
C H A P T E R 17

Parallel Algorithms
for Shared-Memory Machines

Richard M. KARP
Department of Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA

Vijaya RAMACHANDRAN
Department of Computer Sciences, University of Texas at Austin, Austin, TX 78712, USA

Contents

1. Introduction 871

2. Efficient PRAM algorithms 873

3. Models of parallel computation 894

4. NC-algorithms and P-complete problems 906

5. Conclusion 931

Acknowledgment 932

References 932

H A N D B O O K O F THEORETICAL C O M P U T E R SCIENCE

Edited by J. van Leeuwen
© Elsevier Science Publishers B.V., 1990

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 871

Parallel computation is rapidly becoming a dominant theme in all areas of computer
science and its applications. It is likely that, within a decade, virtually all developments
in computer architecture, systems programming, computer applications and the design
of algorithms will be taking place within the context of parallel computation.

In preparation for this revolution, theoretical computer scientists have begun to
develop a body of theory centered around parallel algorithms and parallel architectures.
Since there is no consensus yet on the appropriate logical organization of a massively
parallel computer, and since the speed of parallel algorithms is constrained as much by
limits on interprocessor communication as it is by purely computational issues, it is not
surprising that a variety of abstract models of parallel computation have been pursued.

Closest to the hardware level are the VLSI models, which focus on the technological
limits of today's chips, in which gates and wires are packed into a small number of
planar layers. At the next level of abstraction are those models in which a parallel
computer is viewed as a set of processors interconnected in a fixed pattern, with each
processor having a small number of neighbors.

At one further remove from physical reality is the parallel random-access machine
(PRAM), in which it is assumed that, in addition to the private memories of the
processors, there is a shared memory, and that any processor can access any cell of that
memory in unit time. The PRAM cannot be considered a physically realizable model,
since, as the number of processors and the size of the global memory scales up, it
quickly becomes impossible to provide a constant-length data path from any processor
to any memory cell. Nevertheless, the P R A M has proved to be an extremely useful
vehicle for studying the logical structure of parallel computation in a context divorced
from issues of parallel communication, and it is the focus of attention in the present
survey. Algorithms developed for other, more realistic, models are often based on
algorithms originally designed for the PRAM.

Many studies of algorithms and complexity in the PRAM model focus on the
trade-off between the time for a parallel computation and the number of processors
required. In a practical situation the number of processors available is fixed, but our
theoretical studies are enriched if we let the number of processors grow as a function of
the size of the problem instance being solved. Of particular interest are so-called
efficient algorithms, which run in polylog time (i.e., the parallel computation time is
bounded by a fixed power of the logarithm of the size of the input), and in which the
processor-time product exceeds the number of steps in an optimal sequential
algorithm by at most a polylog factor. Section 2 surveys efficient PRAM algorithms for
bookkeeping operations such as compacting an array by squeezing out its "dead"
elements, for evaluating algebraic expressions, for searching a graph and decomposing
it into various kinds of components, and for sorting, merging and selection. These
efficient parallel algorithms are typically completely different from the best sequential
algorithms for the same problems, and their discovery has required the creation of
a new set of paradigms for the construction of parallel algorithms.

In the PRAM model there is the possibility of read- and write-conflicts, in which two

1 . Introduction

872 R . M . K A R P , V . R A M A C H A N D R A N

or more processors try to read from or write into the same memory cell concurrently.
Distinctions in the way these conflicts are handled lead to several different variants of
the model. The weakest of these is the exclusive-read exclusive-write (EREW) PRAM,
in which concurrent reading or writing are forbidden; of intermediate strength is the
concurrent-read exclusive-write (CREW) PRAM, which allows concurrent reading but
not concurrent writing; and strongest of all is the concurrent-read concurrent-write
(CRCW) PRAM, which permits both kinds of concurrency. Several varieties of C R C W
PRAMs have been defined; they differ in their method of resolving write conflicts. In
Section 3 it is shown that, although these variants do not differ very greatly in
computation speed, the CREW PRAM is strictly more powerful than the EREW
PRAM and strictly less powerful than the C R C W PRAM. It is also shown that certain
simple tasks, such as multiplying two η-bit numbers, inherently require time
Q(log n/log log n) even on the strongest PRAM model provided the number of
processors is polynomial-bounded in the size of the input.

Section 3 goes on to study the relationship between the PRAM and other abstract
models of parallel computation, such as Boolean circuits, alternating Turing machines
and vector machines. It turns out that all these models are equivalent in their ability to
solve problems in polylog time using a polynomial-bounded number of computing
elements (processors or gates). This motivates the definition of N C as the class of
problems that can be solved within these resource bounds by deterministic algorithms.
Two important refinements of this result are presented, each showing that certain
parallel computation models are equivalent in their ability to solve problems in time
0(log*n), where k is a fixed positive integer, using a polynomial-bounded amount of
hardware. For PRAMs the amount of hardware is measured by the number of
processors, for Boolean circuits by the number of wires and for alternating Turing
machines by the number of possible configurations, which is exponential in the space.
The first refinement, by Ruzzo [203], states that alternating Turing machines are
equivalent to bounded fan-in circuits; the second, by Stockmeyer & Vishkin [220],
states that CRCW PRAMs are equivalent to unbounded fan-in circuits.

Section 4 gives a survey of important problems that lie in the class NC. Among these
are the basic arithmetic operations, transitive closure and Boolean matrix multiplication,
the computation of the determinant, the rank or the inverse of a matrix, the evaluation
of certain classes of straight-line programs, and the construction of a maximal
independent set of vertices in a graph. Section 4 also presents randomized algorithms
that operate in polylog time using a polynomial-bounded number of processors for
problems such as finding a maximum matching in a graph.

The study of parallel complexity within the PRAM model has led to some important
negative results. Using a theory of reducibility analogous to the theory of N P -
completeness, it has been possible to identify certain problems as P-complete; such
problems are solvable sequentially in polynomial time, but do not lie in the class N C
unless every problem solvable in sequential polynomial time lies in NC. This is evidence
that the P-complete problems are inherently resistent to ultrafast parallel solution. Our
survey concludes, in Section 4, by exploring this concept and deriving a number of
examples of P-complete problems, including the maximum-flow problem and the

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 873

2. Efficient P R A M algorithms

2.1. The PRAM model and the concepts of efficient and optimal algorithms

The primary model of parallel computation that we will be working with is the
PRAM (Parallel jRandom-zlccess Machine) (Fortune & Wyllie [85]; Goldschlager
[106]; Savitch & Stimson [206]). This is an idealized model, and can be viewed as the
parallel analogue of the sequential RAM (Cook & Reckhow [64]). A P R A M consists of
several independent sequential processors, each with its own private memory,
communicating with one another through a global memory. In one unit of time, each
processor can read one global or local memory location, execute a single RAM
operation, and write into one gobal or local memory location.

PRAMs can be classified according to restrictions on global memory access. An
Exclusive-Read Exclusive-Write (or EREW) PRAM is a PRAM for which simultaneous
access to any memory location by different processors is forbidden for both reading and
writing. In a Concurrent-Read Exclusive-Write (or CREW) P R A M simultaneous
reads are allowed but no simultaneous writes. A Concurrent-Read Concurrent-Write
(or CRCW) PRAM allows simultaneous reads and writes. In this case we have to
specify how to resolve write conflicts. Some commonly used methods of resolving write
conflicts are

(a) all processors writing into the same location must write the same value (the
C O M M O N model);

(b) any one processor participating in a common write may succeed, and the
algorithm should work correctly regardless of which one succeeds (the ARBITRARY
model);

(c) there is a linear ordering on the processors, and the minimum numbered
processor writes its value in a concurrent write (PRIORITY model).

Even though there is a variety of PRAM models, they do not differ very widely in
their computational power. We show in Section 3 that any algorithm for a C R C W
PRAM in the PRIORITY model can be simulated by an EREW PRAM with the same
number of processors and with the parallel time increased by only a factor of O(log P),
where Ρ is the number of processors; further, any algorithm for a PRIORITY PRAM
can be simulated by a C O M M O N PRAM with no loss in parallel time provided
sufficiently many processors are available.

Define polylog(n)=[jk> 0O(log*n). Let S be a problem whose fastest sequential
algorithm runs in time proportional to T(n) (although, by Blum's Speed-up Theorem
(cf. Seiferas [210]), there are pathological problems for which no fastest sequential
algorithm exists, this phenomenon will not trouble us in practice). Many problems
have the property that any algorithm that solves them would have to look at all of the
input in the worst case, and hence T(n) = Ω(η) in such cases. A PRAM algorithm A for S,

problem of evaluating the output of a monotone Boolean circuit when all the inputs are
fixed at constant values.

874 R . M . K A R P , V. R A M A C H A N D R A N

running in parallel time t(n) with p(n) processors is optimal if
(a) t{n) = polylog(n); and
(b) the work w(n) = p(n)-t(n) is 0(T{n)).

An optimal parallel algorithm achieves a high degree of parallelism in an optimal way.
Analogously, we can define an efficient parallel algorithm for problem S as one for
which the work w(n) is T(n)'polylog(n) with the parallel time t(n) = polylog(n)\ i.e., an
efficient parallel algorithm is one that achieves a high degree of parallelism and comes
within a polylog factor of optimal speed-up. A major goal in the design of parallel
algorithms is to find optimal and efficient algorithms with t(n) as small as possible.
Clearly it is easier to design optimal algorithms on a C R C W PRAM than on a CREW
or EREW PRAM. However, the simulations between the various PRAM models make
the notion of an efficient algorithm invariant with respect to the particular PRAM
model used. Thus this latter notion is more robust.

Consider a computation that can be done in t parallel steps with x, primitive
operations at step f. If we implement this computation directly on a PRAM to run in
t parallel steps, the number of processors required would be m = m a x x f. If we have
p<m processors, we can still simulate this computation effectively by observing that
the ith step can be simulated in time [Xi/p~\ ^ (* , /p) + 1, and hence the total parallel
time to simulate the computation with ρ processors is no more than [x/p] + 1 where
χ = Σ,Χΐ. This observation, known as Brenfs scheduling principle (Brent [42]), is often
used in the design of efficient parallel algorithms. It should be noted that this simulation
assumes that processor allocation is not a problem, i.e., that it is possible for each of the
ρ processors to determine, on-line, the steps it needs to stimulate. We will see below
that this is sometimes a nontrivial task.

Brent's scheduling principle implies that, when processor allocation is not a problem,
a parallel algorithm requiring work w(n) and time t(n) can be simulated using
ρ processors in time w(n)/p + t(n). In practice, ρ is often small compared to n, and in such
cases the ratio w(n)/p is typically much greater than t(n). In view of this fact, Kruskal,
Rudolph & Snir [245] suggest that it may be unnecessarily restrictive to concentrate
on parallel algorithms with t(n) = polylog(n), and they emphasize instead the concept of
polynomial speed-up. For a problem requiring sequential time T(n\ a parallel
algorithm running in time t{n) is said to have polynomial speed-up if, for some ε< 1,
t(n) = 0(T(n

c
)). Algorithms with polynomial speed-up are further classified according

to their innefficiency. For a problem whose best sequential algorithm runs in time T(n),
a parallel algorithm that performs an amount of work w(n) is said to have constant
inefficiency if w(n) = 0(T(n)\ polylog inefficiency if

w(n) = 0(T(n) polylog(T(n)))

and polynomial inefficiency if w(n) is bounded by a polynomial in T(n). Kruskal,
Rudolph & Snir argue that algorithms with polynomial speed-up and constant or
polylog inefficiency may be extremely useful, even if they do not run in polylog time.

For PRAM algorithms we would like to have simple algorithms that are easy to
specify and code. Most of the algorithms we describe will have this feature.

