15-853:Algorithms in the Real World

Linear and Integer Programming I
- Introduction
- Geometric Interpretation
- Simplex Method
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Linear and Integer Programming

Linear or Integer programming
maximize z =c'x cost or objective function
subject to Ax=b  equalities
x20 inequalities
CERNM bERM A€ RMN
Linear programming:
x €R"  (polynomial time)
Integer programming:
x €7Z"  (NP-complete)
Extremely general framework, especially IP
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Related Optimization Problems

Unconstrained optimization
max{f(x) : x € R"}
Constrained optimization
max{f(x) : g(x) <0, h;(x) = 0}
Quadratic programming
max{1/2xTQx + cTx : Ax < b, Ex = d}
Zero-One programming
max{c™x : Ax = b, x € {0,1}", c € R", b € RM}
Mixed Integer Programming
max{c™x : Ax=b,x20,x,€Z", i €I, x.€ER", re€R}
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How important is optimization?

- 50+ packages available

+ 1300+ papers just on interior-point methods
+ 100+ books in the library

+ 10+ courses at most Universities

+ 100s of companies

+ All major airlines, delivery companies, trucking
companies, manufacturers, ...
make serious use of optimization.
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Linear+Integer Programming Outline

Linear Programming
- General formulation and geometric interpretation
- Simplex method
- Ellipsoid method
- Interior point methods
Integer Programming
- Various reductions of NP hard problems
- Linear programming approximations
- Branch-and-bound + cutting-plane techniques
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Applications of Linear Programming

1. A substep in most integer and mixed-integer
linear programming (MIP) methods

2. Selecting a mix: oil mixtures, portfolio selection

3. Distribution: how much of a commodity should be
distributed to different locations.

4. Allocation: how much of a resource should be
allocated to different tasks

5. Network Flows
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Linear Programming for Max-Flow
1
5 7

in out
3 3

6
Create two variables per edge: xIOxI'

Create one equality per vertex:
X+ Xp + X3' = Xp' + X5 + X3 X]

and two inequalities per edge: X3
X1¢3, x{¢3

add edge x, from out to in

maximize X,

X2
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In Practice

In the "real world" most problems involve at least
some integral constraints.

*+ Many resources are integral

+ Can be used to model yes/no decisions (0-1
variables)

Therefore "1. A subset in integer or MIP
programming” is the most common use in practice
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Algorithms for Linear Programming

+ Simplex (Dantzig 1947)

+ Ellipsoid (Kachian 1979)
first algorithm known to be polynomial time

+ Interior Point
first practical polynomial-time algorithms

- Projective method (Karmakar 1984)
- Affine Method (Dikin 1967)

- Log-Barrier Methods (Frisch 1977, Fiacco
1968, Gill et.al. 1986)

Many of the interior point methods can be applied to
nonlinear programs. Not known to be poly. time
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State of the art

1 million variables

10 million nonzeros

No clear winner between Simplex and Interior Point
- Depends on the problem

- Interior point methods are subsuming more and
more cases

- All major packages supply both

The truth: the sparse matrix routines, make or
break both methods.

The best packages are highly sophisticated.
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Comparisons, 1994

pavien | <nvles’ | Slec | B
binpacking 29.5 62.8 560.6
distribution 18,568.0 won't run too big
forestry 1,354.2 19114 2,348.0
maintenace 57,916.3 89,890.9 3,240.8
crew 71826 16,172.2 1,264.2
airfleet 71,2925 108,015.0 37,627.3
energy 3,091.1 1,943.8 858.0
4color 45 870.2 won't run too big
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Formulations

There are many ways to formulate linear programs:
- objective (or cost) function
maximize cTx, or
minimize cTx, or
find any feasible solution
- (in)equalities
Ax ¢<b, or
Ax 2 b, or
Ax =b, or any combination
- nonnegative variables
x >0, or not

Fortunately it is pretty easy to convert among forms
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Formulations

The two most common formulations:

Canonical form Standard form
maximize ¢c'x slack maximize cTx
subject to Ax<b (variables g hioct o Ax=b

x>0 x>0
eg.
7)(1+5X2$7 Y1 7><1+5X2+y1=7
X1, X220 X1, X2,¥120

More on slack variables later.
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Geometric View

A polytope in n-dimensional space
Each inequality corresponds to a half-space.

The “feasible set" is the intersection of the half-
spaces

This corresponds to a polytope

Polytopes are convex: if x.y is in the polytope, so
is the line segment joining them.

The optimal solution is at a vertex (i.e., a corner).

