
1

15-853:Algorithms in the Real Worldg

Linear and Integer Programming III
– Integer Programming

• Applications
• Algorithms

15-853 Page1

g

Integer (linear) Programming
minimize: cTx
subject to: Ax ≤ b

Related Problems
– Mixed Integer Programming (MIP)
– Zero-one programming

x ≥ 0
x ∈ Zn

15-853 Page2

Zero one programming
– Integer quadratic programming
– Integer nonlinear programming

History
• Introduced in 1951 (Dantzig)
• TSP as special case in 1954 (Dantzig)p g
• First convergent algorithm in 1958 (Gomory)
• General branch-and-bound technique 1960

(Land and Doig)
• Frequently used to prove bounds on approximation

algorithms (late 90s)

15-853 Page3

Current Status
• Has become “dominant” over linear programming in

past decade
• Saves industry Billions of Dollars/year
• Can solve 10,000+ city TSP problems
• 1 million variable LP approximations
• Branch-and-bound, Cutting Plane, and Separation

all used in practice
• General purpose packages do not tend to work as

15-853 Page4

• General purpose packages do not tend to work as
well as with linear programming --- knowledge of
the domain is critical.

2

Subproblems/Applications
• Facility location

Locating warehouses or franchises (e.g. a Burger King)
• Set covering and partitioning

Scheduling airline crews
• Multicomodity distribution

Distributing auto parts
• Traveling salesman and extensions

Routing deliveries

15-853 Page5

g
• Capital budgeting
• Other Applications

VLSI layout, clustering

Knapsack Problem
Integer (zero-one) Program:

maximize cTx

where:
b = maximum weight
ci = utility of item i

subject to: ax ≤ b
x binary

15-853 Page6

ci ut ty of t m
ai = weight of item i
xi = 1 if item i is selected, or 0 otherwise

The problem is NP-hard.

Traveling Salesman Problem
Find shortest tours that visit all of n cities.

15-853 Page7

courtesy: Applegate,
Bixby, Chvátal, and Cook

Traveling Salesman Problem

∑∑
= =

n

i

n

j
ijij xc

1 1
minimize:

cij = cji = distance from city i to city j
(assuming symmetric version)

nix
n

j
ij ≤≤=∑

=

12
0

(path enters and leaves)subject to:

binary , ijji xx =

15-853 Page8

(assuming symmetric version)
xij if tour goes from i to j or j to i, and 0 otherwise

Anything missing?

3

Traveling Salesman Problem

∑∑
= =

n

i

n

j
ijij xc

1 1
minimize:

njinnxtt

njx

nix

ijji

n

i
ij

n

j
ij

≤≤−≤+−

≤≤=

≤≤=

∑

∑

=

=

,21

11

11

0

0

(out degrees = 1)

(in degrees = 1)

(??)

subject to:

15-853 Page9

cij = distance from city i to city j
xij = 1 if tour visits i then j, and 0 otherwise (binary)
ti = arbitrary real numbers we need to solve for

Traveling Salesman Problem

∑∑
= =

n

i

n

j
ijij xc

1 1
minimize:

njinnxtt

njx

nix

ijji

n

i
ij

n

j
ij

≤≤−≤+−

≤≤=

≤≤=

∑

∑

=

=

,21

11

11

0

0
subject to:

(out degrees = 1)

(in degrees = 1)

(??)

15-853 Page10

cij = distance from city i to city j
xij = 1 if tour visits i then j, and 0 otherwise (binary)
ti = arbitrary real numbers we need to solve for

Traveling Salesman Problem
The last set of constraints:
prevents “subtours”:

njinnxtt ijji ≤≤−≤+− ,21
p

Consider a cycle that goes from some node 4 to 5,
t4 – t5 + nx4,5 ≤ n-1 ⇒ t5 ≥ t4 + 1

Similarly t has to increase by 1 along each edge of
the cycle that does not include vertex 1.

15-853 Page11

Therefore, for a tour of length m that does not go
through vertex 1, t4 ≥ t4 + m, a contradiction.

Every cycle must go through vertex 1.
Together with other constraints, it forces one cycle.

Traveling Salesman Problem
Many “Real World” applications based on the TSP.