There are a few key methods that have emerged as fundamental subroutines in the

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 8 7 5

2.2. Basic PRAM techniques

2.2.1. Prefix sums

The first problem we consider is prefix sums. Let * be an associative operation over
a domain D. Given an array [x x , . . . , x n] of η elements from D, the prefix sums problem
is to compute the η prefix sums S, = Χ ι * χ 2* · · · * Χ ί = Σ } = 1χ , · , i= 1 , . . . , η. This problem
has several applications. For example, consider the problem of compacting a sparse
array: given an array of η elements, many of which are zero, we wish to generate a new
array containing the non-zero elements in their original order. We can compute the
position of each non-zero element in the new array by assigning value 1 to the non-zero
elements, and computing prefix sums with * operating as regular addition. An
application to the problem of adding two η-bit numbers is given in Section 4.2. Further,
recognition of any regular language whose input size is restricted to η can be viewed as
a prefix sums problem [150].

There is a simple sequential algorithm to solve the prefix sums problem using η — 1
operations, by computing 5, incrementally from S f_ ι, for i = 2 , . . . , n. Unfortunately
this algorithm has no parallelism in it since one of the two operands for the ith
* operation is the result of the (i— l)st operation.

We now describe a simple parallel algorithm to compute prefix sums in parallel
(Ladner & Fischer [150]). For simplicity we assume that M is a power of 2.

P A R A L L E L P R E F I X A L G O R I T H M

Input: an array _χλ,..., x „] of elements from domain D.
if n = 1 then S i — X i else

(1) for i = 1 , . . . , n/2 compute y1 -=x2i-i*Xn
(2) recursively compute prefix sums 5,, ι = 1 , . . . , n/2, for the new array

l > i , . . . , J > , . / 2]

(3) for even i in { 1 , 2 , . . . , « } set S i ï = S i /2

(4) for odd i in {1, 2 , . . . , n} set 5 , :=5 (i_ 1) / 2* X / .

This algorithm runs on an EREW PRAM since there are no conflicts in the memory
accesses. The parallel time t(n) satisfies the recurrence t(n) = t(n/2) + 0(\) with i(l) = 0,
and the work satisfies the recurrence w(n) = w(n/2) + O(n) with w(l) = 0. Thus t(n) =
O(log n) and w(n) = 0(n). By invoking Brent's scheduling principle we see that this is an
optimal EREW PRAM algorithm for p(n) = 0(n/\ogn). Processor allocation is
straightforward in this case and we illustrate it by a standard technique used to
implement Brent's principle: Let the number of processors available be ρ ^ n/\og n, and
let q = [n/p]. We first assign the ith processor to elements x (i- i) . 9 + i , x (» - \) - q + i, - ·.,
X j . q , i = 1 , . . . , p. The ith processor stores these values in an array in its local memory,
combines these q values (sequentially) using * in 0(q) time and places the result in
yt. Now the array has only ρ elements in it, and the parallel prefix algorithm is

design of efficient and optimal parallel algorithms. In the following subsections, we
review these basic techniques and algorithms.

876 R . M . K A R P , V . R A M A C H A N D R A N

used to compute these prefix sums in O(logn) time using ρ processors. Finally, in
additional 0(n/p) time, the ith processor computes the prefix sums for its local array
with S , - ! as the first element of the array. This algorithm runs in 0(n/p) time with
ρ processors on an EREW PRAM for ρ ^n/log n.

On a CRCW PRAM, the above algorithm can be modified to run optimally in
0(log rc/log log n) time when the x, are 0(log n)-bit numbers and * is ordinary addition
(Reif [196]; Cole & Vishkin [56]).

Since the prefix sums problem is an important one, much attention has been given to
fine-tuning the constants in the time and processor bounds (see, e.g., [150, 80]).

2.2.2. List ranking
A problem closely related to the prefix sums problem is the list ranking problem:

Given a linked list of η elements, compute the suffix sums of the last i elements of the list,
ι = 1 , . . . , n. This is a variant of prefix sums, in which the ordered sequence of elements is
given in the form of a linked list rather than an array, and the sums are computed from
the end, rather than from the beginning. The term "list ranking" is usually applied to the
special case of this problem in which all elements have value 1, and * stands for addition
(and hence the result of the list ranking computation is to obtain, for each element, the
number of elements ahead of it in the list, i.e., its rank in the list); however, the technique
we shall present easily adapts to our generalization.

We assume that the linked list is represented by a contents array c [l , . . . , n\ and
a successor array s [l , . . . , ή]: here, c(i) gives the value of the element at location i, and s(i)
gives the location j of the successor to c(i) on the list. Without loss of generality we
assume that our domain has a zero element z, that the last element on the list c(it) has
value z , and that s(iz) = i/. The following simple algorithm solves the list ranking
problem on an EREW PRAM in O(logn) time with η processors (see, e.g., [242]).

B A S I C L I S T R A N K I N G A L G O R I T H M

for flogn~| iterations repeat
in parallel for i = 1 , . . . , η do

c(/) := φ > Φ (0) ;
s(i) := s(s(0);

for i = l , 2 , . . . , η output c(i) as the rank of element i.

The operation used in this algorithm of replacing each pointer s(i) by the pointer's
pointer s(s(i)) is called pointer jumping, and is a fundamental technique in parallel
algorithm design. Let the rank r(i) of the element in location i be the distance of this
element from the end of the input linked list. The correctness of this algorithm follows
from the observation that at the start of each step, c(i) equals the sum of elements in the
input list with ranks r(i),r(i)—\,...,r(s(i))-\-\ for the current s(i); and after Γ l o g " !
iterations, s(i) = U for all i. By assigning a processor to each location i, we obtain an
rc-processor 0(log n) time parallel algorithm. Observe, however, that the work done by
this algorithm is Θ(η log n) and hence this algorithm as it stands does not lead to an
optimal parallel algorithm (since there is a simple linear-time sequential algorithm for
the list ranking problem).

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 877

The list ranking problem is similar to the prefix sums problem, which has a simple
optimal parallel algorithm. The optimal parallel prefix algorithm reduces the problem
of computing prefix sums on η elements to one of computing prefix sums on the n/2
elements at even positions on the array. This reduction is done in constant time and is
data-independent in the sense that the locations of the n/2 elements in the reduction list
are predetermined. If we try to implement a list ranking algorithm with this property,
we run into the problem that a given element has no way of knowing whether it is at an
odd or even position on the list. Except for the beginning and end elements, there is no
way to determine this information from the local environment of an element.

In order to overcome this problem, we note that we need not necessarily locate the
elements at even positions. It suffices to construct a set 5 of no more than c η elements
in the list, with c< 1, such that the distance in the list between any two consecutive
elements of S is small. The list ranking problem can then be solved as follows:

(i) List contraction: Create a contracted list composed of the elements of 5, in which
each element of S has as its successor the first element of 5 that follows it in the original
list, and a value equal to its own value in the original list, plus the sum of the values of
the elements that lie between it and this successor;

(ii) Recursively, solve the list ranking problem for the contracted list. The suffix sum
for each element in the contracted list is the same as its suffix sum in the original list;

(iii) Extend this solution to all elements of the original list. The time to do this is
proportional to the maximum distance between two elements of S in the original list,
and the work is proportional to the length of the original list.

We shall present an optimal 0(log n) time randomized list ranking algorithm that
takes this approach, but with the following exception: once a contracted list of length
less than n/log η is obtained, list contraction is no longer used; instead, the list ranking
problem for this contracted list is solved using the Basic List Ranking Algorithm. This
requires time 0(log n) using n/log η processors.

It is necessary to specify how the list contraction step is carried out. This entails
giving a method for choosing the set S, and a method for the compaction process
needed to place the elements of S in consecutive locations, in preparation for the
recursive solution of the list ranking problem on the compacted list.

We can construct S by the following simple randomized algorithm (see e.g., Vishkin
[235]; Miller & Reif [171]) called the random mate algorithm. Each element chooses
a gender, female or male, with equal probability. An element is in set S if and only if it is
female or has a male predecessor. It is easy to see that, with probability 1 — o(l), the size
of S is not more than 15n/l 6, and each element in S can find its successor in S in constant
time, since the distance to its successor is at most 2. With random mating each list
contraction tends to shrink the length of the list by a constant factor, and thus the
number of contractions needed to pass from the original list of length η to a list of length
less than n/log η is O(loglogn).

The process of compacting 5 into consecutive locations could be done by the 0(log n)
time optimal method for prefix sums that we saw earlier, but this method would lead to
a list ranking algorithm, running in time 0(log η log log n), since log log η list
contractions need to be performed. Instead, we can use either an optimal 0(log log n)
time randomized algorithm on an ARBITRARY C R C W P R A M that approximately

878 R . M . K A R P , V . R A M A C H A N D R A N

compacts an array (Miller & Reif [171]), or the optimal 0(log n/log log ri) time
deterministic prefix sums algorithm of Cole & Vishkin [56], which runs on
a C O M M O N PRAM. Either of these leads to a method that, with high probability,
solves the list ranking problem in time O(logn) and work O(n). Thus, using Brent's
scheduling principle, one obtains an optimal O(logn) time randomized list ranking
algorithm using n/log η processors.

In order to obtain an optimal 0(log ri) time deterministic list ranking algorithm it is
necessary to replace the random mating procedure by a deterministic method of
isolating a contracted set of elements S. A symmetry breaking technique known as
deterministic coin tossing can be used for this purpose (Cole & Vishkin [55]). The
technique is based on the concept of an r-ruling set [55] . Given an η-element list,
a subset S of these elements is an r-ruling set if S contains no two adjacent elements of
the list, and every element not in S is at a distance no more than cr on the list from an
element in S, where c is a suitable constant.

Define log
(f c)

n to be the log function iterated k times, and let r = log
(k)

n. The following
algorithm finds an r-ruling set in an η-element linked list in 0(k) time using η processors
[55] (see also Goldberg, Plotkin & Shannon [102]). We assume that the linked list is
doubly linked with successor pointer s(i) and predecessor pointer p(i).

R U L I N G S E T A L G O R I T H M

Input: η-element linked list with successor pointers s(i) and predecessor pointers p(i);
integer k to set r = log

ik)
n.

(1) for i= 1 , . . . , η initialize c(i) -·= i.
(2) for k iterations do

in parallel for each i do
determine the rightmost bit position q such that the qth bit of c(i) differs from
the qth bit of c(s(i)); let b be the qth bit of c(i); c(i) ·>= b concatenated with the
binary representation of q\

(3) in parallel for each i do
if c(p(0)^c(0 and c(s(i))^c(i) then assign i to the ruling set.

It is straightforward to verify that in this algorithm c(i)^c(s(i)) at every iteration.
Further, the maximum value of any c(i) at the end of the ;th iteration is Bj = O(log

0)
n).

Finally, the distance between two local maxima at the end of the jth iteration is no more
than 2*Bj, and hence at the end of the algorithm, any element on the list is within
distance Ö(log

(f c)
n) of an element in the ruling set.

Two special cases of the ruling set algorithm deserve special attention. When k = c,
a constant, the algorithm obtains an O(log

(f c)
n) ruling set in constant time using

η processors. Define log* η as the minimum value of k such that log
(f c)

n^3; log* η is
a very slowly growing function of n. Using the ruling set algorithm we can obtain an
O(l) ruling set in 0(log* ri) time with η processors. Since no two elements in a ruling set
are adjacent, the size of any r-ruling set is at most one more than half the number of
elements in the list. In additional O(r) time, each element in the ruling set can locate its
successor in the ruling set by following the successor pointers in the linked list, thus
forming a contracted list.

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 879

The ruling set algorithm with appropriately chosen values of k has been used in
rather elaborate procedures to obtain optimal 0(log n) deterministic EREW PRAM
algorithms for list ranking (Cole & Vishkin [58]; Anderson & Miller [12]).

2.2.3. Tree contraction
There are several applications that require computation on a rooted tree. One such

problem is the expression evaluation problem: Given a parenthesized arithmetic
expression (using + and · operations) with values assigned to the variables, evaluate
Ε and all subexpressions of E. Note that the prefix sums problem is the expression
evaluation problem on the parenthesized expression (.. . (xx + x 2) + * 3 . . .) + x„).

