
JOURNAL OF ALooIuTIiMs 2,88-W (1981)

Finding the Maximum, Merging, and Sorting in a
Parallel Computation Model

Y OSSI SHILOACH

IBM Scientific Center, Technion, Ha& Israel

AND

UZI VISHKIN*

Computer Science Dqutment, Technion, Ha&a, Israel

Received May 8.1980

A model for syucbronized parallel computation is described iu which all p
processors have access to a common memory. This model is used to solve tbe
problems of finding the maximum, merging, and sorting byp processors. Tlte main
results are: 1. Finding the maximumofnelements(1<p~n)witbinadeptbof
O(n/p + loglogp); (optimal for p 5 n/loglogn). 2. Merging two sorted lists of
length m and n (m I n) witbiu a deptb of O(n/p + logn) for p I n (optimal for
p _< n/logn), O(logm/logp/n) for p 2 n(- O(k) if p = m%, k > 1). 3. Sort-
ing n elements witbiu a depth of 0(n/p log n + log n logp) for p 5 n , (o@imal for
p I n/logn). OQog2n/logp/n) + logn) for p 2 n (- O(klogn) if p = n’++,
k > 1). The depth of O(klogn) forp = n’+‘/* processors was also achieved by
Hirschberg (Comm ACM 21, No. 8 (1978), 657-661) and Preparata (IEEE Trcuu
Computers C-27 (July 1978), 669-673). 0ur algorithm is substantially simpler. All
the elementary operations including allocation of processo rs to their jobs arc taken
into account in deriving the deutb complexity and not only comparisous.

1. INTRoDUC~~N

The algorithms given in this paper are all in the framework of the
following model for parallel computation.

The model. There are p processors, each equipped with a small local
memory and a processing unit capable of performing typical operations
like reading, writing and arithmetic and Boolean operations. Each processor
has an identification number i, 1 I i I p.

All processors have access to and can write in a common, arbitrarily
large, memory. A simultaneous writing of several processors in the same
memory location is allowed only if they attempt to write the same thing. If

*This paper constitutes a part of the author’s research towards his D.Sc. degree.

88

0196-6774/81/01W88-15$02.00/O
copyri&t 0 1981 by Academic F’ress, Inc.
Au Ii&its of rejwoductioll in any form -.

MAXIMUM, MERGING, AND SORTING 89

several processors attempt to write different things in the same space at the
same time, the algorithm is considered illegal. Thus, it will be the task of
the correctness proof to show that it never happens. Simultaneous reading
from the same memory location is also allowed.

The program is located in the common memory and written so that
every processor knows what it should do in any time unit. There is a
universal clock to the program that ticks every time unit and each
processor can perform one and only one elementary operation between
two ticks. A starting time will be assigned to some of the instructions. The
execution of such an instruction must start exactly in the starting time
assigned to it. This enables us to achieve synchronization whenever neces-
sary. An instruction that lacks a starting time should be executed as soon
as its predecessor is finished. The event of a processor reaching an
instruction after its starting time will be considered illegal. The starting
time is an integral part of the instruction and will usually be expressed as a
function of the input parameters and the processor’s serial number. The
specified starting times will also be called synchroniazfion points.

Besides the starting time, an instruction may contain an allocation part.
This part will specify what should be done by each of the processors that
reach this point in case that not all of them have to do the same.

EXAMPLE. Let n be the input length, i-the processor’s number, E-a
vector of lengthp. A typical instruction may look like:

[2ni] if i < n
then E(i) t 5
else E(i) t 6.

Processor i starts to perform this instruction in time 2ni and inserts 5 or 6
to E(i) according to the i’s value. For example, if i = 4 and n = 7 then
processor 4 starts performing the instruction in time t = 56 and inserts 5 to
E(4).

The depth of an algorithm is the time elapsed between the starting of the
first processor and the termination of the last one.

The literature is full of parallel algorithms. Still, there is no concensus
about an exact model that will take care of all the overhead time and
enable fair comparison of depth complexities of different algorithms on the
same basis. We hope that our model will be proved adequate for this
purpose.

The following works can be implemented directly in our model: [l-
5,8,9,13,14,17]. Works that can be implemented in models that are quite
close to our’s are [6,12,15,16] and several works in the survey paper [7].
Reference [1 l] and most of its references seem to be quite far from our
model. They assume no common memory and very limited communication

90 SHILOACH AND VISHKIN

facilities among the processors. The communication network is determined
in advance. Some of these references deal with unsynchronized algorithms.

