
SIAM J. COMPUT.
Vol. 18, No. 3, pp. 594-607, June 1989

(C) 1989 Society for Industrial and Applied Mathematics

012

OPTIMAL AND SUBLOGARITHMIC TIME RANDOMIZED PARALLEL
SORTING ALGORITHMS*

SANGUTHEVAR RAJASEKARAN- AND JOHN H. REIF?

Abstract. This paper assumes a parallel RAM (random access machine) model which allows both
concurrent reads and concurrent writes of a global memory.

The main result is an optimal randomized parallel algorithm for INTEGER_SORT (i.e., for sorting n

integers in the range [1, n]). This algorithm costs only logarithmic time and is the first known that is optimal:
the product of its time and processor bounds is upper bounded by a linear function of the input size. Also
given is a deterministic sublogarithmic time algorithm for prefix sum. In addition this paper presents a

sublogarithmic time algorithm for obtaining a random permutation of n elements in parallel. And finally,
sublogarithmic time algorithms for GENERAL_SORT and INTEGER_SORT are presented. Our sub-
logarithmic GENERAL_SORT algorithm is also optimal.

Key words randomized algorithms, parallel sorting, parallel random access machines, random permuta-
tions, radix sort, prefix sum, optimal algorithms

AMS(MOS) subject classification. 68Q25

1. Introduction.
1.1. Sequential sorting algorithms. Sorting is one of the most important problems

not only of computer science but also of every other field of science. The importance
of efficient sorting algorithms has been long realized by computer scientists. Many
application programs like compilers, operating systems, etc., use sorting extensively
to handle tables and lists. Due to both its practical value and theoretical interest,
sorting has been an attractive area of research in computer science.

The problem of sorting a sequence of elements (also called keys) is to rearrange
this sequence in either ascending order or descending order. When the keys to be
sorted are general, i.e., when the keys have no known structure, a lower-bound result
[1] states that any sequential algorithm (on the random access machine (RAM) and
many other sequential models of interest) will require at least l)(n log n) time to sort
a sequence of n keys. Many optimal algorithms like QUICK_SORT and HEAP_SORT,
whose run times match this lower bound, can be found in the literature [1].

In computer science applications, more often, the keys to be sorted are from a
finite set. In particular, the keys are integers of at most a polynomial (in the input
size) magnitude. For keys with this special property, sorting becomes much simpler.
If each one of the n elements in a sequence is an integer in the range [1, n] we call
these keys integer keys. The BUCKET_SORT algorithm [1] sorts n integer keys in
O(n) sequential steps. Notice that the run time of BUCKET_SORT matches the trivial
(n) lower bound for this problem.

In this paper we are concerned with randomized parallel algorithms for sorting
both general keys and integer keys.

1.2. Known parallel sorting algorithms. The performance of a parallel algorithm
can be specified by bounds on its principal resources viz., processors and time. If we

* Received by the editors January 17, 1987; accepted for publication (in revised form) August 19, 1987.
A pre.liminary version of this paper appeared as "An optimal parallel algorithm for integer sorting" in the
18th IEEE Symposium of Foundations of Computer Science, Portland, Oregon, October 1985. This work
was supported by National Science Foundation grant DCR-85-03251 and Office of Naval Research contract

N00014-80-C-0647.
? Aiken Computation Laboratory, Harvard University, Cambridge, Massachusetts 02138.

594

RANDOMIZED PARALLEL SORTING 595

let P denote the processor bound, and T denote the time bound of a parallel algorithm
for a given problem, the product PT is, clearly, lower bounded by the minimum
sequential time, Ts, required to solve this problem. We say a parallel algorithm is
optimal if PT O(Ts). Discovering optimal parallel algorithms for sorting both general
and integer keys remained an open problem for a long time.

Reischuk [25] proposed a randomized parallel algorithm that used n synchronous
PRAM processors to sort n general keys in O(log n) time. This algorithm, however, is
impractical owing to its large word-length requirements. Reif and Valiant [24] presented
a randomized sorting algorithm that ran on a fixed-connection network called cube-
connected cycles (CCC). This algorithm employed n processors to sort n general keys
in time O(log n). Since f(n log n) is a sequential lower bound for this problem, their
algorithm is indeed optimal. Simultaneously, Atai, Koml6s, and Szemer6di [4] dis-
covered a deterministic parallel algorithm for sorting n general keys in time O(log n)
using a sorting network of O(n log n) processors. Later, Leighton [17] showed that
this algorithm could be modified to run in O(log n) time on an n-node fixed-connection
network.

As in the sequential case, many parallel applications of interest need only to sort
integer keys. Until now, no optimal parallel algorithm existed for sorting n integer keys
with a run time of O(log n) or less.

1.3. Some definitions and notations. Given a sequence of keys kl, k2, , kn drawn
from a set S having a linear order <, the problem of sorting this sequence is to find
a permutation cr such that k(l < k(2) <. <

By general keys we mean a sequence of n elements drawn from a linearly ordered
set S whose elements have no known structure. The only operation that can be used
to gain information about the sequence is the comparison of two elements.

GENERAL_SORT is the problem of sorting a sequence of general keys, and
INTEGER_SORT is the problem of sorting a sequence of integer keys.

Throughout this paper we let [m] stand for {1, 2,..., m}.
A sorting algorithm is said to be stable if equal elements remain in the same

relative order in the sorted sequence as they were in originally. In more precise terms,
a sorting algorithm is stable if on input kl, k,. , kn, the algorithm outputs a sorting
permutation cr of (1, 2,’", n) such that for all i,j In], if ki kj and i<j then
o-(i) < or(j). A sorting algorithm that is not guaranteed to output a stable sorted sequence
is called nonstable.

