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1 Introduction

Like compression, this is a large field in its own right. In this class we focus on the algorithmic
aspects of the field, paying little or no attention to other issues such as politics.
We begin with a series of basic definitions, building up to some primitives.

1.1 Definitions
Cryptography General term referring to the field.

Cryptology The mathematics behind cryptography.
Cryptanalysis The breaking of codes.

Steganography The hiding of messages. This is an emerging field which studies the hiding
of messages inside messages. A simple example is the hiding of a watermark in a piece
of paper.

Cipher A method or algorithm for encrypting and decrypting.

A few more terms are best described with the aid of Figure 1. Referring to Figure 1,

Plaintext

Keyl—=| Encryption | E(M)=C
Ciphertext

Key2—=| Decryption | DC) =M

Original Plaintext

Figure 1: Flowchart showing the encryption and decryption of a message.

algorithms in which the two keys key1l and key2 are the same are often called private-key
or symmetric algorithms (since the key needs to be kept private) and algorithms in which
the two keys are different are often called public-key or asymmetric algorithms (since either
keyl or key2 can be made public depending on the application).

Next we list some commonly used names . ..each name represents a specific role.

Alice initiates a message or protocol.
Bob second participant.
Carol third participant.

Trent trusted middleman.



Eve eavesdropper.

Mallory malicious active attacker.

Finally we define security by asking ourselves what it means to be secure. There are two
definitions.

Unconditional Security. An algorithm is unconditionally secure if encrypted messages
cannot be decoded without the key, even with infinite computational resources. In 1943
Shannon proved that for an algorithm to be unconditionally secure, the key must be as
“long” as the message.

An example of a unconditionally secure algorithm is the one-time-pad in which the en-
coder and decoder both have the same random key which is the same length as the message.
The encoder X0Rs the message with the key, the decoder then decodes the message by XORing
what he receives with the same random key. Each random key can only be used once. Such
one-time pads were apparently used in the second-world war. Soldiers would carry around
notepads full of “random” numbers. Once a page was used once, it had to be thrown out. Of
course this is not a true one-time-pad since the random numbers were not truly random. In
fact, as we will see, generating pseudo-random bits and XORing them with a message is one of
the standard encryption techniques. Since the initial state of the generator is comparatively
small, however, this is not unconditionally secure.

Computational Security. Here an algorithm is secure if it is “infeasible” to break—
meaning that no (probabilistic) polynomial time (PPT) algorithm can decode a message.
Unfortunately even under this weaker definition, no current cryptographic algorithm is prov-
ably secure. However, there are many systems that are conjectured to be computationally
secure and no evidence has disproved this yet.

Notice that if P = NP, nothing is secure based on computational cost since we could
effectively nondeterministically try all keys (although we might have to recognize when we
have the right answer).

Cryptoanalytic Attacks There are several types of attacks that can be mounted against
a particular encryption algorithm or protocol. We always assume that the cryptanalyst
has complete knowledge of the encryption/decryption algorithms but does not know the
decryption key. The cryptanalyst is trying to either decrypt the current message or figure
out the key so she can decrypt future messages (or any other means of decrypting future
messages).

Ciphertext-only attack. The cryptanalyst has the ciphertext for many messages all en-
crypted with the same algorithm and key. She knows nothing a priori about the
plaintext.

Known-plaintext attack. The cryptanalyst has the ciphertext generated from know plain-
text. For example, Alice sends Bob a standard file format with a common header. Eve
is listening in and knows the plaintext for the header and sees the ciphertext as it goes
by. In designing such attacks it is often assumed that the plaintext is random.
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Chosen-plaintext attack. The cryptanalyst can select plaintext to encrypt and can see
the corresponding encrypted ciphertext. For example, Eve might send a message to
Alice to forward to Bob. Alice encrypts it, as she does with all her mail, and forwards
it to Bob. Eve listens in.

Chosen-ciphertext attack. The cryptanalyst can select ciphertext to decrypt and can
see the decrypted plaintext. For example, Alice is sending Bob an encrypted message
to forward to Mallory. Mallory intercepts the message and replaces it with his own
ciphertext. Bob decodes the message with his key, and forwards it to Mallory. This
attack can be combined with a chosen-plaintext attack.

1.2 Primitives

Here we define three primitives, one-way functions, one-way trapdoor functions, and one way
hashing functions. These form the basis of almost all cryptographic protocols.

One-way Functions A one-way function y = f(x) is a function where it is easy to compute
y from x, but “hard” to compute x from y. It turns out that the existence of one-way
functions is a necessary condition for the existence of most primitives and protocols in
cryptography, including the existence of secure private and public-key algorithms. Consider
the following example of the relevance of one-way functions in a private-key protocol. If
x is the encryption key, y is the ciphertext, m is the plaintext, and y = f(z) = FE.(m),
then we want it to be easy to compute y (the ciphertext) for a particular key « but hard to
figure out the key x using a known-plaintext attack. Recall that in a know-plaintext attack
we know at least one (y, m) pair. Knowing m defines f, and finding the key x is then the
problem of finding f~!(y). Consider another example in the context of a public-key protocol.
Interpret y = f(x) = Ex(x) where k is the public key and x is the plaintext, and y is the
ciphertext. Since k is public, we again know f, and finding f~!(y) would allow us to decrypt
the ciphertext y. Note that the role of key and plaintext have been swapped in these two
examples.

In defining one-way functions, we have to be very careful by what we mean by hard.
For example we might try to define one-way functions as those in which computing = from
y is NP-hard, but computing y from z is polynomial time (in the size of z). This might
sound like the right definition, and it is in fact not difficult to come up with such functions.
However, this is not a good definition. The problem is that computing = from y could only
be hard in very few cases. For most cases it could be trivial-—only once in a rare while would
a message be secure. The flaw is that the theory of NP-hard problems is based on worst
case performance while instead we would like best-case performance, or at least some form
of average-case. Unfortunately the theory of NP-hard problems does not help us much here.