Associated with a parenthesized expression is a binary tree with η leaves that specifies
the parenthesization. As in the prefix sums problem there is a simple linear-time
sequential algorithm for the expression evaluation problem: compute the values on the
internal nodes of the expression tree from the leaves upward to the root. The value at
the root gives the value of the expression, and the value at each internal node is the
value of the subexpression rooted at that node. However, if the tree is highly
imbalanced, i.e., its height is large in relation to its size, then this method performs
poorly in parallel.

Tree contraction is a method of evaluating expression trees efficiently in parallel.
The method transforms the input tree in stages using local operations in such a way
that an η-node tree is contracted into a single node in 0(log n) stages, each of which
takes constant time on a PRAM. An efficient method for tree contraction was first
introduced by Miller & Reif [171] . There are several optimal tree contraction
algorithms that run in O(logn) time on EREW PRAM (Gibbons & Rytter [98]; Cole
& Vishkin [57]; Abrahamson, Dadoun, Kirkpatrick & Przytycka [1]; Kosaraju
& Delcher [145]; Gazit, Miller & Teng [97]). We describe the method reported
independently in [1] and [145] .

The tree contraction algorithm works on a rooted, ordered binary tree, i.e., a rooted
ordered tree in which every vertex is either a leaf, having no children, or an internal
node, having exactly two children, and each arc points from a child to its parent. Let / be
a leaf in an η-leaf binary tree Τ The S H U N T operation applied to / results in
a contracted tree Τ in which / and p(l), the parent of / in T, are deleted, and the other
child / ' of p(l) has the parent of p(l) as its parent, while leaving the relative ordering of
the remaining leaves unchanged (see Fig. 1).

We now describe the tree contraction algorithm.

8

SHUNT O P E R A T I O N
A P P L I E D TO
L E A V E S 1,3 and 5

6 7

8

Fig. 1. The S H U N T operation.

880 R . M . K A R P , V . R A M A C H A N D R A N

T R E E C O N T R A C T I O N A L G O R I T H M

Input: a rooted, ordered, binary η-leaf tree T.
(1) Preprocess: label the leaves in order from left to right as 1 , . . . , n.
(2) for riog ri\ iterations do

(a) apply S H U N T in parallel to all odd numbered leaves that are the left child of
their parent;

(b) apply S H U N T in parallel to all odd numbered leaves that are the right child of
their parent;

(c) shift out the rightmost bit in the labels of all remaining leaves.

It is straightforward to see that the operations in this algorithm can be implemented
on an EREW PRAM. After each iteration, half of the leaves are deleted from the
current tree, and no new leaves are created. Hence after flog ri] iterations, the tree is
contracted to a single node.

Step 1 can be implemented optimally in 0(log ri) time on an EREW PRAM using the
Euler tour technique (Tarjan & Vishkin [221]), which we describe in Section 2.3. Then,
in constant time, the leaves can be placed in an array A in the order in which they will be
processed. The total work done in step 2 is

and processor allocation is no problem since we have the array A. Thus this gives an
optimal O(logrc) tree contraction algorithm on an EREW PRAM.

By associating appropriate computations with the S H U N T operation, we can
evaluate an arithmetic expression while performing tree contraction on its associated
tree. We associate with each arch (w, ι;) an ordered pair of values (a, b) with the
interpretation that if the value of u is x, then the operand supplied to ν along arc (w, v) is
a-χ + b. Initially, every arc has the ordered pair (1,0). Thus, initially, the value of each
node in the tree is exactly the value of its subexpression.

Now consider a S H U N T operation on a leaf / with parent p, sibling s and
grandparent q. Let the value of leaf / be v, and let arc (/, p) have value (ax, bx), arc (5, p)
have value (a2, b2) and arc (p, q) have value (a 3, b3). In the contracted tree, all three of
these arcs are deleted and replaced by the arc (s, q). Let a and b be constants such that

where * represents the operation at ρ and y is an indeterminate. Then it is easy to see
that assigning the value (a, b) to the newly introduced arc (s, q) leaves the values of
the vertices remaining in the new tree unaltered. Thus we obtain an optimal 0(log n)
time EREW PRAM algorithm for expression evaluation. All subexpressions in the
expression tree can be evaluated within the same bounds by having an expansion phase
at the end, similar to that in the parallel prefix algorithm. This technique works for the
evaluation of expressions over a semiring, ring or field (in the case of a field, the value on
each edge is an ordered set of four values, to represent the ratio of two linear forms). If
the input is in the form of a parenthesized expression, the tree form can be extracted
from it optimally in 0(log n) time using an algorithm by Bar-On & Vishkin [24] .

a*y + b = a3*((a1'v + bl)*{a2
9
y + b2)) + b3,

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 881

In addition to expression evaluation, tree contraction has been applied to a wide
variety of problems. The technique easily generalizes to arbitrary (nonbinary) trees, and
has been used to derive parallel algorithms for various graph-theoretic computations
on trees such as maximum matching, minimum vertex cover and maximum independent
set [115]. Other applications of tree contraction and its variants can be found in
[101,171,189]. A generalization of the S H U N T operation is used in the more general
problem of straight-line program evaluation, or evaluation of a D A G (see Section 4); in
fact, the S H U N T operation was first introduced in this more general setting [170].

2.2.4. Conclusion
We have described optimal parallel algorithms for three basic problems: prefix sums,

list ranking and expression evaluation.
In Section 3 we show that it requires Q(log n) time to compute the OR of η bits on

a CREW PRAM, regardless of the number of processors available. Since the three
problems we considered in this section are at least as difficult as the OR function, the
lower bound applies for these problems as well. Thus the results we have given are
optimal with maximum possible speed-up.

A lower bound of Q(log n/log log n) time holds for computing the parity of η bits on
a PRIORITY C R C W P R A M with a polynomial number of processors (Beame
& Hastad [29]). Since we could solve the parity problem if we could solve an arbitrary
prefix sums, list ranking or tree contraction problem, this lower bound applies to these
problems as well. While an optimal 0(log n/log log n) time C R C W PRAM algorithm is
known for the prefix sums problem under certain conditions, it is not known if the list
ranking and tree contraction problems have sublogarithmic time algorithms on
a C R C W P R A M with a polynomial number of processors.

2.3. Efficient graph algorithms

Graphs play an important role in modeling real-world problems, and sequential
algorithms for graph problems have been studied extensively. Almost without
exception, all of the optimal (i.e., linear-time) sequential algorithms for these problems
use one of two methods to search a graph: depth-first search or breadth-first search. At
present, neither of these techniques has an efficient parallel algorithm. The best
polylog-time P R A M algorithm known for breadth-first search of an η-node graph uses
M(n) processors, where M(n) is the number of processors required to multiply two nxn
matrices over a general ring in 0(log n) time. The best upper bound presently known for
M(ri) is 0 (n

2 - 3 7 6
) (Coppersmith & Winograd [66]). For depth-first search there is

currently no deterministic polylog-time parallel algorithm known that uses a polynomial
number of processors. For more on parallel breadth-first search and depth-first search,
see Section 4.

The early work on parallel graph algorithms [48,76,192,205,221,224] used various
methods to circumvent the lack of an efficient parallel method of searching a graph.
More recently, a new efficient graph searching technique called ear decomposition [241,
156,168,162] has been developed for undirected graphs. Using this technique, efficient

882 R . M . K A R P , V . R A M A C H A N D R A N

parallel algorithms for several graph problems including strong orientation, biconnec-
tivity, triconnectivity, four-connectivity, and s-t numbering have been developed.
Several of these algorithms also have optimal sequential implementations, thus giving
us new algorithms for the sequential case. This is an example of a new emerging
discipline enriching an existing one. We briefly survey the results in the following,
where we assume that the input graph G has η vertices and m edges.

2.3.1. Connected components
The problem of computing connected components is often considered the most basic

graph problem. While it is not known how to apply depth-first search or breadth-first
search to obtain an efficient parallel connected-components algorithm, the following
approach (Hirschberg, Chandra & Sarwate [118]) does give an efficient parallel
algorithm for the problem. The algorithm works in 0(log n) stages. At each stage, the
vertices of G are organized in a forest of directed trees, with a directed arc from each
vertex to its parent in the tree. All vertices in any given tree in the forest are known to be
in the same connected component of G. In the first stage of the algorithm, each vertex is
in a tree by itself, and at the end of the last stage, all vertices in a connected component
are in a tree of height 1. In going from stage i to stage f + 1, some of the trees containing
adjacent vertices in G are linked by a hooking process and then the heights of the
resulting new trees are compressed by pointer jumping, i.e., each vertex that is not
a root or a child of a root in the new tree chooses the parent of its parent to be its new
parent. The hooking process has to be implemented properly in order to maintain the
tree structure and to guarantee termination of the algorithm in 0(log n) stages. Various
implementations of the above basic idea for the CREW PRAM [118], EREW PRAM
(Nath & Maheshwari [176]) and C R C W PRAM (Awerbuch & Shiloach [21]; Shiloach
& Vishkin [212]) are available. The implementation bound is O(logn) time using
0(m + n) processors on an ARBITRARY C R C W PRAM (recall that by the simulations
between the PRAMs, this implies an 0(log

2
n) time algorithm using 0(m + n) processors

on an EREW PRAM). This algorithm is easily extended to obtain a spanning tree for
G with the same time and processor bounds.

By applying more elaborate techniques based on those for optimal list ranking to the
basic algorithm we have outlined, the connected components of a graph can be
determined on an ARBITRARY C R C W PRAM in 0(log n) time with

0((m 4- n)a(m, n)/\og n)

processors (Cole & Vishkin [56]), where a(m,n) is the inverse Ackermann function,
which is an extremely slowly growing function of m and n. There is also a randomized
optimal 0(log n) algorithm for finding connected components on an ARBITRARY
CRCW PRAM (Gazit [94]).

2.3.2. Euler tour technique
The starting point for most other graph algorithms is the construction of a rooted

spanning tree T, and the computation of simple tree functions such as pre- and
postorder numbering of vertices in the tree, the level and height of each vertex in the
tree, and the number of descendants of each vertex in the tree. For this, we can use the

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 883

Euler tour technique on trees (Tarjan & Vishkin [221]), which we describe below. This
method works by reducing the computation of these tree functions to list ranking.

Given an unrooted tree Τ we can convert it into an Eulerian directed graph D by
replacing each edge {u, v} by two directed arcs, one from u to ν and the other from ν to u.
Let E = (el9e2,.. .> be an Euler tour of D, with ex being the directed arc from u to v.
Then it is easy to see that Ε represents a depth-first search traversal of Τ with u as the
root. Each undirected edge {x, y} appears once on the list as the directed arc (x, y\ and
once as the directed arc (y9 x). If (x, y) appears before (y, x) in £, then χ is the parent of
y in Γ rooted at u, since in this case, (x, y) represents the forward traversal of the edge in
the depth-first search and (y,x) represents the backtracking along the edge in the
depth-first search. Thus parent-child relationships in Τ rooted at u can be determined
once we have ranked the elements in list E.

Given a tree T, finding an Euler tour Ε for its directed Eulerian version is very simple.
We assume that the tree is specified by an adjacency list for each vertex, which can be
interpreted as a list of outgoing arcs from that vertex. This automatically gives us two
arcs directed in opposite directions for each edge. We assume that there is a pointer
from each edge to its reversal. With this representation we can obtain an Euler tour Ε in
constant time with η processors by specifying, for each edge e, its next edge on Ε as the
edge next to ë, the reversal of e, in the adjacency list containing ë (if ë is the last edge on
its adjacency list, its next edge is the first edge on this list). To obtain a depth-first search
from a given root u, we simply pick any arc (u, ν) as the starting arc of the tour. Now we
can use list ranking to determine the position of each arc in £, and hence the
parent-child relation. Other tree functions such as preorder number, level, and number
of descendants of each vertex can be determined by list ranking using appropriate
initial weights. For instance, to compute preorder numbers, we can assign a weight of
1 to forward arcs and a weight of 0 to back arcs. Then, for each forward arc (u, v), the
preorder number of υ is η— 1 — (the weighted rank of (u, v) in the list). The optimal list
ranking algorithm implies optimal 0(log n) time EREW PRAM algorithms for these
problems.

