

15-853: Algorithms in the Real World

Linear and Integer Programming I

- Introduction
- Geometric Interpretation
- Simplex Method

15-853

Page1

Linear and Integer Programming

Linear or Integer programming

maximize $z = c^T x$ cost or objective function
subject to $Ax = b$ equalities
 $x \geq 0$ inequalities
 $c \in \mathbb{R}^n$, $b \in \mathbb{R}^m$, $A \in \mathbb{R}^{m \times n}$

Linear programming:

$x \in \mathbb{R}^n$ (polynomial time)

Integer programming:

$x \in \mathbb{Z}^n$ (NP-complete)

Extremely general framework, especially IP

15-853

Page2

Related Optimization Problems

Unconstrained optimization

$\max\{f(x) : x \in \mathbb{R}^n\}$

Constrained optimization

$\max\{f(x) : g_i(x) \leq 0, h_j(x) = 0\}$

Quadratic programming

$\max\{1/2x^T Qx + c^T x : Ax \leq b, Ex = d\}$

Zero-One programming

$\max\{c^T x : Ax = b, x \in \{0,1\}^n, c \in \mathbb{R}^n, b \in \mathbb{R}^m\}$

Mixed Integer Programming

$\max\{c^T x : Ax = b, x \geq 0, x_i \in \mathbb{Z}^n, i \in I, x_r \in \mathbb{R}^n, r \in R\}$

15-853

Page3

How important is optimization?

- 50+ packages available
- 1300+ papers just on interior-point methods
- 100+ books in the library
- 10+ courses at most Universities
- 100s of companies
- All major airlines, delivery companies, trucking companies, manufacturers, ... make serious use of optimization.

15-853

Page4

Linear+Integer Programming Outline

Linear Programming

- General formulation and geometric interpretation
- Simplex method
- Ellipsoid method
- Interior point methods

Integer Programming

- Various reductions of NP hard problems
- Linear programming approximations
- Branch-and-bound + cutting-plane techniques

15-853

Page5

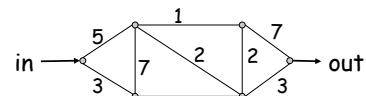
Applications of Linear Programming

1. A substep in most integer and mixed-integer linear programming (MIP) methods
2. Selecting a mix: oil mixtures, portfolio selection
3. Distribution: how much of a commodity should be distributed to different locations.
4. Allocation: how much of a resource should be allocated to different tasks
5. Network Flows

15-853

Page6

Linear Programming for Max-Flow



Create two variables per edge: x_i x_i'

Create one equality per vertex:

$$x_1 + x_2 + x_3 = x_1' + x_2' + x_3$$

and two inequalities per edge:

$$x_1 \leq 3, x_1' \leq 3$$

add edge x_0 from out to in

maximize x_0

15-853

Page7

In Practice

In the "real world" most problems involve at least some integral constraints.

- Many resources are integral
- Can be used to model yes/no decisions (0-1 variables)

Therefore "1. A substep in integer or MIP programming" is the most common use in practice

15-853

Page8

Algorithms for Linear Programming

- **Simplex** (Dantzig 1947)
- **Ellipsoid** (Kachian 1979)
first algorithm known to be polynomial time
- **Interior Point**
first practical polynomial-time algorithms
 - **Projective method** (Karmakar 1984)
 - **Affine Method** (Dikin 1967)
 - **Log-Barrier Methods** (Frisch 1977, Fiacco 1968, Gill et.al. 1986)

Many of the interior point methods can be applied to nonlinear programs. Not known to be poly. time

15-853

Page9

State of the art

- 1 million variables
- 10 million nonzeros
- No clear winner between Simplex and Interior Point
 - Depends on the problem
 - Interior point methods are subsuming more and more cases
 - All major packages supply both

The truth: the sparse matrix routines, make or break both methods.

The best packages are highly sophisticated.

