
1

15-853 Page1

15-853:Algorithms in the Real World

Linear and Integer Programming I
–  Introduction
–  Geometric Interpretation
–  Simplex Method

15-853 Page2

Linear and Integer Programming
Linear or Integer programming
 maximize z = cTx cost or objective function
 subject to Ax = b equalities
 x ≥ 0 inequalities
 c ∊ ℝn, b ∊ ℝm, A ∊ ℝm×n
Linear programming:
 x ∊ ℝn (polynomial time)
Integer programming:
 x ∊ ℤn (NP-complete)

Extremely general framework, especially IP

15-853 Page3

Related Optimization Problems
Unconstrained optimization

max{f(x) : x ∊ ℝn}
Constrained optimization

max{f(x) : gi(x) ≤ 0, hj(x) = 0}
Quadratic programming

max{1/2xTQx + cTx : Ax ≤ b, Ex = d}
Zero-One programming

max{cTx : Ax = b, x ∊ {0,1}n, c ∊ ℝn, b ∊ ℝm}
Mixed Integer Programming

max{cTx : Ax = b, x ≥ 0, xi ∊ ℤn, i ∊ I, xr ∊ ℝn, r ∊ ℝ}

15-853 Page4

How important is optimization?
•  50+ packages available
•  1300+ papers just on interior-point methods
•  100+ books in the library
•  10+ courses at most Universities
•  100s of companies
•  All major airlines, delivery companies, trucking

companies, manufacturers, …
make serious use of optimization.

2

15-853 Page5

Linear+Integer Programming Outline
Linear Programming

–  General formulation and geometric interpretation
–  Simplex method
–  Ellipsoid method
–  Interior point methods

Integer Programming
–  Various reductions of NP hard problems
–  Linear programming approximations
–  Branch-and-bound + cutting-plane techniques

15-853 Page6

Applications of Linear Programming
1.  A substep in most integer and mixed-integer

linear programming (MIP) methods
2.  Selecting a mix: oil mixtures, portfolio selection
3.  Distribution: how much of a commodity should be

distributed to different locations.
4.  Allocation: how much of a resource should be

allocated to different tasks
5.  Network Flows

15-853 Page7

Linear Programming for Max-Flow

Create two variables per edge:

Create one equality per vertex:
x1 + x2 + x3’ = x1’ + x2’ + x3

and two inequalities per edge:
x1 ≤ 3, x1’ ≤ 3

add edge x0 from out to in
maximize x0

in out

1

2
3

7

6

2
3

5
7

x1
x3

x2

x1 x1’

15-853 Page8

In Practice
In the “real world” most problems involve at least

some integral constraints.
•  Many resources are integral
•  Can be used to model yes/no decisions (0-1

variables)
Therefore “1. A subset in integer or MIP

programming” is the most common use in practice

3

15-853 Page9

Algorithms for Linear Programming
•  Simplex (Dantzig 1947)
•  Ellipsoid (Kachian 1979)

first algorithm known to be polynomial time
•  Interior Point

first practical polynomial-time algorithms
–  Projective method (Karmakar 1984)
–  Affine Method (Dikin 1967)
–  Log-Barrier Methods (Frisch 1977, Fiacco

1968, Gill et.al. 1986)
Many of the interior point methods can be applied to

nonlinear programs. Not known to be poly. time

15-853 Page10

State of the art
1 million variables
10 million nonzeros
No clear winner between Simplex and Interior Point

–  Depends on the problem
–  Interior point methods are subsuming more and

more cases
–  All major packages supply both

The truth: the sparse matrix routines, make or
break both methods.

The best packages are highly sophisticated.

15-853 Page11

Comparisons, 1994

problem Simplex
(primal)

Simplex
(dual)

Barrier +
crossover

binpacking 29.5 62.8 560.6

distribution 18,568.0 won’t run too big

forestry 1,354.2 1,911.4 2,348.0

maintenace 57,916.3 89,890.9 3,240.8

crew 7,182.6 16,172.2 1,264.2

airfleet 71,292.5 108,015.0 37,627.3

energy 3,091.1 1,943.8 858.0

4color 45,870.2 won’t run too big

15-853 Page12

Formulations
There are many ways to formulate linear programs:

–  objective (or cost) function
maximize cTx, or
minimize cTx, or
find any feasible solution

–  (in)equalities
Ax ≤ b, or
Ax ≥ b, or
Ax = b, or any combination

–  nonnegative variables
x ≥ 0, or not

Fortunately it is pretty easy to convert among forms

4

15-853 Page13

Formulations
The two most common formulations:

maximize cTx
subject to Ax ≤ b
 x ≥ 0

maximize cTx
subject to Ax = b
 x ≥ 0

slack
variables

e.g.

