Downloaded 03/25/21 to 173.75.42.126. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

Batch-Parallel Euler Tour Trees

Thomas Tseng*

Abstract

The dynamic trees problem is to maintain a forest un-
dergoing edge insertions and deletions while support-
ing queries for information such as connectivity. There
are many existing data structures for this problem, but
few of them are capable of exploiting parallelism in the
batch setting, in which large batches of edges are in-
serted or deleted from the forest at once. In this paper,
we demonstrate that the Euler tour tree, an existing
sequential dynamic trees data structure, can be paral-
lelized in the batch setting. For a batch of k updates
over a forest of n vertices, our parallel Euler tour trees
perform O(klog(1+n/k)) expected work with O(logn)
depth with high probability. Our work bound is asymp-
totically optimal, and we improve on the depth bound
achieved by Acar et al. for the batch-parallel dynamic
trees problem [1].

Our main building block for parallelizing Euler tour
trees is a batch-parallel skip list data structure, which
we believe may be of independent interest. Euler tour
trees require a sequence data structure capable of joins
and splits. Traditionally, balanced binary trees are
used, but they are difficult to join or split in parallel
when processing batches of updates. We show that skip
lists, on the other hand, support batches of joins or
splits of size k over n elements with O(klog(1l + n/k))
work in expectation and O(logn) depth with high
probability. We also achieve the same efficiency bounds
for augmented skip lists, which allows us to augment
our Euler tour trees to support subtree queries.

Our data structures achieve between 67-96x self-
relative speedup on 72 cores with hyper-threading on
large batch sizes. Our data structures also significantly
outperform the fastest existing sequential dynamic trees
data structures empirically.

" *Computer Science Department, Carnegie Mellon University.
thomasts@alumni.cmu.edu

tComputer Science Department, Carnegie Mellon University.
ldhulipa@cs.cmu.edu

fComputer Science Department, Carnegie Mellon University.
guyb@cs.cmu.edu

Laxman Dhulipalal

Guy Blelloch?

1 Introduction

In the dynamic trees problem proposed by Sleator and
Tarjan [45], the objective is to maintain a forest that
undergoes link and cut operations. A link operation
adds an edge to the forest, and a cut operation deletes
an edge. Additionally, we want to maintain useful
information about the forest. Most commonly we are
concerned with whether pairs of vertices are connected,
but we might also be interested in properties like the
size of each tree in the forest. Sleator and Tarjan first
studied the dynamic trees problem in order to develop
fast network flow algorithms [45]. Dynamic trees are
also an important component of many dynamic graph
algorithms [45, 21, 24, 4, 26].

In the batch-parallel version of the dynamic trees
problem, the objective is to maintain a forest that un-
dergoes batches of link and cut operations. Though
many sequential data structures exist to maintain dy-
namic trees, to the best of our knowledge the only batch-
parallel data structure is a very recent result by Acar
et al. [1]. Their data structure is based on paralleliz-
ing RC-trees, which require transforming a forest into a
forest with bounded-degree in order to perform contrac-
tions efficiently [2]. Obtaining a data structure without
this restriction is therefore of interest. Furthermore, it
is of intellectual interest whether the arguably simplest
solution to the dynamic trees problem, Euler tour trees
(ETTs), are capable of being parallelized when given
batches of edge insertions and deletions.

In this paper, we answer this question in the
affirmative and show that Euler tour trees, a data
structure introduced by Henzinger and King [21] and
Miltersen et al. [34], achieve asymptotically optimal
work and optimal depth in the batch-parallel setting.
We note that batching is not only useful for parallel
applications but also for single-threaded applications.
Our O(klog(1+n/k)) work bounds for Euler tour trees
and augmented skip lists beat the O(klogn) bounds
achieved by performing each operation one at a time on
standard sequential data structures.

Our main contributions are as follows:

Skip lists for simple, efficient parallel joins and
parallel splits. We show that we can perform £ joins or
k splits over n skip list elements with O(klog(1+n/k))

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

mailto:thomasts@alumni.cmu.edu
mailto:ldhulipa@cs.cmu.edu
mailto:guyb@cs.cmu.edu

Downloaded 03/25/21 to 173.75.42.126. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

expected work and O(logn) depth with high probabil-
ity!. To the best of our knowledge, we are the first to
demonstrate such efficiency for batch joins and splits on
a sequence data structure supporting fast search. Our
skip list data structure can also be augmented to sup-
port efficient computation over contiguous subsequences
within the same efficiency bounds.

A parallel Euler tour tree. We apply our skip lists
to develop Euler tour trees that support parallel bulk
updates. Our Euler tour tree algorithms for adding and
for removing a batch of k edges achieve O(klog(14+n/k))
expected work and O(logn) depth with high probability.
These are the best known bounds for the batch-parallel
dynamic trees problem.

Experimental evidence of good performance.
Our skip list and Euler tour tree data structures achieve
good self-relative speedups, ranging from 67x to 96x on
72 cores with hyper-threading in our experiments. We
also show that they significantly outperform the fastest
existing sequential alternatives.

2 Related Work

2.1 Sequences. A common data structure for rep-
resenting sequences is the search tree. Concurrent bi-
nary search trees, however, tend to be hard to maintain
because of the frequent tree rebalancing necessary to
preserve fast access times. Kung and Lehman present
a concurrent binary search tree supporting search, in-
sertion, and deletion [28]. Their implementation grabs
locks during rebalancing, which blocks searches from
proceeding. Ellen et al. provide a lock-free binary search
tree with the downside that the tree has no balance
guarantees [14]. Braginsky and Petrank design a lock-
free balanced tree in the form of a B+ tree [10].

Batch parallelism for search, insertions, and dele-
tions has been studied in 2-3 trees [36], red-black
trees [35], and B-trees [23]. All of these data structures
achieve O(klogn) work and O(logn + log k) depth.

Very recently, Akhremtsev and Sanders implement
parallel joins and splits for (a,b)-trees as subroutines
for efficient batch updates [3]. The work for batch
joins is O(klog(l 4+ n/k)), and the work for batch
splits is O(klogn). The depth for both operations is
O(logn). Compared to [3], our skip lists are simpler,
allow augmentation, and improve on the work for batch
splits. However, as (a, b)-trees are a deterministic data
structure, Akhremtsev and Sanders obtain deterministic
bounds whereas our bounds are randomized.

Skip lists. Skip lists are a randomized data struc-

T "We say that an algorithm has O(f(n)) cost with high
probability (w.h.p.) if it has O(k- f(n)) cost with probability at
least 1 — 1/n*.

93

ture introduced by Pugh for representing ordered se-
quences [38]. Concurrent skip lists may be used as the
basis for dictionaries [47] and priority queues [40]. Skip
lists are also used for storing database indices. For ex-
ample, the popular database system MemSQL builds
its indices upon skip lists [32]. To the best of our
knowledge, no existing skip-list implementation sup-
ports batch-parallel bounds for performing batches of
splits or joins.

Pugh [37], Herlihy et al. [22], and Fraser [16] de-
scribe concurrent skip lists supporting search, insertion,
and deletion. They allow all operations to run concur-
rently and do not show theoretical bounds. Gabarrd et
al. present a skip list supporting batch searches, inser-
tions, or deletions in O(k(logn + logk)) expected work
and O(logn + log k) expected depth [18].

2.2 Dynamic Trees. Many sequential data struc-
tures exist for the dynamic trees problem. Sleator and
Tarjan introduced the problem and gave a sequential
data structure known as the ST-tree or the link-cut tree
for the problem [45]. ST-trees are difficult to parallelize
because they rely on a complicated biased search tree
data structure. Sleator and Tarjan later showed that
ST-trees could be significantly simplified by using splay
trees [46]. However, splay trees are not amenable to
parallelization due to the major structural changes on
every access caused by splaying nodes. Another data
structure is Frederickson’s topology tree, which works
by hierarchically clustering the represented forest [17].
Acar et al.’s RC-trees similarly contracts the forest to
obtain a clustering [2]. Unfortunately, both of these
data structures require the forest to have bounded de-
gree and thus require modifying the original graph by
splitting high degree vertices into several bounded de-
gree vertices. Top trees, devised by Alstrup et al., cir-
cumvent this restriction and allow for unbounded de-
gree [4]. They also have the most general interface. The
Euler tour tree, developed by Miltersen et al. [34] and
Henzinger and King [21], is arguably the simplest data
structure for solving the dynamic trees problem, but,
unlike many other dynamic trees data structures, they
do not support path queries.