Just as the big-O function serves to represent the complexity bounds of determinis-
tic algorithms, we employ to represent complexity bounds of randomized algorithms.
We say a randomized algorithm has resource (like time, space, etc.) bound O(g(n))
if there is a constant c such that the amount of resource used by the algorithm (on
any input of size n) is no more than cag(n) with probability >= 1-1/n for any > 1.

1.4. Our model of computation. We assume the CRCW PRAM (concurrent-read
concurrent-write parallel RAM) model proposed by Shiloach and Vishkin [26]. In a
PRAM model, a number (say P) of processors work synchronously communicating
with each other with the help of a common block of memory. Each processor is a
RAM. A single step of a processor is an arithmetic operation, a comparison, or a
memory access. CRCW PRAM is a version of PRAM that allows both concurrent
writes and concurrent reads of shared memory. Write conflicts are resolved by priority.

All the algorithms given in this paper, except the prefix sum algorithm, are
randomized. Every processor, in addition to the operations allowed by the deterministic
version of the model, is also capable of making independent (n-sided) coin flips. Our

596 S. RAJASEKARAN AND J. H. REIF

stated resource bounds will hold for the worst-case input with overwhelming proba-
bility.

1.5. Contents of this paper. Our main contributions in this paper are
1) An optimal parallel algorithm for INTEGER_SORT. This algorithm uses

n/log n processors and sorts n integer keys in time (log n), and
2) Sublogarithmic time algorithms for GENERAL_SORT and INTEGER_SORT.

GENERAL_SORT algorithm employs n(log n) (for any e > 0) processors,
and INTEGER_SORT algorithm employs n(log log n)Z/log n processors. Both
these algorithms run in time O(log n/log log n).

The problem of optimal parallel sorting of n integers in the range [nl] still
remains an open problem. Our sublogarithmic time algorithm for GENERAL_SORT
is optimal as implied by a recent result of Alon and Azar [2].

In our sublogarithmic time sorting algorithms we reduce the problem of sorting
to the problem of prefix-sum computation. We show in this paper that prefix sum can
be computed in time O(log n/log log (P log n/n)) using P_-> n/log n processors. We
also present a sublogarithmic time algorithm for computing a random permutation of
n given elements with a run time of (log n/log log n) using n(loglog n)2/log n
processors.

Some of the results of this paper appeared in preliminary form in [22], but are
substantially simplified in this manuscript. In 2 we present some relevant preliminary
results. Section 3 contains our optimal INTEGER_SORT algorithm. In 4 we describe
our sublogarithmic time algorithms.

2. Preliminary results.
2.1. Prefix circuits. Let E be a domain and let be an associative operation that

takes O(1) sequential time over this domain. The prefix-computation problem is defined
as follows

input (X(1),S(2),..., X(n))
output (S(1), X(1)o X(2),..., X(1)o X(2) X(n)).

The special case of prefix computation when E is the set of all natural numbers
and is integer addition is called prefix-sum computation. Ladner and Fischer [18]
show that prefix computation can be done by a circuit of depth O(log n) and size n.
The processor bound of this algorithm can be improved as follows.

LEMMA 2.1. Prefix computation can be done in time O(log n) using n/log n PRAM
processors.

Proof. Given X(1), X(2), , X(n), each one of the n/log n processors gets log n
successive keys. Every processor sequentially computes the prefix sum of the log n
keys given to it in log n time. Let S(i) be the sum of all the log n keys given to processor

(for i= 1,..., n/log n). Then, n/log n processors collectively compute the prefix
sum of S(1), S(2), ., S(n/log n), using Ladner and Fischer’s [18] algorithm. Using
this prefix sum, each processor sequentially computes log n prefixes of the original
input sequence. [3

The above idea of processor improvement was originally used by Brent in his
algorithm for expression evaluation, and hence we attribute Lemma 2.1 to him. Recently
Cole and Vishkin [9] have proved the following lemma.

LEMMA 2.2. Prefix-sum computation of n integers (O(log n) bits each) can be
performed in O(log n/log log n) time using n log log n/log n CRCW PRAM processors.

2.2. An assignment problem. We are given a set Q {1, 2,..., n} of n indices.
Each index belongs to exactly one of m groups G1, G2, Gin. Let g stand for the

RANDOMIZED PARALLEL SORTING 597

number of indices belonging to group Gi, i= 1,..., m. We are given a sequence
N(1), N(2),’’’, N(m) where Yi=l N(i)= O(n) and N(i) is an upper bound for
i= 1, 2,..., m. The problem is to find in parallel a permutation of (1, 2,..., n) in
which all the indices belonging to G1 appear first, all the indices belonging to
appear next, and so on. (Assume that given an index i, the group Gi, to which belongs
can be found in O(1) time.)

As an example, if n 5, m 2, G1 {2, 5}, G2 {1, 3, 4}, then (5, 2, 1, 3, 4) and
(2, 5, 3, 1, 4) are (two of the) valid answers.

LEMMA 2.3. The above assignment problem can be solved in ((log n) parallel time
using n/log n PRAM processors.

Proof We present an algorithm. We use a shared memory of size 2 i=1 N(i)
(= L, say). This memory is divided into m blocks, BI, B2," B the size of Bi being
2N(i). A unique assignment for the indices belonging to G will be found in the block
B, for i= 1,2,..., m.