Rather than trying to find functions that are always hard to invert, it is sufficient to
find functions that are hard to invert in most cases. With such functions we can make the
likelihood of finding an easy case vanishingly small by composing the function. To define
what we mean by “most” we say that a function v(k) : N — R is negligible if it vanishes
faster than the inverse of any polynomial in & (v(k) < 1/p(k) for sufficiently large k).



Definition 1.2.1 A function f:{0,1}* — {0,1}* is one-way if:

1. There exists a PPT (Probabilistic Polynomial Time) algorithm that calculates f(z),
and

2. for every PPT algorithm A there is a negligible function va(k) such that for sufficiently
large k,
Plf(z)=y:ze{0. 1}y = fla);z = A% y)] < valk) .

This basically says that for any PPT algorithm the probability of being able to invert a
particular y is asymptotically vanishingly small. There is also a notion of a weak one-way
function in which the conditions are not as strong.

Unfortunately even assuming that P # NP there is no proof that one-way functions
exist. Since the security of just about all cryptographic protocols rely on their existence, we
are left having to assume they exist. Even though we don’t know they exist, there are many
functions which are both conjectured to be one-way, and after many years of very smart
people trying to disprove this, have still not been broken. Here we list some examples.

Factoring y = u-v, where u and v are primes. If v and v are primes, it is hard to generate
them from y.

Discrete Log y = g“mod p, where p is a prime and g is a generator (i.e. ¢',¢% ¢°, ...
generate all 7 such that 0 <7 < p. This is believed to be about as hard as factoring.

DES with a fixed message y = DES,(M). We will describe DES later. This assumes
that DES is actually a family of functions with increasing key size but the same basic
structure. For a fixed size key, as the real DES is defined, it makes no sense talking
about asymptotics.

One-way Trapdoor Functions This is a one-way function with a “trapdoor”. The
trapdoor is a key that makes it easy to invert the function.

An example is RSA, where the function is y = z*mod N, where N = p- ¢q. p,q, and € are
prime, p and ¢ are trapdoors (only one is needed). So, in public-key algorithms, f(xz) is the
public key (e.g. e, N), whereas the trapdoor is the private key (e.g. p or q).

One-way Hashing Functions A one-way hashing function is written y = H(z). H is a
many-to-1 function, and y is often defined to be a fixed length (number of bits) independent
of the length of x. The function H is chosen so that calculating y from x is easy, but given
a y calculating any x such that y = H(z) is “hard”.

As in the case of one-way functions, one-way trapdoor functions and one-way hashing
functions can be defined with similar formality.



2 Protocols

Here we describe a number of basic protocols, showing possible implementations. We note
that in general a protocol which can be implemented using a private-key cryptosystem can
also be implemented using a public-key cryptosystem—a primary difference is that the former
may require a trusted middleman.

2.1 Digital Signatures

A digital signature is supposed to replace a normal signature. The properties we would like
of such a signature include:

1. Convince a recipient or arbitrator of the author of a message (i.e., make sure that
Mallory cannot forge Alice’s signature, assuming Alice is not malicious).

2. Do not allow repudiation (i.e., make sure that Alice after signing a document does not
come back and claim she did not sign it).

3. Make it impossible to tamper with a signed message without invalidating the signature
(i.e., make sure that Mallory cannot change the contents of a message that Alice has
signed).

Digital signatures can be implemented using either private-key and public-key cryptosys-
tems as illustrated below. It should be pointed out, however, that neither of these schemes
practically address the second goal. This is because Alice could claim that her private-key
had been compromised (e.g., posted on the web) without her knowledge. This problem can
be reduced but not solved by using time stamps. Also the security of the protocols is no
more secure than the components they use, so none of the goals strictly hold.

Trent
Ex, (M) Ex (M+Signature)

Alice Bob

Figure 2: Flowchart showing an implementation of digital signatures using a private-key
cryptosystem.

Using a private-key Cryptosystem: In Figure 2 Alice and Trent share the private key
K 4 and Bob and Trent share the private key K. Trent (a trusted middleman) receives
a message from Alice which he can decrypt using K 4. Because he can decrypt it using
K4, he knows Alice sent the message. He now encrypts the decoded message plus
a signature saying that Alice really sent this message using Kg. He sends this new
version to Bob, who can now decode it using the key Kp.



Ex (M)

Alice Bob

Figure 3: Flowchart showing an implementation of digital signatures using a public-key
cryptosystem.

Using a public-key Cryptosystem: In Figure 3 K is Alice’s private key. Bob decrypts
the message using her public key. The act of encrypting the message with a private
key that only Alice knows represents her signature on the message.

The following is a more efficient implementation using a public-key cryptosystem. In

Ex (H(M)) + M

Alice Bob

Figure 4: Flowchart showing a more efficient implementation of digital signatures using a
public-key cryptosystem.

Figure 4 H(M) is a one-way hash of M. Upon receiving M, Bob can verify that it
indeed come from Alice by decrypting H(M) using Alice’s public key K and checking
that M does in fact hash to the value encrypted.

2.2 Key Exchange

These are protocols for exchanging a key between two people. Again, they can be imple-
mented both with private-key and public-key cryptosystems as follows:

Trent
generates k

Ex, (K) Ex (K)

Alice Bob

Figure 5: Flowchart showing an implementation of key exchange using a private-key cryp-
tosystem.

Using a private-key Cryptosystem: In Figure 5, Alice and Trent share the private key
K4 and Bob and Trent share the private key Kg. Trent generates a key k, then encodes
k with K4 to send to Alice and encodes k with K5 to send to Bob.

Using a public-key Cryptosystem: In Figure 6 K is Bob’s public key. Alice generates
a key k, which she encrypts with Bob’s public key. Bob decrypts the message using
his private key.