In this paper we do the following:

1. We implement Valiant’s algorithm [151 for finding the maximum in
our model. The same depth of [15] is achieved (up to a constant factor)
even though all the overhead time is taken into account. (In [15] only
comparisons are counted. Valiant himself wonders whether his solution
can be implemented within the same depth in a model that takes all the
overhead into account.)

2. Two algorithms for merging are presented for the casesp I n and
p 1 n, respectively. Here m and n are the lengths of the lists (m I n) andp
is the number of processors.

The first algorithm uses some ideas of Gavril [6], who counts only
comparisons. Another crucial difference between Gavril’s algorithm and
ours is that his output is a linked list while ours is a ranking vector that
enables recursive application of the algorithm. This recursive applicability
is later used for sorting. These two differences yield an increase in the
depth. Gavril’s depth is O((m/p) log(n/m)) while ours is O(n/p + logn).
Note that O(n/p) is optimal for a vector form of the output.

We have not found a way to implement Valiant’s ideas in these algo-
rithms within the same depth as his. The main problem seems to be the
allocation problem. That is, to allocatep processors top tasks in a constant
time.

3. Two algorithms for sorting are presented, for p 2 n and p I n,
respectively. Both algorithms use the corresponding merging algorithms.

Let Max,,(n), Merge,(m,n), Sort,(n) denote the best achievable depth
by parallel algorithms in our model, for finding the maximum, merging,
and sorting with p processors, respectively. The depth will be evaluated by
the worst case criterion and will usually be expressed as a function of p,
the number of processors, and the input size.

The following results are given in this paper:

1. Finding the maximum of n elements.

Max,(n) = 0
(

;+1og1ogp
1

ifp 5 n,

(optimal for p 5 n/log log n)

= O(loglogn - loglog(~ f 1)) ifn Ip <(T),implying

= O(Iogk) ifp =[n ‘+w j(k > 1)

MAXIMUM, MERGING, AND SORTING 91

2. Merging two sorted lists of sixes m and n (m I n).

Merge,(m,n) = o(;+ logn)

(optimal forp I n/log n)

ifp > n, and hence

= O(k) ifp =[m’/%], k > 1.

3. Sorting n elements.

Sort,(n) = 0
(

alogn + lognlogp
1

(optimal for p I n/log n)

= o

(

log2n

lwp/n

+ logn
1

ifp I n,

ifp 2 n, and hence

= O(klogn) ifp =[n’+‘/k], k > 1.

This paper extends the following known results:

1. Valiant’s [151 maximum algorithm (the same depth is achieved while
counting all the overheads).

2. Even [5] presents a sorting algorithm for p I logn processors that
can nicely fit in our model. His solution is optimal in this range but has no
apparent extension to a larger number of processors.

3. Batcher [2] constructs a sorting network that consists of O(n log2 n)
comparison units. This network can be regarded as a sorting algorithm in
our model that uses n/2 processors and requires depth of O(log’ n). When
this algorithm is generalized to an arbitrary numberp I n/2 of processors
it yields depth of O((n/p) log2 n) which is not optimal for any value of p.

4. Hirschberg [8] gives a sorting algorithm for p = [n’ + Ilk] within a
depth of O(k log n). This algorithm does take care of overhead time and
allocations. Preparata [121 achieves the same result (even without simulta-
neous reading from the same location-no “fetch conflicts”). However,
both algorithms are more complicated than ours, which also does not use
simultaneous writing in the same location.

The following algorithms are incomparable to ours.

1. Gavril’s merging algorithm. As mentioned above, this algorithm
counts only comparisons and uses a linked list as an output (while using a
ranking vector as an input) and therefore cannot be applied recursively.

92 SHILOACH AND VISHKIN

2. Valiant’s merging algorithm. Only comparisons are counted and
there is no apparent way to overcome the allocation problem. The depth of
Valiant’s algorithm is O(log log m) for p = [G 1. This depth cannot be
achieved if m = o(n) and one wants a ranking vector as an output and
considers all the overhead time.

3. Preparata [121 gives a sorting algorithm for p = n log n processors
and depth of O(log n). This algorithm is based upon Valiant’s merging
algorithm and therefore has the same difficulties. Preparata himself is
aware of the allocation problem.