15-853

Page10

Comparisons, 1994

problem	Simplex (primal)	Simplex (dual)	Barrier + crossover
binpacking	29.5	62.8	560.6
distribution	18,568.0	won't run	too big
forestry	1,354.2	1,911.4	2,348.0
maintenace	57,916.3	89,890.9	3,240.8
crew	7,182.6	16,172.2	1,264.2
airfleet	71,292.5	108,015.0	37,627.3
energy	3,091.1	1,943.8	858.0
4color	45,870.2	won't run	too big

15-853

Page11

Formulations

There are many ways to formulate linear programs:

- **objective (or cost) function**
maximize $c^T x$, or
minimize $c^T x$, or
find any feasible solution
- **(in)equalities**
 $Ax \leq b$, or
 $Ax \geq b$, or
 $Ax = b$, or any combination
- **nonnegative variables**
 $x \geq 0$, or not

Fortunately it is pretty easy to convert among forms

15-853

Page12

Formulations

The two **most common** formulations:

Canonical form
maximize $c^T x$ subject to $Ax \leq b$ $x \geq 0$

slack
variables

Standard form
maximize $c^T x$ subject to $Ax = b$ $x \geq 0$

e.g.

$$\begin{array}{l} 7x_1 + 5x_2 \leq 7 \\ x_1, x_2 \geq 0 \end{array}$$

$$y_1$$

$$\begin{array}{l} 7x_1 + 5x_2 + y_1 = 7 \\ x_1, x_2, y_1 \geq 0 \end{array}$$

More on slack variables later.

15-853

Page13

Geometric View

A **polytope** in n -dimensional space

Each inequality corresponds to a half-space.

The "feasible set" is the intersection of the half-spaces

This corresponds to a polytope

Polytopes are **convex**: if x, y is in the polytope, so is the line segment joining them.

The optimal solution is at a vertex (i.e., a corner).

Simplex moves around on the surface of the polytope

Interior-Point methods move within the polytope

15-853

Page14

Geometric View

maximize:

$$z = 2x_1 + 3x_2$$

subject to:

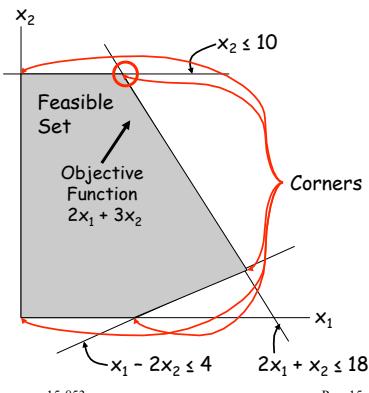
$$x_1 - 2x_2 \leq 4$$

$$2x_1 + x_2 \leq 18$$

$$x_2 \leq 10$$

$$x_1, x_2 \geq 0$$

An intersection of 5 halfspaces



15-853

Page15

Notes about higher dimensions

For n dimensions and no degeneracy

Each corner (extreme point) consists of:

- n intersecting $(n-1)$ -dimensional **hyperplanes**
e.g. for $n = 3$, 3 intersecting 2d planes make corner
- n intersecting **edges**

Each edge corresponds to moving off of one hyperplane (still constrained by $n-1$ of them)

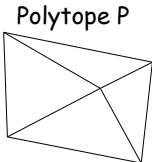
Corners can be exponential in n (e.g., a hypercube)

Simplex will move from corner to corner along the edges

15-853

Page16

The Simple Essense of Simplex



Input: $\max f(x) = cx$
s.t. $x \in P = \{x : Ax \leq b, x \geq 0\}$

Consider Polytope P from canonical form as a graph $G = (V, E)$ with
 V = polytope vertices,
 E = polytope edges.

- 1) Find any vertex v of P .
- 2) While there exists a neighbor u of v in G with $f(u) < f(v)$, update v to u .
- 3) Output v .

Choice of neighbor if several u have $f(u) < f(v)$?

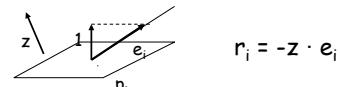
15-853

Page17

Optimality and Reduced Cost

The Optimal solution must include a corner.

The Reduced cost for a hyperplane at a corner is the cost of moving one unit away from the plane along its corresponding edge.



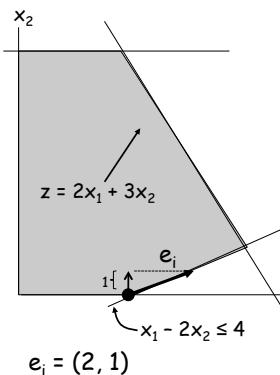
For maximization, if all reduced cost are non-negative, then we are at an optimal solution.

