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15-853:Algorithms in the Real Worldg

Linear and Integer Programming III
– Integer Programming

• Applications
• Algorithms
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Integer (linear) Programming
minimize: cTx
subject to: Ax ≤ b

Related Problems
– Mixed Integer Programming (MIP)
– Zero-one programming

x ≥ 0
x ∈ Zn
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Zero one programming
– Integer quadratic programming
– Integer nonlinear programming

History
• Introduced in 1951 (Dantzig)
• TSP as special case in 1954 (Dantzig)p g
• First convergent algorithm in 1958 (Gomory)
• General branch-and-bound technique 1960 

(Land and Doig)
• Frequently used to prove bounds on approximation 

algorithms (late 90s)
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Current Status
• Has become “dominant” over linear programming in 

past decade
• Saves industry Billions of Dollars/year
• Can solve 10,000+ city TSP problems
• 1 million variable LP approximations
• Branch-and-bound, Cutting Plane, and Separation 

all used in practice
• General purpose packages do not tend to work as 
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• General purpose packages do not tend to work as 
well as with linear programming --- knowledge of 
the domain is critical. 
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Subproblems/Applications
• Facility location

Locating warehouses or franchises (e.g. a Burger King)
• Set covering and partitioning

Scheduling airline crews
• Multicomodity distribution

Distributing auto parts
• Traveling salesman and extensions

Routing deliveries
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• Capital budgeting
• Other Applications

VLSI layout, clustering

Knapsack Problem
Integer (zero-one) Program:

maximize cTx

where:
b = maximum weight
ci = utility of item i

subject to: ax ≤ b
x binary
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ci  ut ty of t m 
ai = weight of item i
xi = 1 if item i is selected, or 0 otherwise

The problem is NP-hard.

Traveling Salesman Problem
Find shortest tours that visit all of n cities.

15-853 Page7

courtesy: Applegate, 
Bixby, Chvátal, and Cook

Traveling Salesman Problem
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(assuming symmetric version)
xij if tour goes from i to j or j to i, and 0 otherwise

Anything missing?
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Traveling Salesman Problem
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cij = distance from city i to city j
xij = 1 if tour visits i then j, and 0 otherwise (binary)
ti = arbitrary real numbers we need to solve for

Traveling Salesman Problem
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cij = distance from city i to city j
xij = 1 if tour visits i then j, and 0 otherwise (binary)
ti = arbitrary real numbers we need to solve for

Traveling Salesman Problem
The last set of constraints:
prevents “subtours”:

njinnxtt ijji ≤≤−≤+− ,21
p

Consider a cycle that goes from some node 4 to 5, 
t4 – t5 + nx4,5 ≤ n-1 ⇒ t5 ≥ t4 + 1

Similarly t has to increase by 1 along each edge of 
the cycle that does not include vertex 1.  
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Therefore, for a tour of length m that does not go 
through vertex 1, t4 ≥ t4 + m, a contradiction.

Every cycle must go through vertex 1.
Together with other constraints, it forces one cycle.

Traveling Salesman Problem
Many “Real World” applications based on the TSP.

– They typically involve more involved constraintsy yp y
– Not just routing type problems.

Consider a drug company with k drugs they can 
make at a lab.   They can only make the drugs one 
at a time. The cost of converting the equipment 
from making drug i to drug j is cij

Current best solutions are based on IP
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– Applegate, Bixby, et. al., have solutions for more 
than 15K cities in Germany 
> 150,000 CPU hours (more info)

– Involves “branch-and-bound” and “cutting planes”
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Set Covering Problem
Find cheapest sets that cover all elements
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Courtesy: Darmstadt
University of Technology 

Set Covering and Partitioning
Given m sets and n items:
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A Columns = sets
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Set covering:
minimize: cTx

A  ≥ 1   bi
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Set covering:
subject to: Ax ≥ 1, x binary

Set partitioning:
minimize: cTx
subject to: Ax = 1, x binary

Set Covering and Partitioning
set members cost
s1 {a,c,d} .5

{b } 2 ⎥
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Best cover: s2, s4, s5 = .5
Best partition: s4, s6 = .7

Set Covering and Partitioning
Applications:
• Facility location.  y

Each set is a facility (e.g. warehouse, fire station, 
emergency response center).
Each item is an area that needs to be covered

• Crew scheduling.
Each set is a route for a particular crew member 
(e.g. NYC->Pit->Atlanta->NYC).
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Each item is a flight that needs to be covered.
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Constraints Expressible with IP
Many constraints are expressible with integer 

programming:
– logical constraints (e.g. x implies not y)
– k out of n 
– piecewise linear functions
– … and many more
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Constraints Expressible with IP
Logical constraints (x1, x2 binary):