We can also use the Euler tour technique on trees to implement the preprocessing
step in the Tree Contraction Algorithm of the previous section optimally. For this we
merely need to give a weight of l to leaves and a weight of 0 to internal nodes, and then
compute the weighted rank of each leaf in the Euler tour.

The Euler tour technique on trees generalizes to finding Euler tours in general
Eulerian graphs with the same complexity bounds as the connected-components
algorithm (Atallah & Vishkin [18]; Awerbuch, Israeli & Shiloach [20]). For this, we
construct the tour Ε as above by specifying for each edge, the edge that follows it in E.
For a general Eulerian graph, this results in a collection of edge disjoint (possibly
nonsimple) cycles. Two cycles having a common vertex u can be "stitched together" by
swapping the successor edges of the two incoming arcs to u in the Euler tour E. The
algorithm obtains an Euler tour for the graph by stitching all the cycles together into
a single connected structure through an appropriate choice of such swaps.

2.3.3. Ear decomposition
An ear decomposition D = [P 0> · · · , Λ · - 1] of an undirected graph G = (K, E) is

a partition of Ε into an ordered collection of edge-disjoint simple paths P 0 , . . . , Pr-1

884 R . M . KARP, V . RAMACHANDRAN

called ears, such that P 0 is a simple cycle, and for i > 0 , P, is a simple path (possibly
a simple cycle) with each endpoint belonging to a lower-numbered ear, and with no
internal vertices belonging to lower-numbered ears (see Fig. 2). An ear with no internal
vertex is called a trivial ear.

An open ear decomposition is an ear decomposition in which none of the P,, / > 0 , is
a simple cycle.

It is known that a graph has an ear decomposition if and only if it is 2-edge connected
and a graph has an open ear decomposition if and only if it is biconnected, i.e., 2-vertex
connected (Whitney [241]).

Let Τ be a spanning tree of an undirected, 2-edge connected graph G = (V, E), and let
Ν be the set of non-tree edges in G, i.e., the edges in G-T. Then each edge e in
Ν completes exactly one cycle in Tu{e}, called a fundamental cycle of G with respect to
T. It is easy to see that the number of ears in any ear decomposition or open ear
decomposition of an η-vertex, m-edge graph is m — n+ 1, which is also the number of
fundamental cycles in the graph. In the ear decomposition algorithm presented below
(Maon, Schieber & Vishkin [162]; Miller & Ramachandran [168]), each ear is
generated as part of a fundamental cycle of G with respect to T, and contains the
non-tree edge in that fundamental cycle.

E A R D E C O M P O S I T I O N A L G O R I T H M

Input: Undirected, 2-edge connected graph G = (V, E).
(1) Preprocess G:

(a) Find a spanning tree Τ for G;
(b) Root Τ and number the vertices in preorder;
(c) label each non-tree edge by the least common ancestor (lea) of its endpoints in T.

(2) Assign ear numbers to non-tree edges: number non-tree edges from 0 to r— 1 in
nondecreasing order of their lea labels.

(3) Assign ear numbers to tree edges: number each tree edge with the number of the
minimum-numbered non-tree edge whose fundamental cycle it belongs to.

The correctness of this algorithm follows from a straightforward induction on ear
number. It is easy to see that the edges with ear number 0 form a simple cycle passing

Fig. 2. An ear decomposition.

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 885

through the root of T, and if we assume inductively that edges with ear numbers 0 to
i satisfy the definition of an ear decomposition, it is not difficult to show that the edges
with ear number i + 1 have the desired properties as well.

All of the steps in the algorithm can be implemented using the Euler tour algorithm,
together with efficient parallel algorithms for finding a spanning tree, sorting, prefix
sums, and finding lea's. The algorithm runs in O(logn) time while performing
0(m + η log ri) work. If consecutive ear numbers are not required, but only distinct
labels from a totally ordered set, then the parallel sorting algorithm is not required and
the algorithm can be implemented to run in 0(log ri) time while performing the same
amount of work as the connected-components algorithm, i.e., 0((m + n)a(m, ri)) work,
by using an optimal 0(log ri) time parallel algorithm to find lea's (Schieber & Vishkin
[207]). A randomized version of the ear decomposition algorithm with consecutive ear
numbers runs in O(logn) time while performing 0(m + n) work, by using optimal
O(logn) time randomized parallel algorithms for connectivity (Gazit [94]) and for
sorting integers in the range 1 to η (Reif [196]).

The ear decomposition algorithm, in general, does not give an open ear decomposi-
tion, but can be modified to do so (Maon, Schieber & Vishkin [162]; Miller
& Ramachandran [168]) with the same parallel complexity by refining the numbering
in step 2 so that non-tree edges with the same lea labels are further ordered in such
a way that the resulting ear numbers give an open ear decomposition.

23A. Applications of ear decomposition
The efficient parallel ear decomposition algorithm implies efficient parallel algorithms

for 2-edge connectivity and biconnectivity. Other efficient parallel algorithms for
biconnectivity are known [48, 221].

We describe two other applications of ear decomposition. A strong orientation of an
undirected graph G = (V, E) is an assignment of a direction to each edge of G such that
the resulting directed graph is strongly connected. A graph has a strong orientation if
and only if it is 2-edge connected. To strongly orient a 2-edge connected graph, we find
an ear decomposition for it, and then orient the edges in each ear from one (arbitrary)
endpoint of the ear to the other. Parallel algorithms for strong orientation are reported
in [13, 236].

We now briefly describe how to use open ear decomposition to obtain an efficient
parallel algorithm to test triconnectivity, and to find the triconnected components of
a biconnected graph (Miller & Ramachandran [169]). Let D = _P0,.. . , Ρ Γ _ i] be an
open ear decomposition of a biconnected graph G = (V, Ε). If G is not triconnected, then
it contains a pair of vertices x , y whose removal separates the graph into two or more
pieces. For such a pair of vertices x , y, it is easy to see that there must be some ear P, in
D that contains both of them, such that the portion of P, between χ and y is separated
from the rest of P, when χ and y are removed from G. The triconnectivity algorithm
tests if such a separating pair of vertices exists by looking for them in each ear in
parallel. It does so by constructing, for each nontrivial ear, its ear graph, which is
a graph derived from the input graph that contains the necessary information about
separating pairs of vertices, if any, on the ear. The algorithm then further processes the
ear graph to obtain its coalesced graph, using which all separating pairs on the ear can

886 R . M . K A R P , V . R A M A C H A N D R A N

be determined quickly. Efficient parallel algorithms for finding the ear graphs of all
nontrivial ears and the coalesced graph of each ear graph are given in [169,190] ,
leading to a parallel graph triconnectivity algorithm that runs in 0 (log n) time with
0 (m - l o g

2
n) work on a CRCW PRAM. These ideas generalize to efficient parallel

algorithms for finding all separating pairs of vertices in a biconnected graph and for
finding the triconnected (or Tutte) components of a biconnected graph. These ideas
also generalize to testing for graph four-connectivity (Kanevsky & Ramachandran
[129]) giving a parallel algorithm that runs in 0(log

2
n) time with 0(n

2
) processors on

an ARBITRARY CRCW PRAM. This approach also gives an 0 (n
2
) sequential

algorithm for the problem, which is an improvement over previously known sequential
algorithms for the problem.

Open ear decomposition has been used to obtain a parallel algorithm for finding an
s-t numbering in a biconnected graph (Maon, Schieber & Vishkin [162]) with the same
complexity as the connected-components algorithm. This efficient parallel s-t number-
ing algorithm has been used in conjunction with an efficient parallel implementation of
P Q trees, to obtain a parallel planarity algorithm (Klein & Reif [143]) that runs in
0 (log

2
n) time using 0(m + n) processors on a CREW PRAM.

At present there is no efficient graph search technique known for directed graphs.
Thus for most problems on directed graphs, including the basic one of testing if one
vertex is reachable from another in a directed graph, the best polylog-time parallel
algorithm currently known needs on the order of M(n) processors.

2.3.5. Conclusion
In this section we have presented efficient parallel algorithms for several problems on

undirected graphs.
Using the fact that graph problems are typically at least as hard as computing the OR

of η bits or the parity of η bits, it follows from the lower bounds of Section 3 that graph
problems need Q(log n) parallel time on a CREW or EREW PRAM with no restriction
on the number of processors, and Q(log n/log log n) parallel time on a CRCW PRAM
with a polynomial number of processors. In practice, graph problems seem to need at
least log

2
n time on a CREW and EREW PRAM and log η time on a C R C W PRAM.

We have stated many of the results in this section only for CRCW PRAMs, when it is
the case that, by the simulations between the various types of PRAMs, this gives the
best bounds known for CREW and EREW PRAMs as well.

2.4. Sorting, merging and selection

In this section we discuss parallel algorithms for which the input is an array of
η elements from a linearly ordered set. In the sorting problem, the task is to rearrange
the elements into nondecreasing order. In the merging problem, the input array is
partitioned into two subarrays, each of which is known to be in nondecreasing order,
and the task is to rearrange the entire array into nondecreasing order. In the selection
problem an integer k between 1 and η is given, and the task is to find the /cth-smallest
element of the array. Except for a brief remark in Section 2.4.3. we restrict attention to
comparison algorithms, in which the only means of gathering information about the

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 887

elements is through pairwise comparisons (i.e., tests of the form "is χ less than y?\ where
χ and y are elements of the array). For convenience we also assume that the η elements
are distinct.

Valiant [229] proposed a model of parallel comparison algorithms in which, at each
step, ρ comparisons are performed, where ρ is a parameter that we shall call the degree
of parallelism. It is not required that the ρ pairs of elements compared at a given step be
disjoint. The choice of the ρ comparisons to be performed at a given step can depend in
an arbitrary manner on n, the number of elements, and on the outcomes of previous
comparisons. The algorithm terminates when it has acquired enough information
about the input to specify the answer (the identity of the fcth smallest element in the case
of selection, and the permutation required to put the elements in increasing order, in the
case of sorting or merging). The execution time of an algorithm is the number of steps
performed. This model is called the parallel comparison model.

A second model, the comparator network, is a restriction of the parallel comparison
model. The basic operation in a comparator network is the i-j comparison-exchange
operation, where i and j are distinct integers between 1 and n. Such an operation has the
following interpretation: compare the contents of location i with the contents of
location j ; store the smaller of the two values in location i and the larger of the two in
location j . If a comparator network has degree of parallelism p, then each of its steps is
specified by at most ρ disjoint i-j pairs, and consists of the simultaneous execution of
the comparison-exchange operations corresponding to these pairs. The network is
oblivious, in the sense that the set of pairs of locations compared in any given step does
not depend on the outcomes of the comparisons performed at earlier steps.
A comparator network can be represented by a diagram reminiscent of a sheet of music
paper, in which each memory cell is represented by a horizontal line and each i-j
comparison-exchange operation is represented by a vertical line segment between
horizontal lines i and j , with an arrow directed toward i, the line that will receive the
smaller of the two values being compared. The order in which the comparison-ex-
change operations affecting a given cell are executed is given by the left-to-right order of
the corresponding vertical line segments. From this description it should be clear that,
in contrast to the more general parallel comparison model, comparator networks can
easily be realized in hardware.

A comparator network is called a sorting network if it is guaranteed to rearrange the
contents of locations 1 to η into nondecreasing order. Figure 3 depicts an 8-element

1 i 1

t 1 1

—
1 î

—
I

ί Î 1
Fig. 3. A sorting network.

888 R . M . K A R P , V . R A M A C H A N D R A N

comparator network with degree of parallelism 4 and execution time 6. Our discussion
of bitonic sort in Section 2.4.2 will establish that this network is a sorting network.

A third model is the comparison PRAM. This is a P R A M for which the input is an
array of η elements from a linearly ordered set. In addition to its usual instruction set,
the comparison PRAM is provided with instructions for comparing the elements of the
input array and for moving them around in memory. Elements of the input array have
no interpretation as bit strings or integers, and thus cannot be used as addresses or as
arguments for the arithmetic or shift instructions of the PRAM. The comparison
PRAM is a more realistic model than the parallel comparison model, because the time
required to move data around, as well as the time required to decide which
comparisons are to be performed and which processors will perform them, are counted
in the cost of computation along with the cost of the comparisons themselves.