– They typically involve more involved constraintsy yp y
– Not just routing type problems.

Consider a drug company with k drugs they can
make at a lab. They can only make the drugs one
at a time. The cost of converting the equipment
from making drug i to drug j is cij

Current best solutions are based on IP

15-853 Page12

– Applegate, Bixby, et. al., have solutions for more
than 15K cities in Germany
> 150,000 CPU hours (more info)

– Involves “branch-and-bound” and “cutting planes”

4

Set Covering Problem
Find cheapest sets that cover all elements

15-853 Page13

Courtesy: Darmstadt
University of Technology

Set Covering and Partitioning
Given m sets and n items:

⎨
⎧

=
i item includes jset if ,1

A

⎩
⎨
⎧

=

=
⎩
⎨=

otherwise 0,
included is jset if ,1

jset ofcost
otherwise ,0

j

i

ij

x

c

A Columns = sets
Rows = items

Set covering:
minimize: cTx

A ≥ 1 bi

15-853 Page14

Set covering:
subject to: Ax ≥ 1, x binary

Set partitioning:
minimize: cTx
subject to: Ax = 1, x binary

Set Covering and Partitioning
set members cost
s1 {a,c,d} .5

{b } 2 ⎥
⎤

⎢
⎡ 0001001

s2 {b,c} .2
s3 {b,e} .3
s4 {a,d} .1
s5 {c,e} .2
s6 {b,c,e} .6
s7 {c,d} .2

⎥
⎥
⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢
⎢
⎢

⎣

=

0110100
1001001
1110011
0100110

A

15-853 Page15

Best cover: s2, s4, s5 = .5
Best partition: s4, s6 = .7

Set Covering and Partitioning
Applications:
• Facility location. y

Each set is a facility (e.g. warehouse, fire station,
emergency response center).
Each item is an area that needs to be covered

• Crew scheduling.
Each set is a route for a particular crew member
(e.g. NYC->Pit->Atlanta->NYC).

15-853 Page16

Each item is a flight that needs to be covered.

5

Constraints Expressible with IP
Many constraints are expressible with integer

programming:
– logical constraints (e.g. x implies not y)
– k out of n
– piecewise linear functions
– … and many more

15-853 Page17

Constraints Expressible with IP
Logical constraints (x1, x2 binary):

Either x1 or x2
⇒ x1 + x2 ≥ 1Either x1 or x2 x1 x2 ≥ 1

If x1 then x2
⇒ x1 – x2 ≤ 0

k out of n ⇒ ∑1≤i≤n xi = k

Either a1x ≤ b1 or a2x ≤ b2 ⇒
a1x - My ≤ b1

b

Combining constraints:

15-853 Page18

Either a1x ≤ b1 or a2x ≤ b2 ⇒ a2x - M(1-y) ≤ b2

y is a binary variable, M needs to be “large”,
a1, a2, and x can be vectors

Constraints Expressible with IP
• Discrete variables: xi in {k1, k2, …, kn}

• Create new binary vars zj and add constraintsy j

xi =∑1≤i≤n ziki and ∑1≤i≤n zi = 1
• Piecewise linear functions:

• If xi ≥ 1 then ci ≥ aixi

• Convert to (xi < 1) or (ci ≥ aixi)
and use prev. method.

Cost for xi

15-853 Page19

xi
10

Tricks for Expressing Constraints
• Covering Constraints: Ax ≥ b (non-negative aij’s)
• Packing constraints: Ax ≤ b (non-negative aij’s)g g ij

• Connectivity constraints (e.g. for network design):
• flow formulation: to connect s and t, buy

enough edges to support a unit s-t flow.
• Cut constraints (e.g., for clustering):

• Distance formulation: e.g., separate p and q

15-853 Page20

u v
c(e)

Variables d, x. Edge costs/lengths c(e):
d(p, v) ≤ d(p, u) + x(e) for each edge
d(p,v) ≥ 0 for each v
d(p,q) ≥ 1

6

Algorithms
1. Use a linear program

– round to integer solution (what if not feasible?)g
2. Search

– Branch and bound (integer ranges)
– Implicit (0-1 variables)

3. Cutting planes
– Many variants

15-853 Page21

Important Properties
• LP solution is an upper bound on IP solution

(assuming maximization)
• If LP is infeasible then IP is infeasible
• If LP solution is integral (all variables have integer

values), then it is the IP solution.