The following sections are devoted to: Section 2-Finding the Maxi-
mum, Section 3-Merging, Section 4-Sorting.

2. FINDING THE MAWMUM

2.1. Valiant’s Algorithm and Its Implementation Problems

Our problem is to find the maximum among n elements a,, . . . , a, with p
processors, p 2 n. The case p < n is handled at the end of Section 2.

Since we use ideas of [15], we first give a brief description of Valiant’s
algorithm. It may be assumed that a, # aj for all i #j. If ai = ai and i < j,
a, is considered “greater” than ai.

In the course of Valiant’s algorithm, it is required to find a maximum
among m elements using (T) processors. In Valiant’s “model” this is done
within a depth of one comparison. Each processor compares a different
pair ai and aj and since we have all the information, a maximal element
can be found without further comparisons. The allocation problem of
processors to pairs of elements and the overhead time involved in analyz-
ing the results are not taken into account.

The iterative stage in Valiant’s algorithm is as follows: Comparison are
made only among elements that are potential “winners” (that have not yet
lost in any comparison) and those that are still potential winners move to
the next stage.

Each stage consists of the following steps:

(a) The input elements are partitioned into a minimal number I of sets
s ,, . . . , S, such that:

l. IlSil - lsjll I 1 foralll li<jlI, (2.1.1)

2. i (‘;I) sp.
i-=1

(2.1.2)

MAXIMUM, MERGING, AND SORTING 93

(b) To each set Si we assign (1 1:’ processors and find its maximal

element, say ui, within a depth of one comparison.

(c) If I= 1 we are done, else u’ , . . . , u’ will be the input for the next
stage.

It is shown in [15] that ifp = n, no more than log log n + c stages will be
required and that it is also a lower bound for this case. Except the
allocation problem and the analysis of the comparisons results, one also
faces the problem of calculating I while trying to implement Valiant’s
algorithm in constant depth per stage.

2.2. The Algorithm in the Model

Consider first the problem of calculating 1. Let rm(n, I) = n - 1 1 n/r]
denote the remainder of the division of n by 1. Inequality (2.1.1) implies
that the input set must be partitioned into rm(n, Z) subsets of size 1 n/Z] +
1 and I - rm(n, 1) subsets of size 1 n/f J. Thus I should be the minimal
number satisfying (see (2.1.2))

rm(n,l)(ln’y + ‘) + (I - rm(n,l))(lnL’j) Ip. (2.2.1)

The value of I will be calculated in the first three instructions of the
algorithm below.

Since the input set A, its size n and the number 1 vary from one stage to
another, we express them as a function of S, the stage number. Thus, let
A[s,j] be an array in which a(s,j) is thejth element in the input set for the
s + 1st stage.

Remark. The starting times whenever assigned to instructions are im-
plicit since they strongly depend on the way and order in which certain
operations are performed.

The Algorithm. (s-the stage number, i-the processor’s number.)
Input: n = n(s), A = A(s) = (u(s - 1, l),. . . ,u(s - l,n(s))).

1. [t, = 01; if i I n
then if rm(n,i)(Ln/:J + I) + (i - rm(n,i)(La!‘) 5 p

then B(i) t 1
else B(i) t 0.

Comment. Processor i checks whether it is possible to partition A into i
subsets such that (2.1.1) and (2.1.2) are satisfied. If so it inserts 1 to B(i)
and else 0. Thus the auxiliary vector B has the form (0,. . . ,0, 1, . . . , 1). The
location of the leftmost 1 is our desired 1. Note that if i > n Processor i

94 SHILOACH AND VISHKIN

remains idle.
2. [t,] if i = 1

then C(1) +-B(l)
elseifisn

then C(i) c B(i) - B(i - 1).

Comment. The vector C contains 1 in the Ith location and 0 elsewhere.
3. if i I n

then if C(i) = 1
then (I =)1(s) t i.

In instructions 4, 5, 6 and 7 we allocate each processor to the pair of
elements that it should compare. This is done in two steps. In instruction 6
each processor is allocated to a subset and in instruction 7 it is further
allocated to a pair in this subset.

:: 6:11”r+l,~~ ~~2+y’.

Comment. The absence of an allocation part in instructions 4 and 5
means that they are executed by all the processors. They can actually be
computed by one processor, however our model allows simultaneous
writing of the same thing in the same location and therefore these instruc-
tions are valid in the model. Moreover, if just one processor executes these
instructions, a synchronization point is required at instruction 6.