Since the parallel comparison model is more permissive than the comparator
network or comparison PRAM, lower bounds on the complexity of comparison
problems within that model are valid for the other models as well.

2.4.1. The complexity of finding the maximum and merging
In this section we derive tight upper and lower bounds on the complexity of two

problems: finding the largest element in an array and merging two sorted arrays. Our
lower bounds are for the parallel comparison model, and our upper bounds are for the
comparison PRAM. Much of our discussion is based on [229] .

We begin by presenting an algorithm for finding the maximum of η elements on
a C O M M O N CRCW comparison PRAM with ρ processors. At a general step within
the algorithm, the search for the maximum will have been narrowed down to a set S of
elements from the input array. Initially, S consists of all η elements, and the
computation terminates when 5 becomes a singleton set.

Let χ be the smallest integer such that, when S is partitioned into χ blocks of size
L|S|/xJ or [| 5 | / x] , ρ comparisons suffice for the direct comparison of each pair of
elements that lie in a common block. Then, in one step, the algorithm determines the
maximum element in each block of such a partition, and thus eliminates all but
χ elements of S.

It can be shown that, when η/2 ^ ρ ^ (\), the number of iterations required to reduce
the cardinality of 5 from η to 1 is log log n — log log(2p/«) + 0 (l) . Also, the computa-
tions required at each step for each of the ρ processors to determine which pair of
elements to compare and for the set of block maxima to be assembled into an array can
be carried out in constant time. This establishes that the complexity of finding the
maximum on a p-processor C O M M O N CRCW comparison PRAM is 0(log log η
- l o g log(2p/n)).

To prove a lower bound in the parallel comparison model we use a graph-theoretic
argument. At the beginning of any step of any comparison-based algorithm, there will
remain a set S of candidates for the maximum; an element will lie in S if it has never been
compared with a larger element. At a general step, the comparisons performed between
candidate elements can be represented by the edges of a graph G whose vertices are the
candidate elements. An adversary can choose any set S' which is independent in G (i.e..
no two elements of 5 ' are compared with each other in the step), and can consistently

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 889

specify the outcomes of comparisons so that all the elements of S' remain candidates.
A theorem of Turan in extremal graph theory shows that, in any graph G having
ν vertices and e edges, there is an independent set of size at least v

2
/(v + 2e). Thus, the

adversary can ensure that the candidate set S' is of size at least \S\
2
/(\S\ + 2p). It fol-

lows that, against such an adversary strategy, any algorithm requires log log n —
log log(2p/rc) + 0 (l) steps when n/2^p^(2). Hence, for this range of values of p, the
algorithm described above is optimal in the parallel comparison model and optimal
within a constant factor on a C O M M O N C R C W comparison PRAM. Interestingly,
on a C R E W comparison PRAM, finding the maximum requires time Q(log n), even
when no limit is placed on the number of processors, and there is a simple optimal
0(log n) time EREW P R A M algorithm for the problem.

For the problem of selecting the median of η elements with degree of parallelism n,
a lower bound of Q(log log n) is implied by the lower bound for the maximum problem.
A matching upper bound for the comparison model has been given by Ajtai, Komlos,
Steiger & Szemerédi [6] building on earlier work by Cole & Yap [59]. It follows from
[29] (Beame & Hastad) that finding the median on a C R C W comparison PRAM using
a polynomial-bounded number of processors requires time Q(log n/\og log n).

We now turn to the problem of merging nondecreasing sequences of lengths η and m,
where η ^ m. We begin by giving an algorithm within the parallel comparison model
that has degree of parallelism n + m and execution time O(loglogn). Let the two
sequences be A and £, where A = {al9 al9..., an) and B = (bl9 b2,...9 bm). The algorithm
is as follows.

(1) Divide A into y/n blocks of length y/n, and Β into y/m blocks of length y/m (here
we ignore the simple modifications needed when the length of A or the length of Β is
not a perfect square).

(2) Let α, be the first element of the ith block of A, and ßj the first element of the y'th
block of B. In parallel, compare each a, with each ßj (the number of processors
required is y/n y/m, which is at most (m + n)/2).

(3) In parallel for each a t do
let j(i) be the unique index such that j ? </ (o < a f<) ? J- (i) +1 (here we use the conven-
tion that ß0 = — oo and β = + oo).

(4) Compare a, with each element of the block starting with ßj(i).

At this point, the algorithm has determined where each a f fits into B, and thus the
problem has been reduced to a set of disjoint merging problems, each of which involves
merging a block of length y/n from A with some consecutive subsequence of B.
Recursively, solve each of these subproblems, using a degree of parallelism equal to the
number of elements.

Let T(n) be the time required by this algorithm to merge a sequence of length η with
a sequence of length m, where n ^ m , using n + m processors. Since the parallel
computation model charges only for the comparison steps, and not for the bookkeep-
ing involved in keeping track of the results of comparisons and determining which
comparisons to perform next, we have 7 (1)= 1 and T(n)^2+ Τ (y/n). This gives
7(n) = 0 (log log ή).

890 R . M . K A R P , V . R A M A C H A N D R A N

This algorithm can be implemented to run in time O(loglogn) time with n + m
processors on a C R E W P R A M , although the processor allocation problems are not
entirely trivial (Borodin & Hopcroft [41]).

Following Borodin & Hopcroft we now prove that, in the parallel comparison
model, the time required to merge two sequences of length η using 2n processors is
ü(log log n). In order to prove the lower bound we consider the following generaliza-
tion of the problem: given ordered sequences Au Bu A2, B2,..., Ak, Bk, each of length
s, and the information that, for i = 1,2, . . . , k — 1, each element of AxAJ BX is less than each
element of Ai+1KjBi+u merge each of the pairs Ah Bx using cks processors. We refer to
this problem as the c, /c, s problem.

Let the worst-case time to solve this problem in the parallel comparison model be
t(c, k, s), and let 7(c, s) = minki(c, k, s) where k ranges over the positive integers. We shall
use an adversary argument to prove that T(c, s) ^ 1 + T(16c/7, s') where 5 ' = v/ s / 8 c .
Consider the first step in solving a c, fc, s problem. We have ksxs merging problems and
cks processors. For i = 1 ,2, . . . , /c, partition A{ into l^Jlcs blocks A\,A

2
,..., A

2y/2cs
,

each of size s ' , partition Bt similarly, form a ijlcs χ ijlcs matrix M , , and mark the
[a, fc] cell of this matrix if some element of A · is compared with some element of B\ at
the first step. Each of the Λί„ ί = 1 , . . . , k has 8cs cells, so that the total number of cells in
all matrices is %cks. At most cks of these cells are marked. Also, each matrix has
4y/2cs— 1 diagonals parallel to the main diagonal. By a simple averaging argument, it
is possible to choose a diagonal in each of these matrices, such that the number of
unmarked cells in the chosen diagonals is at least Iky/ïcs/S. An adversary can specify
the outcomes of these comparisons so that each unmarked cell on the selected
diagonals corresponds to an independent s' x s' merging problem at the next step. It
follows that the adversary can leave the algorithm with k' independent merging
problems to solve, each of which is s ' x s ' , where k' = lk-s/lcs/S. The number of
processors is cks, which is equal to \6ck's'/l. This leads to the inequality T(c,s)^
1 + T(16c/7, s'). It follows that T(c, s) ^ d log logccs, where d is a certain positive
constant. In particular, the complexity of merging two ordered sequences of length
η with In processors is at least 7(2, n) which is Q(log log ή). This establishes that the
algorithm we have given is optimal up to a constant factor, both for the parallel
comparison model and the C R E W comparison P R A M .

2A.2. Sorting networks
One of the classic parallel sorting methods is Batcher's bitonic sorting network [26].

This network is based on the properties of certain sequences. Let A=(al,a2,..., an) be
a sequence of distinct elements of a linearly ordered set. For i = 2 , 3 , . . . , η— 1, call
element a, a local minimum if both and a i +l are greater than ah and a local
maximum if both α,·_ x and ai+1 are less than at. The sequence A is called unimodal if it
has at most one element that is a local minimum or local maximum, and bitonic if it is
a cyclic shift of a unimodal sequence. The following lemma is due to Batcher.

L E M M A . Let A=(aua2,... ,a2N) be a bitonic sequence of even length. Define the
sequence L(A) and R(A) as follows:

L(>l) = (min(ui1, aN+l), min(a2, aN + 2),..., min{aN, a2N))

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 891

and

R(A) = (m a x ^ ! , aN+1), max(a 2, aN + 2) , . . . , max(a N, a2N)).

Then the sequences L(A) and R(A) are bitonic, and each element of L(A) is less than each
element of R(A).

The lemma suggests a parallel method of sorting a bitonic sequence A whose length
η is a power of 2: if A is of length 1 then halt; else compare corresponding elements of the
left and right half of A and form the arrays L(A) and R{A); in parallel, sort L(A) and
R(A). This algorithm can be realized by a comparator network with degree of
parallelism n/2 and execution time log n.

Batcher's bitonic sorting network is built upon this algorithm for sorting a bitonic
sequence. Starting with an unsorted η-element array, which can be regarded as a list of
n/2 bitonic sequences of length 2, the algorithm constructs a list of n/4 bitonic sequences
of length 4, then a list of n/8 bitonic sequences of length 8, and so forth until the array
has been transformed into a single bitonic sequence of length n, which may then be
sorted. The algorithm exploits the fact that the concatenation of an increasing sequence
with a decreasing sequence is a bitonic sequence. Thus, to convert a list of n/2

1
 bitonic

sequences of length 2
l
 into a list of n/2

i+1
 bitonic sequences of length 2

i +
 \ it suffices to

sort the sequences of length 2
l
 alternately into increasing and decreasing order, using

the algorithm for sorting a bitonic sequence. Figure 3 shows a bitonic sorting network
for 8 elements.

We now analyze the execution time of the bitonic sorting algorithm. Let B(n) be the
time required to sort a bitonic sequence of length η using degree of parallelism n/2, and
let S(n) be the time required to sort an array of length n, again using degree of
parallelism n/2. Then B(2

k
) = k, and

Thus bitonic sort requires time 0(log
2
n) to sort η elements using degree of

parallelism n/2. Bitonic sort is also easily implemented on an EREW comparison
PRAM. Again, it runs in time 0 (log

2
n) using n/2 processors. As an aside, we mention

that bitonic sort can also be implemented very neatly to run within these time and
processor bounds on certain fixed-degree networks, such as the butterfly and
shuffle-exchange network.

Batcher's bitonic sorting network requires θ(η log
2
n) comparators. Since there exist

sequential sorting algorithms that require only 0 (n log n) comparisons in the worst
case, it was natural to ask whether one could improve on Batcher's construction by
exhibiting sorting networks requiring only O(n logn) comparators. In 1983 this
question was answered affirmatively by Ajtai, Komlos & Szemerédi [7] . The family of
sorting networks given by these three authors also has theoretical advantages for
parallel computation, since they execute in time 0(log n) using degree of parallelism
n/2. However, despite the substantial improvements obtained by later researchers
(Paterson [183]), the constant implied by the "big O " is so large that bitonic sort is

892 R . M . K A R P , V . R A M A C H A N D R A N

preferable for all practical values of n. Since the Ajtai-Komlos-Szemerédi networks are
presented in detail in [186] , we shall not attempt to describe them here.