Each one of the P(- n/log n) processors is given log n successive indices. Pre-
cisely, processor r is given the indices (r 1) log n + 1, (r 1) log n + 2, , r log n,
for r 1, 2,’.., P. There are three phases of the algorithm. In the first phase, boun-
daries of the m blocks are computed. In the second phase every processor sequentially
finds unique assignments for the log n indices given to it in their respective blocks. In
the third phase, a prefix-sum computation is done to eliminate the unused cells, and
the position of each index in the output is read. Details follow.

Step 1.

P processors collectively do a prefix sum of (N(1), N(2), , N(m)) and
hence compute the boundaries of blocks in the common memory.

Step 2.

Each processor r is given a total time of d log n (d being a constant to be
fixed) to find assignments for all its indices sequentially.

r starts with its first index (call it) l. If Gr is the group to which belongs,
r chooses a random cell in Br and tries to write its identification in it. If the
chosen cell did not contain the identification of any other processor and r
succeeds in writing, then that cell is assigned to I. The probability of success
in one trial is _->. If r has failed in this trial, then it tries as many times as
it takes to find an assignment for and then it takes up the next index.

After d log n steps, even if there is a single processor that has not found
assignments for all its keys, the algorithm is aborted and started anew.

Step 3.

Each processor r writes a 1 in the cells that have been assigned to its indices.
Unassigned cells in the common memory will have 0’s. P processors perform
a prefix sum computation on the contents of the memory cells (1, 2, , L).
Finally, every processor reads out from the prefix sum the position of each
one of its indices in the output.

Analysis. Steps and 3 can be completed in O(log n) time in accordance with
Lemma 2.1.

In Step 2, the probability that a particular processor r successfully finds an
assignment for one of its keys in a single trial is --2. Let Y be the random variable
equal to the number of successes of r in d log n trials. We require Y to be >_-log n

598 S. RAJASEKARAN AND J. H. REIF

for every processor. Clearly Y is lower bounded by a binomial variable (see Appendix
A for definitions) with parameters (d log n, 1/2). It follows from the Chernoff bounds
(see Appendix A, equation (3)) that the probability that there will be at least a single
processor that has not found assignments for all of its indices after d log n trials can
be made <-n for any a-> 1, if we choose a proper constant d. Therefore the whole
algorithm runs in time ((log n). This completes the proof of Lemma 2.3. 7q

It should be mentioned here that when the number of groups, m, is 1, the above
algorithm outputs a random permutation of (1, 2, , n). An algorithm for this special
case was given by Miller and Reif [19].

2.3. Some known results. We state here the existence of optimal sequential
algorithms for INTEGER_SORT and optimal parallel algorithms for
GENERAL_SORT.

LEMMA 2.4. Stable INTEGER_SORT of n keys can be done in time O(n) by a
deterministic sequential RAM 1].

LEMMA 2.5. GENERAL_SORT of n keys can be performed in time O(log n) using
n PRAM processors ([4] and [8]).

3. An optimal INTEGER_SORT algorithm. In this section we present an optimal
algorithm, for INTEGER_SORT. This algorithm employs n/log n processors and runs
in time O(log n).

3.1. Summary of the algorithm. The main idea behind our algorithm is radix
sorting 15]. As an example of radix sorting, consider the problem of sorting a sequence
of two-bit decimal integers. One way of doing this is to sort the sequence with respect
to the least significant bits (LSB) of the keys and then to sort the resultant sequence
with respect to the most significant bits (MSB) of the keys. This will work provided,
in the second sort keys with equal MSBs will remain in the same relative order as they
were in originally. In other words, the second sort should be stable.

We have a sequence of keys kl, k2,"" ", kn [n], where each key is a log n-bit
integer. We first (nonstable) sort this sequence with respect to the (log n-3 log log n)
LSBs of the keys. (Call this sort Coarse_Sort.) In the resultant sequence we apply a
stable sort with respect to the 3 log log n MSBs of the keys. (Call this sort Fine_Sort.)

Even though the sequential time complexity of stable sort is no different from
that of nonstable sort, it seems that parallel stable sort is inherently more complex
than parallel nonstable sort. This is the reason we have divided the bits of the keys
unevenly.

In Coarse_Sort we need to (nonstable) sort a sequence of n keys, each key being
in the range 1, n/log n] and, in Fine_Sort we have to (stable) sort n keys in the range
[1, log n]. In terms of notation, our algorithm can be summarized as follows.

Let D= n/log n and k= [ki/D] and k7 ki-k * D for all i[n].
Coarse_Sort. Sort k’, k,..., k"n [D]. Let o. be the resultant permutation.
Fine_Sort. Stable-sort k(1), k(2, ., k(n) [log n]. Let p be the resultant per-

mutation.
Output. The permutation p.o-, the composition of p and o-.

In 3.2 and 3.3 we describe Fine_Sort and Coarse_Sort, respectively.

3.2. Fine_Sort. We give a deterministic algorithm for Fine_Sort. First we will
show how to stable-sort n keys in the range [log n] using n/log n processors in time
O(log n) and then apply the idea of radix sorting to prove that we can stable-sort n
keys in the range [(log n)] within the same resource bounds.

RANDOMIZED PARALLEL SORTING 599

LEMMA 3.1. n keys kl, k2,’’ ", kn 6[log n] can be stable-sorted in O(log n) time

using P n/log n processors.
Proof In Fine_Sort algorithm, each processor r is given log n successive keys.

Each one of the P processors starts by sequentially stable-sorting the keys given to it.