Acar et al. very recently developed a batch-parallel
solution to the dynamic trees problem [1]. They achieve
the same work bound as our solution of O(klog(14+n/k))
in expectation, but their depth bound is O(C(k)logn)
where C(k) is the depth of compacting k elements. As
C(k) is Q (log™ k) [30], our Euler tour trees achieve bet-
ter depth. Their data structures also require transform-
ing the input forest into a bounded-degree forest in order
to use parallel tree-contraction efficiently [33].

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 03/25/21 to 173.75.42.126. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

2.3 Parallel Dynamic Connectivity. The dy-
namic trees problem with connectivity queries is the dy-
namic connectivity problem restricted to acyclic graphs.
A nearly ubiquitous strategy for dynamic connectivity is
to maintain a spanning tree of the graph as it undergoes
modifications. The difficulty of dynamic connectivity
comes from discovering a replacement edge going across
a cut after deleting an edge in the spanning tree that
is maintained. Stipulating that the represented graph
is acyclic (as we do in this paper) simplifies the prob-
lem because it guarantees that edge removal breaks a
connected component into two.

Though there is much work on sequential dynamic
connectivity [17, 21, 49, 24, 26], parallel dynamic con-
nectivity is not well explored. McColl et al. provide a
parallel algorithm for batch dynamic connectivity in-
cluding edge deletions, but their goal is to achieve fast
experimental results on real-world graphs rather than
to achieve provable efficiency bounds [31]. We note
that the worst-case work and depth of their algorithm
is the same as a BFS on the graph. Simsiri et al. give
a work-efficient, logarithmic-depth algorithm for batch
incremental (no deletions) dynamic connectivity [44].
Kopelowitz et al. have recently shown that the spar-
sified version of Frederickson’s algorithm [17, 15] can
be parallelized nearly work-efficiently for a single up-
date [27]. However, they do not consider parallelizing
the algorithm when processing batches of edge updates.

3 Preliminaries

In this paper we analyze our algorithms on the MT-
RAM, a simple work-depth model which is closely re-
lated to the PRAM but more closely models current
machines and programming paradigms that are asyn-
chronous and support dynamic forking. We define the
model in Appendix A and refer the interested reader
to [9] for more details. Our efficiency bounds are stated
in terms of work and depth, where work is the total
number of vertices in the thread DAG and where depth
(span) is the length of the longest path in the DAG [8].

We design algorithms using nested fork-join paral-
lelism in which a procedure can fork off another pro-
cedure call to run in parallel and then wait for forked
calls to complete with a join synchronization [8]. In
our implementations, we use Cilk Plus [29] for fork-join
parallelism. We borrow its use of spawn to mean “fork”
and sync to mean “join” to disambiguate from the other
sense in which we use “join” in this work (that is, as an
operation that concatenates two sequences).

Our algorithms only require the compare-and-swap
atomic primitive, which is widely available on modern
multicores. A COMPARE-AND-SWAP(&x,0,n) (CAS)
instruction takes a memory location x and atomically

94

updates the value at location z to n if the value is
currently o, returning true if it succeeds and false
otherwise.

Parallel Primitives. The following parallel proce-
dures are used throughout the paper. A semisort takes
an input array of elements, where each element has an
associated key and reorders the elements so that el-
ements with equal keys are contiguous, but elements
with different keys are not necessarily ordered. The
purpose is to collect equal keys together, rather than
sort them. Semisorting a sequence of length n can be
performed in O(n) expected work and O(logn) depth
with high probability assuming access to a uniformly
random hash function mapping keys to integers in the
range [1,n°W] [39, 20].

A parallel dictionary data structure supports
batch insertion, batch deletion, and batch lookups of
elements from some universe with hashing. Gil et al.
describe a parallel dictionary that uses linear space
and achieves O(k) work and O(log™ k) depth with high
probability for a batch of k operations [19].

The list tail-finding problem is to assign each
node in a linked list a pointer to the last node in a linked
list (note that there are also other variants referred
to as list ranking in the literature in which we wish
to compute the distance to the last node). There are
many solutions for this problem that have O(n) work
and O(logn) depth [11, 5, 12, 6].

The pack operation takes an n-length sequence A
and an n-length sequence B of booleans as input. The
output is a sequence A’ of all the elements a € A
such that the the corresponding entry in B is true.
The elements of A’ appear in the same order that they
appear in A. Packing can be easily implemented in O(n)
work and O(logn) depth [25].

4 Sequences and Parallel Skip Lists

We start by first specifying a high-level interface for
batch-parallel sequences. We then describe our batch-
parallel skip lists which implement the interface, and
finally, end by discussing how our data structure can be
extended to support augmentation.

4.1 Batch-Parallel Sequence Interface The goal
of a batch-parallel sequence data structure is to repre-
sent a collection of sequences under batches of parallel
operations that split and join sequences. To join two
sequences is to concatenate them together. To split a
sequence A at element x is to separate the sequence into
two subsequences, the first of which consists of all ele-
ments in A before and including x, the second of which
consists of all elements after x.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 03/25/21 to 173.75.42.126. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

Sequences. We now give a formal description of the
interface for sequences. The data structure supports the
following functions:

e BatchJoin({(x1,91),...,(zk,yx)} takes an array
of tuples where the i-th tuple is a pointer z;, to
the last element of one sequence, and a pointer
yi, to the first element of a second sequence and
concatenates the first sequence with the second
sequence. For any two distinct tuples in the input
with values (x;,y;) and (xj,y;), we must have

z; # xj and y; # yj.

e BatchSplit({z1,...,z;}) takes an array of point-
ers to elements, and for each pointer x;, breaks the
sequence immediately after x;.

e BatchFindRep({z1,...,z;}) takes an array of
pointers to elements. It returns an array where the
i-th entry is the representative of the sequence in
which z; lives. The representative is defined so that
representative(u) = representative(v) if and only
if v and v live in the same sequence. Note that
representatives are invalidated after the sequences
are modified.

BATCHFINDREP is used as a subroutine for connectivity
queries on the Euler tour trees in Section 5.

Augmented Sequences. To augment a sequence, we
take an associative function f: D? — D where D is an
arbitrary domain of values. A value from D is assigned
to each element in the sequence, A. An augmented
sequence data structure supports querying for the value
of f over contiguous subsequences of A. Specifically, our
interface for augmented sequences extends the interface
for unaugmented sequences with the following function:

e BatchUpdateValue({(z1,a1),..., (z,axr}) takes
an array of tuples, where the i-th tuple contains a
pointer to an element z; and a new value for the
element, a;. The value for z; is set to a; in the
sequence.

e BatchQueryValue({(z1,91),...,(zk,yx)}) takes
an array of k tuples, where the i-th tuple contains
pointers to elements x; and y;. The return value
is an array where the i-th entry holds the value
of f applied over the subsequence between x; and
y;. For 1 < i < k, x; and y; must be pointers to
elements in the same sequence.

4.2 Skip Lists. Skip lists are a simple random-
ized data structure that can be used to represent se-
quences [38]. To represent a sequence, skip lists as-
sign a height to each element of the sequence, where

95

Figure 1: An example skip list over a sequence of eight
elements. On the bottom are all the level-1 nodes.

each height is drawn independently from a geometric
distribution. The ¢-th level of a skip lists consists of
a linked list over the subsequence formed by all ele-
ments of height at least £. This structure allows efficient
search. Figure 1 shows an example skip list.

For an element x of height h, we allocate a node
v; for every level ¢ = 1,2,...,h. Each node has four
pointers LEFT, RIGHT, UP, and DOWN. We set v; —
UP = v;41 and v; — DOWN = v;_; for each i to connect
between levels. We set v; — RIGHT to the i-th node
of the next element of height at least ¢ and similarly
v; — LEFT to the i-th node of the previous element of
height at least 1.

Our skip lists support cyclicity, which is to say that
our algorithms are valid even if we link the tail and head
of a skip list together. Though this is not conventionally
done with sequence data structures, we will find it
useful for representing Euler tours of graphs in Section 5
since Euler tours are naturally cyclic sequences. We
cannot join upon cyclic sequences, but splitting a cyclic
sequence at element x corresponds to unraveling it into
a linear sequence with its last element being x. Figure 2
illustrates joining and splitting on our skip lists.
Definitions. We now introduce definitions that de-
scribe the relationship between nodes. Say we have a
node v that represents element x at some level i. We
call v — RIGHT v’s successor. Similarly, v — LEFT is
its predecessor. We call v — UP its direct parent and
v — DOWN its direct child. For example, in Figure 1,
consider node a. Its predecessor is b, its successor is c,
its direct child is f, and it has no direct parent.