Simplex moves around onh the surface of the polytope
Interior-Point methods move within the polytope

15-853 Pagel4

Geometric View

imize: X,

maximize: x, <10

Z = 2X; + 3X, |
SUbJCCT to: Feasible

X - 2x, ¢4 =2

2%+ X, <18 Objective

10 Function Corners
X2 < 2x; + 3X,

Xy, X, 20

An intersection of

X1

5 halfspaces

Xy - 2%, ¢4 2x1 + X, ¢ 18
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Notes about higher dimensions

For n dimensions and no degeneracy
Each corner (extreme point) consists of:

- nintersecting (n-1)-dimensional hyperplanes
e.g. for n= 3, 3 intersecting 2d planes make corner

- nintersecting edges

Each edge corresponds to moving off of one
hyperplane (still constrained by n-1 of them)

# Corners can be exponential in n (e.g., a hypercube)
Simplex will move from corner to corner along the edges
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The Simple Essense of Simplex Optimality and Reduced Cost

Polytope P Input: max £(x) = cx The Optimal solution must include a corner.
st.xinP={x: Ax<b,x20} The Reduced cost for a hyperplane at a corner is the
Consider Polytope P from canonical cost of moving one unit away from the plane along
form as a graph 6 = (V,E) with its corresponding edge.

V= polytope verticess, | |

E = polytope edges. r=-z-e

1) Find any vertex v of P.

2) While there exists a neighbor u of v in 6 with
f(u) < f(v), update v to u.

3) Output v.

For maximization, if all reduced cost are non-
negative, then we are at an optimal solution.

Finding the most negative reduced cost is one often

Choice of neighbor if several u have f(u) < f(v)? used heuristic for choosing an edge to leave on
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Reduced cost example Simplex Algorithm
X2 Ex: reduced cost for 1. Find a corner of the feasible region
leaving x;-axis from 2. Repeat
point (4,0) A. For each of the n hyperplanes intersecting at

the corner, calculate its reduced cost
. If they are all non-negative, then done
C. Else, pick the most negative reduced cost

Moving 1 unit of f of x;- B
axis will move us (2,1)

= 2%+ 3 its along the edge.
T nits along The ecge This is called the entering plane
A The reduced cost of D. Move along corresponding edge (i.e. leave that
{4 == leaving the plane x, is hyperplane) until we reach the next corner
X (23)-(21)=-7 (i.e. reach another hyperplane)
\xl -2x <4 The new plane is called the departing plane
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Example Simplifying
Xz Step 2 Problem:
Departing - The Ax < b constraints not symmetric with the
x > 0 constraints.
We would like more symmetry.
Step 1 Idea:
tep z=2x;+ 3x, - Leave only inequalities of the form x > 0.
Use "slack variables” to do this.
g Convert into form: |maximize c'x
t X subject fo Ax=b
. 1
Entering Start x30
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Standard Form Example, again
Standard Form Xz
maximize cTx 5"‘—‘?" maximize ¢™x’ maximize: T
subject fo Ax< b |variables g pioctto AX = b Z= 2%, + 3%, %5
x20 X20 subject to:
|Al=mxn |A'| = mx (m+n) X1=2X, + X3 =4 L x, X4
i.e. m equations, n variables i.e. m equations, m+n variables 2 o
Xp+ X+ X, =18
b <10 N -
X2 X,+xs =10 %,
2X1+x2$18 2X1+X2+X4:18 Xl, Xz, X3,X4, X5ZO *a
P X, == 1 X1
X1 - 2X, ¢ 4 . . . .
a The equality constraints impose a 2d plane embedded in
¢ ¢ 5d space, looking at the plane gives the figure above
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Using Matrices

If before adding the slack variables A has size m x n
then after it has size m x (n + m)

m can be larger or smaller than n
—n——m—
100..

010..
A= 001..

F—3 —

l-slack vrs|

Assuming rows are independent, the solution space of
Ax = b is an n-dimensional subspace.
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Simplex Algorithm, again

1. Find a corner of the feasible region

2. Repeat
A. For each of the n hyperplanes intersecting at
the corner, calculate its reduced cost
B. If they are all non-negative, then done

C. Else, pick the most negative reduced cost
This is called the entering plane

D. Move along corresponding line (i.e. leave that
hyperplane) until we reach the next corner
(i.e. reach another hyperplane)

The new plane is called the departing plane
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Simplex Algorithm (Tableau Method)

| n |

m F I b

d r 0 z
\<— Free Variables —-{Basic Varq.

reduced costs
This form is called a Basic Solution

the n “free" variables are set to O

the m “basic” variables are set to b’
A valid solution to Ax = b if reached using Gaussian Elimination
Represents n intersecting hyperplanes

If feasible (i.e. b’ > 0), then the solution is called
a Basic Feasible Solution and is a corner of the feasible set
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current cost

Corner
Xy Xp X3 X4 Xs
1 2 1 0 0] 4 X - 2%y + X3 = 4
2 1 0 1 0 |18 2x+x,+x,=18
0 1 0 0 110 X, + X5 = 10
0 0 0] 0| z-2x-3x,20
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Corner

Corner
free variables  basic variables
1 21 0 04
T3 2 1 0 1 018
2 01 0 0 1]10
b 2 30 0 0|0
4 Xy X X3 X4 Xg
X
P 2
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Corner
1 2 1 0 04
3 2 5 0 1 0|10
2 01 0 0 1]10
X x 2 7 0 0 038
o X3 X Xi X4 X
X /
2
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-5 -5 1 0 0]-2
T 25 5 0 1 0|20
X5
5 5 0 0 1|12
> x 356 -15 0 0 O -6
o Xy X3 X, X4 Xg
X
2
y
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Corner
2 4 1 0 0] 8
T3 -4 2 0 1 0|2
° 4 -2 0 0 1|38
Ly -8 14 0 0 0|22
o X3 X4 X; X Xg
X
X2 /
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Corner

10
18

Note that in general there are
n+m choose m corners
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Simplex Method Again

Once you have found a basic feasible solution (a
corner), we can move from corner to corner by
swapping columns and eliminating.