Either x1 or x2
⇒ x1 + x2 ≥ 1Either x1 or x2 x1  x2 ≥ 1

If x1 then x2
⇒ x1 – x2 ≤ 0

k out of n ⇒ ∑1≤i≤n xi = k

Either a1x ≤ b1 or a2x ≤ b2 ⇒
a1x - My ≤ b1

b

Combining constraints:
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Either a1x ≤ b1 or a2x ≤ b2 ⇒ a2x - M(1-y) ≤ b2

y is a binary variable, M needs to be “large”,
a1, a2, and x can be vectors

Constraints Expressible with IP
• Discrete variables: xi in {k1, k2, …, kn}

• Create new binary vars zj and add constraintsy j

xi =∑1≤i≤n ziki and  ∑1≤i≤n zi = 1
• Piecewise linear functions:

• If xi ≥ 1 then ci ≥ aixi

• Convert to (xi < 1) or (ci ≥ aixi)
and use prev. method.

Cost for xi
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Tricks for Expressing Constraints
• Covering Constraints: Ax ≥ b (non-negative aij’s)
• Packing constraints: Ax ≤ b (non-negative aij’s)g g ij

• Connectivity constraints (e.g. for network design):
• flow formulation:  to connect s and t, buy 

enough edges to support a unit s-t flow.
• Cut constraints (e.g., for clustering):

• Distance formulation: e.g., separate p and q
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u v
c(e)

Variables d, x.  Edge costs/lengths c(e):
d(p, v) ≤ d(p, u) + x(e)  for each edge
d(p,v) ≥ 0 for each v
d(p,q) ≥ 1
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Algorithms
1. Use a linear program

– round to integer solution (what if not feasible?)g
2. Search

– Branch and bound (integer ranges)
– Implicit (0-1 variables)

3. Cutting planes
– Many variants
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Important Properties
• LP solution is an upper bound on IP solution 

(assuming maximization)
• If LP is infeasible then IP is infeasible
• If LP solution is integral (all variables have integer 

values), then it is the IP solution.
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Linear Programming Solution
1. Some LP problems will always have integer 

solutions
t t ti  bl• transportation problem

• assignment problem
• min-cost network flow
These are problems with a unimodular matrix A.
(unimodular matrices have det(A) = 1).

2. Solve as linear program and round.   Can violate 
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p
constraints, and be non-optimal.  Works OK if
• integer variables take on large values
• accuracy of constraints is questionable

Branch and Bound
Lets first consider 0-1 programs.
Exponential solution: try all {0,1}np y
Branch-and-bound solution:

x2 = 0 x2 = 1

x1 = 0 x1 = 1

x3 = 0 x3 = 1
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Traverse tree keeping current best solution.
If it can be shown that a subtree never improves on 

the current solution, or is infeasable, prune it.
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Zero-One Branch and Bound
minimize:  z = cTx,   subject to:  Ax ≤ b, x ≥ 0, x ∈ {0,1}n

Assume all elements of c are non-negative

function ZOr(A, b, c, xf, z*)   
// xf: a fixed setting for a subset of the variables
// z* is the cost of current best solution

x = xf + 0    // set unconstrained variables to zero
if (cx ≥ z*) or (no feasible completion  of xf) return z*
if (Ax ≤ b) then return cx
pick an unconstrained variable x from x
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pick an unconstrained variable xi from x
z0* = ZOr(A, b, xf ∪ {xi = 0}, c, z*)
z1* = ZOr(A, b, xf ∪ {xi = 1}, c, z0*)
return z1*

function ZO(A, b, c) = ZOr(A, b, c, ∅, ∞)

Zero-One Branch and Bound
Checking for feasible completions: check each 

constraint and find if minimum of left is greater 
than rightthan right.

Example:
xf = {x1 = 1, x3 = 0}

and one of the constraints is
3x1 + 2x2 – x3 + x4 ≤ 2

then
3     2 0   ≤ 2
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3    + 2x2 - 0  + x4 ≤ 2
2x2 + x4 ≤ -1

which is impossible.

Integer Branch and Bound
The zero-one version is sometimes called “implicit 

enumeration” since it might enumerate all 
possibilitiespossibilities.

An integer version cannot branch on all possible 
integer values for a variable.   Even if the integer 
range is bounded, it is not practical.

Will “bound” by adding inequalities to split the two 
branches.
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Since solutions are integral, each split can 
remove a strip          of width 1

Integer Branch and Bound
maximize:  z = cTx,     subject to:  Ax ≤ b, x ≥ 0, x ∈ Zn

function IP (A  b  c  z*)   function IPr(Ae, be, c, z )   
// Ae, be are A and b with additional constraints
// z* is the cost of current best solution

z, x, f = LP(A,b,c)     // f indicates whether feasible
if not(f) or (z < z*) return z*
if (integer(x)) return z
pick a non-integer variable xi’ from x
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p g i f m
zl* = IP(extend Ae,be with xi ≤ bxi’c, c, z*)
zg* = IP(extend Ae,be with –xi ≤ -dxi’e, c, zl*)
return zg*

function IP(A, b, c) = IPr(A, b, c, -∞)
Note use
of zl*
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Example

l

z

l

ufeasible
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Find optimal solution.
Cut along y axis, and make two recursive calls

Example

l

z

l

u
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Find optimal solution.
Solution is integral, so return it as current best z*

Example

lu

z
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Find optimal solution.   It is better than z*.
Cut along x axis, and make two recursive calls

lu
= z*

Example

lu

z
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lu

Infeasible, Return.
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Example

z

lu

l

u
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lu

Find optimal solution.  It is better than z*.
Cut along y axis, and make two recursive calls

= z*

Example

l

u

z
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Find optimal solution.  Solution is integral and better 
than z*.   Return as new z*.

