ∊ ℝ} 
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How important is optimization? 
•  50+ packages available 
•  1300+ papers just on interior-point methods 
•  100+ books in the library 
•  10+ courses at most Universities 
•  100s of companies 
•  All major airlines, delivery companies, trucking 

companies, manufacturers, …  
make serious use of optimization. 
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Linear+Integer Programming Outline 
Linear Programming 

–  General formulation and geometric interpretation 
–  Simplex method 
–  Ellipsoid method 
–  Interior point methods 

Integer Programming 
–  Various reductions of NP hard problems 
–  Linear programming approximations 
–  Branch-and-bound + cutting-plane techniques 
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Applications of Linear Programming 
1.  A substep in most integer and mixed-integer 

linear programming (MIP) methods 
2.  Selecting a mix: oil mixtures, portfolio selection 
3.  Distribution: how much of a commodity should be 

distributed to different locations. 
4.  Allocation: how much of a resource should be 

allocated to different tasks 
5.  Network Flows 
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Linear Programming for Max-Flow 

Create two variables per edge:  

Create one equality per vertex: 
x1 + x2 + x3’ = x1’ + x2’ + x3 

and two inequalities per edge: 
x1 ≤ 3,  x1’ ≤ 3 

add edge x0 from out to in 
maximize x0 

in out 

1 

2 
3 

7 

6 

2 
3 

5 
7 

x1 
x3 

x2 

x1 x1’ 
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In Practice 
In the “real world” most problems involve at least 

some integral constraints. 
•  Many resources are integral 
•  Can be used to model yes/no decisions (0-1 

variables) 
Therefore “1. A subset in integer or MIP 

programming”  is the most common use in practice 
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Algorithms for Linear Programming 
•  Simplex (Dantzig 1947) 
•  Ellipsoid (Kachian 1979)  

first algorithm known to be polynomial time 
•  Interior Point  

first practical polynomial-time algorithms 
–  Projective method (Karmakar 1984) 
–  Affine Method (Dikin 1967) 
–  Log-Barrier Methods (Frisch 1977, Fiacco 

1968, Gill et.al. 1986) 
Many of the interior point methods can be applied to 

nonlinear programs.   Not known to be poly. time 
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State of the art 
1 million variables 
10 million nonzeros 
No clear winner between Simplex and Interior Point 

–  Depends on the problem 
–  Interior point methods are subsuming more and 

more cases 
–  All major packages supply both 

The truth: the sparse matrix routines, make or 
break both methods. 

The best packages are highly sophisticated. 
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Comparisons, 1994 

problem Simplex 
(primal) 

Simplex 
(dual) 

Barrier + 
crossover 

binpacking 29.5 62.8 560.6 

distribution 18,568.0 won’t run too big 

forestry 1,354.2 1,911.4 2,348.0 

maintenace 57,916.3 89,890.9 3,240.8 

crew 7,182.6 16,172.2 1,264.2 

airfleet 71,292.5 108,015.0 37,627.3 

energy 3,091.1 1,943.8 858.0 

4color 45,870.2 won’t run too big 
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Formulations 
There are many ways to formulate linear programs: 

–  objective (or cost) function 
maximize cTx, or 
minimize cTx, or 
find any feasible solution 

–  (in)equalities 
Ax ≤ b, or 
Ax ≥ b, or 
Ax = b, or any combination 

–  nonnegative variables 
x ≥ 0, or not 

Fortunately it is pretty easy to convert among forms 
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Formulations 
The two most common formulations: 

maximize     cTx 
subject to  Ax ≤ b 
                  x ≥ 0 

maximize     cTx 
subject to  Ax = b 
                  x ≥ 0 

slack  
variables 

e.g. 

7x1 + 5x2 ≤ 7 
x1, x2 ≥ 0 

7x1 + 5x2 + y1 = 7 
x1, x2, y1 ≥ 0 

y1 

More on slack variables later. 

Canonical form Standard form 
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Geometric View 
A polytope in n-dimensional space 

Each inequality corresponds to a half-space. 
The “feasible set” is the intersection of the half-

spaces 
This corresponds to a polytope 
Polytopes are convex: if x,y is in the polytope, so 

is the line segment joining them. 
The optimal solution is at a vertex (i.e., a corner). 