The left parent is the level-(i + 1) node of the latest
element preceding and including x that has height at
least i + 1. The right parent is defined symmetrically.
Under this definition, if v has a direct parent, then its
left and right parents are both its direct parent. When
we refer to v’s parent, we refer to its left parent. In
Figure 1, a’s (left) parent is d, and a's right parent is e.
The (left) ancestors consist of v’s parent, v’s parent’s
parent, and so on, and similarly for v’s right ancestors.
Thus the ancestors for both f and g in Figure 1 are a
and d. A child is inverse to a parent, and a descendant
is inverse to an ancestor.

The following definitions describe the relationship
between the links connecting nodes. The parent of a
link between v and its successor is the link between v’s

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 03/25/21 to 173.75.42.126. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

e

join twice ’

i

‘ split twice

L

Figure 2: Joins and splits on skip lists.

Figure 3: Each node in this skip list is augmented with
a size value, summing all the values of its children.

parent and its successor. Similarly, the ancestors of the
link are links between v’s ancestors and their successors.
The children of the link are the links between v’s
children and their successors.

Joins, Splits and Augmentation on Skip Lists.
Recall that in an augmented sequence, we take an
associative function f : D?> — D for some domain D.
Each element in the sequence A is assigned some value
from D. By storing these values in the bottom level
of our skip list and partial “sums” at higher levels, we
can compute f over contiguous subsequences of A in
logarithmic time. For instance, in Figure 3, we assign
the value 1 to every element and choose f : N> — N to
be the sum function. For each node v, we store the sum
of the values of v’s children. By looking at O(logn)
nodes, we can then compute the size of the sequence.
These augmented values are also easy to maintain as
the skip list undergoes joins and splits.

Our skip lists support batch joins, batch splits,
batch point updates of augmented values, and batch
finding representatives in O(klog(l 4+ n/k)) work in
expectation and O(logn) depth with high probability,
where k is the batch size and n is the number of elements
in the lists. We analyze efficiency in Appendix C.

This improves on the ©(klogn) expected work
bound achieved by conventional sequential joins and
splits on augmented skip lists. Intuitively, the reason
we can achieve improved work-bounds is that if a node
has many updated descendants, our algorithm updates
its augmented value once rather than multiple times.

Algorithm 1 Searches for the left parent of the input node. The
mirror function SEARCHRIGHT is defined symmetrically.

1: procedure SEARCHLEFT(v)
current = v
while current — UpP = null do
current = current — LEFT
if current = null or current = v then
return null
return current — UP

NPT W

Algorithm 2 Joins two lists together given their endpoints.

1: procedure JOIN(vr, vR)

2 if CAS(&wvr, — RIGHT, null, vg) then

3: VYR — LEFT = vp,

4: parent; = SEARCHLEFT(vr,)

5 parent p = SEARCHRIGHT(vR)

6 if parent; # null and parentp # null then
7 JoIN(parent ,, parent i)

4.3 Algorithms for unaugmented lists. We begin
by describing unaugmented skip lists. For creating
elements in our skip list, we fix a probability 0 < p < 1
representing the expected proportion of nodes at a
particular level that have a direct parent at the next
level. We generate heights of elements by allocating
a node and giving each node a direct parent with
probability p independently. This is equivalent to
drawing heights from a Geometric(l — p) distribution.

We give pseudocode for JOIN and SPLIT over unaug-
mented lists in Algorithms 2 and 3 respectively. To per-
form a batch of joins, we simply call JOIN on each join
operation in the batch concurrently, and similarly for a
batch of splits. As each batch of splits and joins must
be run in separate phases, our data structure is phase-
concurrent over joins and splits [41].

Both algorithms employ two simple helper proce-

dures, SEARCHLEFT and SEARCHRIGHT, for finding the
left and right parents of a node. We show SEARCHLEFT
in Algorithm 1, and SEARCHRIGHT is implemented
symmetrically. Note that these procedures avoid loop-
ing forever on cyclic skip lists.
Join. Recall that the definition of JOIN takes a pointer
to the last element of one list and a pointer to the first
element of a second list and concatenates the first list
with the second list. Starting at the bottom level, our
algorithm links the given nodes, searches upwards to
find parents to link at the next level, and repeats. We
set the link with a CAS, and if the CAS is lost, the
algorithm quits. This permits only one thread to set a
particular link, preventing repeated work.

THEOREM 4.1. Let B be a set of wvalid JOIN inputs.
Then calling JOIN concurrently over the inputs in B
gives the same result as joining over the inputs in B
sequentially.

Proof. (Proof sketch) We argue inductively level-by-
level that all necessary links are added and no unneces-

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 03/25/21 to 173.75.42.126. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

Algorithm 3 Separates the input node from its successor.

1: procedure SPLIT(v)

2 ngh = v — RIGHT

3 if ngh # null and CAS(&wv — RIGHT, ngh, null) then
4: ngh — LEFT = null

5: parent = SEARCHLEFT(v)

6 if parent # null then

7 SPLIT(parent)

sary links are added. For the base case, at the bottom
level, the links we add are exactly those given as input
to the algorithm, which are the necessary links to add at
that level. For the inductive step, assume that the cor-
rect links will be added on level i. Consider any link ¢
from nodes vy, to vg on level i+ 1 that should be added.
In order for this to be a link we need to add, there must
be a rightward path from vy ’s direct child to vg’s direct
child once all links on level 7 are added. Then consider
the last execution of JOIN on level i to add a link on
that path by finishing line 3 of Algorithm 2. That exe-
cution will have a complete path to find parents vy and
vgr when searching and thus will find ¢ as a link to add.
Conversely, any level-(i + 1) link from nodes vy to vg
found by a join execution was found via a complete path
(albeit perhaps temporarily missing some LEFT point-
ers due to some executions of join completing line 2 but
not yet completing line 3) between vy,’s direct child and
vg’s direct child, which indicates that this link should
be added. We present a formal proof using this idea in
the full version of this paper [50]. O

Split. SPLIT takes a pointer to an element and breaks
the list right after that element. Similar to join, it cuts
the link at the bottom level and then loops in searching
upwards to find a parent link to remove at the next
levels. Like JOIN, this uses CAS to avoid duplicate work.

THEOREM 4.2. Let B be a set of elements. Then
calling SPLIT concurrently over the elements in B gives
the same result as splitting over the elements in B
sequentially.

Proof. (Proof sketch) Like in the proof sketch of The-
orem 4.1, we look at the links that are removed in-
ductively level-by-level. The argument is similar, ex-
cept that in the inductive step, to see that a link £ on
level ¢ 4+ 1 from nodes vy, to vg that should be removed
will indeed be removed by the phase of splits, we note
that the leftmost split on the path from v;, — DOWN
to vg — DOWN will be able to find parent vy in its
SEARCHLEFT call. We present a formal proof using this
idea in the full version of this paper [50]. O

Finding representative nodes. A simple phase-
concurrent implementation of FINDREP that takes
O(klogn) expected work for k concurrent calls is to

97

Algorithm 4 Helper function for BATCHUPDATEVALUES that
updates the augmented value for v and all its descendants.

1: procedure UpPDATETOPDOWN(v)

2: v — NEEDS_UPDATE = false

3: if v - DOWN = null then > Reached bottom level
4: return

5: current = v — DOWN

6: do

7 if current — NEEDS_UPDATE then

8: spawn UPDATETOPDOWN(current)

9: current = current — RIGHT
10: while current # null and current — UP = null
11: sync
12: sum = v — DOWN — VAL
13: current = v — DOWN — RIGHT
14: while current # null and current — UrP = null do
15: sum = f(sum, current — VAL)
16: current = current — RIGHT
17: v — VAL = sum

start at the input node and walk to the top level of the
list. Then on the top level, for an acyclic list, we re-
turn the leftmost node, or for a cyclic list, we return
the lowest address node.

However, if we are given a batch of k calls up front,
we can in fact achieve O(klog(1 4+ n/k)) expected work
and O(logn) depth with high probability. The idea is
that each call of FINDREP takes some path up the skip
list to the top level, and calls whose paths intersect
somewhere can be combined at that point to avoid
duplicate work. Then the return value gets propagated
back down to both original calls. The code would look
similar to the code for batch updating augmented values
in Algorithm 5 for augmented skip lists (Subsection 4.4).
We omit the full details.

4.4 Algorithm for augmented lists. We now de-
scribe how to augment our skip lists. In addition to its
four pointers, each node is given a value VAL from some
domain D and a boolean NEEDS_UPDATE. We provide
an associative function f : D? — D and, for each ele-
ment in the list, a value from D. We assign values to
VAL on nodes at the bottom level, and then compute
VAL at higher levels by applying f over nodes’ children.
The boolean is used to mark nodes whose values need
updating and is initialized to false.