15-853 Page22

Linear Programming Solution
1. Some LP problems will always have integer

solutions
t t ti bl• transportation problem

• assignment problem
• min-cost network flow
These are problems with a unimodular matrix A.
(unimodular matrices have det(A) = 1).

2. Solve as linear program and round. Can violate

15-853 Page23

p
constraints, and be non-optimal. Works OK if
• integer variables take on large values
• accuracy of constraints is questionable

Branch and Bound
Lets first consider 0-1 programs.
Exponential solution: try all {0,1}np y
Branch-and-bound solution:

x2 = 0 x2 = 1

x1 = 0 x1 = 1

x3 = 0 x3 = 1

15-853 Page24

Traverse tree keeping current best solution.
If it can be shown that a subtree never improves on

the current solution, or is infeasable, prune it.

7

Zero-One Branch and Bound
minimize: z = cTx, subject to: Ax ≤ b, x ≥ 0, x ∈ {0,1}n

Assume all elements of c are non-negative

function ZOr(A, b, c, xf, z*)
// xf: a fixed setting for a subset of the variables
// z* is the cost of current best solution

x = xf + 0 // set unconstrained variables to zero
if (cx ≥ z*) or (no feasible completion of xf) return z*
if (Ax ≤ b) then return cx
pick an unconstrained variable x from x

15-853 Page25

pick an unconstrained variable xi from x
z0* = ZOr(A, b, xf ∪ {xi = 0}, c, z*)
z1* = ZOr(A, b, xf ∪ {xi = 1}, c, z0*)
return z1*

function ZO(A, b, c) = ZOr(A, b, c, ∅, ∞)

Zero-One Branch and Bound
Checking for feasible completions: check each

constraint and find if minimum of left is greater
than rightthan right.

Example:
xf = {x1 = 1, x3 = 0}

and one of the constraints is
3x1 + 2x2 – x3 + x4 ≤ 2

then
3 2 0 ≤ 2

15-853 Page26

3 + 2x2 - 0 + x4 ≤ 2
2x2 + x4 ≤ -1

which is impossible.

Integer Branch and Bound
The zero-one version is sometimes called “implicit

enumeration” since it might enumerate all
possibilitiespossibilities.

An integer version cannot branch on all possible
integer values for a variable. Even if the integer
range is bounded, it is not practical.

Will “bound” by adding inequalities to split the two
branches.

15-853 Page27

Since solutions are integral, each split can
remove a strip of width 1

Integer Branch and Bound
maximize: z = cTx, subject to: Ax ≤ b, x ≥ 0, x ∈ Zn

function IP (A b c z*) function IPr(Ae, be, c, z)
// Ae, be are A and b with additional constraints
// z* is the cost of current best solution

z, x, f = LP(A,b,c) // f indicates whether feasible
if not(f) or (z < z*) return z*
if (integer(x)) return z
pick a non-integer variable xi’ from x

15-853 Page28

p g i f m
zl* = IP(extend Ae,be with xi ≤ bxi’c, c, z*)
zg* = IP(extend Ae,be with –xi ≤ -dxi’e, c, zl*)
return zg*

function IP(A, b, c) = IPr(A, b, c, -∞)
Note use
of zl*

8

Example

l

z

l

ufeasible

15-853 Page29

Find optimal solution.
Cut along y axis, and make two recursive calls

Example

l

z

l

u

15-853 Page30

Find optimal solution.
Solution is integral, so return it as current best z*

Example

lu

z

15-853 Page31

Find optimal solution. It is better than z*.
Cut along x axis, and make two recursive calls

lu
= z*

Example

lu

z

15-853 Page32

lu

Infeasible, Return.

9

Example

z

lu

l

u

15-853 Page33

lu

Find optimal solution. It is better than z*.
Cut along y axis, and make two recursive calls

= z*

Example

l

u

z

15-853 Page34

Find optimal solution. Solution is integral and better
than z*. Return as new z*.

= z*

Example

l

u

z

15-853 Page35

Find optimal solution. Not as good as z*, return.