Simplex moves around on the surface of the polytope 
Interior-Point methods move within the polytope 
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Geometric View 

An intersection of 
5 halfspaces 

maximize: 
z = 2x1 + 3x2 

subject to: 
x1 – 2x2 ≤ 4 
2x1 + x2 ≤ 18 

x2  ≤ 10 
x1, x2 ≥ 0 

x2 ≤ 10 

x1 – 2x2 ≤ 4 

x1 

x2 

Feasible 
Set 

Corners 

2x1 + x2 ≤ 18 

Objective 
Function  
2x1 + 3x2 
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Notes about higher dimensions 
For n dimensions and no degeneracy  
Each corner (extreme point) consists of: 

–  n intersecting (n-1)-dimensional hyperplanes 
e.g. for n = 3, 3 intersecting 2d planes make corner 

–  n intersecting edges 
Each edge corresponds to moving off of one 

hyperplane (still constrained by n-1 of them) 
# Corners can be exponential in n (e.g., a hypercube) 
Simplex will move from corner to corner along the edges 
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The Simple Essense of Simplex 
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Consider Polytope P from canonical 
form as a graph G = (V,E) with  
V = polytope vertices, 
E = polytope edges. 

1)  Find any vertex v of P. 
2)  While there exists a neighbor u of v in G with  

 f(u) < f(v), update v to u. 
3)  Output v. 

Input: max  f(x) = cx  
 s.t. x in P = {x : Ax ≤ b, x ≥ 0} 

Polytope P 

Choice of neighbor if several u have f(u) < f(v)? 
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Optimality and Reduced Cost 
The Optimal solution must include a corner. 
The Reduced cost for a hyperplane at a corner is the 

cost of moving one unit away from the plane along 
its corresponding edge. 

1 ei 
z 

pi 

ri = -z · ei 

For maximization, if all reduced cost are non-
negative, then we are at an optimal solution.    

Finding the most negative reduced cost is one often 
used heuristic for choosing an edge to leave on 
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x1 

x2 

z = 2x1 + 3x2 

Reduced cost example 
Ex: reduced cost for 
leaving x1-axis from 
point (4,0) 

Moving 1 unit off of x1-
axis will move us  (2,1) 
units along the edge. 

The reduced cost of 
leaving the plane x1 is 
-(2,3) · (2,1) = -7 

x1 – 2x2 ≤ 4 

ei 

ei = (2, 1) 

1 
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Simplex Algorithm 
1.  Find a corner of the feasible region 
2.  Repeat 

A.  For each of the n hyperplanes intersecting at 
the corner, calculate its reduced cost  

B.  If they are all non-negative, then done 
C.  Else, pick the most negative reduced cost 

This is called the entering plane 
D.  Move along corresponding edge (i.e. leave that 

hyperplane) until we reach the next corner 
(i.e. reach another hyperplane) 
The new plane is called the departing plane 
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x1 

x2 

Start 

Example 

Entering 

Departing 

Step 1 

Step 2 

z = 2x1 + 3x2 
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Simplifying 
Problem: 

–  The Ax ≤ b constraints not symmetric with the 
x ≥ 0 constraints. 
We would like more symmetry. 

Idea: 
–  Leave only inequalities of the form x ≥ 0. 

Use “slack variables” to do this. 
Convert into form: maximize     cTx 

subject to  Ax = b 
                  x ≥ 0 
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Standard Form 

x1 

x2 

x4 

x3 

x5 

x1 

x2 

x2 ≤ 10 

x1 – 2x2 ≤ 4 

2x1 + x2 ≤ 18 

Standard Form 
maximize    cTx 
subject to  Ax ≤  b 
                  x ≥ 0 

maximize    cTx’ 
subject to  A’x’ = b 
                  x’ ≥ 0 

slack  
variables 

|A| = m × n  
i.e. m equations, n variables 

|A’| = m × (m+n)  
i.e. m equations, m+n variables 

2x1 + x2 + x4 = 18 
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Example, again 

maximize: 
z = 2x1 + 3x2 

subject to: 
x1 – 2x2 + x3 = 4 
2x1 + x2 + x4 = 18 

x2 + x5 = 10 
x1, x2, x3, x4, x5 ≥ 0 

x1 

x2 

x1 

x2 

x4 

x3 

x5 

The equality constraints impose a 2d plane embedded in 
5d space, looking at the plane gives the figure above 
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Using Matrices 
If before adding the slack variables A has size m × n 

then after it has size m × (n + m) 
m can be larger or smaller than n 

m 

n m 

A = 
1 0 0 … 
0 1 0 … 
0 0 1 … 
… 

Assuming rows are independent, the solution space of 
Ax = b is an n-dimensional subspace.  