= z*

Example

l

u

z
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Find optimal solution.  Not as good as z*, return.

= z*

Cutting Plane
The idea is to start with a “relaxation” R of the 

problem and then add constraints on the fly to 
find an actual feasible solution in Sfind an actual feasible solution in S.

S

= S
= R

new
constraint
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relaxation

Example 1 Example 2
A “linear” relaxation
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Cutting Plane: general algorithm
minimize: z = cTx,      subject to x ∈ S

f ti  CP(R  )function CP(R, c)
//  R a relaxed set of constraints Ax ≤ b 

s.t. S ⊂ polytope(Ax ≤ b)
repeat:

x = LP(R,c)
if x ∈ S return x
find an inequality r satisfied by S, 

b t i l t d b   (  t  f  S)
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but violated by x (r separates x from S)
R = R U {r}

Can add multiple inequalities on each iteration

Cutting Plane

z feasible

New plane

15-853 Page38

Note that we are removing a corner, and no integer 
solutions are being excluded.

Picking the Plane
Method 1: Gomory cuts (1958)

– Cuts are generated from the LP Tableaug
Each row defines a potential cut

– Guaranteed to converge on solution
– General purpose, but inefficient in practice 

Method 2: problem specific cuts (templates)
– Consider the problem at hand and generate cuts 

based on its structure
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based on its structure
– A template is a problem specific set of cuts 

(probably of exponential size) which S satisfies.  
Each round picks a cut from this set.

Templates for the TSP problem
We consider some example templates used in solutions 

of the Traveling Salesman Problem.
R ll th t i di t  th  d  f  t  Recall that xij indicates the edge from vi to vj
Assume the symmetric TSP: xij = xji
Consider subsets of vertices U ⊂ V.
define: δx(U) = ∑ xij, vi ∈ U, vj ∈ V-U   

(i.e. the number of times path crosses into/outof U)

D  C t i t  δ ({ })  2     1 ≤ i ≤
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Degree Constraints: δx({vi}) = 2,    1 ≤ i ≤ n
Subtour Constraints: δx(U) ≥ 2,      U ⊂ V   A template
There are an exponential number of these
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Templates for the TSP problem
A set of contraints (a template) is facet-defining for 

S if each constraint is on a facet of the convex hull 
f of S.

We would like templates which are facet defining 
since, intuitively, they will more quickly constrain us 
to the boundary of S.

The subtour template is facet defining.
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In practice the subtour inequalities are not enough to 
contrain the solution to integral solutions.

Are there other sets of facet defining constraints?

Templates for the TSP problem
Blossom inequalities (Edmonds 1965):
Defined by H (handle) and T1, …, Tk (teeth) satisfying:
k 3 d dd   |T |  2k ≥ 3 and odd,  |Ti| = 2
Ti ∩ Tj = ∅,    |H ∩ Ti| = 1,  |Ti \ H| = 1

T1

T2 δx(H) + ∑i=1
k δx(Ti) ≥ 3k + 1
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2

T3

H

x( ) i=1 x( i) ≥

Templates for the TSP problem
Comb inequalities (Grotschel 1977)
Just generalizes Ti to be any size.  At least one g i y

element of each T has to be in and out of H.

T1

T2 δx(H) + ∑i=1
k δx(Ti) ≥ 3k + 1
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2

T3

H

x( ) i=1 x( i) ≥

The art of Templates
Picking the right set of templates, and applying them 

in the right way is the art of solving NP-hard 
problems with integer programmingproblems with integer programming.

Different problems have different templates.
One needs to find good algorithms for selecting a 

member of a template that separates x from S 
(can be quite complicated on its own).

Cutting planes often used in conjunction with branch 
and bound
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and bound.
Can interleave template cuts with Gomory cuts (e.g. 

use Gomory cuts when the set of template cuts 
“dries out”).
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Practical Developments
• Good formulations, heuristics and theory

Goal: to get LP solution as close as possible to IP 
solutionsolution
Disaggregation, adding constraints (cuts)

• Preprocessing
Automatic methods for reformulation
Some interesting graph theory is involved

• Cut generation (branch-and-cut)
Add cuts during the branch-and-bound
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g
• Column generation

Improve formulation by introducing an exponential 
number of variables.