Alice Ex (k) Bob

generates k

Figure 6: Flowchart showing an implementation of key exchange using a public-key cryp-
tosystem.

2.3 Authentication

These protocols are often used in password programs (e.g. the Unix passwd function) where
a host needs to authenticate that a user is who they say they are.

Host
Alice f(p) =2y
y stored in table

Figure 7: Flowchart showing a basic implementation of an authentication protocol.

Figure 7 shows a basic implementation of an authentication protocol. Alice sends p to
the host. The host computes f(p). The host already has a table which has y and checks to
see that f(p) =y. f is a one-way function.

To make it less likely that Mallory will be able to pretend to be Alice to the host, sequences
of passwords can be used. Sequences of passwords are used by having Alice give the host
a random number R. The host computes zg = R,z; = f(R),z2 = f(f(R)),...xn = f*(R)
and gives all but z,, to Alice. The host keeps z,,. Now, the first time Alice logs in, she uses
T,—1 as the password. The host computes f(z,-1) and compares it to the z, which it has.
If the two are equivalent, Alice has been authenticated. Now the host replaces x,, with z,_;.
The next time Alice logs in, she uses z,_5. Because each password is only used once by
Alice, and f is a one-way function, sequences of passwords are more secure.

2.4 Some Other Protocols

Some other protocols which are not discussed here are:
e Secret sharing
e Timestamping services
e Zero-knowledge proofs
e Blind-signatures
o Key-escrow

e Secure-elections

e Digital Cash



3 Some Number Theory

3.1 Groups: Basics

A group is a set G with binary operation * defined on G, such that the following properties
are satisfied:

1. Closure. For all a,b € GG, we have ax b € G.
2. Associativity. For all a,b,c € G, we have (a *b) * ¢ = a * (b* c).
3. Identity. There is an element [ € (G, such that for alla € G, a*x [ = [ *x a = a.

4. Inverse. For every a € (&, there exists a unique element b € (G, such that a % b =
bxa=1.

For example, integers Z under the operation of addition form a group: identity is 0 and the
inverse of a is —a.

3.2 Integers modulo n

For prime p, Z, is a group of integers modulo p:
e 7,=41,2,3,....,p—1}
e x = multiplication mod p

o [ =1

e a '=axal=1

(mod p)

Example: Z; = {1,2,3,4,5,6}. Note that if p is not a prime, Z, is not a group under *,
because there isn’t necessarily an inverse. All encryption algorithms assume existence of an
inverse. So, for n not prime, we define:

e Z:={m : 1 <m<n, ged(n,m) =1} (i.e. integers that are relatively prime to n)
e x = multiplication mod n

o /=1

ea'=a*xat=1 (modp)

Example: 77, = {1,3,7,9}, 171 =1,3"' =7, 77! =3, 97! = 9. The number of elements in
the group Z* is called the Fuler Phi function, and denoted as ¢(n). Lets say that n factors
into the product of primes p'ph% ... pF. where the ki are the powers of each prime. It is
not hard to show that ¢(n) = [T\, p¥* ' (p; — 1). For example Z;, = {1,5,7,11}, 12 = 223,

and ¢(12) = 22712 - 1)3'"1(3 — 1) = 4. If n is a product of two primes p and r, then
¢(n) = (p—1)(r —1).
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3.3 Generators (primitive elements)

For a group G, element ¢ € (G is a generator of G if G = {a" : n € Z} (ie. G is
“generated” by the powers of a). For Z; we have:

2 3 4

=
=
&=
=
o
=
(e

Sy OU e W R

el S L

— o o | 8

(N N R C R
cb@r—kmr—kr—\'
SO U s | E

Here, 3 and 5 are the generators of Z; while 1, 2, 4 and 6 are not since none of them will
generate 3. For Z;, we have:

x| 2? | 2® | 2?
1y 1]1]1
3|19 |71
TI1913 |1
911191

S0, 3 and 7 are the generators of Z7,. Note that any element to the power of the size of the
group gives identity. In fact, there’s a theorem stating that this is always true:

Theorem 3.3.1 For all finite groups G and for any a € G, a|S! = I, where I is the identity
element in G.

From this theorem, it follows that for a € Z,, al??! = a»=* = 1, and for two primes p and ¢
and a € 7, alZral = qP=1(@=1) = [ The latter fact is essential for RSA.

3.4 Discrete logarithms

If g is a generator of Z, (or Zy if p is not prime), then for all y there is a unique z such
that y = ¢* (mod p). We call this « the discrete logarithm of y, and use the notation
log,(y) =z (mod p).

For Example: in Z7, logs(6) = 3, but log,(5) = @ (no inverse), and log,(2) = {2,5}

(multiple inverses) because 4 is not a generator of Z;.

4 Private-key Algorithms

We discuss block ciphers and then briefly introduce the well known and widely used block
cipher DES. We begin discussion of how DES works, saving much for the next lecture.
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4.1 Block ciphers

Block ciphers divide the message to be encrypted into blocks (e.g. 64 bits each) and then
convert one block at a time. Hence:

Notice that if M; = M;, C; = C;. This is undesirable because if someone (Eve or Mallory)
notices the same block of code going by multiple times, they know that this means identical
blocks were coded. Hence they’ve gained some information about the original message.
There are various ways to avoid this. For example, something called cipher block chaining
(CBC) encrypts as follows.
Ci = Ep(Cisi & M)

This has the effect that every code word depends on the code works that appear before it
and are therefore not of any use out of context. Cipher block chaining can be decrypted as
follows.