6. if i I a,b,
then D(i) + [i/b,], E() i trm(i,b,) + 1, F(i)t(D(i) - l)b,
else if i I a,b, + (I - a,)b,

then D(i)ta,+ [(i - a,b,)/b,l,E(i)trm(i - a,b2,b,) + 1,
F(i) t a,b, +

+ (D(i) - 1 - a,)b,.

Comment. I is the serial number of the subset allocated to processor
i and E(i) is his serial number among the processors allocated to this
subset. The auxiliary numbers F(i) are used in instruction 8.

7. if i I a,b,
then call ALLOCATE(b,, E(i), (i,(i), h(i)))
else if i I azbz + (I - a,)b,

then call ALLOCATE(b,, E(i), (j,(i),&(i))).

Comment. For given integers n,i,n > 0,l I i I (;)

ALLOCATE(n, i, (j,,j,)) is a routine that assigns a pair (ji,j2) to i such
that: (a) 1 I j, <j, I n.

(b) If i’ # i then ALLOCATE assigns to i’ a pair (j;, j;) # (j,, j2).
ALLOCATE is a sequential algorithm.

MAXIMUM, MERGING, AND SORTING 95

ALLOCATE (n, i, (j,,j,)):

(a)i,t[i/n]; i,ti - n(i,- 1)

(b) if i, < i,
thenj,t ii; j,+ i,
elsej,tn - i,;jzcn + 1 - i,.

8. if i I azb, + (I - a,)b,
then if a(s - l,F(i) +jI(i)) < a(s - l,F(i) + j*(i))

then L,-,(F(I’) + j,(i)) t 1
else L,-,(F(I) +&(i)) t 1.

Comment. The vector L,- , [r] (r = 1, . . . , n(s)) contains only zeros
initially. After the execution of instruction 8 L,- l(r) = 0 if and only if
a(s - 1, r) is the maximal element in its subset. This instruction is the only
one in this algorithm where simultaneous writing in the same location
cannot be avoided. Without it, a lower bound of c log n/log log p has been
recently established for this problem.

9. [t9] if i 2 n
then if L,-, (i) = 0

then if i I (aI + l)a,
then a(s, [i/ (a, + l)])ta(s - 1, i)
else a(s,a, + [(i - (a, + l)az)/a,l)ca(s - 1,i).

Comment. This instruction gathers the winners of each subset into one
vector (a(s, l), . . . ,a(s, Z(s)).

10. if I(s) = 1
then print “MAX = ” a(s, 1) and stop.
else n(s + 1) t I(S), s t s + 1, initialize your clock and go to 1.

2.3. The Depth

In each stage, only a constant (independent of n or p) number of
operations are performed. It follows from [151 that there are at most log log
n + 1 stages. Thus, Max,,(n) = O(log log n).

COROLLARY 1 [151.

Max,(n) = 0(log log n - log log (f + 1)) fern Ip I(i).

Proof: Follows from the same algorithm [15].

COROLLARY 2.

Max,(n) = O(log k) forp = n’+‘/k (k > 1).

96 SHILOACH AND VISHKIN

Proof: Follows directly from Corollary 1.

COROLLARY 3 [15].

Max,(n) -0 j+logl,
(1

for 1 <p I n.

Proof. We first partition the n elements into p disjoint sets of sizes
WPJ or ~/PI n en each processor is allocated to a set .and finds its
maximal element sequentially. Finding the maximal element among the p
winners is done by applying the parallel maximum algorithm described in
Section 2.2.

COROLLARY‘k

The algorithm is optimal for 1 < p I n
log log ?I *

Proof: By Corollary 3, Max,(n) = 0(n/p) in this range.

THEOREM [151.

Max,(n) 2 loglogn-loglog(f+ 1) forn sp s(i).

ProofI Valiant shows that this depth is required even if only compari-
sons are counted.

3. MERGING

The algorithms in this section do not use simultaneous writing in the
same location.

3.1. The Case p I n

The presentation of the following algorithm will be somewhat more
informal than the previous one.

Input: Two sorted lists X = (x,, . . . , x,), Y = (y,, . . . ,yn), (x, I
x,5 *-* Ix,,y,Iy,S*** Iy,,mln).