We give the main algorithm BATCHUPDATEVALUES
for batch point update in Algorithm 5. This takes a set
of nodes at the bottom level along with values to give
to the associated elements. For each node in the set,
we start by updating its value (line 5). Then each of its
ancestors have values that need updating, so we walk up
its ancestors, CASing on each ancestor’s NEEDS_UPDATE
variable (line 6). If an execution loses a CAS, then it
may quit because some other execution will take care of
all the node’s ancestors.

Now over all the input nodes that won all CASes
on their ancestors, we know the union of their topmost

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 03/25/21 to 173.75.42.126. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

Algorithm 5 Takes a batch of (node, value) pairs, updates each
node with its associated value, and updates the augmented values
stored throughout the list.

1: procedure BATCHUPDATEVALUES({(v1, a1), ..., (vk,ak)})
2: top = {null, null, ..., null} > k-length array
3: for i € {1,...,k} do in parallel
4: v; — VAL = a;
5: current = v;
6: while CAS(¤t — NEEDS_UPDATE, false, true) do
7 parent = SEARCHLEFT (current)
8: if parent = null then
9: top[i] = current
10: break
11: current = parent
12: for i € {1,...,k} do in parallel
13: if top[t] # null then
14: UppATETOPDOWN(top[i])

Algorithm 6 Batch join for augmented skip lists.

1: procedure BarcuJoiN({(l1,71), (l2,72), ..., (lx,TK)})

2: for i € {1,...,k} do in parallel

3: JOIN(li,’l’i)

4: BATCHUPDATEVALUES({(l1,11 — VAL), ..., (lg,lx — VAL)})

ancestors’ descendants contain all the input nodes. By
calling the helper function UPDATETOPDOWN (Algo-
rithm 4) on every such topmost ancestor in lines 12-14,
we traverse back down and update these descendants’
augmented values. Given a node, this helper function
calls itself recursively on all the node’s children ¢ who
need an update as indicated by ¢ — NEEDS_UPDATE
(lines 5-10). Then, after all the childrens’ values
are updated, we may update the original node’s value
(lines 11-17).

With this algorithm for batch point update, batch
joins (Algorithm 6) and batch splits (algorithm omitted
due to similarity to Algorithm 6) are simple. We first
perform all the joins or splits. Then we batch update
on the nodes we joined or split on. We keep all the
values on the bottom level the same, but the update
fixes all the values on the higher levels that are changed
by adding or removing links.

4.5 Implementation. We provide details about our
skip list implementations in Appendix B.

5 Batch-Parallel Euler Tour Trees

In this section we present batch-parallel Euler tour
trees, a solution to the batch-parallel dynamic trees
problem. In order to ease exposition, we first present a
batch-parallel interface for the dynamic trees problem.

Batch-Parallel Dynamic Trees Interface. A solu-
tion to the batch-parallel dynamic trees problem sup-
ports representing a forest as it undergoes batches of
links, cuts, and connectivity queries. Links link two
trees in the forest. Cuts delete an edge from the forest
and break one tree into two trees. Connected queries
take two vertices in the forest and return whether they

98

Figure 4: We take the tree on the left and transform it
so that we get the following Euler tour of edges: (a,b)

(b,b) (b,a) (a,c) (¢,d) (d,d) (d,c) (¢,c) (c,a) (a,a).

are connected (in the same tree). We now give a formal
description of the interface. The data structure main-
tains a graph G = (F,V), which is assumed to be a
forest under the following operations:

e BatchLink({(u1,v1),..., (uk,v)}) takes an array
of edges and adds them to the graph G. The input
edges must not create a cycle in G.

e BatchCut({(u1,v1),..., (ug,vg)}) takes an array
of edges and removes them from the graph G.

e BatchConnected({(ui,v1),..., (ug,vr)}) takes
an array of tuples representing queries. The output
is an array where the i-th entry returns whether
vertices u; and v; are connected by a path in G.

We also support augmenting the trees with an as-
sociative and commutative function f : D? — D with
values from D assigned to vertices and edges of the for-
est. The goal is to compute f over subtrees of the repre-
sented forest. Note that we assume that the function is
commutative in order to allow implementations to relax
the order in which a vertex’s children appear in the tour.
The interface supports batch updates over vertices and
edges. The primitives are similar to the batch updates
of values for augmented skip lists, so we elide the de-
tails. The interface for subtree queries is different, and
we present it below:

e BatchSubtree({(u1,p1),..., (ug,pr)}) takes an
array of tuples, where the i-th tuple contains a ver-
tex u; and its parent p; in the tree. It returns an
array where the i’th entry contains the value of f
summed over u;’s subtree relative to its parent p;
in G. Note that because the Euler tour tree is un-
rooted, we require providing the parent p; in order
to determine the intended subtree for wu;.

Euler Tour Trees. We focus on a variant of ETTs
presented by Tarjan [48]. To represent a tree as an Euler
tour tree, replace each edge {u,v} with two directed
edges (u,v) and (v,u) and add a loop (v,v) to each

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 03/25/21 to 173.75.42.126. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

vertex v, as in Figure 4. Note that this construction
produces a connected graph in which each vertex has
equal indegree and outdegree, and therefore the graph
admits an Euler tour. We represent the tree as any of
its Euler tours.

Now linking two trees corresponds to splicing their
Euler tours together, and cutting a tree corresponds
to cutting out part of its Euler tour. Each of these
operations reduces to a few joins and splits on the
tours. We may also answer whether two vertices u
and v are connected by asking whether their loops,
(u,u) and (v,v), reside in the same tour. Moreover,
because a subtree appears as a contiguous section of
an Euler tour, we can efficiently compute information
about subtrees if we can efficiently compute information
about contiguous sections of tours.

Traditionally, Euler tour trees store an Euler tour
by breaking it into a sequence at an arbitrary location
and then placing the sequence in a balanced binary tree.
We instead store Euler tours as cycles using our skip
lists from Section 4. Because skip lists are easy to join
and split in parallel, we can process batches of links and
cuts on Euler tour trees efficiently.

We show that for a batch of k joins, k splits, or
k connectivity queries over an n-vertex forest, we can
achieve O(klog(1 + n/k)) expected work and O(logn)
depth with high probability. If we build our Euler tour
trees over augmented skip lists, we can also answer
subtree queries in logarithmic time.

5.1 Description. Our Euler tour trees crucially rely
on our parallel skip lists to represent Euler tours. Since
a graph of n vertices has Euler tours whose lengths
sum to O(n), the skip lists hold O(n) nodes. Thus
a batch of k joins or splits on the Euler tours takes
O(klog(1 4+ n/k)) expected work and O(logn) depth
with high probability.

Construction. For clarity, we describe our ETTs using
the phase-concurrent unaugmented skip lists given in
Section 4. However, it is easy to organize the joins
and splits into batches so as to match the augmented
skip list interface seen in Subsection 4.4. We also treat
our dictionary data structure as phase-concurrent for
clarity, but again, this is easy to circumvent.

We add fields TWIN and MARK to each skip list
element. For a node representing a directed edge (u,v),
TWIN is a pointer to the node representing the directed
edge (v,u) in the opposite direction. We initialize the
field MARK to false and use it during splitting to mark
nodes that will be removed.

At initialization (Algorithm 7), the represented
graph is an n-vertex forest with no edges, and we assume
the vertices are labeled with integers 1,2,...,n. We

99

Algorithm 7 Euler tour tree data structure initialization.

procedure INITIALIZE(n)
verts = {}
for : € {1,...,n} do in parallel
verts[i] = CREATENODE()
JoIN(verts[i], verts[i])
edges = DICT()
successors = {}

> n-length array

N g

> empty dictionary
> n-length array

Algorithm 8 Add a batch of edges to Euler tour tree.

1: procedure BATCHLINK({{u1,v1}, {uz2,v2},...,{uk,ve}})
2 > Adding input edges must not create a cycle in graph
3 > Create nodes representing new edges
4 for i € {1,...,k} do in parallel
5: uv = CREATENODE()
6: vy = CREATENODE()
7: uv — TWIN = vu
8: vu — TWIN = uv
9: edges[(ui,v;)] = uv
10: edges[(vi, u;)] = vu
11: > Cut at locations at which we splice in other tours
12: for : € {1,...,k} do in parallel
13: for w € {u;,v;} do
14: w_node = verts[w)
15: w_succ = w-node — RIGHT
16: if w_succ # null then
17: > benign race; this assignment and split are idem-
potent
18: successors[w] = w_succ
19: SPLIT(w-node)
20: sorted_edges =
SEMISORT ({ (w1, v1), (V1,u1), ., (U, Vk), (Vi, uk)})
21: > Join together tours with new edge nodes in between
22: for : € {1,...,2k} do in parallel
23: (u, v) = sorted_edges|i]
24: (u-prev, v_prev) = sorted_edges[i — 1]
25: (u-next, v_next) = sorted_edges[i + 1]
26: if i =1 or u # u_prev then
27: JoIN((verts[u], edges[(u, v)]))
28: if ¢ = 2k or u # u_next then
29: JoIN((edges[(v, u)], successors[u]))
30: else
31: JoiN((edges[(v, u)], edges[(u-next, v_next)]))

create an n-length array verts such that verts[i] stores
a pointer to the skip list node representing the loop edge
(7,7). As such, in parallel, for i = 1,...,n, we create a
skip list node, assign it to verts[i], and join it to itself to
form a singleton cycle. These cycles are the Euler tours
in an empty graph. We also keep a dictionary edges that
maps edges (u,v) with u # v to corresponding skip list
nodes. Lastly, we create an array successors that will
be used as scratch space for batch linking.