7x1 + 5x2 ≤ 7
x1, x2 ≥ 0

7x1 + 5x2 + y1 = 7
x1, x2, y1 ≥ 0

y1

More on slack variables later.

Canonical form Standard form

15-853 Page14

Geometric View
A polytope in n-dimensional space

Each inequality corresponds to a half-space.
The “feasible set” is the intersection of the half-

spaces
This corresponds to a polytope
Polytopes are convex: if x,y is in the polytope, so

is the line segment joining them.
The optimal solution is at a vertex (i.e., a corner).

Simplex moves around on the surface of the polytope
Interior-Point methods move within the polytope

15-853 Page15

Geometric View

An intersection of
5 halfspaces

maximize:
z = 2x1 + 3x2

subject to:
x1 – 2x2 ≤ 4
2x1 + x2 ≤ 18

x2 ≤ 10
x1, x2 ≥ 0

x2 ≤ 10

x1 – 2x2 ≤ 4

x1

x2

Feasible
Set

Corners

2x1 + x2 ≤ 18

Objective
Function
2x1 + 3x2

15-853 Page16

Notes about higher dimensions
For n dimensions and no degeneracy
Each corner (extreme point) consists of:

–  n intersecting (n-1)-dimensional hyperplanes
e.g. for n = 3, 3 intersecting 2d planes make corner

–  n intersecting edges
Each edge corresponds to moving off of one

hyperplane (still constrained by n-1 of them)
Corners can be exponential in n (e.g., a hypercube)
Simplex will move from corner to corner along the edges

5

The Simple Essense of Simplex

15-853 Page17

Consider Polytope P from canonical
form as a graph G = (V,E) with
V = polytope vertices,
E = polytope edges.

1)  Find any vertex v of P.
2)  While there exists a neighbor u of v in G with

 f(u) < f(v), update v to u.
3) Output v.

Input: max f(x) = cx
 s.t. x in P = {x : Ax ≤ b, x ≥ 0}

Polytope P

Choice of neighbor if several u have f(u) < f(v)?

15-853 Page18

Optimality and Reduced Cost
The Optimal solution must include a corner.
The Reduced cost for a hyperplane at a corner is the

cost of moving one unit away from the plane along
its corresponding edge.

1 ei
z

pi

ri = -z · ei

For maximization, if all reduced cost are non-
negative, then we are at an optimal solution.

Finding the most negative reduced cost is one often
used heuristic for choosing an edge to leave on

15-853 Page19

x1

x2

z = 2x1 + 3x2

Reduced cost example
Ex: reduced cost for
leaving x1-axis from
point (4,0)

Moving 1 unit off of x1-
axis will move us (2,1)
units along the edge.

The reduced cost of
leaving the plane x1 is
-(2,3) · (2,1) = -7

x1 – 2x2 ≤ 4

ei

ei = (2, 1)

1

15-853 Page20

Simplex Algorithm
1.  Find a corner of the feasible region
2.  Repeat

A.  For each of the n hyperplanes intersecting at
the corner, calculate its reduced cost

B.  If they are all non-negative, then done
C.  Else, pick the most negative reduced cost

This is called the entering plane
D.  Move along corresponding edge (i.e. leave that

hyperplane) until we reach the next corner
(i.e. reach another hyperplane)
The new plane is called the departing plane

6

15-853 Page21

x1

x2

Start

Example

Entering

Departing

Step 1

Step 2

z = 2x1 + 3x2

15-853 Page22

Simplifying
Problem:

–  The Ax ≤ b constraints not symmetric with the
x ≥ 0 constraints.
We would like more symmetry.

Idea:
–  Leave only inequalities of the form x ≥ 0.

