15-853:Algorithms in the Real World

Linear and Integer Programming IIT
- Integer Programming
+ Applications
+ Algorithms

15-853 Pagel

Integer (linear) Programming

minimize: c™x

subject to: AX<b
x>0
xeZ"

Related Problems
- Mixed Integer Programming (MIP)
- Zero-one programming
- Integer quadratic programming
- Integer nonlinear programming

15-853 Page2

History

+ Introduced in 1951 (Dantzig)
+ TSP as special case in 1954 (Dantzig)
+ First convergent algorithm in 1958 (Gomory)

+ General branch-and-bound technique 1960
(Land and Doig)

* Frequently used to prove bounds on approximation
algorithms (late 90s)

15-853 Page3

Current Status

* Has become “"dominant” over linear programming in
past decade

* Saves industry Billions of Dollars/year

+ Can solve 10,000+ city TSP problems

* 1 million variable LP approximations

* Branch-and-bound, Cutting Plane, and Separation
all used in practice

* General purpose packages do not tend to work as
well as with linear programming --- knowledge of
the domain is critical.

15-853 Page4

Subproblems/Applications

+ Facility location

Locating warehouses or franchises (e.g. a Burger King)

+ Set covering and partitioning
Scheduling airline crews

+ Multicomodity distribution
Distributing auto parts

- Traveling salesman and extensions
Routing deliveries

- Capital budgeting

+ Other Applications
VLSI layout, clustering

15-853 Page5

Knapsack Problem

Integer (zero-one) Program:

maximize cTx
subject to: ax <b
x binary

where:

b = maximum weight

c; = utility of item i

a; = weight of item i

x;= 1if item i is selected, or O otherwise
The problem is NP-hard.

15-853 Page6

Traveling Salesman Problem

Find shortest tours that visit all of n cities.

courtesy: Applegate,
Bixby, Chvatal, and Cook

15-853 Page7

Traveling Salesman Problem

n n
minimize: 2D CiX;

i-1 j=1

n
subject to: inj =2 1<i<n (path enters and leaves)
j=0

¢;; = ¢; = distance from city i to city j
(assuming symmetric version)
x;; if Tour goes from i to jor jto i, and O otherwise

Anything missing?

15-853 Page8

Traveling Salesman Problem

n n
minimize: chij Xjj
i-1 j-1
n
subject to: inj =1 1<i<n (outf degrees=1)
j=0
n
ZX"— =1 1< j<n (indegrees=1)
=0

i
t—t;+nx;<n-1 2<i,j<n (??)

¢;; = distance from city i fo city j
x;; = 1if tour visits i then j, and O otherwise (binary)
t; = arbitrary real numbers we need to solve for

15-853 Page9

Traveling Salesman Problem

=1 j=1
zxij =1 1<i<n (out degrees-=1)
=0

subject to: n . .
inj =1 1<j<n (indegrees=1)
i=0

t—t;+nx;<n-1 2<i,j<n (??)

¢;; = distance from city i fo city j
x;; = Lif tour visits i then j, and O otherwise (binary)
t; = arbitrary real numbers we need to solve for

15-853 Pagel0

Traveling Salesman Problem

The last set of constraints: t; —t; +nx; <n-1 [2<i j<n

prevents “subtours”: Q b)

Consider a cycle that goes from some node 4 to 5,
T4'T5+nX4'5§ n-1= 1'521'4*‘1

Similarly t has to increase by 1 along each edge of
the cycle that does not include vertex 1.

Therefore, for a tour of length m that does not go
through vertex 1, t, > 4, + m, a contradiction.

Every cycle must go through vertex 1.

Together with other constraints, it forces one cycle.

15-853 Pagell

Traveling Salesman Problem

Many "Real World" applications based on the TSP.
- They typically involve more involved constraints

- Not just routing type problems.
Consider a drug company with k drugs they can
make at a lab. They can only make the drugs one
at a time. The cost of converting the equipment
from making drug i fo drug j is c¢;;
Current best solutions are based on IP

- Applegate, Bixby, et. al., have solutions for more
than 15K cities in Germany
> 150,000 CPU hours (more info)

- Involves "branch-and-bound” and “cutting planes”
15-853 Pagel2

Set Covering Problem

Find cheapest sets that cover all elements

Courtesy: Darmstadt
University of Technology

15-853 Pagel3

Set Covering and Partitioning

Given m sets and n items:

1, if set jincludes item i
Aij = {0, otherwise Columns = sets
¢, = costofsetj Rows = items
. - {1, if set jisincluded
l 0, otherwise
minimize: c™x

Set covering: subject to: Ax > 1, x binary

inimize: c™x
Set partitioning: m .m .
subject to: Ax =1, x binary

15-853 Pageld

Set Covering and Partitioning

set | members | cost
S {“t'f'd} 2 1001000
s | {beh | . 0110010
S3 {b.e} 3 A 00
Py {ad) 1 =1 1 111
s | e | 2 1001001
Se {b.c.e} 6 0010110
Sz {c.d} 2
Best cover: s,,s4,55=.5
Best partition: s4, s, =.7
15-853 Pagel5

Set Covering and Partitioning

Applications:

* Facility location.
Each set is a facility (e.g. warehouse, fire station,
emergency response center).
Each item is an area that needs to be covered

* Crew scheduling.
Each set is a route for a particular crew member
(e.g. NYC->Pit->Atlanta->NYC).
Each item is a flight that needs to be covered.