M; = Ci_1 @ Di(Cy)

Unfortunately, this could still cause problems across messages. Note that if two messages
begin the same way, their encodings will also begin the same way (but once the two messages
differ, their encodings will be different from then on). Because many messages that people
want to send begin with standard headers (e.g. specifying the type of file being sent), this
means someone could gain information about the message being sent by creating a table of
all the encrypted headers that they have seen. One way to fix this problem is to attach a
random block to the front of every message.

4.1.1 Feistel networks

Many block ciphers take the form of Feistel networks. The structure of a Feistel network is
illustrated in Figure 8.

In a Feistel network, the input is divided evenly into a left and right block, and the output
of the 7’th round of the cipher is calculated as

L; = R
R, = Li1& f(Ri-1, K))

The good property of Feistel networks is that f can be made arbitrarily complicated, yet
the input can always be recovered from the output as

Ry = L;
Li.v = R& f(L,K))

Therefore even if f is not invertible, the algorithm itself will be invertible, allowing for
decryption (if you know the K;’s, of course).

12
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Li R,

Figure 8: Feistel Network

Feistel networks are part of DES, Lucipher, FEAL, Khufu, LOKI, GOST, Blowfish, and
other block cipher algorithms. You can see the Feistel structure in one round of DES, which
is depicted in Figure 9.

4.1.2 Some Building Blocks

There are several building-blocks that are commonly used within each round of block ciphers.
Here we briefly describe some of them.

Substitution: A fixed mapping. For example:

000 — Ol1
001 — 101
010 — 000
011 — 001
100 — 100

This is often stored as a table. Since storing a large substitution is impractical (for b-bits it
would require 2° table entries), substitutions are most often made on subsets of the bits.

Permutation: A rearrangement of order. For example:
boblbgbgb4 — b2b4bgbobl

This is also often stored as a table.
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Expansion Permutation: A rearrangement of order that may repeat some bits of the
input in the output. For example:

boblbgbg — bgbl bgbobgbo

4.1.3 Security and Block Cipher Design Goals

This raises the question of how to design f so that the cipher is secure.

Confusion, diffusion, and the avalanche effect are three goals of block cipher design.
Confusion decorrelates the output from the input. This can be achieved with substitutions.
Diffusion spreads (diffuses) the correlations in the input over the output. This can be
achieved with permutations: the bits from the input are mixed up and spread over the
output. A good block cipher will be designed with an avalanche effect, in which one input
bit rapidly affects all output bits, ideally in a statistically even way. By “rapidly” we mean
after only a few rounds of the cipher.

The ideal f for a block cipher with 64-bit blocks would be a totally random 64-bit — 64-
bit key-dependent substitution. Unfortunately this would require a table with 26%.2% = 2120
entries for a cipher with 56-bit keys (like DES): for each of the 2°¢ keys you’d need a mapping
from each of the 2% possible inputs to the appropriate 64-bit output.

Since this would require too much storage, we approximate the ideal by using a pseu-
dorandom mapping with substitutions on smaller blocks. An algorithm that repeatedly
performs substitutions on smaller blocks (so the storage requirements for the mapping are
feasible) and permutations across blocks is called a substitution-permutation network. This
is an example of a product cipher because it iteratively generates confusion and diffusion. A
cipher with the same structure in each round, repeated for multiple rounds, is called an wter-
ated block cipher. DES is an example of an iterated block cipher, a substitution-permutation
network, and a product cipher.

4.2 DES (Data Encryption Standard)

DES was designed by IBM for NIST (the National Institute of Standards and Technology)
with “consultation” from the NSA in 1975.

DES uses 64-bit blocks and 56-bit keys. It is still used heavily, for example by banks
when they encrypt the PIN that you type in at an ATM machine. DES was designed with
the goals mentioned in Section 4.1.3 in mind. It was also designed to resist an attack called
differential cryptanalysis, which was not publicly known at the time. Because of its short
key, however, DES on its own is no longer very safe—supercomputers can crack it in a few
hours. Based on DES, one can build an algorithm called 3-DES which is conjectured to be
considerably safer.

DES uses a 16-round Feistel network. A single round is shown in Figure 9 and we will
describe each of the components of the round.

4.2.1 E-box and P-box

The DES FE-box (labeled as the expansion permutation in Figure 9) takes 32 bits as input
and produces 48 bits as output as shown in Figure 10. The 48 output bits are the 32 input

14



SR B

\ J

Expansion Compression
ation Permutation

[
%

S-Box Substitution

P-Box Permutation

S e

(Schneier, figure 12.2)

Figure 9: One round of DES (there are 16 rounds all together).

bits with some of the input bits repeated. In particular, for each block of 4 input bits, the
first and fourth bits appear twice in the output while the two middle bits appear once. The
E-box therefore enhances the avalanche effect, because 4 outputs from an S-box in round R
will become the input to 6 S-boxes in round R+1. The E-box also enables the use of 48 bits
of the key in the XOR operation that follows the E-box.

The DES P-Bou is a straight 32-bit permutation (every input bit is used exactly once in
the output)

4.2.2 S-box

There are 8 S-boxes; each takes six bits as input and produces 4 bits as output. Some
important security properties of the S-boxes are

e The output bits are not a linear function of the inputs, nor close to a linear function
o A difference of 1 bit in the input to an S-box affects at least 2 bits in the output

e For any 6-bit input difference 7; & 15, no more than 8 of the 32 possible input pairs
with difference 7; & 75 may result in the same output difference.

We will see that this last property is important in making DES resistant to differential
cryptanalysis.

15



32

48

12 3 4 56 7 8 9 10 11 12 13 14 15 16

12 3 456 78 9101112 1314 1516 1718 1920 21 22 2324

(Schneier fig. 12.3)

Figure 10: The DES E-box

4.2.3 Weaknesses of DES

e Some keys are insecure. Of the 2°¢ possible DES keys, 64 of them are poor choices.

Luckily this is few enough that a DES encryption program can check to see if the key
you want to use is one of these bad keys, and if so tell you not to use it.