Finding the most negative reduced cost is one often used heuristic for choosing an edge to leave on

15-853

Page18

Reduced cost example



Ex: reduced cost for leaving x_1 -axis from point $(4,0)$

Moving 1 unit off of x_1 -axis will move us $(2,1)$ units along the edge.

The reduced cost of leaving the plane x_1 is $-(2,3) \cdot (2,1) = -7$

$$e_i = (2, 1)$$

15-853

Page19

Simplex Algorithm

1. Find a corner of the feasible region

2. Repeat

A. For each of the n hyperplanes intersecting at the corner, calculate its reduced cost

B. If they are all non-negative, then done

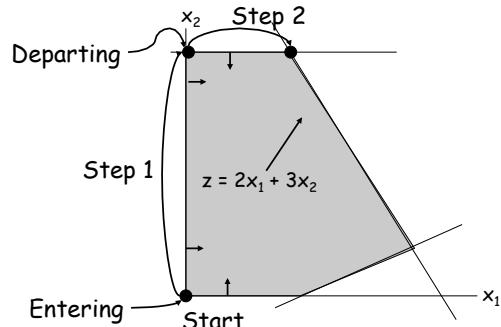
C. Else, pick the most negative reduced cost. This is called the entering plane

D. Move along corresponding edge (i.e. leave that hyperplane) until we reach the next corner (i.e. reach another hyperplane). The new plane is called the departing plane

15-853

Page20

Example



15-853

Page21

Simplifying

Problem:

- The $Ax \leq b$ constraints not symmetric with the $x \geq 0$ constraints.
- We would like more symmetry.

Idea:

- Leave only inequalities of the form $x \geq 0$.
Use "slack variables" to do this.

Convert into form:
$$\begin{array}{ll} \text{maximize} & c^T x \\ \text{subject to} & Ax = b \\ & x \geq 0 \end{array}$$

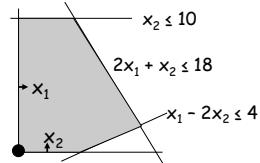
15-853

Page22

Standard Form

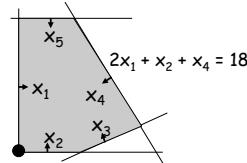
$$\begin{array}{ll} \text{maximize} & c^T x \\ \text{subject to} & Ax \leq b \\ & x \geq 0 \end{array}$$

$|A| = m \times n$
i.e. m equations, n variables



$$\begin{array}{ll} \text{Standard Form} \\ \text{maximize} & c^T x' \\ \text{subject to} & A'x' = b \\ & x' \geq 0 \end{array}$$

$|A'| = m \times (m+n)$
i.e. m equations, m+n variables



15-853

Page23

Example, again

maximize:

$$z = 2x_1 + 3x_2$$

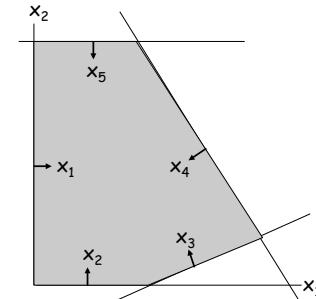
subject to:

$$x_1 - 2x_2 + \underline{x_3} = 4$$

$$2x_1 + x_2 + \underline{x_4} = 18$$

$$x_2 + \underline{x_5} = 10$$

$$x_1, x_2, \underline{x_3}, \underline{x_4}, \underline{x_5} \geq 0$$



The equality constraints impose a 2d plane embedded in 5d space, looking at the plane gives the figure above

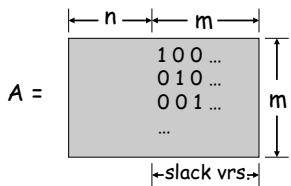
15-853

Page24

Using Matrices

If before adding the slack variables A has size $m \times n$
then after it has size $m \times (n + m)$

m can be larger or smaller than n



Assuming rows are independent, the solution space of $Ax = b$ is an n -dimensional subspace.