Output: A sorted list 2 = (zi, . . . , z,+,) resulting from the merging of X
and Y.

We assume that no equality occurs between an element of X and an
element of Y. If so happens, the X’s element is considered as the smaller

MAXIMUM, MERGING, AND SORTING 97

one. Let us consider first an algorithm for the case m = n = p as a
warm-up. This algorithm has depth of O(logn).

1. Processor i finds by a binary search (O(log n) operations) the
smallest rj such that xi < yj and then performs z~+~- i t xi. If there is no
such uj it performs z,,+; t xi.

2. Processor i finds the smallest xi such that yi < xi and then feeds
‘i+j- 1 tyi. If there is no such x,. it feeds .z,,,+~+Y~.

The main algorithm solves the casep I m I n within depth of O(n/p +
logn). Some of the ideas here are due to Gavril [6].

Informal Description of the Algorithm

The algorithm consists of two stages. The first stage does some prepara-
tory work that enables a smooth parallel processing in the second stage.

Stage 1.

1. We choose a set X’ C X of p - 1 elements (so called distinguished
elements) that divide X intop intervals of about the same size. In the same
way we choose a set Y’ c Y of p - 1 elements.

2. We merge X’ and Y’ into a vector A of length 2p - 2. With each
element in A we store its original set (X or Y) and its serial number in it.

Remark. A contains 2p - 2 elements that divide 2 into 2p - 1 inter-
vals. In the next stage each processor will merge and insert to Z the
elements of two successive intervals (except Processor p that deals with
only one interval). Note that the size of each interval does not exceed
2 *(m + n)/p which is not the case if we divide Z into p intervals using
elements of X’ or Y’ only. This bound is crucial in the depth evaluation
later.

Stage 2.

3. Processor i, 2 I i I p, checks the origin of the (2i - 2)th element in
A. If it belongs to X(Y) it finds (by a binary search) the smallest element
in Y(X) that is greater than it. These two elements provide Processor i
with a starting point for its merging. (The starting point for Processor 1 is
x1 andyI.)

4. Processor i, 2 I i 5 p - 1, merges (and inserts to Z) all the ele-
ments that fall between the (2i - 2)th and the 2ith elements of A.
Processor 1 does the same for the elements that are smaller than the
second element of A. Processorp merges the elements that are greater than
the greatest element of A.

98 SHILOACH AND VISHKIN

Detailed Description of the Algorithm

l.lfllilp-1

Comment. X’ = (xi,. . . ,x;Iml), Y’ = (yj,. . . ,yi-,).
2.lfllilp-1

then a. Find by a binary search on Y’ the smallestj such that yj > xj
and perform:A(i +j - l,l)cxf,A(i +j - 1,2)ci,A(i +j
- 1,3)+X.
If there is no suchj-perform:
A(i +p - 1, l)txj,A(i +p - 1,2)ti,A(i +p - 1,3)
+ x.

b. Find by a binary search on X’ the smallestj such that xj > yi
and perform:
A(i +j - l,l)tyi,A(i +j - 1,2)ti,A(i +j - 1,3)t Y.
If there is no such j-perform:
A(i +p - 1, l)ty;,A(i +p - 1,2)ti,A(i +p - 1,3)
t Y.

Comment. A is a (2p - 2) X 3 array.

For 1 I I I 2p - 2

A(1,l) contains the value of the
I-th element in the merging
of X’ and Y’,

A(I, 2) contains its original index
in X’ or Y’,

A(I, 3) contains its origin (X or
n

3.if25iIp
then if A(2i - 2,3) = X

then find the smallest j such that y1 > A(2i - 2, l),
Z Im~plA(2i--2,2)+j- I + A(2i - 2, WY(i) +j, WI’) + A(2i - 2,2),

[m/p1 WO+ Wi),
TX(i) c SX(i) + 1

else find the smallest j such that xi > A(2i - 2, l),
Z ,n,p,A(2i-22,2)+j--1A(2i - 2,1XSX(i) +-j, Wi)

+A@‘- 2,2), [n/p1
TX(i) t SX(i), TY(i)
t SY(i) + 1

else(i = l)TX(l) t 1, TY(l) c 1.

MNmiUM, MERGING, AND SORTING 99

Comment. In TX and TY we store the indices of the elements that are
going to be compared by Processor i. They are initialized in this instruc-
tion. SX and SY will be used to check the termination of the loops in
instruction 4. In order to avoid undefined variables we set x,, , = y,,+ i =
m=(x,,y,) + 1.