— Weak keys: There are four weak keys: 0x00000000000000, 0x0000000FFFFFFF,

0xFFFFFFF0000000, and OxFFFFFFFFFFFFFFEF. When you use a weak key, the
subkey used in each DES round is identical. This makes cryptanalysis a lot easier.
It also makes Ei(X) = Di(X) since DES decryption follows the same algorithm
as encryption but uses the subkeys in the reverse order. (If the subkeys are all
the same, then obviously the forward and reverse order of them are identical.)

Semiweak keys: There are twelve semiweak keys. When you use a semiweak key,
there are only two different subkeys used among the 16 DES rounds (each unique
subkey is used 8 times). This makes cryptanalysis easier.

Possibly weak keys: There are forty-eight possibly weak keys. When you use a
possibly weak key, there are only four unique subkeys generated; each one is used
4 times. Again, this makes cryptanalysis easier.

e S-box 5 is strongly biased. Refer to Figure 11. by & by & by & by = a; for 12 of the

64 possible inputs to S-box 5. Ideally this should be true for exactly half (32) of the
possible inputs. Linear cryptanalysis can take advantage of this bias.

4.2.4 DES in the Real World

DES is used frequently in the “real world.”

16
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Figure 11: 5-Box 5

Banks

— bank machines

— inter-bank transfers
e ISDN (some)

Kerberos

e Unix password authentication (almost)

Privacy-enhanced mail (PEM)

DES is not used in many newer systems because of the small 56-bit keysize. However,
triple-DES (or 3-DES) provides significantly more security while still using the DES algo-
rithm. The basic idea is to encrypt multiple times using different keys. In 3-DES,

C = Exi(Dr2(Exks(P)))
P = Dgs(Er2(Dk1(C)))

Note that you cannot simply use C' = Egi(Eg2(P)) for DES (or any other block al-
gorithm) and get much better security than simply using one key. If the algorithm is a
group, then this is completely equivalent to saying C' = FEg3(P) for some K3 and you have
gained nothing. If the algorithm is not a group, there is a special attack which lets you find
the key in 2"*! encryptions for an algorithm with an n-bit key, instead of the expected 2%"
encryptions. DES is not a group.

4.3 Differential Cryptanalysis

Define AV =V, @&V, and AY =Y, Y.

Refer to Figure 12 which shows part of one round of DES. The basic idea behind differ-
ential cryptanalysis is that for any given AV, not all values of AY are equally likely. If a
cryptanalyst is able to force someone to encrypt a pair of plaintext messages with a AV that
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Figure 12: Differential Cryptanalysis

he knows, he can look at the corresponding pair of encrypted messages, compute their AY',
and use AV, AY, and the V’s to get some information about Key,. Of course, you need
lots of pairs of messages before the deltas become statistically significant enough to give you
information about the key.

This idea is applied one round at a time. The more rounds there are in the cipher,
the harder it is to derive the original key using this technique because the statistical bias
decreases with each round.

Differential cryptanalysis makes 14-round DES significantly easier to break than brute
force, but has little effect on the security of 16-round DES. The designers of DES knew
about differential cryptanalysis and designed the S-boxes (and chose the number of rounds)
to resist this attack.

4.4 Linear Cryptanalysis

Linear cryptanalysis allows an attacker to gain some information about one bit of a key if
he knows a plaintext and its corresponding ciphertext. The idea is that (the XOR of some
plaintext bits) & (the XOR of some ciphertext bits), a one-bit by one-bit XOR that gives
you a one-bit result, gives you information about the XOR of some of the key bits. This
works when there is a bias in the linear approximation for an S-box. S-box 5 is the most
biased S-box for DES.

Refer to Figure 13 which shows the operation of S-box 5. If you use linear cryptanalysis,
knowing something about i36 (the second input bit to S-box 5, if we number input bits to
the array of S-boxes starting with bit 1 on the left) and by7, bis, big, and by (the seventeenth
through twentieth output bits from the array of S-boxes) will tell you something about the
26’th bit of the key used in that round. This is because (1) i56 is the XOR of the 26’th bit of
the key used in that round, with the 26’th bit of the output from the expansion permutation
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Figure 13: Linear Cryptanalysis using S-Box 5

for that round (which you know if you know the input bits to that round), and (2) S-box
5 has the following statistical bias: 136 = b1y & b1s P b1g P byo for only 12 of the 64 possible
inputs to S-box 5. Armed with enough plaintext-ciphertext pairs, linear approximations for
the S-boxes, and a model of the S-boxes’ biases, you can do statistical analysis to learn about
the key.

Linear cryptanalysis is the most successful attack on DES. Still, it’s not much better
than a brute force key search.

4.5 IDEA

IDEA, illustrated in Figure 14, is another block cipher. It operates on 64-bit blocks and uses
128-bit keys. IDEA is a product cipher. It composes three algebraic groups:

e Addition (which provides the diffusion property)

e Multiplication (which provides the confusion property)
e XOR

IDEA has some weak keys, but they’re not weak in the same sense as DES keys. (If you
use a weak IDEA key, an attacker can figure out which key you used by using a chosen-
plaintext attack.) There are 2°* weak IDEA keys, but since there are so many more possible
IDEA keys than DES keys, the chances of picking one of these randomly is smaller than the
chance of picking one of the weak DES keys randomly.