15-853

Page25

Simplex Algorithm, again

1. Find a corner of the feasible region

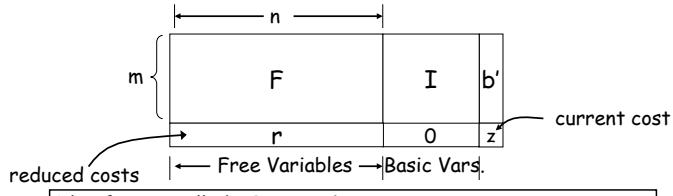
2. Repeat

- For each of the n hyperplanes intersecting at the corner, calculate its reduced cost
- If they are all non-negative, then done
- Else, pick the most negative reduced cost
This is called the entering plane
- Move along corresponding line (i.e. leave that hyperplane) until we reach the next corner
(i.e. reach another hyperplane)
The new plane is called the departing plane

15-853

Page26

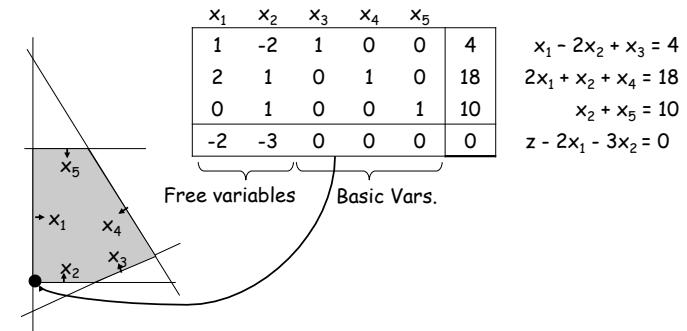
Simplex Algorithm (Tableau Method)



15-853

Page27

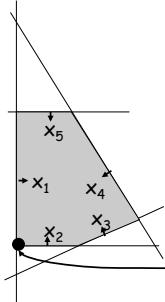
Corner



15-853

Page28

Corner

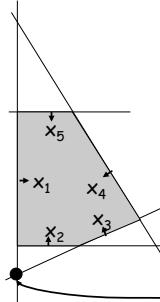


free variables					basic variables
1	-2	1	0	0	4
2	1	0	1	0	18
0	1	0	0	1	10
-2	-3	0	0	0	0
		x_1	x_2	x_3	x_4
					x_5

15-853

Page29

Corner

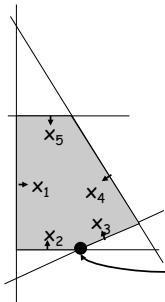


-.5	-.5	1	0	0	-2
2.5	.5	0	1	0	20
.5	.5	0	0	1	12
-3.5	-1.5	0	0	0	-6
		x_1	x_3	x_2	x_4
					x_5

15-853

Page30

Corner

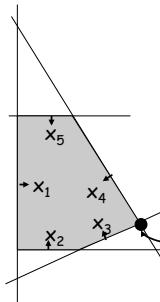


1	-2	1	0	0	4
-2	5	0	1	0	10
0	1	0	0	1	10
2	-7	0	0	0	8
		x_3	x_2	x_1	x_4
					x_5

15-853

Page31

Corner

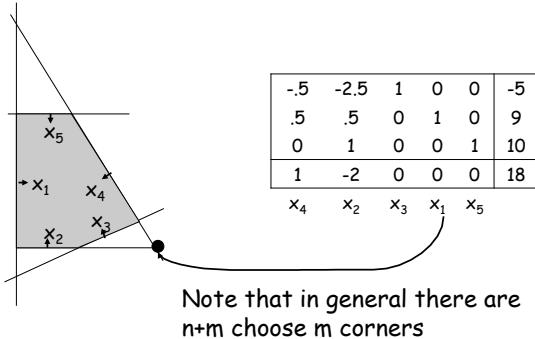


.2	.4	1	0	0	8
-.4	.2	0	1	0	2
.4	-.2	0	0	1	8
-.8	1.4	0	0	0	22
		x_3	x_4	x_1	x_2
					x_5

15-853

Page32

Corner



15-853

Page33

Simplex Method Again

Once you have found a basic feasible solution (a corner), we can move from corner to corner by swapping columns and eliminating.