slack vrs. 
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Simplex Algorithm, again 
1.  Find a corner of the feasible region 
2.  Repeat 

A.  For each of the n hyperplanes intersecting at 
the corner, calculate its reduced cost 

B.  If they are all non-negative, then done 
C.  Else, pick the most negative reduced cost 

This is called the entering plane 
D.  Move along corresponding line (i.e. leave that 

hyperplane) until we reach the next corner 
(i.e. reach another hyperplane) 
The new plane is called the departing plane 
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Simplex Algorithm (Tableau Method) 

0 

b’ 

z 

I F 

r 
Basic Vars. Free Variables reduced costs 

n 

current cost 

m 

This form is called a Basic Solution 
•  the n “free” variables are set to 0 
•  the m “basic” variables are set to b’ 
A valid solution to Ax = b if reached using Gaussian Elimination 
Represents n intersecting hyperplanes 
If feasible (i.e. b’ ≥ 0), then the solution is called  

a Basic Feasible Solution and is a corner of the feasible set 
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Corner 
x1 x2 x3 x4 x5 

1 -2 1 0 0 4 x1 – 2x2 + x3 = 4 
2 1 0 1 0 18 2x1 + x2 + x4 = 18 
0 1 0 0 1 10 x2 + x5 = 10 
-2 -3 0 0 0 0   z - 2x1 - 3x2 = 0 

Basic Vars. Free variables 
x1 

x2 

x4 

x3 

x5 
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Corner 

1 -2 1 0 0 4 
2 1 0 1 0 18 
0 1 0 0 1 10 
-2 -3 0 0 0 0 
x1 x2 x3 x4 x5 

x1 

x2 

x4 

x3 

x5 

free variables basic variables 
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Corner 

-.5 -.5 1 0 0 -2 
2.5 .5 0 1 0 20 
.5 .5 0 0 1 12 

-3.5 -1.5 0 0 0 -6 
x1 x3 x2 x4 x5 

x1 

x2 

x4 

x3 

x5 
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Corner 

1 -2 1 0 0 4 
-2 5 0 1 0 10 
0 1 0 0 1 10 
2 -7 0 0 0 8 
x3 x2 x1 x4 x5 

x1 

x2 

x4 

x3 

x5 
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Corner 

.2 .4 1 0 0 8 
-.4 .2 0 1 0 2 
.4 -.2 0 0 1 8 
-.8 1.4 0 0 0 22 
x3 x4 x1 x2 x5 

x1 

x2 

x4 

x3 

x5 
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Corner 

-.5 -2.5 1 0 0 -5 
.5 .5 0 1 0 9 
0 1 0 0 1 10 
1 -2 0 0 0 18 
x4 x2 x3 x1 x5 

x1 

x2 

x4 

x3 

x5 

Note that in general there are  
n+m choose m corners 
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Simplex Method Again 
Once you have found a basic feasible solution (a 

corner), we can move from corner to corner by 
swapping columns and eliminating. 

ALGORITHM 
1.  Find a basic feasible solution 
2.  Repeat 

A.  If r (reduced cost ) ≥ 0 , DONE 
B.  Else, pick column with most negative r 
C.  Pick row with least positive b’/(selected column) 
D.  Swap columns 
E.  Use Gaussian elimination to restore form 
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Tableau Method 
A.  If r are all non-negative then done 

r 

b’ 

z 

F I 

0 
Basic 
Variables 

Free Variables 
values are 0 

reduced costs 
if all ≥ 0 then done 

n 

current cost 
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Tableau Method 
B.  Else, pick the most negative reduced cost 

This is called the entering plane 

r 

b’ 

z 

F I 

0 

n 

min{ri} 
entering variable 
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Tableau Method 
C.  Move along corresponding line (i.e. leave that 

hyperplane) until we reach the next corner (i.e. 
reach another hyperplane) 
The new plane is called the departing plane 

r 

b’ 

z 

F I 

0 
1 

departing variable 

min positive bj’/uj 

u 
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Tableau Method 
D.  Swap columns 