4.ifIlilp-1
then while TX(i) # SX(i + 1) or TY(i) # SY(i + 1) do

if x TX(i) > YTY(i)

then z TX(i)+ Ty(i)- 1 +YTy(i), TW + TV) + 1
else z TX(i)+ TY(i)- I+ xTX(i)y TX(i)+ TX(i) + 1

od
else (i =p) while TX(p) # m + 1 or TY(p) # n + 1 do

if x TX(P) > YTY(P)
then z TX(p)+TY(p)-lIYTY(p), WP) + WP) + 1
else z TX(~)+~Y(~)-I~XTX(~)~TX(P) + TX(P) + 1

od
Remark. Synchronization points are required in the beginning of in-

structions 3 and 4.
Depth. The depths of instructions 1,2,3 and 4 are O(l), O(logp),

O(logn) and O(n/p), respectively. Hence the total depth of the algorithm
is 0(n/p + log n). A very slight modification of this algorithm solves the
case m < p 5 n within the same depth.

The depth above is optimal for p I n/log n.

3.2. Thecasep > n(2 m)

In the following, a merging algorithm for p 2 n processors is presented.
Its depth is shown to be O((logm)/ (logp/n)). The particular case that
p = [m’ik n] (k > 1) yields depth of O(k).

The algorithm will be described informally. The details can be easily
filled in since no new techniques are used.

The A Igorithm

(a) 1. Allocate 1 p/n 1 processors to each y E Y. (These processors will
be used to rank y with respect to X in the following instructions.) Each
such set of 1 p/n J processors performs the following:

2. x+x.
3. while [%I > [p/nj do

a. Choose 1 p/n] distinguished elements that divide x into 1 p/n]
+ 1 intervals of about the same size I,, . . . , I,,,,,, t.

b. Findj such that y falls within the range of 4.

100 SHILOACH AND VISHIUN

Comment. Since the number of processors allocated toy is equal to the
number of distinguished elements, this j can be found in constant depth.
(See the h$ximum algorithm, Instructions 1,2 and 3.)

c. x t Z].

4. Rank y with respect to x and insert it to the appropriate location
in Z.

Comment. Instruction 4 is executed like instruction 3b and takes con-
stant depth since 1 xl I 1 p/n 1.

(b) We rank X’s elements with respect to Y and insert them to Z in the
same way.

The Depth

Each iteration of instruction 3 shrinks the interval within which y should
be ranked by a factor of 1 p/n] + 1 2 p/n. Thus, after at most
((log m)/ (logpln)) iterations this interval becomes smaller than p/n and
we switch to instruction 4. Thus the depth is O((logm)/ (logpln)).
Ranking X’s elements with respect to Y requires depth of O((logn)/
h3plmN 5 Worm)/ (h3dnO

4. SORTING

As in merging, two algorithms will be described for the casesp I n and
p 2 n, respectively. Both will be described informally since they just
contain successive applications of the merging algorithms. Both are free of
simultaneous writing in the same location.

4.1. The Case p I n

The Algorithm

1. Partition the input set X intop subsets, X,, . . . , Xp, of sizes 1 n/p] and
[n/p1 and allocate one processor to each subset.

2. Each processor sorts its subset sequentially.
3. X/t X,, . . .,Xdt Xp; P:t {Processor l}, . . ., Pd+ {Processor p};

St 1, qtp.
4. While q > 1 do

for 1 5 t I Lq/2] do
Ps+‘t Pi,-, u Pi:
h;erge Xi,-, and X& into Xi+’ using the set P;” ’ of

processors
od

MAXIMUM, MERGING, AND SORTING 101

if 4 is odd
then Pf$, t P:; X&$, t Xl

StS + l;qt[q/2]
od

Comment. Instruction 4 applies the sorting by merging technique.

The Depth

Step 1: O(l),
SW 2: O((n/p) h3(n/P))7
Step 3: O(l),
Step 4: The “while” loop is executed [logp 1 times. In each merge

operation the ratio between the number of elements and the number of
processors involved is bounded by [n/PI. Thus, the depth of each
iteration is 0 (n/p + log n).

The total depth amounts to:

This depth is optimal for p I n/log n.