ALGORITHM

1. Find a basic feasible solution
2. Repeat
 - A. If r (reduced cost) ≥ 0 , DONE
 - B. Else, pick column with most negative r
 - C. Pick row with least positive b' /(selected column)
 - D. Swap columns
 - E. Use Gaussian elimination to restore form

15-853

Page34

Tableau Method

A. If r are all non-negative then done

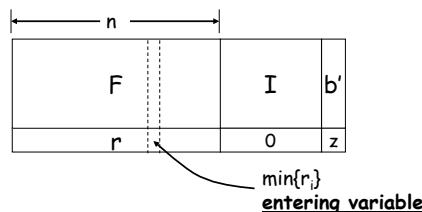


15-853

Page35

Tableau Method

B. Else, pick the most negative reduced cost
This is called the entering plane



15-853

Page36

Tableau Method

C. Move along corresponding line (i.e. leave that hyperplane) until we reach the next corner (i.e. reach another hyperplane)
The new plane is called the departing plane

F		I		b'	
	u			1	
r		0		z	

min positive b_j'/u_j
departing variable

15-853

Page37

Tableau Method

D. Swap columns

				x	b'
				x	
r				z	

swap

No longer in proper form

E. Gauss-Jordan elimination

F _{i+1}		I		b _{i+1} '
r _{i+1}		0		z _{i+1}

Back to proper form

15-853

Page38

Example

x_1	x_2	x_3	x_4	x_5	
1	-2	1	0	0	4
2	1	0	1	0	18
0	1	0	0	1	10
-2	-3	0	0	0	0

$$\begin{aligned}x_1 - 2x_2 + x_3 &= 4 \\ 2x_1 + x_2 + x_4 &= 18 \\ x_2 + x_5 &= 10 \\ z - 2x_1 - 3x_2 &= 0\end{aligned}$$