Eight-round IDEA has stood up to all attacks to date. IDEA is used in PGP.
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(Schneier fig. 13.9)
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Figure 14: The IDEA cipher
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4.6 Block Cipher Encryption Speeds

Encryption Speeds of some Block Ciphers on a 33 MHz 4865X

| algorithm | speed (KB/sec) | algorithm | speed (KB/sec) |

Blowfish (12 rounds) 182 MDC (using MD4) 186
Blowfish (16 rounds) 135 MDC (using MD5) 135
Blowfish (20 rounds) 110 MDC (using SHA) 23
DES 35 NewDES 233

FEAL-8 300 REDOC 1I 1
FEAL-16 161 REDOC III 78
FEAL-32 91 RC5-32/8 127

GOST 53 RC5-32/12 86

IDEA 70 RC5-32/16 65

Khufu (16 rounds) 221 RC5-32/20 52
Khufu (24 rounds) 153 SAFER (6 rounds) 81
Khufu (32 rounds) 115 SAFER (8 rounds) 61
Luby-Rackoff (using MD4) 47 SAFER (10 rounds) 49
Luby-Rackoff (using MD5) 34 SAFER (12 rounds) 41
Luby-Rackoff (using SHA) 11 3-Way 25
Lucifer 52 Triple-DES 12

from Schneier, Table 14.3

4.7 Stream ciphers

Block ciphers operate on blocks of plaintext; for each input block they produce an output
block. Stream ciphers usually encrypt/decrypt one bit at a time. The difference is illustrated
in Figure 15, which depicts the operation of a typical block cipher and a typical stream cipher.
Stream ciphers seem to be more popular in Europe, while block ciphers seem to be more

popular in the United States.

A stream cipher uses a function (F' in the picture) that takes a key and produces a stream
of pseudorandom bits (b; in the picture). One of these bits is XORed with one bit of the
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Figure 16: A block cipher in CBC mode

plaintext input (m;), producing one bit of the ciphertext output (¢;).

A block cipher mode combines the cipher algorithm itself with feedback (usually). Fig-
ure 16 illustrates a block algorithm in CBC (Cipher Block Chaining) mode. Because the
ciphertext for block i-1 is used in calculating the ciphertext for block ¢, identical plaintext
blocks will not always encrypt to the same ciphertext (as is true when a block algorithm is
used directly without feedback).

Block ciphers are typically more efficiently implemented in software than stream ciphers
because block ciphers operate on many bits at a time.

4.8 RC4

RCY is a stream cipher that generates one byte at a time. The key is used to generate a
256-element table Sg, S1, 52, ... 5255 which contains a permutation of the numbers 0 to 255.
Once this table has been initialized, the following pseudocode for RC4 generates one byte
on each round.

i=9=0
while (generating) {
i = (i+1) mod 256
j = (j+S_1i) mod 256
swap S_1i and S_j
t = (S_1i + S_j) mod 256
output = S_t

The byte-sized output is XORed with a byte of plaintext to produce a byte of ciphertext
on each iteration.
RC4 is used in Lotus Notes, Oracle Secure SQL, and other products.

5 Public-Key Algorithms

Public-key algorithms are based on one-way trapdoor functions. As previously mentioned,
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Figure 17: One-way trapdoor function

a one-way function is “easy” to apply in the forward direction but “hard” to apply in the
reverse direction. One-way functions with a trapdoor are “easy” to apply in the forward
direction and “hard” to apply in the reverse direction unless you know a secret. If you know
the secret, then the function is also “easy” to apply in the reverse direction.

Public key algorithms use two keys: a private key and a public key. Alice generates a
public-private keypair. She publishes her public key and keeps the corresponding private
key private. To send Alice a message, Bob encrypts using Alice’s public key. To decrypt the
message, Alice uses her private key. In contrast to private-key encryption, two parties wishing
to communicate using a public-key algorithm don’t need to meet in person to exchange a
secret key — they just need to look up each other’s public keys in the public key directory.
Exactly how to implement a secure public key distribution system (e.g. a secure public key
directory) is quite another story.

Encrypting a message with a public key can be thought of as applying the “forward”
direction of a one-way function. The corresponding private key is the “trapdoor” that makes
the one-way function easy to reverse, allowing the encrypted message to be decrypted. This
is illustrated in Figure 17.

5.1 Merkle-Hellman Knapsack Algorithm

The Merkle-Hellman Knapsack Algorithm is a public-key algorithm that derives its “security”
from the NP-complete knapsack problem. The designers of this algorithm believed that to
decrypt a message encrypted using the algorithm, a person would need to solve the knapsack
problem. Unfortunately they were wrong: while the knapsack problem itself is NP-complete,
the instances of the problem which are used for encryption using their algorithm make it
possible to decrypt without having to solve an NP-complete problem.

The knapsack problem says: Given a vector M of weights and a sum 95, calculate the
boolean vector B such that Y}, B;M; = 5.

How can this be turned into a public-key algorithm? To encrypt, first break the input
into blocks of size ||M]| bits. (M should be a very long vector.) For each block calculate
a sum C; = Y; B;M;, where B; is the plaintext. The series of C; values calculated is the
ciphertext. The vector M used to encrypt each block is the public key.
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The corresponding private key is a different vector of weights; we’ll call it M’. M has the
following important properties: (1) it is a series of superincreasing weights (we assume M
was not), and (2) ¥°; B;M! = S — in other words, M’ can also be used to solve for B given S.

The facts that makes this a sensible public-key algorithm are that (1) one can find B
given a superincreasing M’ in polynomial time, but not in polynomial time if given only a
non-superincreasing M, and (2) it is easy to turn a superincreasing knapsack sequence into
a normal knapsack sequence. (2) Makes it easy to compute your public key once you’ve
selected your private key. Unfortunately, the way the authors generate the public key from
the private key makes it possible for an adversary to compute the private key from the public
key; the message can then be decrypted in polynomial time. This is the weakness in the
algorithm.

The U.S. patent on the Merkle-Hellman knapsack public key algorithm expired on August
19, 1997.

5.2 RSA

While Merkle-Hellman’s security was based on the difficulty of solving the knapsack prob-
lem, the RSA algorithm’s security is based on the difficulty of factoring large numbers (in
particular, products of large primes). This means that if factoring is easy, then breaking
RSA becomes easy. However, it has not been shown that RSA is equivalent to factoring (i.e.
there might be another way to break RSA).