Connectivity queries. To check whether two vertices
are connected, we simply check whether they live in
the same Euler tour by comparing the representatives
of their tours’ skip lists. The complexity of this can
be made O(klog(1+n/k)) expected work and O(logn)
depth with high probability using an efficient batch
FINDREP algorithm.

Batch Link. Algorithm 8 shows our algorithm for
adding a batch of edges. The algorithm takes an array
of edges A to add as input. We assume that adding the
input edges preserves acyclity.

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 03/25/21 to 173.75.42.126. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

Algorithm 9 Computes locations at which to join for batch split.

Algorithm 10 Remove a batch of edges from Euler tour tree.

1: procedure GETNEXTUNMARKED(elements = {z1,22,...,2k})

2 > Input is a set of skip list elements

3 for i € {1,...,k} do in parallel

4: next = z; — TWIN — RIGHT

5: if next — MARK then

6: z; — NEXT_-EDGE = next

7 else

8 z; — NEXT_EDGE = null

9 > Use list tail-finding on the linked lists induced by
NEXT-EDGE pointers. Get an array last-marked
such that last-marked[i] points to the last node

in z;’s linked list.
10: last_marked = LISTRANK(elements)
11: result = {} > k-length array
12: for i € {1,...,k} do in parallel
13: result[i] = last-marked[i] — TWIN — RIGHT
14: return result

To add a single edge {u, v} sequentially, we can find
locations where u and v appear in their tours by looking
up verts[u] and verts[v]. We split on those locations
and join the resulting cut up tours back together with
new nodes representing (u,v) and (v,u) in between.
If we want to add several edges at once, we need to
be careful when inserting edges that are incident to
the same vertex and thus attempt to join on the same
location.

With that in mind, we proceed to describe our
algorithm. In lines 3-10, for each input edge {u, v}, we
allocate new list elements representing directed edges
(u,v) and (v,u). Then, in lines 11-19, for each vertex
u that appears in the input, we split u’s list at verts|u]
as a location to splice in other tours. We also save the
successor of verts[u] in successors[u] so that we can join
everything back together at the end.

For each vertex u, say that the input tells us that
we want to newly connect u to vertices wi,ws, ..., Wk.
Then we join together the nodes representing (u,u) to
(u,wy), (wi,u) to (u,wiy1) for 1 < i < k, and (wg,u)
to what was the successor to (u,u) before splitting. In
our code, we arrange this in lines 20-31 by semisorting
the input to collect together all edges incident on a
vertex. The ordering of wy,ws,...,wy is unimportant,
only corresponding to the order in which they appear
after v in the Euler tour.

Using our skip lists and an efficient semisort [20], we
see that the work is O(klog(l + n/k)) in expectation,
and the depth is O(logn) with high probability.

Batch Cut. Algorithm 10 describes how to remove a
batch of edges. Our algorithm assumes that each edge
exists in the forest and that there are no duplicates.
Cutting a single edge is simple. If we cut an edge
{u,v}, we split before and after (u,v) and (v,u) in the
tour and join their neighbors together appropriately.
However, as with batch linking, the task gets more
difficult if we want to cut many edges out of a single
node, because those neighbors that we want to join

1: procedure BATCHCUT({{u1,v1}, {uz,v2},...,{ug,vr}})
2: > Input edges must be in graph and must have no
duplicates.
3: directed_edges = {} > 2k-length array
4: for i € {1,...,k} do in parallel
5: directed_edges[2i — 1] = edges[(u;, v;)]
6: directed_edges[2i] = edges[(vi, u;)]
7 for i € {1,...,k} do in parallel
8: edges — REMOVEFROMDICT((u;, v;))
9: edges — REMOVEFROMDICT((v;, u;))
10: join_lefts = {} > 2k-length array
11: for i € {1,...,2k} do in parallel
12: join_lefts[i] = directed-edges[i] — LEFT
13: directed_edges[i] — MARK = true
14: join_rights = GETNEXTUNMARKED(directed_edges)
15: > Cut edges out of tour
16: for i € {1,...,2k} do in parallel
17: SPLIT(directed_edges[i])
18: pred = directed_edges[i] — LEFT
19: if pred # null then
20: SPLIT(pred)
21: > Join tours back together
22: for : € {1,...,2k} do in parallel
23: if not join_lefts[i] — MARK then
24: JOIN(join_lefts[i], join_rights[i])
25: for i € {1,...,2k} do in parallel
26: DELETENODE(directed _edges|i])

Figure 5: Batch cutting four edges. If we take an Euler
tour counter-clockwise around this graph, this batch
cuts may require us to join (f,a) to (a,c) in the tour.

together may themselves be split off.

As an example, consider the graph in Figure 5 in
which we remove four edges. If our tour on the graph
goes counter-clockwise around the diagram, then we
may need to join (c¢,a) to (a,e) in the tour as a result
of cutting {a,d} and join (f,a) all the way around to
(a,c) as a result of the three contiguous cuts. How do
we identify that we need to join (f,a) to (a,c)? We
could mark edges that are going to be cut, then start
from (f,a) and walk along “adjacent” edges incident to
a using the TWIN pointers until we reach an edge that
will not be cut. Then we would know to join (f,a) to
that edge. However, the search for an unmarked edge
will have poor depth if lots of edges will be cut.

To achieve low depth in this step, we use list tail-
finding. Consider the linked lists induced by having each
edge point at its adjacent edge if it is marked. Note
that each linked list must terminate because traversing
adjacent edges will eventually reach a loop edge of the

Copyright © 2019 by SIAM

100 Unauthorized reproduction of this article is prohibited

Downloaded 03/25/21 to 173.75.42.126. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

form (v,v), which will certainly be unmarked. Then
running list tail-finding on these linked lists finds for
every edge the next unmarked edge as desired.

In Algorithm 10, we first fetch all the skip list
nodes corresponding to the edges in lines 2-6. Then we
invoke Algorithm 9 on line 14, which performs the list
tail-finding described above. We cut out all the input
edges on lines 15-20 and rejoin all the tours together on
lines 21-24. In total these steps take O(klog(1 + n/k))
expected work and O(logn) depth with high probability.

Augmentation. We build our augmented Euler tour
trees over the concurrent augmented skip lists from
Subsection 4.4 and achieve the same efficiency bounds.
Recall that we have an associative and commutative
function f : D? — D and assign values from D to
vertices and edges of the forest. The goal is to compute
f over subtrees of the represented forest.

Say we want to compute f over a vertex v’s subtree
relative to v’s parent in the tree, p. Then if we look up
the skip list elements corresponding to (p,v) and (v, p)
in edges, the value of f over v’s subtree is the result of
applying f on the subsequence between (p, v) and (v, p).
This may be done by calling BATCHQUERY VALUE with
the elements corresponding to (p,v) and (v,p) in the
underlying augmented skip list.

5.2 Implementation. We provide details about our
implementation of Euler tour trees in Appendix B.

6 Experiments

We run our experiments on a 72-core Dell PowerEdge
R930 (with two-way hyper-threading) with 4 x 2.4GHz
Intel 18-core ET7-8367 v4 Xeon processors (with a
4800MHz bus and 45MB L3 cache) and 1TB of main
memory. Our programs use Cilk Plus to express paral-
lelism and are compiled with the g++ compiler (version
5.4.1) with the -03 flag. When running in parallel, we
use the command numactl -i all to evenly distribute
the allocated memory among the processors. On our fig-
ures, a thread count of 72(h) denotes using all 72 cores
with hyper-threading, i.e. 144 threads.

6.1 Unaugmented Skip Lists. We evaluate the
performance of our skip lists (with the probability of
a node having a direct parent set to p = 1/2) by
comparing them against other sequence data structures.
In particular, we compare against sequential skip lists,
which are the same as our skip lists except that they
do not use CAS to set pointers. In addition, for an
element of height h, they allocate an array of exactly
length h for holding pointers rather than an array of
length O(h) as our skip list does (see Appendix B). We
also implemented splay trees [46] and treaps [7].