Then, collectively, the P processors group all the keys with equal values. (There are
log n groups in all.) Finally, they output a rearrangement of the given sequence in
which all the l’s (i.e., keys with a value 1) appear first, all the 2’s appear next, and so
on. Throughout the algorithm the relative order of equal keys is preserved. More details
follow.

To each processor 7r [P] we assign the key indices J(r)= {jl(Tr- 1) log n <j-<
min (n, r log n)}. There are three steps in the algorithm.

Step 1.

Each processor 7r sequentially stable-sorts the keys {kljJ(Tr)} in time
O(logn) (see Lemma 2.4), and hence constructs log n lists J,,k
{jJ(Tr)lk=k} for k[logn]. Elements in J,k are ordered in the same
relative order as in the input

Step 2.

The P processors collectively perform the prefix sum of

where q log n. Call this sum

(Sl,1, S2,1, Sp,1,

Sl,2 S2,2

S,q, S2,q,

Step 3.

Each processor r sequentially computes the position of each one of its keys
in the output using the prefix sum. The position of keys in the list J,t will
be S=_l,t + 1, S_,+ 2, , S=,.

Analysis. It is easy to see that Steps 1 and 3 can be performed within the stated
resource bounds. Step 2 also can be completed within the stated resource bounds as
given in Lemma 2.1.

LEMMA 3.2. If n keys in the range [R] (for any R n)) can be stable-sorted in

O(log n) time using P n/log n processors, then n keys kl, k2, ", kn [R2] can be
stable-sorted in time O(log n) using the same number ofprocessors.

Proof Let kl [ki/R] and kl:= ki-kl* R for every i[n]. First, stable-sort
k,k,... ,k obtaining a permutation tr. Then stable-sort k’ k_ ,ko-(n)

obtaining a permutation p. Output p. or. Clearly both these sorts can be completed in
time O(log n) using P processors.

Lemmas 3.1 and 3.2 immediately imply the following lemma.
LEMMA 3.3. n integer keys in the range [(log n)] can be stable-sorted in time

O(log n) using n/log n processors.

600 s. RAJASEKARAN AND J. H. REIF

3.3. Coarse_Sort. In this section we fix a key domain [D], where D= n/log n.
We assume, without loss of generality, that log n divides n.. Let the input keys be
kl, k2,"" ", kn [D]. Define the index sequence for each key k [D] to be I(k)-
{il ki--k}. The randomized algorithm for Coarse_Sort to be presented in this section
employs P= n/log n processors and runs in time O(log n). The sorted sequence is
nonstable.

The main idea is to calculate the cardinalities of the index sequences I(k), k [D]
approximately, and then to use the assignment algorithm of 2.2 to rearrange the given
sequence in sorted order.

LEMMA 3.4. Given as input kl,k2," .,kn[D] we can compute N(1),
N(2), ., N(D) in ((log n) timeusing P n/log nprocessors such that kOl N(i)
O(n) and furthermore, with very high likelihood N(k)>=lI(k)l for each k [D].

Proof. The following sampling algorithm serves as a proof.

Step 1.

Each processor 7r [D log n] in parallel chooses a random index sT e In].
Let S be the sequence {sl, s2,..., Soog}.

Step 2.

The P processors collectively sort the keys with the chosen indices. That is,
they sort ks,,ks2,...,kso,ogn and compute index sequences Is(k)=
{i S]ki k} (for each k [D]).

Step 3.

D of the P processors in parallel set N(k)= d(log n)max (lls(k)], log n)
for k 6 [D], d being a constant to be fixed in the analysis.

Output S(1), S(2),..., N(D).

Analysis. Trivially, Steps 1 and 3 can be performed in O(1) time. Step 2 can be
performed using any of the optimal GENERAL_SORT algorithms in O(log n)-time
(see Lemma 2.5). (Notice that we have to sort only n/log2 n keys in step 2.) It remains
to be shown that N(i)’s computed by the sampling algorithm satisfy the conditions
in Lemma 3.4.

If II(k)l<-_dlogan, then always N(k)>-dlog3n>-lI(k)]. So suppose
d log n. Then it is easy to see that]Is(k)l is a binomial variable with parameters
(n/log n, lI(k)l/n). The Chernott bounds (see Appendix A, (2)) imply that for all
a >-1, there exists a c such that

Probability (lls(k)l <- clI(k)l/log n)

Therefore, if we choose d (ca)- then N(k) <= II(k)l (for every k [D]) with
probability ->_ 1 n -". The Chernoff bounds (3) also imply that for all a => there exists
an h such that N(k) >- (ha)[I(k)[(for every k [D]) with probability =>1-n-.

The bound on ktOl N(k) clearly holds since

N(k) <- dlogn[lIs(k)l+logn]=dlog3nD+dlog2n [Is(k)
ke[D] ke[D] ke[D]

dn + d log nD log n 2dn.

This concludes the proof of Lemma 3.4.

RANDOMIZED PARALLEL SORTING 601

Having obtained the approximate cardinalities of the index sets, we apply the
assignment algorithm of 2.2. The set Q is the set of key indices viz., {1, 2,..., n}.
An index belongs to group Gi, if the value of the key with index is i’. Under this
definition, group G is the same as index sequence l(j), j 1, 2,..., D. Since we can
find approximate cardinalities of these groups (Lemma 3.4), we can use the assignment
algorithm of 2.2 to rearrange the given sequence in sorted order. Thus we have the
following lemma.