↓ Find corner

x_1	x_2	x_3	x_4	x_5	
1	-2	1	0	0	4
2	1	0	1	0	18
0	1	0	0	1	10
-2	-3	0	0	0	0

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

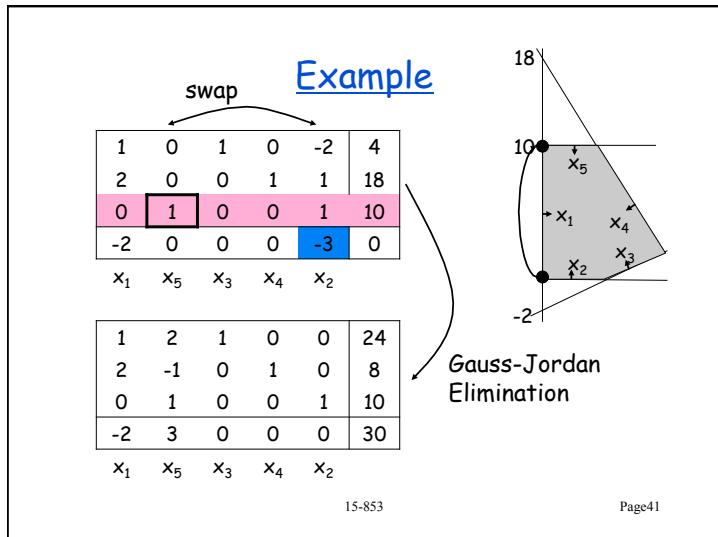
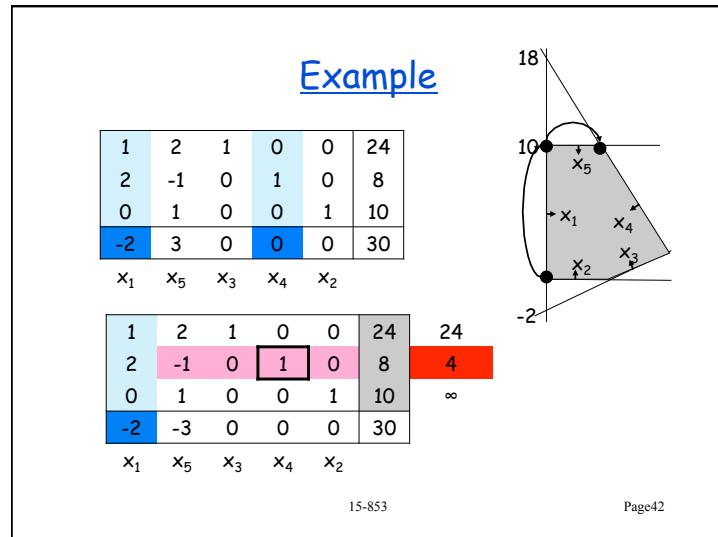
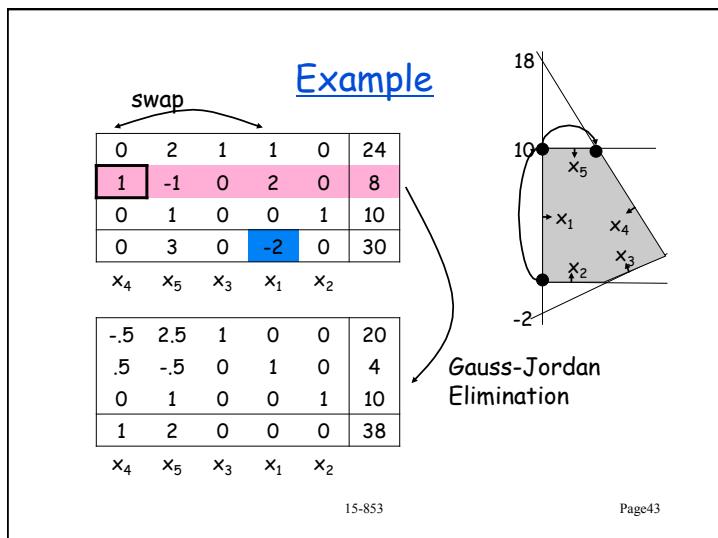
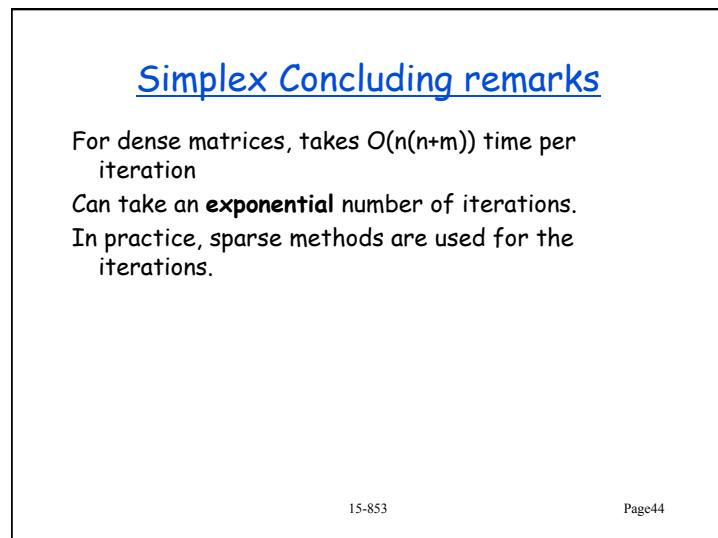
$$2x_1 + x_2 + x_4 = 18$$

$$x_2 + x_5 = 10$$

$$z - 2x_1 - 3x_2 = 0$$

$$x_1 - 2x_2 + x_3 = 4$$

$$2x$$



Duality

Primal (P):

maximize $z = c^T x$
subject to $Ax \leq b$
 $x \geq 0$ (n equations, m variables)

Dual (D):

minimize $z = y^T b$
subject to $A^T y \geq c$
 $y \geq 0$ (m equations, n variables)

Duality Theorem: if x is feasible for P and y is feasible for D , then $cx \leq yb$ and at optimality $cx = yb$.

15-853

Page45

Duality (cont.)

Optimal solution for both

feasible solutions for Primal (maximization) feasible solutions for Dual (minimization)

Quite similar to duality of Maximum Flow and Minimum Cut.

Useful in many situations.

15-853

Page46

Duality Example

Primal:

maximize:

$$z = 2x_1 + 3x_2$$

subject to:

$$x_1 - 2x_2 \leq 4$$

$$2x_1 + x_2 \leq 18$$

$$x_2 \leq 10$$

$$x_1, x_2 \geq 0$$

Dual:

minimize:

$$z = 4y_1 + 18y_2 + 10y_3$$

subject to:

$$y_1 + 2y_2 \geq 2$$

$$-2y_1 + y_2 + y_3 \geq 3$$

$$y_1, y_2, y_3 \geq 0$$

Solution to both is 38 ($x_1=4, x_2=10$), ($y_1=0, y_2=1, y_3=2$).

15-853

Page47