101

T T T
100 [| —— Join, k = 107 B

[| —=— split, k = 107 e
[|-® Join k=10*

[|- ® split, k =104

10

Speedup

Number of threads

Figure 6: Speedup of our concurrent skip lists with
n = 108.

So that we can compare against another parallel
data structure, we implement parallel batch join and
batch split operations on treaps. To batch join, we first
ignore a constant fraction of the joins. If we imagine
each join from treap T to treap S as a pointer from T
to S, we get lists on the treaps. No list can be very
long because of the ignored joins. We get parallelism
by processing each list independently. If we store extra
information on the treap nodes, we can walk along a list
and perform its joins sequentially. Then we recursively
process the previously ignored joins. For batch split, we
semisort the splits keyed on the root of the treap to be
split. This lets us find all splits that act on a particular
treap. We process each treap independently. When
performing multiple splits on a treap, we get parallelism
by divide and conquer—we perform a random split and
recursively split the resulting two treaps in parallel.
The randomized efficiency bounds are O(klogn) work
for batch join, O(klognlogk) work for batch split,
and O(lognlogk) depth for both. In the future, we
would like to further compare our skip lists against
other parallel data structures, such as the (a,b)-trees
of Akhremtsev and Sanders [3].

For an experiment, we take n = 10% elements and
fix a batch size k. We set up a trial by joining all the
elements in a chain, and then we time how long it takes
to split and rejoin the sequence at k pseudorandomly
sampled locations. We report the median time over
three trials. As an artifact of this set up, the splay tree
has an advantage on joining small batches after splitting
due to how splay trees exploit locality.

Figure 6 illustrates that our skip list implementa-
tion running on 72 cores with hyper-threading demon-
strates over 80x speedup relative to the implementation
running on a single thread for ¥ = 107 and over 55x
speedup for k = 10*. We compare our skip list to our
other sequence data structures in Figure 7. To conserve
space, we only show the plot for splitting. Our imple-

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

Downloaded 03/25/21 to 173.75.42.126. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

T T T T
—@— Concurrent list (72(h))
i

10? E

N
R
Wi

101 |-

100H -

1071

102

Running time (seconds)

107 ’ ,/

10
E 1 1 1 1 1 1 1 E|
102 10° 10' 10° 105 107 10°

Batch size

Figure 7: Running time of splitting sequence data
structures with varying batch size.

mentation of parallel batch join on treaps is 1.4x faster
than our batch join on skip lists on the largest batch
sizes, but, as seen in Figure 7, the parallel batch split
on treaps is much slower due to lots of overhead work.
Moreover, through parallelism, our data structure is sig-
nificantly faster than all the sequential algorithms at all
batch sizes. When used sequentially, our data struc-
ture behaves similarly to a traditional sequential skip
list, suggesting that using CAS does not significantly
degrade the performance of a skip list.

6.2 Augmented Skip Lists. We compare the per-
formance of our batch-parallel augmented skip lists
against a sequential augmented skip list. Besides not
using CAS, the sequential skip list updates augmented
values after every join and split. This achieves only an
O(klogn) work bound for k operations. Our experi-
ment is the same as in Subsection 6.1.

When running our augmented skip list with a
random batch of size k = 107 on 72 cores with hyper-
threading, we see a speedup of 67x for joins and 78x
for splits. For k = 10%, we found a speedup of 33x
for joins and 48x for splits. The running times are a
factor of two worse than the times for the unaugmented
skip list of Subsection 6.1, which is expected due to the
extra passes through the skip list to update augmented
values. The batch-parallel skip list hugely outperforms
single-threaded skip lists on all tested batch sizes. We
omit plots here due their visual similarity to Figures 6
and 7.

To more prominently display the work savings that
batching provides, we try different test case where a
batch of k splits, rather than being chosen at random,
consists of splitting at the last k elements of the
sequence in right-to-left order. This is particularly bad
for the sequential skip list because after every split, it
walks to the top of the skip list to update augmented
values. In comparison, when processing the splits as

T T T T
—@— Parallel list (72(h))
— Parallel list (1)
Sequential list

= 10! x|
<
=
3
1 >
Z
()
£ 107t F B
3
20
=]
s
=] .
Z 1073 i
=

.

1072 b1 I I I I I E|
10?2 10® 10* 10° 10% 107

Batch size

Figure 8: Running time of splitting augmented skip lists
with n = 108 as batch size varies with splits taking off
single elements off the end of the list.

a batch, we update the augmented values in only one
pass. Figure 8 shows that, as expected, even on a
single thread, our skip list is significantly faster than the
standard sequential one in this adversarial experiment.

6.3 Euler Tour Trees. We compare against sequen-
tial dynamic trees data structures. Using the sequential
skip list and splay trees from Subsection 6.1, we build
traditional Euler tour trees. We also compare to ST-
trees built on splay trees [45, 46]. They achieve O(logn)
amortized work links and cuts. Though conceptually
more complicated than Euler tour trees, ST-trees are
a more streamlined data structure that do not require
allocation beyond initialization and do not require dic-
tionary lookups. We wrote all of these implementations.
In future work, we would like to compare against paral-
lel data structures such as that of Acar et al. [1]
Because one of the important uses of Euler tour
trees is to answer connectivity queries, we also com-
pare with statically computing the connected compo-
nents of the graph after a batch of updates. We use the
work-efficient parallel connectivity algorithm designed
and implemented by Shun et al. [43]. We optimisti-
cally measure the execution time of the implementation
based only on the execution time of the connectivity
algorithm. We do not include the time taken to main-
tain the graph itself, which is non-trivial because the
adjacency array graph representation used in their im-
plementation does not support edge updates easily.
For our experiment, we fix a tree. We set up a trial
by adding all the edges of the tree in pseudorandom
order to our data stucture. Then we time how long it
takes to cut and relink the forest at & pseudorandomly
sampled edges. We report median times over three
trials. Again, note that our experimental setup may give
the splay tree data structures an advantage on linking
small batches after cutting due to how splay trees

Copyright © 2019 by SIAM

102 Unauthorized reproduction of this article is prohibited

Downloaded 03/25/21 to 173.75.42.126. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

T T T
100 | —— Link, & = 100 B

[|— cut, & =106

[|-® Link k=10*

L|-e® cut k=10t 7 e®”

10

Speedup

1 1 1 1 1 1 1 1 |
1 2 4 8 16 32 72 72(h)

Number of threads

Figure 9: Speedup of our parallel Euler tour trees on a
random recursive tree of size n = 107.

2 [T T T —
10 F | —@— Parallel ETT (72(h)) .]
Cl- = rallel ETT (1)) o 1
10' Ele Seq p list BETT i N
-’E‘\ Fl-&- S[:;\'LETT E|
oLl ST-tree e B
g 10 E Static conn. (72(h)) /__;»: &
g 107t]
3
2 1072¢]
g E|
=1
=
& 1073]
1074 F B
I ! | |) ‘

102 10 10 10° 108 107

Batch size

Figure 10: Running time of linking dynamic trees data
structures on random recursive tree of size n = 107 with
varying batch size. The plot for splitting is visually
similar.

exploit locality. We experimented on three trees, all
with n = 107 vertices: a path graph, a star graph, and
a random recursive tree. To form a random recursive
tree over n vertices, for each 1 < i < n, draw j
uniformly at random from {1,2,...,7 — 1} and add the
edge {j,i}. Due to space constraints we only plot results
for the random recursive tree here. We include all of our
experimental results in the full version of the paper [50].

Figure 9 displays the speedup of our parallel Euler
tour tree algorithms with a batch sizes of k£ = 10* and
k = 105 on a random recursive tree. When running
on 72 cores with hyper-threading, we get good speedup
ranging from 82x to 96x for k = 10° across all tested
graphs. For k& = 10*, we found speedup ranging from
7.5x to T0x where the worst speedup was on the star
graph. In Figure 10, we show the running times of our
Fuler tour tree along with the times for sequential dy-
namic trees data structures and static parallel connec-
tivity on a random recursive tree. On large batch sizes,
parallelism beats all the sequential data structures, as
expected. Though ST-trees are faster than Euler tour

trees sequentially and are unusually fast on the star
graph due to running well on graphs with small diam-
eter, our parallel Euler tour tree eventually outspeeds
ST-trees on large batches even on the star graph. In ad-
dition, the performance of our Euler tour tree running
on a single thread is similar to that of conventional se-
quential Euler tour trees. We also see in Figure 10 that
the time to update our Euler tour tree is much less than
the time to statically compute connectivity for all but
the largest batches.