LEMMA 3.5. n keys k k2, kn [D] can be sorted in time ((log n) using n/log n
processors.

Lemmas 3.3 and 3.5 together with the algorithm summary in 3.1 prove the
following theorem.

THEOREM 3.1. INTEGER_SORT of n keys can be performed in randomized
0(log n) time using n/log n CRCW PRAM processors.

4. Sublogarithmic time algorithms. In the previous section we presented an optimal
algorithm for INTEGER_SORT. In this section we will be presenting nonoptimal
sublogarithmic time algorithms for (1) prefix sum computation, (2) finding a random
permutation of n elements, (3) GENERAL_SORT, and (4) INTEGER_SORT.

Algorithms 3 and 4 are direct consequences of algorithms and 2. Our prefix algorithm
employs P=> n/log n processors and runs in time O(log n/loglog (P log n/n)).
Algorithms 2, 3, and 4 run in time ((log n/log log n). GENERAL_SORT uses n(log n)
processors and algorithms 2 and 4 use n(log log n)2/log n processors.

4.1. A sublogarithmic prefix algorithm. We have a sequence of integers
X(1), X(2), , X(n). We need to find the prefix sum of this sequence. This problem
can be solved in sublogarithmic time if we use more than n/log n processors as is
stated by the following lemma.

LEMMA 4.1. Prefix-sum computation can be performed in time O(logn/log
log (P log n/n)) using P>= n/log n CRCW PRAM processors.

Proof The algorithm can be summarized as follows: (1) divide the given sequence
into blocks of d (to be determined later) successive keys; (2) sequentially compute
prefix sums in each block; (3) apply prefix to the final prefixes in each block; and (4)
compute prefixes in each block by using the result from 3 for the previous block.

More details follow. Let n n/d.

Step 1.

In O(d) time using n<-P processors compute X’(i,m), i[n], me[d],
-, (/-- 1)d+rnwhere X’(i, ml ==<i-1)d+ X’(j).

Step 2.

Compute the prefix sum of the total sum of each part, i.e., compute
Y’(1), Y’(2), , Y’(n), where Y’(i) =Yj= X(j, d), for i= 1,...,

Step 3.

In time O(d), using n processors compute

(X’(1, 1), X’(1, 2),..., X’(1, d),

Y’(1) X’(2, 1), r’(1) X’(2, 2), , Y’(1) X’(2, d),

Y’(n-l)oX’(n,l), Y’(n-l)oX’(nl,2),..., Y’(nl-1)oX’(n,d))

which is the required output.

602 S. RAJASEKARAN AND J. H. REIF

Analysis. Clearly, Steps 1 and 3 can be performed with n processors in time
O(d). It remains to show that Step 2 can be performed within the same time using P
processors.

Let Cn,2 be a circuit of size n and in-degree 2 that computes the prefix sum of n
elements in depth O(log n). Obtain an equivalent circuit Cn2,b of size n2 n/b (n2>= n)
and in-degree b in the obvious way (by collapsing subcircuits of height log b into
single nodes starting from the bottom of the circuit [11]). We will simulate Cn2,b.

Each input key is a log n bit integer. Each one of the keys is divided into d parts,
each comprising log n/d successive bits. The simulation proceeds in d stages. In the
first stage, we input the log n/d least significant bits of the keys to the circuit C,,.
In the second stage, we input the next most log n/d significant bits of the input keys
to the circuit. Similarly we pipeline all the parts of the keys one part per stage. The
computation in the circuit proceeds in a pipeline fashion.

At any stage, every node v of C, has to compute the sum.of b integers that
arrive at this node from its children and the carry it stored from the previous stage, v
also has to store the carry from this stage to be used in the next. Each one of these b
integers and the carry can be of at the most 2 log n/d s bits. Therefore, the computa-
tion at v can be made to run in time O(1) if we replace v by a constant depth circuit
of size b2+). The depth of C,2, is 1Ogb n. Thus, the run time of the circuit (and
hence the simulation time) will be logb n:+ O(d). The size of the circuit is nzb2+.

We require b2+-< P/n2, s 2 log n/d, n n/d, n <= n and log n2 O(d). It
is easy to see that choosing s log log (P log n/n) will satisfy all the above constraints.
This concludes the proof of Lemma 4.1.

4.2. A sublogarithmic permutation algorithm. The problem is to compute a random
permutation of (1, 2, , n) in sublogarithmic parallel time. The algorithm presented
in this section is very similar to the assignment algorithm of 2.2. It employs P
n(log log n)2/log n processors and runs in time ((log n/log log n).

A shared memory of size 2n is used. The main idea is to find unique assignments
(in the common memory) for each one of the indices i [n] and then to eliminate
unused cells of common memory using a prefix sum computation. Processors are
partitioned into groups of size (log log n)2. Each group of (log log n)2 processors gets
log n successive indices. Detailed algorithm follows.

Step 1.

The log n indices given to each group of processors are partitioned into groups
of size (log log n)2. Step consists of log n/(loglog n) phases. In the ith
phase (i 1, 2,. , log n/(log log n)2) each processor is given a distinct index
from the group of indices. Each processor spends d log log n time (for some
constant d) to find an assignment for its index (as explained in Step 2 of

2.2). After d log log n time the ith phase ends.

Step 2.

P processors perform a prefix-sum computation to determine the number
(call it N) of indices that"do not yet have an assignment. Let z [P/NJ.

Step 3.

A distinct group of z processors in parallel work to find an assignment for
every index j that remains without an assignment. A group succeeds even if
a single processor in the group succeeds. Each group is given C log n/log
log n time (for some constant C).