Here are the 5 steps of the RSA algorithms,

1. Pick two random large primes p and ¢ (on the order of a few hundred digits). For
maximum security, choose p and g to be of the same length.

2. Compute their product n = pq.

3. Randomly choose the encryption key e, such that e and (p — 1)(¢g — 1) are relatively
prime. Then, find the decryption key d, such that ed mod (p — 1)(¢ — 1) = 1. Le.,
ed = k(p—1)(¢ — 1) + 1, for some integer k. The numbers e and n are the public
key, and the numbers d and n are the private key. The original primes p and ¢ are

discarded.
4. To encrypt a message m: ¢ =m° (mod n).

5. To decrypt a cipher ¢: m = ¢? (mod n).

Why does this work? Note that m = ¢ = (m®)? = m® = mFP-D=D+ = (p=Dla=D)ky,
(all operations modn). But m is relatively prime to n (because n = pg and p, ¢ are primes),
and so m is in Z*. By the theorem in Section 3.3, m to the power of the size of Z* is 1, so
(mP=DE=Nky = 1% = m. In practice, we pick small e to make m® cheaper.

The performance figures of RSA (relative to block ciphers) are fairly unimpressive. Run-
ning on Sparc 2 with 512-bit n, 8-bit e, the encryption throughput is 0.03 secs/block, which
translates into 16 Kbits/sec. The decryption throughput is even worse with 0.16 secs/block
(4 Kbits/sec). Such speeds are too slow even for a modem. With special-purpose hardware
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(circa 1993), we can boost the throughput to 64 Kbits/sec which is fast enough for a modem,
but is slow for pretty much everything else. In comparison, IDEA block cipher implemented
in software can achieve 800 Kbits/sec. Because of its slowness, RSA is typically used to
exchange secret keys for block ciphers that are then used to encode the message.

In the “real world”, the RSA algorithm is used in X.509 (ITU standard), X9.44 (ANSI
proposed standard), PEM, PGP, Entrust, and many other software packages.

5.3 Factoring

The security of RSA is based on the difficulty of factoring large numbers. The state of the
art in factoring is as follows:

o Quadratic sieve (QS): T'(n) = ¢1FOMN ()2 (In{ln(m))> “This algorithm was used in 1994
to factor 129-digit (428-bit) number. It took 1600 Machines 8 months to complete this
task.

e Number field sieve (NFS): T'(n) = ((1923+0(1))(n(n) ¥ (In(in(r)))3 P algorithm is about
4 times faster than QS on the 129-digit number and is better for numbers greater
than 110 digits. It was used in 1995 to factor a 130 digit (431-bit) number with
approximately the same amount of work as taken by QS on 129-digits.

More recently (August 1999) it was be used to factor a 155 digit (512 bit) number.
This is significant since 512 bits is the number of bits used by many implementations
of RSA, therefore arguing these implementations are no longer secure. However, it
took 35.7 CPU years (about 8000 MIPS years) to compute spread across about 200
machines.

5.4 ElGamal Algorithm

The ElGamal encryption scheme is based on the difficulty of calculating discrete logarithms.
The following are the steps of ElGamal:

1. Pick a prime p.
2. Pick some g, such that g is a generator for Z,.

3. Pick random x and calculate y, such that y = ¢* (mod p). Now, distribute p, g, and
y as the public key. The private key will be .

4. To encrypt, choose a random number k, such that k is relatively prime to p — 1.
Calculate @ = ¢* (mod p) and b= y*m (mod p). The cipher is the pair (a, b).

5. To decrypt, calculate m = a% (mod p).

Why does ElGamal work? Because m = a% = ygkkT = g;% = m (mod p). To break
ElGamal, one would need to either figure out = from y or £ from a. Both require calculating
discrete logs which is difficult.

Performance-wise, ElGamal takes about twice the time of RSA since it calculates two

powers. It is used by TRW (trying to avoid the RSA patent).
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6 Probabilistic Encryption

One of the problems with RSA encryption is that there is a possibility of gaining some infor-
mation from public key. For instance, one could use public key E, ;. to encrypt randomly
generated messages to see if it is possible to get some information about the original message.

This problem can be remedied by mapping every message m to multiple ¢ randomly.
Now, even if cryptoanalist has ¢, m, and Epu;., she cannot tell whether ¢ = Ex(m) (i.e. k
was used to encrypt m).

One such probabilistic encryption scheme, Blum-Goldwasser, is based on generating
strings of random bits.

6.1 Generation Random Bits

This method is called Blum-Blum-Shub (BBS) and is based on the difficulty of factoring:

given a single bit, predicting the next bit is as hard as factoring. Here are the steps:

1. Pick primes p and ¢, such that p mod 4 = ¢ mod 4 = 3.
2. Calculate n = pg (called Blum integer).

3. For each m we want to encrypt, choose random seed z that is relatively prime to n
(ged(xz,n) = 1).
4. The state of the algorithm is calculated as follows:
e 7o =2? (mod n)
e z;=x?, (modn)
5. The 1" bit is then calculated by taking the least-significant bit of ;.
Note that now we have x; = xf;m"d(p‘l)(q‘l) (mod n) and g = :I:Z-_leOd(p_l)(q_l) (mod n).
In other words, given zg and th prime factors p and g of n it is not hard to generate any

i bit and vice versa. We shall now see how these properties can be used to construct an
encryption scheme.

6.2 Blum-Goldwasser

Blum-Goldwasser is a public key probabilistic encryption scheme using BBS. The public key
is n, the private key is the factorization of n, i.e. p and ¢. The following are the steps to
encrypting a message:

1. For each bit m; of the message (0 < i <) compute ¢; = b; @ m; where b; is it" bit of
BBS (as in usual stream cipher).

2. Append z; to the end of message, where [ is the length of ciphertext in bits.
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To decrypt, we use the private key p and ¢ to generate g from z; (z9 = xl_leOd(p_l)(q_l))

and then use the BBS formula to regenerate z;, and hence b;. The security of this scheme is
based on difficulty of calculating zq from z; without knowing the factorization of n.