7 Discussion

We showed that skip lists are a simple, fast data struc-
ture for parallel joining and splitting of sequences and
that we can use these skip lists to build a batch-parallel
Euler tour tree. Both of these data structures have good
theoretical efficiency bounds and achieve good perfor-
mance in practice. We hope that our work not only
brings greater understanding to the field of parallel data
structures but also serves as a stepping stone towards ef-
ficient parallel algorithms for dynamic graph problems.
In particular, Holm et al. give a dynamic connectivity
algorithm achieving O (log2 n) amortized work per up-
date in which augmented Euler tour trees play a crucial
role [24]. We believe that applying our parallel Euler
tour trees along with several other techniques can effi-
ciently parallelize Holm et al.’s algorithm. Obtaining a
batch-parallel solution for the general dynamic connec-
tivity problem is an interesting research problem that
has not been adequately addressed in the literature.

Acknowledgements

Thanks to Umut Acar and Sam Westrick for helpful
conversations. This work was supported in part by NSF
grants CCF-1408940, CCF-1533858, and CCF-1629444.

References

[1] U. A. Acar, V. AKSENOV, AND S. WESTRICK, Brief
announcement: Parallel dynamic tree contraction via
self-adjusting computation, in SPAA; 2017.

[2] U. A. AcAr, G. E. BLELLOCH, R. HARPER, J. L.
VITTES, AND S. L. M. Woo0, Dynamizing static algo-
rithms, with applications to dynamic trees and history
independence, in SODA, 2004.

[3] Y. AKHREMTSEV AND P. SANDERS, Fast parallel oper-
ations on search trees, in HiPC, 2016.

[4] S. AvstrUP, J. HoLM, K. D. LICHTENBERG, AND
M. THORUP, Maintaining information in fully dynamic
trees with top trees, TALG, 1 (2005).

[5] R. J. ANDERSON AND G. L. MILLER, Deterministic
parallel list ranking, in Aegean Workshop on Comput-
ing, 1988.

Copyright © 2019 by SIAM

103 Unauthorized reproduction of this article is prohibited

Downloaded 03/25/21 to 173.75.42.126. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

[6]

[12]

[13]

[14]

[15]

[25]

[26]

R. J. ANDERSON AND G. L. MILLER, A simple ran-
domized parallel algorithm for list-ranking, IPL, 33
(1990).

C. R. ARAGON AND R. G. SEIDEL, Randomized search
trees, in FOCS, 1989.

G. E. BLELLOCH, Programming parallel algorithms,
CACM, 39 (1996).

G. E. BLELLOCH AND L. DHULIPALA, Introduction
to parallel algorithms 15-853: Algorithms in the real
world. 2018.

A. BRAGINSKY AND E. PETRANK, A lock-free b+ tree,
in SPAA, 2012.

R. CoLE AND U. VISHKIN, Approzimate parallel
scheduling. part i: The basic technique with applica-
tions to optimal parallel list ranking in logarithmic
time, SICOMP, 17 (1988).

R. CoLE AND U. VISHKIN, Faster optimal parallel pre-
fix sums and list ranking, Information and computa-
tion, 81 (1989).

E. DEMAINE AND S. GOLDWASSER, 6.046J/18.410J
lecture notes on skip lists. March 2004,
https://courses.csail.mit.edu/6.046/spring04/
handouts/skiplists.pdf.

F. ELLEN, P. FaATOoUROU, E. RUPPERT, AND F. VAN
BREUGEL, Non-blocking binary search trees, in PODC,
2010.

D. EPPSTEIN, Z. GALIL, G. F. ITALIANO, AND A. Nis-
SENZWEIG, Sparsificationa technique for speeding up dy-
namic graph algorithms, JACM, 44 (1997).

K. FRASER, Practical lock-freedom, tech. report, Uni-
versity of Cambridge, Computer Laboratory, 2004.

G. N. FREDERICKSON, Data structures for on-line
updating of minimum spanning trees, with applications,
SICOMP, 14 (1985).

J. GABARRO, C. MARTINEZ, AND X. MESSEGUER, A
design of a parallel dictionary using skip lists, TCS, 158
(1996).

J. GiL, Y. MATiAS, AND U. VISHKIN, Towards a theory
of nearly constant time parallel algorithms, in FOCS,
1991.

Y. Gu, J. SHUN, Y. SuN, AND G. E. BLELLOCH, A
top-down parallel semisort, in SPAA, 2015.

M. R. HENZINGER AND V. KING, Randomized dynamic
graph algorithms with polylogarithmic time per opera-
tion, in STOC, 1995.

M. Herumy, Y. LEv, V. LUCHANGCO, AND
N. SHaAvIT, A provably correct scalable concurrent skip
list, in OPODIS, 2006.

L. HicHAM AND E. SCHENK, Maintaining B-trees on
an EREW PRAM, JPDC, 22 (1994).

J. HorLm, K. DE LICHTENBERG, AND M. THO-
RUP, Poly-logarithmic deterministic fully-dynamic al-
gorithms for connectivity, minimum spanning tree, 2-
edge, and biconnectivity, JACM, 48 (2001).

J. JAJA, Introduction to Parallel Algorithms, Addison-
Wesley Professional, 1992.

B. M. KaAproN, V. KiNGg, AND B. MounTJjOY, Dy-
namic graph connectivity in polylogarithmic worst case

104

(43]

(44]

(45]

[46]

(47]

(48]

[49]

time, in SODA, 2013.

T. KopeLowiTz, E. PORAT, AND Y. ROSENMUT-
TER, Improved worst-case deterministic parallel dy-
namic minimum spanning forest, in SPAA, 2018.

H. Kunc AND P. L. LEHMAN, Concurrent manipula-
tion of binary search trees, TODS, 5 (1980).

C. E. LEISERSON, The Cilk++ concurrency platform,
in Proceedings of the 46th Annual Design Automation
Conference, 2009, pp. 522-527.

P. D. MACKENZIE, Load balancing requires Q (log*n)
expected time, in SODA, 1992.

R. McCorL, O. GREEN, AND D. A. BADER, A
new parallel algorithm for connected components in
dynamic graphs, in HiPC, 2013.

MEMSQL, MemSQL Docs: Indexes, https://docs.
memsql.com/concepts/v6.5/indexes/.

G. MILLER AND J. REIF, Parallel tree contraction and
its application, in FOCS, 1985.

P. B. MILTERSEN, S. SUBRAMANIAN, J. S. VITTER,
AND R. TAaMmAssiA, Complexity models for incremental
computation, TCS, 130 (1994).

H. PARK AND K. PARK, Parallel algorithms for red—
black trees, TCS, 262 (2001).

W. PauL, U. VISHKIN, AND H. WAGENER, Parallel
dictionaries on 2-8 trees, in ICALP, 1983.

W. PucH, Concurrent maintenance of skip lists, Uni-
versity of Maryland, Inst. for Advanced Computer
Studies, 1990.

W. PucGH, Skip lists: a probabilistic alternative to
balanced trees, CACM, 33 (1990).

J. H. REIF AND S. SEN, Parallel computational geom-
etry: An approach using randomization, in Handbook
of Computational Geometry, 1999, ch. 18.

N. SHAVIT AND I. LOTAN, Skiplist-based concurrent
priority queues, in IPDPS, 2000.

J. SHUN AND G. E. BLELLOCH, Phase-concurrent hash
tables for determinism, in SPAA, 2014.

J. SHUN, G. E. BLELLOCH, J. T. FINEMAN, P. B. GIB-
BONS, A. KyrorA, H. V. SIMHADRI, AND K. TANG-
WONGSAN, Brief announcement: the problem based
benchmark suite, in SPAA, 2012.

J. SHUN, L. DHuLIPALA, AND G. E. BLELLOCH, A
simple and practical linear-work parallel algorithm for
connectivity, in SPAA, 2014.

N. Sivsiri, K. TANGWONGSAN, S. TIRTHAPURA, AND
K. Wu, Work-efficient parallel union-find with appli-
cations to incremental graph connectivity, in EuroPar,
2016.

D. D. SLEATOR AND R. E. TARJAN, A data structure
for dynamic trees, JCSS, 26 (1983).

D. D. SLEATOR AND R. E. TARJAN, Self-adjusting
binary search trees, JACM, 32 (1985).

H. SUNDELL AND P. TsiGAs, Scalable and lock-free
concurrent dictionaries, in SAC, 2004.

R. E. TARJAN, Dynamic trees as search trees via
FEuler tours, applied to the network simplex algorithm,
Mathematical Programming, 78 (1997).