ALGORITHM
1. Find a basic feasible solution
2. Repeat
A. If r (reduced cost )>0, DONE
B. Else, pick column with most negative r
C. Pick row with least positive b'/(selected column)
D. Swap columns
E. Use Gaussian elimination to restore form

15-853 Page34

Tableau Method

A. If r are all non-negative then done

| |
\ n |

F I b’
current cost
r x 0 z
Free Variables _,‘ Basic ‘
values are O Variables

reduced costs
if all > 0 then done
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Tableau Method

B. Else, pick the most negative reduced cost
This is called the entering plane

F I b’
r b 0 y4
min{r;}

entering variable
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Tableau Method

C. Move along corresponding line (i.e. leave that
hyperplane) until we reach the next corner (i.e.
reach another hyperplane)

The new plane is called the departing plane

F I b'Jin positive b/u;

departing variable
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Tableau Method

D. Swap columns

Example

X; Xp X3 X4 X
1 2 1 0 0] 4] x-2x+x:4
2 1 0 1 0|18 2x+x+x.=18
0 1 0 0 1|10 X, + X5 = 10
2 3 0 0 00| z-2x-3x%:0

lFind corner
1 -2 1 0O 0| 4
2 1 0 1 0 |18
0 1 0O O 1 ]10
2 3 0 0 0]o N
o XX % ><k1 = X, = 0 (start)
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: No longer in
< bl proper form
r x|z
swap
E. Gauss-Jordan elimination
Fiut I  |bii| Backto
proper form
i 0 Zg
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Example
1 -2 1 0 0 4 18
2 1 0 1 0 | 18
0] 1 0 0 1] 10
28 o0 o oo 1
Xy X Xz X4 X X5
1 2 1 0 o4l -2 X X
2 1 0 1 o|18| 18 .
0 1 0 0 | 1110
28 o o oo -2
X X X X X b./v .
1 2 3 4 5 7Y min
15-853 posiﬁve Paged0
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Example
1 2 1 0 0] 1
X5
2 14 0 1 0|8
0 1 0 0 1|10 X X
3 o BN o |30 N
X; X5 X3 Xg Xp 2
-2
1 2 1 0 0]24| 24
2 1 0 0|8
0 1 0 0 1]10]| =
3 0 0 030
X; Xs Xz X4 X
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15-853

swap  EXample
1 0o 1 0 -2|4 1
X5
2 0 0 1 1]18
o[1]o o 1 10 X X,
2 0o o ol o N
Xy Xg X3 X4 X 2
-2
1 2 1 0 0|24
2 1 0 1 08 Gauss-Jordan
o 1t o0 o 11|10 Elimination
2 3 0 0 030
Xy X5 Xz Xz X
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18
Example
swa
0 2 1 1 0|24 1
X5
[1]1 o 2 o]s
0 1 0 0 1]10 X
4
o 3 o Bl o030 N
X; X5 X3 Xy Xp 2
-2
-5 25 1 0 0|20
5 -5 0 1 0] 4 Gauss-Jordan
0O 1 0 0 1|10 Elimination
1 2 0O O 0|38
Xg X5 Xz X; X
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Simplex Concluding remarks

For dense matrices, takes O(n(n+m)) time per
iteration

Can take an exponential number of iterations.

In practice, sparse methods are used for the
iterations.
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Duality
Primal (P):

maximize z =c'x
subject fo Ax<b
x 20 (nequations, m variables)

Dual (D):
minimize z =y'b
subject o Afy2c
y 20 (m equations, n variables)

Duality Theorem: if x is feasible for P and y is
feasible for D, thencx <yb
and at optimality cx = yb.
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Duality (cont.)
( Optimal solution for both

\
feasible solutions for  feasible solutions for

Primal (maximization)  Dual (minimization)

Quite similar to duality of Maximum Flow and
Minimum Cut.

Useful in many situations.
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Duality Example

Primal: Dual:
maximize: minimize:
Z = 2%y + 3X, z = 4y, + 18y, + 10y,
subject to: subject to:
X1 - 2%, ¢4 Y1+ 2y, 22
2xy+ X, <18 2y +Y,+Y; 23
X, <10 Y1.¥2.¥320
Xy, X520

Solution to both is 38 (x;=4, x,=10), (y;=0, y,=1, y3=2).
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