4.2. The Casep 2 n

This case is essentially the parallel version of the sequential “sorting by
merging” algorithm. Since this algorithm is well known, we describe it
recursively.

The Algorithm

1. Divide n into two sets of ln/21 and [n/21 elements and allocate
1 p/2] processors to the first set and [p/2 1 to the second.

2. Sort each set with the processors allocated to it.
3. Merge the sorted sets.

Depth. In order to obtain a smooth evaluation of the depth we assume
that only p = 2t“‘aPJ processors are employed and that the input size is
n’ = 2’i“s”‘. The actual depth of the algorithm will obviously not exceed
the computed depth which satisfies the following recurrence formula:

Sort,(n’) I Sort,,,,
(1

$ + Merge,, f , !$
(1

+o(lo;;;n.)+c. n

+ c I sort,.,,
n’

(1
yj-

(The last inequality follows from the fact thatp’ 2 n’/2.)

102 SHILOACH AND VISHKIN

One can easily verify now that

Sort,(n) 5 Sort,,(n’) = 0
(

10g2n’
logp’/n’

+ logn’
1 (

= 0
log’n

-+logn .
lw /n 1

Note that if p = r
the casep = [n

n’+‘/k7 then Sort,(n) = O(klogn).The last bound for
‘+‘/kl has been achieved by Hirschberg [8] and Preparata

[12] by much more complicated algorithms.

ACKNOWLEDGMENTS

We wish to thank Dr. M. Rodeh for his suggestions that helped us to simplify the first
merging algorithm and Professor S. Even for stimulating discussions.

REFERENCES

1. D. A. ALTON AND D. M. Ecxsrx~.~, Parallel breadth-first search of p sparse graphs, Proc.
of Humboldt State University Conference on Graph Theory, Combinatorics and Com-
puting (Phillis Clinn, Ed.), Utilitas Mathematics, University of Manitoba, Winnipeg, in
press.

2. K. E. B~rcrnm, Sorting networks and their applications, Pm. AFIPS Spring Joint
Computer Co& 32 (1968), 307-314.

3. D. M. E~KSTEIN, “Parallel Processing Using Depth-First Search and Breadth-First
Search,” Ph.D. thesis, Dept. of Computer Science, University of Iowa, Iowa City, Iowa,
1977.

4. D. M. ECKSTEIN AND D. A. ALTON, Parallel searching of nonsparse graphs, SIAM J.
Comput., in press.

5. S. EVEN, Parallelism in tape-sorting, Comm ACM 17, No. 4 (1974), 202-204.
6. F. GAVRIL, Merging with parallel processo rs, Corn ACM IS, No. 10 (1975), 588-591.
7. D. HELLER, A survey of parallel algorithms in numerical linear algebra, SIAM Rec. 28,

No. 4 (1978), 740-777.
8. D. S. HIRSCHBERO, Fast parallel sorting algorithms, Comm ACM 21, No. 8 (1978),

657-661.
9. D. S. HIRSCHBERG, A. K. CHANDRA, AND D. V. Smw~rn, Computing connected compo-

nents on parallel computers, Comm ACM 22, No. 8 (1979), 461-464.
10. D. E. KNUTH, “The Arf of Computer Progrunvning,” Vol. 3, Addison-Wesley, Reading,

Mass., 1973.
11. H. T. KUNG, The structure of parallel algorithms, in “Advances in Computers,” Vol. 19,

Academic Press, New York, in press.
12. F. P. hEPmTA, New parallel-sorting schemes, IEEE Trans. Compu?ers C-27 (July 1978),

669-673.
13. E. RBOHBA~ (ho-~) AND D. G. Coaumr, Parallel computations in graph theory,

SIAM J. Cowput. 7, No. 2 (1978). 230-237.
14. C. SAVAGE, “ParaBel Algorithms for Graph Theoretic Problems,” Ph.D. thesis, Univ. of

Illinois, Urbana, Ill., 1977.
IS. L. G. VALIANT, Parallelism in comparison problems, SIAM J. Comput. 4, No. 3 (1975),

348-355.
16. S. Wmoolu~, On the parallel evaluation of certain arithmetic expressions, J.Assoc.

Comput. Mock 22, No. 4 (1975), 477-492.
17. J. C. Wvr.rur, “The Complexity of Parallel Computations”, TR 79-387, Dept. of Com-

puter Science, Cornell Univ. Ithaca, N. Y., 1979.