E.  Gauss-Jordan elimination 

r 

b’ 

z 
x 

swap 

ri+1 zi+1 

Fi+1 I 

0 

bi+1’ 

x 

x 
x 

x 

No longer in 
proper form 

Back to 
proper form 
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Example 
x1 x2 x3 x4 x5 

1 -2 1 0 0 4 x1 – 2x2 + x3 = 4 
2 1 0 1 0 18 2x1 + x2 + x4 = 18 
0 1 0 0 1 10 x2 + x5 = 10 
-2 -3 0 0 0 0   z - 2x1 - 3x2 = 0 

1 -2 1 0 0 4 
2 1 0 1 0 18 
0 1 0 0 1 10 
-2 -3 0 0 0 0 
x1 x2 x3 x4 x5 

x1 

x2 

x4 

x3 

x5 

x1 = x2 = 0 (start) 

Find corner 
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Example 

1 -2 1 0 0 4 
2 1 0 1 0 18 
0 1 0 0 1 10 
-2 -3 0 0 0 0 
x1 x2 x3 x4 x5 

1 -2 1 0 0 4 -2 
2 1 0 1 0 18 18 
0 1 0 0 1 10 10 
-2 -3 0 0 0 0 
x1 x2 x3 x4 x5 bj/vj min 

positive 

x1 

x2 

x4 

x3 

x5 
10 

18 

-2 
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Example 

1 0 1 0 -2 4 
2 0 0 1 1 18 
0 1 0 0 1 10 
-2 0 0 0 -3 0 
x1 x5 x3 x4 x2 

1 2 1 0 0 24 
2 -1 0 1 0 8 
0 1 0 0 1 10 
-2 3 0 0 0 30 
x1 x5 x3 x4 x2 

Gauss-Jordan 
Elimination 

swap 

x1 

x2 

x4 

x3 

x5 
10 

18 

-2 
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Example 

1 2 1 0 0 24 
2 -1 0 1 0 8 
0 1 0 0 1 10 
-2 3 0 0 0 30 
x1 x5 x3 x4 x2 

x1 

x2 

x4 

x3 

x5 
10 

18 

-2 
1 2 1 0 0 24 24 
2 -1 0 1 0 8 4 
0 1 0 0 1 10 ∞ 
-2 -3 0 0 0 30 
x1 x5 x3 x4 x2 
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Example swap 

x1 

x2 

x4 

x3 

x5 
10 

18 

-2 

0 2 1 1 0 24 
1 -1 0 2 0 8 
0 1 0 0 1 10 
0 3 0 -2 0 30 
x4 x5 x3 x1 x2 

-.5 2.5 1 0 0 20 
.5 -.5 0 1 0 4 
0 1 0 0 1 10 
1 2 0 0 0 38 
x4 x5 x3 x1 x2 

Gauss-Jordan 
Elimination 
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Simplex Concluding remarks 
For dense matrices, takes O(n(n+m)) time per 

iteration 
Can take an exponential number of iterations. 
In practice, sparse methods are used for the 

iterations. 
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Duality 
Primal (P): 
      maximize    z  = cTx 
      subject to  Ax ≤ b 
                        x ≥ 0   (n equations, m variables) 
Dual (D): 
      minimize     z  = yTb 
      subject to  Aty ≥ c 
                        y ≥ 0   (m equations, n variables) 

Duality Theorem:  if x is feasible for P and y is 
feasible for D, then cx  ≤ yb  
and at optimality cx = yb. 
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Duality (cont.) 

feasible solutions for 
Primal (maximization) 

feasible solutions for 
Dual (minimization) 

Optimal solution for both 

Quite similar to duality of Maximum Flow and 
Minimum Cut. 

Useful in many situations. 
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Duality Example 

Solution to both is 38 (x1=4, x2=10), (y1=0, y2=1, y3=2). 

Primal: 
maximize: 

z = 2x1 + 3x2 

subject to: 
x1 – 2x2 ≤ 4 
2x1 + x2 ≤ 18 

x2  ≤ 10 
x1, x2 ≥ 0 

Dual: 
minimize: 

z = 4y1 + 18y2 + 10y3 

subject to: 
y1 + 2y2  ≥ 2 

-2y1 + Y2 + Y3 ≥ 3 
y1, y2, y3 ≥ 0 