= z*

Cutting Plane
The idea is to start with a “relaxation” R of the

problem and then add constraints on the fly to
find an actual feasible solution in Sfind an actual feasible solution in S.

S

= S
= R

new
constraint

15-853 Page36

relaxation

Example 1 Example 2
A “linear” relaxation

10

Cutting Plane: general algorithm
minimize: z = cTx, subject to x ∈ S

f ti CP(R)function CP(R, c)
// R a relaxed set of constraints Ax ≤ b

s.t. S ⊂ polytope(Ax ≤ b)
repeat:

x = LP(R,c)
if x ∈ S return x
find an inequality r satisfied by S,

b t i l t d b (t f S)

15-853 Page37

but violated by x (r separates x from S)
R = R U {r}

Can add multiple inequalities on each iteration

Cutting Plane

z feasible

New plane

15-853 Page38

Note that we are removing a corner, and no integer
solutions are being excluded.

Picking the Plane
Method 1: Gomory cuts (1958)

– Cuts are generated from the LP Tableaug
Each row defines a potential cut

– Guaranteed to converge on solution
– General purpose, but inefficient in practice

Method 2: problem specific cuts (templates)
– Consider the problem at hand and generate cuts

based on its structure

15-853 Page39

based on its structure
– A template is a problem specific set of cuts

(probably of exponential size) which S satisfies.
Each round picks a cut from this set.

Templates for the TSP problem
We consider some example templates used in solutions

of the Traveling Salesman Problem.
R ll th t i di t th d f t Recall that xij indicates the edge from vi to vj
Assume the symmetric TSP: xij = xji
Consider subsets of vertices U ⊂ V.
define: δx(U) = ∑ xij, vi ∈ U, vj ∈ V-U

(i.e. the number of times path crosses into/outof U)

D C t i t δ ({ }) 2 1 ≤ i ≤

15-853 Page40

Degree Constraints: δx({vi}) = 2, 1 ≤ i ≤ n
Subtour Constraints: δx(U) ≥ 2, U ⊂ V A template
There are an exponential number of these

11

Templates for the TSP problem
A set of contraints (a template) is facet-defining for

S if each constraint is on a facet of the convex hull
f of S.

We would like templates which are facet defining
since, intuitively, they will more quickly constrain us
to the boundary of S.

The subtour template is facet defining.

15-853 Page41

In practice the subtour inequalities are not enough to
contrain the solution to integral solutions.

Are there other sets of facet defining constraints?

Templates for the TSP problem
Blossom inequalities (Edmonds 1965):
Defined by H (handle) and T1, …, Tk (teeth) satisfying:
k 3 d dd |T | 2k ≥ 3 and odd, |Ti| = 2
Ti ∩ Tj = ∅, |H ∩ Ti| = 1, |Ti \ H| = 1

T1

T2 δx(H) + ∑i=1
k δx(Ti) ≥ 3k + 1

15-853 Page42

2

T3

H

x() i=1 x(i) ≥

Templates for the TSP problem
Comb inequalities (Grotschel 1977)
Just generalizes Ti to be any size. At least one g i y

element of each T has to be in and out of H.

T1

T2 δx(H) + ∑i=1
k δx(Ti) ≥ 3k + 1

15-853 Page43

2

T3

H

x() i=1 x(i) ≥

The art of Templates
Picking the right set of templates, and applying them

in the right way is the art of solving NP-hard
problems with integer programmingproblems with integer programming.

Different problems have different templates.
One needs to find good algorithms for selecting a

member of a template that separates x from S
(can be quite complicated on its own).

Cutting planes often used in conjunction with branch
and bound

15-853 Page44

and bound.
Can interleave template cuts with Gomory cuts (e.g.

use Gomory cuts when the set of template cuts
“dries out”).

12

Practical Developments
• Good formulations, heuristics and theory

Goal: to get LP solution as close as possible to IP
solutionsolution
Disaggregation, adding constraints (cuts)

• Preprocessing
Automatic methods for reformulation
Some interesting graph theory is involved

• Cut generation (branch-and-cut)
Add cuts during the branch-and-bound

15-853 Page45

g
• Column generation

Improve formulation by introducing an exponential
number of variables.