Note that this encryption scheme achieves the desired probabilistic property: each time
we code the same message with the same key we get different cipher (provided z is chosen
randomly for each message). Furthermore the extra information we need to send (z;) is
minimal.

7 Quantum Cryptography

[This section has been expanded based on the material from
http://eve.physics.ox.ac.uk/NewWeb/Research/crypto.html]

Quantum cryptography makes use of the fact that measuring quantum properties can change
the state of a system, e.g. measuring the momentum of a particle spreads out its position.
Such properties are called non-commuting observables. This implies that someone eaves-
dropping on a secret communication will destroy the message making it possible to devise a
secure communication protocol.

Photon polarization is one such property that can be used in practice. A photon may be
polarized in one of the four polarizations: 0, 45, 90, or 135 degrees. According to the laws
of quantum mechanics, in any given measurement it is possible to distinguish only between
rectilinear polarizations (0 and 90), or diagonal polarizations (45 and 135), but not both.
Furthermore, if the photon is in one of the rectilinear polarizations and someone tries to
measure its diagonal polarization the process of measurement will destroy the original state.
After the measurement it will have equal likelihood of being polarized at 0 or 90 independent
of its original polarization.

These properties lead to the following is a key exchange protocol based on two non-
commuting observables (here, rectilinear and diagonal polarizations):

1. Alice sends Bob photon stream randomly polarized in one of 4 directions.

2. Bob measures photon polarization, choosing the kind of measurement (diagonal or
rectilinear) at random. Keeping the results of the measurement private, Bob then tells
Alice (via an open channel), the kinds of measurement that he used.

3. Alice tells Bob which of his measurements are correct (also via an open channel).

4. Bob and Alice keep only the correct values, translating them into 0’s and 1’s.

Although this scheme does not prevent eavesdropping, Alice and Bob will not be fooled,
because any effort to tap the channel will be detected (Alice and Bob will end up with
different keys) and the eavesdropper will not have the key either (since she is very unlikely
to have made the same measurements as Bob).

While practical uses of quantum cryptography are yet to be seen, a working quantum key
distribution system has been built in a laboratory at the IBM T. J. Watson research center.
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Figure 18: Kerberos authentication steps.

This prototype implementation can transmit over admittedly modest length of 30cm at rate
it 10 bits/second. Nevertheless, as new photon sources, new photo-detectors and better
optical fibers are being built, we shall see quantum cryptography becoming more practical.

8 Kerberos (A case study)

Kerberos is a trusted authentication protocol. A Kerberos service, sitting on the network,
acts as a trusted arbitrator. Kerberos provides secure network authentication, allowing
a person to access different machines on the network. Kerberos is based on private-key
cryptography (DES).

8.1 How Kerberos Works

The basic Kerberos authentication steps are outlined in Figure 18. The client, a user or
an independent software program, requests a Tlicket-Granting Ticket (TGT) from Kerberos
server located on a trusted and secure machine. Kerberos replies with this ticket, encrypting
it with client’s secret key. To use the requested service, the client requests a ticket for that
server from Ticket-Granting Sever (TGS). TGS replies to client with the server ticket, which
the client uses along with authenticator to request services from the server.

8.2 Tickets and Authenticators

Kerberos uses two kinds of credentials: tickets and authenticators. The tickets have the
following format (refer to Table 1 for notation):

T.s =s,{c,a,v, K. s} K (1)
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c client

s server

a client’s network address

v beginning and ending validity time for ticket
t timestamp

K, x’s secret key

K., session key for x and y

{m} K, || m encrypted in z’s secret key

T, x’s ticket to use y

Az y authenticator from z to y

Table 1: Kerberos Notation

A ticket is good for a single server and a single client. It contains the client’s name and
network address ¢, a, the server’s name s, a timestamp v, and a session key K. Once the
client gets this ticket, he can use it multiple times to access the server — until the ticket
expires.

The authenticator takes this form:

Acs ={c,t key} K. s (2)

The client generates an authenticator each time he wants to use service on a server. The
authenticator contains the clients name ¢, a timestamp ¢, and an optional additional session
key. An authenticator can only be used once, but the client can regenerate authenticators
as needed.

8.3 Kerberos messages

There are five Kerberos messages:

1. Client to Kerberos: ¢,tgs. This message is sent whenever the client wants to talk to
Ticket-Granting Server. Upon receipt of this message, Kerberos looks up client in its
database and generates the session key to be used between the client and TGS.

2. Kerberos to client: {K. g5 } Koy {1195} Kigs. There are two parts in this message, one
containing session key to be used between client and TGS (K.:,s) encrypted with
clients key (K.), and the other containing TGT (7,,,s) encrypted with TGS’s secret
key (Kiys). The client cannot decrypt this latter part, but uses it to talk to TGS. Note
that Kerberos does not communicate with TGS directly and the tickets have limited
lifetime.

3. Client to TGS: {Acs} K tgs{Tetgs} Kigs. This is the message sent by the client to TGS.
The first part of this message contains information that proves client’s identity to TGS.
The second part is precisely the TGT Kerberos sent to client.

4. TGS to client: {K. s} K. 1gs{Tes}Ks. This message is similar to Kerberos’ response to
clients initial request. It contains the session key to be used between client and the
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server as well as the ticket for the client to use when requesting service. These also
have limited lifetimes, depending on the kind of service requested.

5. Client to server: {A. } K.s{T.s} K;. With this message the client authenticates itself
to the server as well as presents it with the ticket it received from TGS.
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