RANDOMIZED PARALLEL SORTING 603

After C log n/loglog n time, even if a single index remains without an
assignment the whole algorithm is aborted and started anew. (Grouping of
processors in this step can easily be done using the prefix sum of Step 2.)

Step 4.

Finally, P processors perform a prefix-sum computation to eliminate unused
cells and read the positions of their indices in the output.

Analysis. Consider the ith phase of Step 1. The probability that a given processor
r succeeds in finding an assignment for its index in a single trial is --2. Let Y be a
random variable equal to the number of processors failing in the jth trial of phase i.

Then Y is upperbounded by a binomial random variable with parameters (NJ, 1/2)
(where N is the number of processors that have not succeeded until the beginning
of the jth trial of phase i). (Note that NJ P.) The Chernoff bounds (3) imply that Y
is at the most a constant (<1) fraction of N with probability _->1-2-NI (for some
fixed e < 1). Therefore the number of unsuccessful processors at the end of phase is
O(P/log n)..The number of keys without assignments at the end of Step 1 is
li=gln/(iglgn)z N/dlglgn, Using additive property of binomial distributions and the
Chernoff bounds we conclude that the number of keys without assignments at the end
of Step is O(n/log n) (and hence z =f((log log n)2))with probability ->l-n- for
any/3->1.

Step 2 runs in time O(log n/log log n) (Lemma 2.2). In Step 3, probability that a
particular group fails in one trial is (1/2) K((lglgn)2). This implies that the probability
that there is at least one unsuccessful group at the end of Step 3 can be made <-n -a,
for any c -> 1, if we choose a proper C.

Thus we conclude that he whole algorithm will run successfully in time
((log n/log log n). Clearly, this algorithm can also be used to solve the assignment
problem of 2.2. Thus we have the following lemma.

LEMMA 4.2. The problem of computing a random permutation of n elements (and
hence the assignment problem of 2.2) can be solved in time ((log n/log log n) using
P n(log log n)2/log n processors.

4.3. An optimal sub-logarithmic GENERAL_SORT algorithm. Given as input
k, k2,"" ", k,, Reischuk’s algorithm [25] for GENERAL_SORT samples v keys at
random. If l, 12," ", l,/-- are the sampled keys in sorted order, these keys divide the
input keys into p-<v+l collections S1,S2,’",Sp, where S={qlq<-l}, Si
{qlli_ <q<--l} for i=2,3,..., (p,-1), and S,={qlq> kp_,}. With very high likeli-
hood [25], each one of these collections will be of size O(v log n). (Reifand Valiant
[24] give an algorithm for sampling v keys that will ensure that each one of these
collections will be of size O(v).) Having identified these collections, his algorithm
sorts each one of them recursively and merges the results trivially.

As such, the algorithm in [25] requires a computer of word length f(v log n).
This problem can be circumvented using the assignment algorithm of 2.2. Moreover,
such a modified algorithm can be made sublogarithmic if n(log n), processors are
used. A detailed algorithm follows.

Procedure sublogGS({kl, k2, kn});
Step 1. If n is a constant sort trivially.
Step 2. x/ processors in parallel each sample a random key.
Step 3. Sort the x/ keys sampled in Step 2 by comparingevery pair of keys

and computing the rank of each key. This can be donein O(log n/log

604 S. RAJASEKARAN AND J. H. REIF

log n) time using n processors. Let the sorted sequence be
11, 12,""", 1,/-

Step 4. Processors are partitioned into groups of size (log n). Each group
gets an index n]. In parallel each group does a (log n)-ary search
on 11, 12,..., l,/--to find out the collection Si, to which ki belongs.

Step 5. n processors collectively compute N(1), N(2),..., N(p) such that

=1 N(j) O(n) and N(j) > ISjl for every j [p]. (Recall that
p _-< x/-ff+ 1).

Step 6. n processors use the sublogarithmic assignment algorithm of 4.2 to
rearrange kl, k2," ", kn such that all the elements of $1 will appear
first, all the elements of $2 will appear next, and so on.

Step 7. Recursively sort S1, S,. ., Sp. Here O(x/-ff(log n)) processors work
on each subproblem. Finally output sublogGS(S), ,
sublogGS(Sp).

Analysis. If T’(n) is the time sublogGS takes to sort n general keys, Step 1 and
Step 2 take O(1) time each. Step 3, Step 4, and Step 6 take O(log n/log log n) time
each. Step 7 takes time T’(cv/-ff) (for some constant c) with probability >-1- n (for
any a _>-1). This is because no collection will be of size more than O(v/-ff) with the
same probability (if we employ Reif and Valiant’s [24] sampling algorithm). Computing
N(1),N(2),...,N(p) (Step 5) can be done in time O(logn/loglogn) using n
processors that employ a sampling algorithm very similar to the one given in 3.2.
(For details see Appendix B.) Therefore, the recurrence relation for T’(n), the expected
value of T’(n) can be written as

’(n) -<]’(cx/rff) + ((log n/log log n)+(n-)’(n-v/-ff+ 1).

By induction we can show that T’(n) <- O(log n/log log n). Thus we have the following
theorem.

TrEOREM 4.1. GENERAL_SORT can be done in time ((log n/log log n) with
n(log n) CRCW PRAM processors.

4.4. A sublogarithmic algorithm for INTEGER_SORT. In 3, we presented an
INTEGER_SORT algorithm that used n/log n processors to sort n integer keys in
time t(log n). The same algorithm can be used to sort in time ((log n/log log n) if
the number of processors used is P- n(log log n)2/log n. Here we will indicate only
the modifications that need to be made.