Use “slack variables” to do this.
Convert into form: maximize cTx

subject to Ax = b
 x ≥ 0

15-853 Page23

Standard Form

x1

x2

x4

x3

x5

x1

x2

x2 ≤ 10

x1 – 2x2 ≤ 4

2x1 + x2 ≤ 18

Standard Form
maximize cTx
subject to Ax ≤ b
 x ≥ 0

maximize cTx’
subject to A’x’ = b
 x’ ≥ 0

slack
variables

|A| = m × n
i.e. m equations, n variables

|A’| = m × (m+n)
i.e. m equations, m+n variables

2x1 + x2 + x4 = 18

15-853 Page24

Example, again

maximize:
z = 2x1 + 3x2

subject to:
x1 – 2x2 + x3 = 4
2x1 + x2 + x4 = 18

x2 + x5 = 10
x1, x2, x3, x4, x5 ≥ 0

x1

x2

x1

x2

x4

x3

x5

The equality constraints impose a 2d plane embedded in
5d space, looking at the plane gives the figure above

7

15-853 Page25

Using Matrices
If before adding the slack variables A has size m × n

then after it has size m × (n + m)
m can be larger or smaller than n

m

n m

A =
1 0 0 …
0 1 0 …
0 0 1 …
…

Assuming rows are independent, the solution space of
Ax = b is an n-dimensional subspace.

slack vrs.

15-853 Page26

Simplex Algorithm, again
1.  Find a corner of the feasible region
2.  Repeat

A.  For each of the n hyperplanes intersecting at
the corner, calculate its reduced cost

B.  If they are all non-negative, then done
C.  Else, pick the most negative reduced cost

This is called the entering plane
D.  Move along corresponding line (i.e. leave that

hyperplane) until we reach the next corner
(i.e. reach another hyperplane)
The new plane is called the departing plane

15-853 Page27

Simplex Algorithm (Tableau Method)

0

b’

z

I F

r
Basic Vars. Free Variables reduced costs

n

current cost

m

This form is called a Basic Solution
•  the n “free” variables are set to 0
•  the m “basic” variables are set to b’
A valid solution to Ax = b if reached using Gaussian Elimination
Represents n intersecting hyperplanes
If feasible (i.e. b’ ≥ 0), then the solution is called

a Basic Feasible Solution and is a corner of the feasible set

15-853 Page28

Corner
x1 x2 x3 x4 x5

1 -2 1 0 0 4 x1 – 2x2 + x3 = 4
2 1 0 1 0 18 2x1 + x2 + x4 = 18
0 1 0 0 1 10 x2 + x5 = 10
-2 -3 0 0 0 0 z - 2x1 - 3x2 = 0

Basic Vars. Free variables
x1

x2

x4

x3

x5

8

15-853 Page29

Corner

1 -2 1 0 0 4
2 1 0 1 0 18
0 1 0 0 1 10
-2 -3 0 0 0 0
x1 x2 x3 x4 x5

x1

x2

x4

x3

x5

free variables basic variables

15-853 Page30

Corner

-.5 -.5 1 0 0 -2
2.5 .5 0 1 0 20
.5 .5 0 0 1 12

-3.5 -1.5 0 0 0 -6
x1 x3 x2 x4 x5

x1

x2

x4

x3

x5

15-853 Page31

Corner

1 -2 1 0 0 4
-2 5 0 1 0 10
0 1 0 0 1 10
2 -7 0 0 0 8
x3 x2 x1 x4 x5

x1

x2

x4

x3

x5

15-853 Page32

Corner

.2 .4 1 0 0 8
-.4 .2 0 1 0 2
.4 -.2 0 0 1 8
-.8 1.4 0 0 0 22
x3 x4 x1 x2 x5

x1

x2

x4

x3

x5

9

15-853 Page33

Corner

-.5 -2.5 1 0 0 -5
.5 .5 0 1 0 9
0 1 0 0 1 10
1 -2 0 0 0 18
x4 x2 x3 x1 x5

x1

x2

x4

x3

x5

Note that in general there are
n+m choose m corners

15-853 Page34

Simplex Method Again
Once you have found a basic feasible solution (a

corner), we can move from corner to corner by
swapping columns and eliminating.