2.4.3. Sorting on a PRAM
Since the sequential complexity of sorting by comparisons is θ(η log n), it is of interest

to investigate methods for sorting on a comparison P R A M that run in polylog time and
have a processor-time product that is 0(n log n). Randomized methods that use 0(n)
processors and run in 0 (log n) time with high probability are given in [201,200] . The
first deterministic method to achieve such performance was an EREW comparison
PRAM algorithm based on the Ajtai-Komlos-Szemerédi sorting network. It achieves
an execution time of 0 (log n) using 0(n) processors; however, the constant factor in the
time bound is so large as to render the method impractical. Using a new version of
bitonic merging, Bilardi & Nicolau [35] give a sorting algorithm for the EREW
comparison PRAM that achieves a processor-time product of O(n logn) using
0(rc/log n) processors. Moreover, the constant factor in the time bound is small, so that
the method is attractive for practical use. Cole [53] has given a practical deterministic
method of sorting on an EREW comparison PRAM in time O(logn) using O(n)
processors. His algorithm can be viewed as a pipelined version of merge sort. Finally,
we point out that when the elements to be sorted are integers in a limited range, better
bounds are achievable by using bucket sorting methods rather than comparison
algorithms [196, 111].

The rest of this section is devoted to a presentation of Cole's sorting algorithm. For
simplicity, we confine ourselves to describing a version of the algorithm that runs on
a CREW comparison PRAM. We assume for convenience that the number of elements
to be sorted is a power of 2. Let the 2

k
 elements to be sorted be placed in correspondence

with the leaves of a complete binary tree Τ of height k\ hereafter, we make no distinction
between a leafand the corresponding element. Each internal node υ within Τ is the root
of a subtree; let Tv be the set of leaves of that subtree. Then the task of node ν is to
arrange the elements of Tv into a sorted list.

An obvious method of creating the required lists would be to move up the tree
level-by-level from the leaves to the root, using the merging algorithm of Section 2.4.1
to create the list for each node by merging the lists for its two children. Using the fact
that the time to merge two sorted lists of length t using 2t processors is 0(log log r),
a simple analysis shows that this obvious method runs in time O(log η log log n) using
O(n) processors. Cole improves on this approach by having the algorithm work on
many levels of the tree at once, creating successively more refined approximations to
the lists that the nodes must eventually produce. The method of approximation is
chosen so that each approximation to the final list for a node can be obtained from the
preceding approximation in constant time.

Associated with any time step s and internal node ν is a list LISTv(s); this list is an
increasing sequence of elements drawn from Tv. We say ν is finished at time s if LISTv(s)
contains all the elements of Tv. Node ν is a frontier node when ν is finished but its parent
is not. Initially, the leaves of Τ are its frontier nodes. At any time s, all the frontier nodes
are at the same distance from the root of T.

At every step, each frontier node or unfinished node passes a subsequence of its list up

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 893

to its parent. For node ν at step 5 we call this subsequence UPv(s). Node ν forms
LISTv(s) by merging UPx(s) with UPy(s\ where χ and y are the children of v. If χ is
unfinished at step 5 — 1 then UPx(s) consists of every fourth element of LISTx(s— 1); i.e.,
elements 1,5,9,13, . . . If χ becomes finished at step s then UPx(s+ 1) consists of every
fourth element oîLISTx(s), UPx(s + 2) consists of every second element of LISTx{s) and
UPx(s + 3) is equal to LISTx(s). It follows that a node becomes finished three steps after
its children do. The sorting process is completed after 3k steps, when the root becomes
finished.

It remains to show that each step can be completed in constant time on a C R E W
P R A M using O(n) processors. At each step the sum of the lengths of all the lists
associated with unfinished or frontier nodes is O(n). Thus it suffices to give a method of
merging the lists UPx(s) and UPy(s) in constant time, using one processor per list
element. The key idea is to use information from previous steps. Given two ordered lists
A and B, define a cross-link array from A into Β to be an array of pointers from A into
Β such that each element a in A points to the least element in Β that is greater than a (or,
if no such element exists, to a sentinel placed at the end of the list B). If the ordered lists
A and Β are disjoint then, given cross-links from A into Β and from Β into A, each
element can quickly calculate its rank order in the list that results from merging A and
B, and thus A and Β can be merged in constant time. Cole's algorithm maintains certain
cross-link arrays in order to speed up the merging process. If nodes χ and y are siblings
in Τ then, upon the completion of step s — 1, the algorithm maintains cross-links from
UPx(s- 1) into UPy(s- 1) and LISTx(s- 1), and, symmetrically, from UPy{s- 1) into
UPx(s- l)and LISTy(s-l). Given the cross-links from UPx(s- l)into LISTx(s- 1) it is
easy, in constant time, to create cross-links from UPx(s— 1) into UPx(s). Similarly,
cross-links can be constructed in constant time from UPy(s— 1) into UPy{s). Moreover,
it can be shown that at most four elements of UPx(s— 1) point to any element of UPx(s).
Given all this cross-link information, it is possible in constant time on a C R E W
comparison P R A M to create cross-links between UPx(s) and UPy(s), to merge those
two sequences, and to create the cross-links required for the next step. It follows that
each step can be executed in constant time using O(n) processors on a C R E W
comparison P R A M , and thus Cole's algorithm sorts in time O(logn) using O(n)
processors on a C R E W comparison P R A M .

2.5. Further topics

Efficient parallel algorithms have been developed for a number of other combina-
torial problems, including string matching [88,137,151,237,33], set manipulation
[17], computational geometry [4,14, 15,16,51,54,108,198] and graph algorithms
[52,112,142]. In [78,99] extensive surveys of efficient parallel algorithms are given
including the topics of Sections 2.1-2.3.

Some of the challenges that have thus far eluded researchers in the area of efficient
and optimal combinatorial parallel algorithms are the following:

(i) The construction of an efficient parallel 0(log n/log log n) time C R C W P R A M
algorithm for the η-element list ranking problem. At present it is not known how to
achieve this time bound with any polynomial-bounded number of processors.

894 R . M . K A R P , V. R A M A C H A N D R A N

(ii) The construction of an efficient parallel algorithm for breadth-first search in an
undirected graph. This problem can be solved on a C R C W P R A M in 0(log ri) time
using a polynomial-bounded number of processors (see the discussion of the "transitive
closure bottleneck" in Section 4.8.1).

(iii) The construction of efficient parallel algorithms for various reachability
problems on directed graphs, including reachability from one given vertex to another,
breadth-first search, strong connectedness and topological sorting of a directed acyclic
graph. These problems can be solved on a C R C W P R A M in 0(log ri) time using
a polynomial-bounded number of processors (see Section 4.8.1).

(iv) The construction of efficient algorithms to find the connected components of an
undirected graph in time o(log

2
n) on a C R E W P R A M or time o(log ri) on a C R C W

P R A M . The known lower bounds are Q(log ri) and Q(log n/log log ri) respectively.
(v) The construction of ^-element sorting networks with degree of parallelism at

most Cn and execution time D log n9 where C and D are moderate constants (rather
than the very large constants achieved in the construction of Ajtai, Komlos,
& Szemerédi [7]).

(vi) The construction of an optimal deterministic algorithm for sorting η integers in
the range [1 , . . . , n

k
\for fixed k, on an E R E W P R A M in time 0(log ri). Reif [196] gives

an optimal randomized 0(log n) time algorithm on an A R B I T R A R Y C R C W P R A M
to sort η integers in the rage [l , . . . , n] , and Hagerup [111] gives a deterministic
algorithm to sort η integers from [1 , . . . , n

f c
] in 0(log ri) time using 0(n log log n/log ri)

processors on a P R I O R I T Y C R C W P R A M ; this algorithm requires space Ω (η
1 + ε

) ,
where ε is an arbitrarily small positive constant.

3. Models of parallel computation

3.1. Relations between PRAM models

Our primary model for parallel computation is the P R A M family [85,106,206]. In
Section 2.1 P R A M s were classified according to restriction on global memory access as
E R E W , C R E W or C R C W , and C R C W P R A M s were further classified as C O M M O N ,
A R B I T R A R Y or P R I O R I T Y . It should be noted that this listing represents the P R A M
models in increasing order of their power. Thus, any algorithm that works on an
E R E W P R A M works on a C R E W P R A M , and in turn, any algorithm on a C R E W
P R A M works on a C O M M O N C R C W P R A M , and so on. The most powerful model
in this spectrum is the P R I O R I T Y C R C W P R A M .

We now show that any algorithm for a P R I O R I T Y C R C W P R A M can be simulated
by an E R E W P R A M with the same number of processors and with the parallel time
increased by only a factor of 0(log P), where Ρ is the number of processors [77,234].
This is done as follows: Let Pu..., Pr be the processors and Mu..., Ms be the memory
locations used by the P R I O R I T Y algorithm. The simulating E R E W P R A M uses
r auxiliary memory locations Ν l,..., Nr for simulating a write or read step. If processor
Pi needs to access location M, in the P R I O R I T Y algorithm, then it writes the ordered
pair (;, i) in location Nt. The array Nj9 j = 1 , . . . , r is then sorted in lexicographically

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 895

increasing order in 0(log r) time using the r processors [53]. Then, by reading adjacent
entries in this sorted array, the highest priority processor accessing any given location
can be determined in constant time. For a write instruction, these processors then
execute the write as specified in the P R I O R I T Y algorithm. For a read instruction, the
processors read the specified locations, and then in additional 0(log r) time, duplicate
the value read so that there are enough copies of each value for all the processors that
need to read it.

We also have the result that any algorithm for a P R I O R I T Y P R A M can be
simulated by a C O M M O N P R A M with no loss in parallel time provided sufficiently
many processors are available [148]: Let Pl9...,Pr be the processors used by the
P R I O R I T Y algorithm. The simulating C O M M O N algorithm uses auxiliary pro-
cessors Pifj and memory locations Mj9 1 < i , y ^ r . The locations M , are initialized to
0. Processor Ptj, i<j determines the memory addresses m» and m} that processors P,
and Pj were to access in the P R I O R I T Y algorithm and writes a 1 in location M-3 if
mi = rrij. Now Pj can ascertain if it is the lowest-numbered processor that needs to write
into nij by testing if M} is still zero. If so, it writes into m} the value it was supposed to
write by the P R I O R I T Y algorithm.

3.2. Lower bounds for PRAMs

There is a substantial body of literature which explores lower bounds on the time
required by E R E W , C R E W or C R C W P R A M s to perform simple computational
tasks. For the purpose of proving such lower bounds it is customary to adopt a model
called the ideal P R A M , in which no limits are placed on the computational power of
individual processors or on the capacity of a cell in the shared memory. Each processor
in a P R A M can compute an arbitrary function of the values in its private memory at
each step, and thus the ideal P R A M is much more powerful than the ordinary P R A M ,
whose processors are restricted to executing conventional R A M instructions. Lower
bounds proved within such a powerful model of computation have great generality
because they do not depend on particular assumptions about the instruction set or
internal structure of the individual processors. Such lower bounds capture the intrinsic
limitations of global memory as a means of communication between processors, and
demonstrate clear distinctions in power among the various concurrent-read and
concurrent-write arbitration mechanisms.

An ideal PRAM consists of processors which communicate through a global
memory divided into cells of unbounded storage capacity. Each processor has a private
memory of unbounded size and the ability to compute in unit time any function of the
contents of its private memory. The input data are assumed to be stored in locations
M ! , M2, · - -, Mn of the global memory, and the computation is required to terminate
with its output in location Mx. The computation proceeds in steps, with each step
consisting of a read phase, a compute phase and a write phase. In the read phase, each
processor reads into its private memory the contents of one cell in the gobal memory. In
the compute phase, each processor computes some function of the contents of its
private memory. In the write phase, each processor stores a value dependent on the
contents of its private memory in some cell of global memory. An ideal P R A M is

896 R . M . K A R P , V . R A M A C H A N D R A N

designated as EREW, CREW or C R C W according to whether concurrent reading
and/or concurrent writing are permitted, and concurrent-write ideal PRAMs are
further classified as C O M M O N , ARBITRARY, PRIORITY, etc. according to the
method of write-conflict resolution. Even the weakest of these models, the EREW ideal
PRAM, is so powerful that any function of M variables can be computed in time Oilog ri)
using η processors, simply by assembling all the input data together in the private
memory of one processor, which can then use its unlimited computation power to
determine the output and store it in the global memory.