The P processors are partitioned into groups of size (log log n)2 and each group
is given log n successive indices. In Fine_Sort Step 1, each group of (loglog n)2

processors stable sorts the log n keys given to it using any of the parallel optimal stable
GENERAL_SORT algorithms, in time O(logn/loglogn). Step 2 runs in time
O(log n/log log n). In Step 3, each group of processors computes the position of each
one of its log n keys in the output using the prefix sum of Step 2. The time needed
for Step 3 is log n/(log log n).

In Coarse_Sort, while computing the N(i)’s, Steps 1 and 3 run in time O(1). In
Step 2, we need to sort n/logEn keys. The sublo.garithmic algorithm of 4.2 for
GENERAL_SORT can be used to run Step 2 in time O(log n/log log n) using <n/log n
processors. After computing N(i)’s, rearranging of the keys can be done using P
processors in time O(lo.g n/log log n) (Lemma 4.2). Therefore, both Coarse_Sort and
Fine_Sort run in time O(log n/log log n). Thus we have the following theorem.

THEOREM 4.2. INTEGER_SORT can be performed in O(log n/log log n) time

using P-- n(log log n)2/log n CRCW PRAM processors.

RANDOMIZED PARALLEL SORTING 605

5. Conclusions. All the sorting algorithms appearing in this paper are nonstable.
It remains an open problem to obtain stable versions of these algorithms. If we have
a stable algorithm for INTEGER_SORT then the definition of integer keys can be
extended to include integers in the range [n)]. Any deterministic algorithm for
INTEGER_SORT using a polynomial number of CRCW PRAM processors will take
at least f(log n/log log n) time, as has been shown by Beam and Hastad [6]. However
it is an open question whether there exists a randomized CRCW PRAM algorithrn that
uses a polynomial number of processors and runs in time (R)(log n/log log n).

A recent result of Alon and Azar [2] implies that our sublogarithmic time
GENERAL_SORT algorithm is optimal. Their lower bound result is for a more
powerful comparison tree model of Valiant and hence readily holds for PRAMs as
well. Alon and Azar’s theorem is that if P is the number of processors used, then the
average time, T, required for sorting n elements by any randomized algorithm is
(R)(log n/log (l+P/n)) for P>-n, and the average time is (R)(log n/(P/n)) for P<=n.
In particular, if P n(log n) , then T (R)(log n/log log n). It remains an open problem
to prove or disprove the optimality of our sublogarithmic INTEGER_SORT algorithm.

Appendix A. Probabilistic bounds. We say a random variable X upper bounds
another random variable Y (equivalently, Y lower bounds X) if for all x such that
0 =< x -< 1, Probability (X =< x) -<_ Probability Y-<_ x).

A Bernoulli trial is an experiment with two possible outcomes viz., success and

failure. The probability of success is p.
A binomial variable X with parameters (n,p) is the number of successes in n

independent Bernoulli trials, the probability of success in each trial being p.
The distribution function of X can easily be seen to be

Chernoff [7] and Angluin and Valiant [3] have found ways of approximating the
tail ends of a binomial distribution. In particular, they have shown the following.

LEMMA A.1. IfX is binomial with parameters (n, p), and m > np is an integer, then

Also,

(2)

and

(3)

for all 0 < e < 1.

Probability (X >= m) <_- e "-np.

Probability (X _-< [(1 e)pnJ)=<exp (-e2np/2)

Probability (X => [(1 + e)np])<=exp (--82np/3)

Appendix B. A sampling algorithm. We have an index set 0 {1, 2, , n}. Each
index belongs to exactly one of v/-ff groups G, G2,’", G. For any index i, in
constant time we can find out the group Gi, that belongs to.

Problem. Compute N(1),N(2),...,N(v) such that /-1N(i)=O(n) and
N(i)>=lGil for each [v/-], given that each IG, l-<x/-glog n.

LEMMA B.1. The above problem can be solved in time (log n/log log n) using n
processors.

606 S. RAJASEKARAN AND J. H. REIF

Proof We provide a sampling algorithm. A shared memory of size n is used. This
shared memory is divided into blocks B1, B2," ", B,/-h- each of size x/-.

Step 1.

n/log n processors in parallel each choose a random index (in [n]).

Step 2.

Every processor r [n/log n] has to find an assignment for its index in the
block Bi,. It chooses a random cell in Bi, and tries to write in it. If it succeeds,
it increments the contents of that cell by 1. If it does not succeed in the first
trial, it tries a second time to increment the same cell. It tries as many times
as it takes.

A total of h log n/log log n (for some h to be determined) time is given.

Step 3.

n processors perform a prefix-sum computation on the contents of the shared
memory and hence compute L(1), L(2),..., L(x/) where L(i) is the sum of
the contents of block Bi, i [x/-].

Step 4.

x/ processors set in parallel N(i)= d(log n) max (1, L(i)) and output N(i),
i [x/-]. d is a constant to be determined.

Analysis. Let M(i), 6 [v] stand for the number of indices chosen in Step 1 that
belong to Gi and let R(i)= d(log n)max (1 M(i)). Following the proof of Lemma
3.4, the R(i)’s satisfy the conditions ,__ R(i)-O(n) and R(i)>-IGil, i6 [v/-]. The
proof will be complete if we can show that L(i)= M(i) with very high probability.