15-853 Pagel6

Constraints Expressible with IP

Many constraints are expressible with integer
programming:
- logical constraints (e.g. x implies not y)
- koutof n
- piecewise linear functions
- ..and many more

15-853 Pagel7

Constraints Expressible with IP

Logical constraints (x,, x, binary):

Either x, or x, = X +Xy21
If x, then x, = X=X, <0
k out of n = YiinXi= k

Combining constraints:

- <b
Either q;X < bl or a,x < bz = ax My !
ax - M(1-y) <b2

y is a binary variable, M needs to be “large”,
a;, a,, and x can be vectors

15-853 Pagel8

Constraints Expressible with IP

+ Discrete variables: x; in {k;, ks, ..., K.}
* Create new binary vars z; and add constraints
Xi =X 14 2k and ¥p02= 1
+ Piecewise linear functions:
o If x; 2 1 then¢; 2 a)x, Cost for x;
 Convert to (x; < 1) or (¢; 2 a;x;)
and use prev. method.

IR

15-853 Pagel9

Tricks for Expressing Constraints

* Covering Constraints: Ax > b (non-negative g;'s)
* Packing constraints: Ax < b (non-negative g;'s)
+ Connectivity constraints (e.g. for network design):

* flow formulation: to connect s and t, buy
enough edges to support a unit s-t flow.

* Cut constraints (e.g., for clustering):

+ Distance formulation: e.g., separate p and q

Variables d, x. Edge costs/lengths c(e):
d(p, v) < d(p, u) + x(e) for each edge

d(p,v) 2 0 for each v

d(pa)> 1 O—O

c(e)

15-853 Page20

Algorithms

. Use a linear program

- round to integer solution (what if not feasible?)
. Search

- Branch and bound (integer ranges)

- Implicit (0-1 variables)

. Cutting planes

- Many variants

15-853 Page21

Important Properties

* LP solution is an upper bound on IP solution

(assuming maximization)
« IfLPisinfeasible then IP is infeasible

+ If LP solution is integral (all variables have integer
values), then it is the IP solution.

15-853 Page22

Linear Programming Solution

. Some LP problems will always have integer
solutions

transportation problem

assignment problem

min-cost network flow
These are problems with a unimodular matrix A.
(unimodular matrices have det(A) = 1).

. Solve as linear program and round. Can violate
constraints, and be non-optimal. Works OK if

integer variables take on large values
accuracy of constraints is questionable

15-853 Page23

Branch and Bound

Lets first consider 0-1 programs.
Exponential solution: try all {01}

Branch-and-bound solution:

X;=1

Traverse tree keeping current best solution.

If it can be shown that a subtree never improves on
the current solution, or is infeasable, prune it.

15-853 Page24

Zero-One Branch and Bound

minimize: z=c'x, subject tfo: Ax <b,x>0,x e {01}
Assume all elements of ¢ are non-negative

function ZO.(A, b, c, x;, z*)
// X a fixed setting for a subset of the variables
// z* is the cost of current best solution
x = x¢+0 _// set unconstrained variables to zero
if (cx > z*) or (no feasible completion of x;) return z*
if (Ax < b) then return cx
pick an unconstrained varigble x; from x
z,* = ZO(A, b, x; U{x; = 0}, c, *)
2* = ZO.(A, b, x U{x; =1}, c, 25*)
return z;*
function ZO(A, b, ¢) = ZO.(A, b, ¢, B, o)

15-853 Page25

Zero-One Branch and Bound

Checking for feasible completions: check each
constraint and find if minimum of left is greater

than right.
Example:
X; = {x; = 1, %3 = 0}
and one of the constraints is
3X +2Xy = X3+ Xy < 2
then
3 + 2)(2 -0 + Xg4 < 2
2%, + X4 < -1

which is impossible.

15-853 Page26

Integer Branch and Bound

The zero-one version is sometimes called "implicit
enumeration” since it might enumerate all
possibilities.

An integer version cannot branch on all possible
integer values for a variable. Even if the integer
range is bounded, it is not practical.