In the paper by Cook, Dwork & Reischuk [63] it is shown that the OR function
requires time Q(log n) on an ideal C R E W PRAM, no matter how many processors or
memory cells are used. Here each input cell contains a bit. The output is 0 if all the input
bits are zero, and 1 otherwise. Since this function can be computed in constant time by
a C O M M O N CRCW P R A M with η processors and a very limited instruction set, this
result clearly demonstrates that the concurrent-write mechanism is strictly more
powerful than exclusive-write. This lower bound may appear obvious, since, at first
sight, there seems to be no method of solving the problem on a CREW PRAM better
than halving the number of inputs at each step by "OR"ring them together in pairs. But
an alternate method can be given with runs in time l o g 2 6 1 8H + 0 (l)

 on
 a CREW

PRAM, and thus beats the obvious halving method.

The lower bound proof requires the following definitions. Let us say that input bit
i affects processor Ρ at time t if the contents of the processor's private memory at time
t differ according to whether input i is 1 or 0, when the other input bits are fixed at 0.
Similarly, we can speak of an input bit affecting global memory cell M at time t. By
induction on r, one can prove that the number of input bits affecting any processor or
memory cell at time t is at most c\ where c is a suitable constant. Since every input bit
must affect the output cell at the end of the computation, it then follows that the
computation time is at least logcn.

Extending the work of Cook, Dwork & Reischuk, Nisan [177] has recently given the
following very precise characterization of the time required by an ideal C R E W PRAM
to compute a finite function / with domain B

n
, where Β = {0,1}. For any weB

n
 and any

subset S of the index set { 1 , 2 , . . . , n}, let us say that / is sensitive to S at w if the value of
/ changes when w is changed by flipping those input bits with indices in S. We say that
/ is k-block sensitive at w if / is sensitive at w to each of k disjoint index sets. The
block-sensitivity bs(f) is defined as the largest k such that, for some w, / is
/c-block sensitive at w. Then the time required to compute / on an ideal C R E W PRAM
is bounded both above and below by bounds of the form c log(bs(/)) + d, where c and
d are constants.

The paper by Snir [217] studies the complexity of solving the following table look-up
problem using ρ processors: given an array of distinct integers (χλ, x 2 , . . . , x „ , y} where
x ι < x 2 < · · · < x „ , find the index i such that x , < y < χ, + x (by definition, x 0 = — oo and
x n +1 = oo) . The problem can be solved on a CREW PRAM with a conventional
instruction set in time 0 (l o g p + 1n) using a variant of binary search, and a simple
adversary argument shows that logp+in is also a lower bound for the problem on an
ideal CREW PRAM. Snir proves that the problem requires time 0(log n — log p) on an
ideal EREW PRAM, thereby showing that the concurrent-read PRAM is strictly more
powerful than the exclusive-read PRAM.

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 897

One component of Snir's proof is a Ramsey-theoretic argument showing that, when
the x, are allowed to be arbitrarily large integers, one can restrict attention to
algorithms in which the only information gathered about the x, is obtained through
comparing the xf directly with y\ i.e., for each algorithm that violates this restriction,
there is another algorithm that respects the restriction and has equally good worst-case
behavior. In view of this restriction one can rephrase the problem as the following
zero-counting problem: given an array of m Os followed by n — m Is, determine m. Here
a 0 in position i means that xf < y, and a 1 in position i means that x, < y. At the end of
the computation, cell Mm is to contain a 1 if the answer is m, and a 0 otherwise.

We sketch Snir's proof of a lower bound on the time required to solve the
zero-counting problem on an ideal E R E W PRAM with ρ processors. For any
processor Ρ and time t, say that input coordinate m affects Ρ at time t if the contents of
the private memory of Ρ at time t is different on input 0

m
"

1
 r~

m +1
 than it is on input

0
m
\

n
~

m
. Let P(r) be the set of input coordinates that affect Ρ at time t. Similarly, let M(t)

be the set of input coordinates that affect global memory cell M at time t. As a measure
of the progress of the computation, define

c(i) = X |P(i) | + I m a x (0 , | M (i) | - l) ,
Ρ M

where the first summation is over all processors, and the second is over all global
memory cells. Then c(0) = 0, and if the computat ion halts at time Τ then c(T)^n+ 1.
Snir proves the inequality c(t + l)^4c(i) + /?, and the lower bound T=Q(log n — log p)
follows. By a similar argument Snir proves that when the number of processors is
unlimited, there is a lower bound of ü i ^ / l o g η) on the parallel time for the table look-up
problem.

The paper by Beame & Hastad [29] , improving an earlier result in Beame [27] ,
proves that, on an ideal PRIORITY C R C W PRAM, the number of processors required
to compute the parity of η bits in time Τ is at least L («

1 / T
/ 9 6) - 2 j j t f 0 u o w s tfoe t j m e

required to compute the parity of η bits of an ideal C R C W PRAM using a polynomial-
bounded number of processors in Q(log n/log log ή).

Many further lower bounds for ideal PRAMs can be cited. The papers [36,81,82,
110,153,166,238] study the effects of the size of global memory and the choice of
a write-conflict mechanism on the time required to solve problems on an ideal C R C W
PRAM. These results show that, in various settings, the ARBITRARY model is strictly
more powerful than the C O M M O N model, but strictly less powerful than the
PRIORITY model.

3.3. Circuits

So far we have mainly considered the P R A M model. There are several other models
of parallel computation, and of these, the circuit model has emerged as an important
medium for defining parallel complexity classes. By a circuit we mean a bounded fan-in
combinational Boolean circuit. More formally, a circuit is a labeled directed acyclic
graph (DAG). Nodes are labeled as input, constant, AND, OR, NOT, or output nodes.
Input and constant nodes have zero fan-in, A N D and OR nodes have fan-in of 2, N O T
and output nodes have fan-in of 1. Output nodes have fan-out 0.

898 R . M . K A R P , V . R A M A C H A N D R A N

Let Β = {0,1}. A circuit with η input nodes and m output nodes computes a Boolean
function / : B

n
^>B

m
, where we assume the input nodes to be ordered as < x t , . . . , x„>

and similarly the output nodes as (yl9..., ym}. The size of a circuit is the number of
edges in the circuit. The depth of the circuit is the length of a longest path from some
input node to some output node. We note that the size of a circuit is a measure of its
hardware content and its depth measures the time required to compute the output,
assuming unit delay at each gate.

A rather general formulation of a problem is as a transducer of strings over B: i.e., as
a function from B* to B*. By using a suitable encoding scheme, we can assume, without
loss of generality, that the size η of the input string determines the size l(n) of the output
string. Let C= { C j , i = 1,2,. . . be a family of circuits for which C, has i input bits and /(/)
output bits. Then the family of circuits C solves a problem Ρ if the function computed by
C, defines precisely the string transduction required by Ρ for inputs of length i.

When using a family of circuits as a model of computation, it is necessary to
introduce some notion of uniformity if we wish to correlate the size and depth of a family
C t h a t solves a problem Ρ with the parallel time and hardware complexity of P. If not,
we could construct a family of circuits of constant size and depth to solve an
undecidable problem (for which all inputs of a given length have the same one-bit
output; it is well-known that nonrecursive sets with this property exist). A notion of
uniformity that is commonly accepted for parallel computation is logspace uniformity
[203,62]: A family of circuits C i s logspace uniform if the description of the nth circuit
Cn can be generated by a Turing machine using 0(log n) workspace. By the description
of a circuit, we mean a listing of its nodes, together with their type, followed by a listing
of the inputs to each node. For C(n) ^ η and D(n) ̂ log n, a problem Ρ is said to be in the
class CKT(C(n), D(n)) if there is a logspace uniform family of circuits C= {Cn} solving
Ρ such that Cn is of size 0(C(n)) and depth 0(D(n)).

The class N C
k
, k> 1, is the class of all problems that are solvable in CKT(poly(n\

0(log*n)), where poly(n) = [jk̂ iO(n
k
). For technical reasons we define N C

1
 to be the

class of problems solvable by alternating Turing machines in time 0(log n) (see Section
3.5). The class N C = \Jk̂ 1 NC* is generally accepted as a characterization of the class of
problems that can be solved with a high degree of parallelism using a feasible amount of
hardware (Cook [61], Pippenger [184]). As mentioned in Section 2, we refer to the
quantity (J k ^ i O (l o g

f c
n) as polylog(n). Thus N C = CKT(po/y(n), polylog(n)). For many

commonly used models of parallel computation, the class of problems that can be
solved in polylog time with a polynomial-bounded amount of hardware coincides with
NC.

If we remove the fan-in restriction on A N D and O R gates in the circuit model, we
obtain the unbounded fan-in circuit model, where, as before, the size of the circuit is the
number of edges in the circuit, and the depth is the length of a longest path from an
input node to an output node in the unbounded fan-in circuit [47,62,86,220].) A family
of unbounded fan-in circuits is logspace uniform if the description of the ith circuit can
be generated in logspace. By analogy with the bounded fan-in case, the class
UCKT(C(n), D(n)\ where C(n)^n, is defined as the class of problems solvable
by logspace-uniform circuit families whose nth element has size 0(C(n) and depth
0(D(n)). For fc^l, the class UCKT(poly{n\ log*n) is denoted AC*. The class AC =

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 899

Since any gate in an unbounded fan-in circuit of size p(n) can have fan-in at most p(ri),
each such gate can be converted into a tree of gates of the same type with fan-in 2, such
that the output gate computes the same function as the original gate. By applying this
transformation to each gate in an unbounded fan-in circuit in UCKT(p(ri), d(n)) we
obtain a bouned fan-in circuit in

CKT(0(p(n)), 0 (φ) · 1 ο 8ρ (η))) .

It is straightforward to see that this transformation is in logspace. Thus A C
f c

ç N C *
 + 1

for 1. Clearly N C * ^ AC*. Thus we conclude that AC = NC. We also note that we
can always compress 0(log log n) levels of a bounded fan-in circuit into two levels of
a polynomial-size, unbounded fan-in circuit [47] and hence

CKT(po/y(n), log
f c
n) ç UCKT(po/y(n), logV log log ή).

3.4. Relations between circuits and PRAMS

If we assume a bounded amount of local computation per processor per unit time, we
can establish a strong correspondence between the computational power of unbounded
fan-in circuits and that of C R C W PRAMs [220]. More specifically, assume the
PRIORITY write model, and that the instruction set of the individual RAMs consists
of binary addition and subtraction of poly-size numbers, binary Boolean operations,
left and right shifts, and conditional branching on zero, and that indirect memory
access is allowed. Each instruction is assumed to execute in unit time. The input to
a problem of size η is specified by η η-bit numbers. Let CRCW(P(n), T(n)) be the class of
problems solvable on such a PRAM in 0(T(n)) time with 0{P(n)) processors.

Given any unbounded fan-in circuit in UCKT(S(n), D(n)) we can simulate it on
a CRCW PRAM in time 0(D(n)) with S(n) processors and η + M(n) memory locations,
where M(n) is the number of gates in the circuit. Any bounded fan-in or unbounded
fan-in circuit can be converted in logspace into an equivalent circuit of comparable size
and depth for which negations occur only at the inputs. These negations can now be
removed by supplying the complement value as input. So we can assume that our input
circuit has no negations. In the simulation, each processor is assigned to an edge in the
circuit and each memory location to a gate. Initially, the inputs are in memory locations
1 through n, and memory location η + i is assigned to gate i in the circuit, i = 1 , . . . , M(n);
these latter locations are initialized to 0 for OR gates and to 1 for A N D gates.

Each step in the simulation consists of performing the following three substeps in
sequence:

(a) Each processor ρ determines the current value c on its edge e = (w, v) by reading
memory location η + u.

(b) If c = 0 and ν is an OR gate, or if c = 1 and ν is an A N D gate then ρ writes value
c into location η + v.

(c) If c = 1 and ν is an OR gate, or if c = 0 and υ is an A N D gate then ρ writes c into
location n + v.

Clearly, after D(n) steps, memory location η + i has the value of gate i for i = 1 , . . . , M(n).
Thus

UCKT(S(n), D(n)) <= CRCW(S(n), D(n)).