ALGORITHM
1.  Find a basic feasible solution
2.  Repeat

A.  If r (reduced cost) ≥ 0 , DONE
B.  Else, pick column with most negative r
C.  Pick row with least positive b’/(selected column)
D.  Swap columns
E.  Use Gaussian elimination to restore form

15-853 Page35

Tableau Method
A.  If r are all non-negative then done

r

b’

z

F I

0
Basic
Variables

Free Variables
values are 0

reduced costs
if all ≥ 0 then done

n

current cost

15-853 Page36

Tableau Method
B.  Else, pick the most negative reduced cost

This is called the entering plane

r

b’

z

F I

0

n

min{ri}
entering variable

10

15-853 Page37

Tableau Method
C.  Move along corresponding line (i.e. leave that

hyperplane) until we reach the next corner (i.e.
reach another hyperplane)
The new plane is called the departing plane

r

b’

z

F I

0
1

departing variable

min positive bj’/uj

u

15-853 Page38

Tableau Method
D.  Swap columns

E.  Gauss-Jordan elimination

r

b’

z
x

swap

ri+1 zi+1

Fi+1 I

0

bi+1’

x

x
x

x

No longer in
proper form

Back to
proper form

15-853 Page39

Example
x1 x2 x3 x4 x5

1 -2 1 0 0 4 x1 – 2x2 + x3 = 4
2 1 0 1 0 18 2x1 + x2 + x4 = 18
0 1 0 0 1 10 x2 + x5 = 10
-2 -3 0 0 0 0 z - 2x1 - 3x2 = 0

1 -2 1 0 0 4
2 1 0 1 0 18
0 1 0 0 1 10
-2 -3 0 0 0 0
x1 x2 x3 x4 x5

x1

x2

x4

x3

x5

x1 = x2 = 0 (start)

Find corner

15-853 Page40

Example

1 -2 1 0 0 4
2 1 0 1 0 18
0 1 0 0 1 10
-2 -3 0 0 0 0
x1 x2 x3 x4 x5

1 -2 1 0 0 4 -2
2 1 0 1 0 18 18
0 1 0 0 1 10 10
-2 -3 0 0 0 0
x1 x2 x3 x4 x5 bj/vj min

positive

x1

x2

x4

x3

x5
10

18

-2

11

15-853 Page41

Example

1 0 1 0 -2 4
2 0 0 1 1 18
0 1 0 0 1 10
-2 0 0 0 -3 0
x1 x5 x3 x4 x2

1 2 1 0 0 24
2 -1 0 1 0 8
0 1 0 0 1 10
-2 3 0 0 0 30
x1 x5 x3 x4 x2

Gauss-Jordan
Elimination

swap

x1

x2

x4

x3

x5
10

18

-2

15-853 Page42

Example

1 2 1 0 0 24
2 -1 0 1 0 8
0 1 0 0 1 10
-2 3 0 0 0 30
x1 x5 x3 x4 x2

x1

x2

x4

x3

x5
10

18

-2
1 2 1 0 0 24 24
2 -1 0 1 0 8 4
0 1 0 0 1 10 ∞
-2 -3 0 0 0 30
x1 x5 x3 x4 x2

15-853 Page43

Example swap

x1

x2

x4

x3

x5
10

18

-2

0 2 1 1 0 24
1 -1 0 2 0 8
0 1 0 0 1 10
0 3 0 -2 0 30
x4 x5 x3 x1 x2

-.5 2.5 1 0 0 20
.5 -.5 0 1 0 4
0 1 0 0 1 10
1 2 0 0 0 38
x4 x5 x3 x1 x2

Gauss-Jordan
Elimination

15-853 Page44

Simplex Concluding remarks
For dense matrices, takes O(n(n+m)) time per

iteration
Can take an exponential number of iterations.
In practice, sparse methods are used for the

iterations.

12

15-853 Page45

Duality
Primal (P):
 maximize z = cTx
 subject to Ax ≤ b
 x ≥ 0 (n equations, m variables)
Dual (D):
 minimize z = yTb
 subject to Aty ≥ c
 y ≥ 0 (m equations, n variables)

Duality Theorem: if x is feasible for P and y is
feasible for D, then cx ≤ yb
and at optimality cx = yb.

15-853 Page46

Duality (cont.)

feasible solutions for
Primal (maximization)

feasible solutions for
Dual (minimization)

Optimal solution for both

Quite similar to duality of Maximum Flow and
Minimum Cut.

Useful in many situations.

15-853 Page47

Duality Example

Solution to both is 38 (x1=4, x2=10), (y1=0, y2=1, y3=2).

Primal:
maximize:

z = 2x1 + 3x2

subject to:
x1 – 2x2 ≤ 4
2x1 + x2 ≤ 18

x2 ≤ 10
x1, x2 ≥ 0

Dual:
minimize:

z = 4y1 + 18y2 + 10y3

subject to:
y1 + 2y2 ≥ 2

-2y1 + Y2 + Y3 ≥ 3
y1, y2, y3 ≥ 0