Showing that L(i)= M(i), i6 [x/] is the same as showing that no cell in the
common memory will be chosen by more than h log n/log log n processors in Step 1.
Let Y be a random variable equal to the number of processors that have chosen a
particular cell q. Following the proof of Lemma 3.4, no M(i) will be greater than
c/3x/ with probability ->_1-n- for any /3->_ and some fixed c. Therefore, Y is
upperbounded by a binomial variable with parameters (cflx/, 1/v/). The Chernoff
bounds (1) imply that Y_-< h log n/log log n with probability _>- n -a, for any a _->
and a proper h.

Aeknowletlgments. The authors thank Yijie Han, Sandeep Sen, and the referees
for their insightful comments.

REFERENCES

[1] A. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, MA, 1974.

[2] N. ALON AND Y. AZAR, The average complexity of deterministic and randomized parallel comparison
sorting algorithms, Proc. 28th Annual IEEE Symposium on Foundations of Computer Science,
1987, pp. 489-498.

[3] D. ANGLUIN AND L. G. VALIANT, Fast probabilistic algorithms for Hamiltonian paths and matching&
J. Comput. Systems Sci., 18 (1979), pp. 155-193.

[4] M. ATAI, J. KOML(SS, AND E. SZEMERiDI, An O(n log n) sorting network, Proc. 15th Annual ACM
Symposium on Theory of Computing, 1983, pp. 1-9.

[5] K. BATCHER, Sorting networks and their applications, Spring Joint Computer Conference 32, AFIPS
Press, Montvale, NJ, 1968, pp. 307-314.

[6] P. BEAM AND J. HASTAD, Optimal bounds for decision problems on the CRCW PRAM, Proc. 19th
Annual ACM Symposium on Theory of Computing, 1987, pp. 83-93.

RANDOMIZED PARALLEL SORTING 607

[7] H. CHERNOFF, A measure ofasymptotic efficiencyfor tests ofa hypothesis based on the sum ofobservations,
Ann. Math. Statist., 23 (1952), pp. 493-507.

[8] R. COLE, Parallel merge sort, Proc. 27th Annual IEEE Symposium on Foundations of Computer
Science, 1986, pp. 511-516.

[9] R. COLE AND U. VISHKIN, Approximate and exact parallel scheduling with applications to list, tree, and
graph problems, Proc. 27th Annual IEEE Symposium on Foundations of Computer Science, 1986,
pp. 478-491.

10] W. FELLER, An introduction to probability theory and its applications, Vol. 1, John Wiley, New York, 1950.
[11] F. E. FIcH, Two problems in concrete complexity cycle detection and parallel prefix computation, Ph.D.

thesis, Univ. of California, Berkeley, CA, 1982.
12] W. HOEFFDING, On the distribution ofthe number ofsuccesses in independent trials, Ann. Math. Statistics,

27 (1956), pp. 713-721.
[13] J. E. HOPCROFT AND R. E. TARJAN, Efficient algorithms for graph manipulation, Comm. ACM, 16

(1973), pp. 372-378.
[14] N. J. JOHNSON AND S. KATZ, Discrete Distributions, Houghton-Miffin, Boston, MA, 1969.
[15] D. E. KNUTH, The Art of Computer Programming, Vol. 3: Sorting and Searching, Addison-Wesley,

Reading, MA, 1973.
[16] L. KUd?ERA, Parallel computation and conflicts in memory access, Inform. Process. Lett. 14 (1982),

pp. 93-96.
[17] T. LEIGHTON, Tight bounds on the complexity ofparallel sorting, Proc. 16th Annual ACM Symposium

on Theory of Computing, Washington, DC, 1984, pp. 71-80.
[18] R. E. LADNER AND M. J. FISCHER, Parallel Prefix Computation, J. Assoc. Comput. Mach., 27(4)

(1980), pp. 831-838.
[19] G. L. MILLER AND J. H. REIF, Parallel tree contraction and its application, Proc. 18th Annual IEEE

Symposium on Foundations of Computer Science, 1985, pp. 478-489.
[20] J. H. REIF, Symmetric complementation, J. Assoc. Comput. Mach., 31 (1984a), pp. 401-421.
[2i] ., On the power ofprobabilistic choice in synchronous parallel computations, SIAM J. Comput., 13

(1984), pp. 46-56.
[22] ., An optimal parallel algorithm for integer sorting, Proc. 18th Annual IEEE Symposium on

Foundations of Computer Science, 1985, pp. 496-503.
[23] J. H. REIF AND J. D. TYGAR, Efficient parallel pseudo-random number generation, CRYPTO ’85, Santa

Barbara, CA, August 1985.
[24] J. H. REIF AND L. G. VALIANT, A logarithmic time sort for linear size networks, Proc. 15th Annual

ACM Symposium on Theory of Computing, 1983, pp. 10-16; J. Assoc. Comput. Mach., 34 (1987),
pp. 60-76.

[25] R. REISCHUK, A fast probabilistic sorting algorithm, Proc. 22nd Annual IEEE Symposium on Founda-
tions of Computer Science, 1981, pp. 88-102.

[26] Y. SHILOACH AND U. VISHKIN, Finding the maximum, merging, and sorting in a parallel computation
model, J. Algorithms 2 (1981), pp. 212-219.

[27] R. E. TARJAN, Depthfirst search and linear graph algorithms, SIAM J. Comput., (1972), pp. 146-160.
[28] U. VISHKIN, Randomized speed-ups in parallel computation, Proc. 16th Annual Symposium on Theory

of Computing, 1984, pp. 230-239.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