M. THORUP, Near-optimal fully-dynamic graph connec-

Copyright © 2019 by SIAM
Unauthorized reproduction of this article is prohibited

https://courses.csail.mit.edu/6.046/spring04/handouts/skiplists.pdf
https://courses.csail.mit.edu/6.046/spring04/handouts/skiplists.pdf
https://docs.memsql.com/concepts/v6.5/indexes/
https://docs.memsql.com/concepts/v6.5/indexes/

Downloaded 03/25/21 to 173.75.42.126. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

tivity, in STOC, 2000.
[50] T. TSENG, L. DHULIPALA, AND G. BLELLOCH, Batch-
parallel euler tour trees, CoRR, abs/1810.10738 (2018).

A Model

The Multi-Threaded Random-Access Machine (MT-
RAM) consists of a set of threads that share an un-
bounded memory. Each thread is essentially a Random
Access Machine—it runs a program stored in memory,
has a constant number of registers, and uses standard
RAM instructions (including an end to finish the com-
putation). The only difference between the MT-RAM
and a RAM is the fork instruction that takes a posi-
tive integer k and forks k new child threads. Each child
thread receives a unique identifier in the range [1,. .., k]
in its first register and otherwise has the same state as
the parent, which has a 0 in that register. All children
start by running the next instruction. When a thread
performs a fork, it is suspended until all the children
terminate (execute an end instruction). A computation
starts with a single root thread and finishes when that
root thread terminates. This model supports what is
often referred to as nested parallelism. Note that if root
thread never forks, it is a standard sequential program.

We note that we can simulate the CRCW PRAM
equipped with the same operations with an additional
O(log" n) factor in the depth due to load-balancing.
Furthermore, a PRAM algorithm using P processors
and T time can be simulated in our model with PT work
and T depth. We equip the model with a compare-and-
swap operation (see Section 3) in this paper.

Lastly, we define the cost-bounds for this model. A
computation can be viewed as a series-parallel DAG in
which each instruction is a vertex, sequential instruc-
tions are composed in series, and the forked subthreads
are composed in parallel. The work of a computation
is the number of vertices and the depth (span) is the
length of the longest path in the DAG. We refer the in-
terested reader to [9] for more details about the model.

B Algorithm Implementation

Skip Lists. In our implementation of our skip lists,
instead of representing an element of height h as h
distinct nodes, we instead allocate an array holding h
LEFT and RIGHT pointers. This avoids jumping around
in memory when traversing up direct parents. In fact,
we allocate an array whose size is h rounded up to
the next power of two. This decreases the number of
distinct-sized arrays, which makes memory allocation
easier when performing concurrent allocation. We also
cap the height at 32, again for easier allocation. We set
the probability of a node having a direct parent to be

p=1/2.

We also need to be careful about read-write reorder-
ing on architectures with relaxed memory consistency.
For JOIN (Algorithm 2), if the reads from the searches in
lines 4 to 5 are reordered before the write on line 3, then
we can fail find a parent link that should be added. Thus
we disallow reads from being reordered before line 3.

For augmented skip lists, instead of keeping h
NEEDS_UPDATE booleans for each element, we keep a
single integer that saves the lowest level on which the
element needs an update. This works because if a
node needs updating, then all its direct ancestors need
updating as well.

Another optimization saves a constant factor in the
work for batch split. In BATCHUPDATEVALUES, we first
walk up the skip list claiming nodes and then walk back
down to update all the augmented values. We perform
these two passes because in order to update a node’s
value, we need to know all of its childrens’ values are
already updated too, which is easier to coordinate when
walking top-down through the list. However, in a batch
split, after cutting up the list, no nodes on the bottom
level share any ancestors. As a result, we can update
all augmented values in a single pass walking up the list
without even using CAS.

Euler Tour Trees. We implemented our parallel
Fuler tour tree algorithms, making several adjustments
for performance and for ease of implementation. For
simplicity, we use the unaugmented skip lists and do
not support subtree queries.

To achieve good parallelism, we need to allocate
and deallocate skip list nodes in parallel. We use lock-
free concurrent fixed-size allocators that rely on both
global and local pools. To reduce the number of fixed-
size allocators used, we constrain the skip list heights
and arrays as described previously.

For the dictionary edges, we use the deterministic
hash table dictionary from the Problem Based Bench-
mark Suite (PBBS) [42]. This hash table is based upon
a phase-concurrent hash table developed by Shun and
Blelloch [41]. As an additional storage optimization, for
an edge {u,v} where u < v, we only store (u,v) in our
dictionary and use the TWIN pointer to look up (v, u).

Instead of performing a semisort when batch join-
ing, we found it faster to use the parallel radix sort from
PBBS.

For batch cut, we do not use list tail-finding because
efficient list tail-finding is challenging to implement.
Instead, we opt for a recursive batch cut algorithm.
Recall why we used list tail-finding in Algorithm 10:
we do not want to spend too much time walking around
adjacent edges to find one that is unmarked. In our
recursive batch cut algorithm, we resolve the issue by
randomly selecting a constant fraction of the edges from

Copyright © 2019 by SIAM

105 Unauthorized reproduction of this article is prohibited

Downloaded 03/25/21 to 173.75.42.126. Redistribution subject to SIAM license or copyright; see https.//epubs.siam.org/page/terms

the input to ignore and not cut. Then if we walk around
adjacent edges naively, the number of edges we need to
walk around until we see an unmarked edge is constant
in expectation and O(logn) with high probability. Thus
we can cut out the unignored edges quickly. Then we
recurse on the ignored edges. This increases the depth
by a factor of O(log k) but does not asymptotically affect
the work.

C Skip list efficiency

Recall that in our skip lists, each node independently
has a direct parent with probability 0 < p < 1.

C.1 Work. We prove a work bound of O(klog(1 +
n/k)) in expectation over a set of k splits over n ele-
ments for unaugmented skip lists. The same strategy
proves the bound for joins and for operations on aug-
mented skip lists.

For a set of k splits, we first show that O(klog(1 +
n/k)) links need to be cut in expectation. Over the

first h = [logl/p(l —i—n/k:)—‘ levels, each split needs to

remove at most h links (one at each level), so there are
O(kh) pointers to remove over the first & levels. For each
level k > h, the number of links to remove is bounded
by the number of nodes on the level. The probability

that a particular node has height at least £ is p‘~!, so

the expected number of nodes reaching level ¢ is np’~1.
Then the number of links summed across all levels £ > h

is at most

n Z o1 = pph 1 < nplogi (14 /R) 1
1—p 1—p
¢{=h+1
n n
A0k = a-pm - "

Therefore, the expected number of links we need to cut
in total is O(kh) + O(k) = O(klog(1 + n/k)).

For each link to remove, the amount of work to
find that link from the previous child link in a split
is O(1) in expectation. To search for a link at level
i+ 1 that needs removal, we call SEARCHLEFT, which
walks left from the previous place we removed a link
on level ¢ until we see a direct parent. The amount
of work is proportional to the number of nodes we
touch when walking left. The probability a node has
a direct parent is p independently, so the number of
nodes we must touch until we see a direct parent is
distributed according to Geometric(p) with expected
value 1/(1—p) = O(1). (If we quit early due to reaching
the beginning of a list or due to detecting a cycle,
that only reduces the amount of work we do.) Thus
this traversal work to find parent links only affects the
expected work by a constant factor.

Moreover, no two split operations can both remove
the same link because we remove links with a CAS.
Whoever CASes the link first successfully clears the
link, and whoever comes afterwards quits. The quitting
execution only does O(1) extra work from the extra
traversal to find the already claimed link. Thus there is
no significant duplicate work per split.

Therefore, the work overall for k splits is O(k log(1+

C.2 Depth. For analyzing depth, we know that with
high probability, every search path (a path from the
top level of a skip list to a particular node on the
bottom level, or the reverse) in an n-element skip list
has length O(logn). A proof is given in [13]. The main
critical paths of our operations consist of traversing
search paths and doing up to a constant amount of extra
work at each step, so we get a depth bound of O(logn)
with high probability for any of our operations.

Copyright © 2019 by SIAM

106 Unauthorized reproduction of this article is prohibited

	Introduction
	Related Work
	Sequences.
	Dynamic Trees.
	Parallel Dynamic Connectivity.

	Preliminaries
	Sequences and Parallel Skip Lists
	Batch-Parallel Sequence Interface
	Skip Lists.
	Algorithms for unaugmented lists.
	Algorithm for augmented lists.
	Implementation.

	Batch-Parallel Euler Tour Trees
	Description.
	Implementation.

	Experiments
	Unaugmented Skip Lists.
	Augmented Skip Lists.
	Euler Tour Trees.

	Discussion
	Model
	Algorithm Implementation
	Skip list efficiency
	Work.
	Depth.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 14.40 points
 Normalise (advanced option): 'original'

 32

 D:20181105132555
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 14.4000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 15
 14
 15

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move up by 9.00 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 9.0000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 15
 0
 1

 1

 HistoryList_V1
 qi2base