Will "bound” by adding inequalities to split the two

branches.
e | e }_, i
s
Since solutions are integral, each split can

remove a strip ——of width 1
15-853 Page27

Integer Branch and Bound

maximize: z=c'x, subjectto: Ax<b,x>0,x¢cZn

function IP (A, b,, c, z*)

// A., b, are A and b with additional constraints
// z* is the cost of current best solution

z,x,f=LP(Ab,) //f indicates whether feasible

if not(f) or (z < z*) return z*

if (integer(x)) return z

pick a non-integer variable x;' from x

z* = IP(extend A, b, with x; < |/ |, ¢, Z¥)

z,* = IP(extend A, b, with -x; < -[x/], ¢, z*)

*
return z, N Nofe use

function IP(A, b, c) = IP.(A. b, ¢, -c) uk

15-853 Page28

Find optimal solution.
Cut along y axis, and make two recursive calls

15-853 Page29

Find optimal solution.
Solution is integral, so return it as current best z*

15-853 Page30

@ =-z*

Find optimal solution. It is better than z*.
Cut along x axis, and make two recursive calls

15-853 Page31

Infeasible, Return.

15-853 Page32

u
® =z
Find optimal solution. It is better than z*.
Cut along y axis, and make two recursive calls

15-853 Page33

@ -Zz*

Find optimal solution. Solution is integral and better
than z*. Return as new z*.

15-853 Page34

® =z*

Find optimal solution. Not as good as z*, return.

15-853 Page35

Cutting Plane

The idea is to start with a "relaxation” R of the
problem and then add constraints on the fly to

find an actual feasible solution in S.
new

constraint

0@
®

relaxation
Example 1 Example 2
A “linear” relaxation
15-853 Page36

Cutting Plane: general algorithm

minimize: z=c'x, subjecttoxe S

function CP(R, ¢))
// R a relaxed set of constraints Ax < b

s.t. S C polytope(Ax < b)
repeat:
x = LP(R,c)
if x € Sreturn x
find an inequality r satisfied by S,
but violated by x (r separates x from S)
R=RU({r}

Can add multiple inequalities on each iteration

15-853 Page37

Cutting Plane

New plane

Note that we are removing a corner, and ho integer
solutions are being excluded.

15-853 Page38

Picking the Plane

Method 1: Gomory cuts (1958)

- Cuts are generated from the LP Tableau
Each row defines a potential cut

- Guaranteed to converge on solution
- General purpose, but inefficient in practice
Method 2: problem specific cuts (templates)

- Consider the problem at hand and generate cuts
based on its structure

- A template is a problem specific set of cuts
(probably of exponential size) which S satisfies.
Each round picks a cut from this seft.

15-853 Page39

Templates for the TSP problem

We consider some example templates used in solutions
of the Traveling Salesman Problem.

Recall that x;; indicates the edge from v; fo v,

Assume the symmetric TSP: x;; = X;;
Consider subsets of vertices d C \}

define: 5,(U) = X x;;, vi € U, v; € V-U
(i.e. the number of times path crosses into/outof U)

Degree Constraints: 5,({v})=2, 1<i<n
Subtour Constraints: 5, (U) >2, UcV A template
There are an exponential number of these

15-853 Page40

10

Templates for the TSP problem

A set of contraints (a template) is facet-defining for
S if each constraint is on a facet of the convex hull
of S.

We would like templates which are facet defining
since, intuitively, they will more quickly constrain us
to the boundary of S.

The subtour template is facet defining.

In practice the subtour inequalities are not enough to
contrain the solution to integral solutions.

Are there other sets of facet defining constraints?

15-853 Page4l

Templates for the TSP problem

Blossom inequalities (Edmonds 1965):

Defined by H (handle) and T, ..., Ty (teeth) satisfying:
k>3andodd, |T,|=2
TIQTJ’:@, |HﬁT,|=1, |T,\H|:1

% S (H) + Zif* 8,(T}) > 3k + 1

15-853 Paged2

Templates for the TSP problem

Comb inequalities (Grotschel 1977)

Just generalizes T, to be any size. At least one
element of each T has to be in and out of H.

&

Ce 8,(H) + Xt 8,(T)) = 3k + 1

SO

15-853 Page43

The art of Templates

Picking the right set of templates, and applying them
in the right way is the art of solving NP-hard
problems with integer programming.

Different problems have different templates.

One needs to find good algorithms for selecting a
member of a template that separates x from S
(can be quite complicated on its own).

Cutting planes often used in conjunction with branch
and bound.

Can interleave template cuts with Gomory cuts (e.g.
use Gomory cuts when the set of template cuts
“dries out").

15-853 Paged4

11

Practical Developments

+ Good formulations, heuristics and theory

Goal: to get LP solution as close as possible to IP
solution

Disaggregation, adding constraints (cuts)

* Preprocessing

Automatic methods for reformulation

Some interesting graph theory is involved

+ Cut generation (branch-and-cut)

Add cuts during the branch-and-bound

+ Column generation

Improve formulation by introducing an exponential
number of variables.

15-853 Page45

12