900 R . M . K A R P , V . R A M A C H A N D R A N

For the reverse part, we note that each of the binary operations in the instruction set
of the PRAM can be implemented by constant-depth, polynomial-size, unbounded
fan-in circuits, as shown in Section 4. It is also fairly easy to implement the conditional
branching by such circuits, by suitably updating the program counter. The nontrivial
part of the simulation of a CRCW PRAM by an unbounded fan-in circuit lies in
simulating the memory accesses. Since a combinational circuit has no memory, the
simulation retains all values that are written into a given memory location during
the computation, and has a bit associated with each such value that indicates whether
the value is current or not. With this system, it is not difficult to construct
a constant-depth unbounded fan-in circuit to implement reads and writes into memory.
Thus a single step of the PRIORITY C R C W P R A M can be simulated by an
unbounded fan-in circuit of polynomial size and constant depth, and it follows that

CRCW(P(n), T(n))^VCKT{poly(P(n))9 T(n)).

Let us call a PRAM algorithm logspace uniform if there is a logspace Turing machine
that, on input n, generates the program executed by each processor on inputs of size n.
(We note that all of the PRAM algorithms we describe have programs that are
parametrized by η and the processor number, and such algorithms are clearly logspace
uniform.) Define CRCW* as the class of problems solvable by logspace uniform C R C W
PRAM algorithms in time 0(log*n) using a polynomial-bounded number of processors;
let CREW* and EREW* be the analogous classes for C R E W PRAMs and EREW
PRAMs. We will see in Section 3.9 that N L (nondeterministic logspace) is in C R C W

1
,

and that L (deterministic logspace) is in E R E W
1
. Thus, by the results of Stockmeyer

& Vishkin we have just described [220], we have CRCW* = AC* for 1, and

(J CRCW(poly(n), log*n) = NC.
fc>0

Since we also noted earlier that simulations between the various types of PRAM result
in only an 0(log P(n)) increase in time and a squaring of the processor count, we have

PRAM(poly(n), polylog{n)) = NC,

where the PRAM processor and time bounds can refer to any of the PRAM models.
It is shown in Hoover, Klawe & Pippenger [119] that any bounded fan-in circuit of

size S{n) and depth D(n) can be converted into an equivalent circuit of size 0(S(n)) and
depth 0(D(n)) having both bounded fan-in and bounded fan-out. Using this result, it is
easy to see that NC* £ ERE W*. Thus we have the following chain of inclusions for k ^ 1 :

NC* s EREW* s CREW* £ CRCW* = AC* £ N C *
+ 1

.

As noted earlier, we also have

NC* c VCKT(poly(n\ logty log log n).

Earlier in this section, we referred to the lower bound of Q(log n/log log n) for
computing parity on an ideal PRIORITY CRCW PRAM with a polynomial number of
processors [29]. This immediately gives the same lower bound for computing parity
with an unbounded fan-in circuit of polynomial size. Historically this lower bound was
first developed for the case of unbounded fan-in circuits in a sequence of papers [86, 5,

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 901

243,113,114, 216], thus implying the lower bound for C R C W PRAMs with restricted
instruction set. The extension of the result to ideal PRAMs requires a substantial
refinement of the probabilistic restriction techniques used to obtain the lower bounds
for circuits. For bounded fan-in circuits, a lower bound of O(logn) for the depth
required to compute any function whose value depends on all η input bits is easily
established by a simple fan-in argument.

3.5. Alternating Turing machines

Another important model of parallel computation is the alternating Turing machine
(ATM) [46, 203]. An ATM is a generalization of a nondeterministic Turing machine
whose states can be either existential or universal. Some of the states are accepting
states. As with regular Turing machines, we can represent the configuration α of an
ATM at a given stage in the computation by the current state, together with the current
contents of worktapes and the current positions of the read and worktape heads.
A configuration is accepting if it contains an accepting state. The space required to
encode a configuration is proportional to the space used by the computation on the
worktapes. Configuration β succeeds configuration α if α can change to β in one move
of the ATM. For convenience we assume that an accepting configuration has
transitions only to itself, and that each nonaccepting configuration can have at most
two different configurations that succeed it.

We define the concept of an accepting computation from a given initial configuration
a. If a is an accepting configuration, then α itself comprises an accepting computation.
Otherwise, if α is existential, then there is an accepting computation from α if and only if
there is an accepting computation from some configuration β that succeeds a; and if α is
universal, then there is an accepting computation from α if and only if there is an
accepting computation from every configuration β that succeeds a. Thus we can
represent an accepting computation of an ATM on input χ as a rooted tree whose root
is the initial configuration, whose leaves are accepting configurations, and whose
internal nodes are configurations such that if c is a node in the tree representing
a configuration with an existential state, then c has one child in the tree which is
a configuration that succeeds it, and if c represents a configuration with a universal
state, then the children of c are all the configurations that succeed it. An ATM accepts
input χ if it has an accepting computation on input x. A node α at depth t in the
computation tree represents the event that the ATM can reach configuration α after
t steps of the computation, and will be denoted by the ordered pair (a, t). The
computation DAG of an accepting computation of an ATM on input χ is the DAG
derived from the computation tree by identifying together all nodes in the tree that
represent the same ordered pair.

Alternating Turing machines are generally defined as acceptors of sets. We can view
them as transducers of strings by considering the input as an ordered pair <w, i} and the
output bit as specifying the ith bit of the output string when the input string is w [61].
Here we assume that the length of the output is at most exponential in the input length.

An ATM M operates in time T(n) if, for every accepted input of length H , M has an
accepting computation of depth 0(T(n)). Similarly, an ATM operates in space S(n) if,
for every accepted input of length η, M has an accepting computation in which the

902 R . M . K A R P , V. R A M A C H A N D R A N

configurations require at most 0(S(n)) space. We define ATM(S(n), T(n)) to be the class
of languages that are accepted by ATMs operating simultaneously in time 0(T(n)) and
space 0(S(n)). Also, let ATIME(T(n)) denote the class of languages accepted by ATMs
operating in time 0(T(n)).

In order to allow sublinear computation times, we use a random-access model to read
the input tape: when in a specified read state, we allow the ATM to write a number in
binary which is then interpreted as the address of a location on the input tape, whose
symbol is then read onto the worktape in unit time. Thus log η time suffices to read any
input symbol.

We shall now show that, for k ^ 1, ATM(log n, \og
k
n) = NC* (Ruzzo [203]). This can

be seen as follows. Consider a language accepted by an ATM M in ATM(5(n), T(n)),
with S(n) = Q(log n). The full computation DAG D of M for inputs of length η is obtained
by having a vertex for each pair (α, f), where a is a configuration of the ATM in space
0(S(n)) and 0 ^ t ^ T{n), and an arc from vertex (a, t) to vertex (β, t — 1) if a succeeds β.
We can construct a circuit from D by replacing each existential node in D by an OR
gate, each universal node by an A N D gate, each accepting leaf by a constant input 1,
each nonaccepting leaf by a constant input 0, and each node in which the state is a read
state by the corresponding input. The output of the circuit corresponds to vertex (a 0,0) ,
where a 0 is the initial configuration. It is not difficult to see that the output of this circuit
is 1 if and only if the input is accepted by the ATM in the prescribed time and space
bounds. Further the depth of this circuit is 0(T(n)) and its size is 0(c

S{n)
) for a suitable

constant c. Thus,

ATM(S(n), T (n))£CKT(c
S (n)

, T{n)\

Also, since the resulting family of circuits is easily shown to be logspace uniform, we
have

ATM(log η, log*n) £ NC* for k ^ 2, and ATM(log n, polylog{n)) £ NC.

For the reverse, consider any logspace uniform circuit family with size 0(S{n)) and
depth 0(T(n)). We may assume that all N O T gates have been pushed back to the inputs
and eliminated. Let ρ be a sequence of Ls and Rs, where L stands for left input and
R stands for right input. Given two gates g and h in the circuit C„ , we say that h = g(p) if
h is the gate reached starting from g and following the sequence p. The ATM simulating
C„ computes a function cv(n, g, p), which evaluates the output of g(p) by guessing g(p),
recursively evaluating cv(n,g,pL) and cv(n, g, pR), and combining the results appro-
priately, depending on the gate type of g(p), to obtain cv(n, g, p). When the length of
ρ grows longer than log n, g is replaced by g(p) and ρ is truncated to ε. The procedure for
computing cv(n, g, p) is as follows.

P R O C E D U R E CV(n, g, p)

(1) Guess g(p) = h (using existential states);
(2) In parallel (using universal states)

verify that g(p) = h;
if |p| = riogn]
then return CV(n, h, ε)
else return CV(M, h, pL)*CV(rc, h, pR), where * is the type of gate h

PARALLEL ALGORITHMS FOR SHARED-MEMORY MACHINES 903

The initial call to the procedure is CV(n, outputgate, ε). Because \p\ is always at most
flog n \ and our circuit family is logspace uniform, the step which verifies that g{p) = h
can be performed in logspace, and hence in ATM(log n, log

2
n) [46]. Hence a logspace

uniform circuit family of size S(n) and depth T(n) ^ l o g
2
n can be simulated in

ATIME(0(T(n))) using space 0(log S(n)). In particular, NC* ç ATM(poly{n), log*n) for
k ^ 2. For k = 1 a stronger notion of uniformity is required for the above inclusion to
hold [203]; alternatively, following [43,44] we can define N C

1
 to be ATM(log n, log

n) (which is the same as ATIME(log n) or alternating logtime). Let ATM* = ATM(log n,
log*n). The two results outlined a b o v e relating ATM computations with uniform
families of circuits establish that ATM* = NC* and ATM(logM,po/y/ogr(n)) = NC.

Computation on ATMs can also be related to unbounded fan-in circuits. A computa-
tion on an ATM is said to be in ALT(S(n),/(n)) if the configurations require 0(S(n))
space, and if any path in an accepting computation D A G has at most f(n) alternations
between existential and universal states. The result

U C K T (c
S (n)

, D(n)) = ALT(5(n), D(n))

is readily established by observing that the unbounded fan-in circuit can be converted
into a bounded fan-in circuit with the same number of alternations between A N D and
OR gates, which can then be simulated in a manner similar to the bounded fan-in case;
and conversely the full computation D A G of such a resource-bounded ATM has
0(c

S(n)
) nodes, c a constant. Thus, defining ALT* to be ALT(log n, log*n), we have

ALT* = AC* for / c ^ l , and ALT(log n,polylog(n)) = NC.

3.6. Vector machines

The last model of parallel computation that we consider is the vector machine [187,
214], which consists of a collection of bit processors together with a collection of
registers that can hold bit vectors. All processors contain the same program whose
instruction set consists of binary Boolean operations on the registers, complementation
of the contents of a register, conditional j ump on zero, the right or left shift of the
contents of a register by a shift parameter specified in a register, and a mask instruction
that inhibits some processors from executing the next instruction. Some of the registers
are identified as input or output registers. The inputs to the computation are supplied in
the input registers. At a given instant of time, the ith processor reads the ith bit of the
operands (if any) specified in the current instruction, executes the prescribed instruction
and writes the result in the ith position of the output vector. In the case of a shift
operation, the processor writes in the appropriately shifted bit position; this is the
means by which interprocessor communication takes place. When the computation
terminates, the results of the computation are available in the output registers. A vector
machine algorithm is logspace uniform if there is a deterministic Turing machine
operating in space log η that, on input rc, generates the program for inputs of length n.
As in the case of PRAMs, in practice, we would expect vector machine code for
a problem to be fixed, with η as a parameter.

Let VM(5(n), T(n)) be the class of problems that can be solved on a vector machine

904 R . M . K A R P , V . R A M A C H A N D R A N

with 0(S(n)) processors (and hence with vectors of length 0(S(n))) in 0(T(n)) time, and
let VM* be the class of problems that have logspace uniform vector machine algorithms
in VM(po/y(n), log*n). It is readily seen that

VM(S(n), T(n))^CKT(poly(S(n))9 T(n))

since the instruction set of vector machines can be simulated in constant depth and
polynomial size by unbounded fan-in circuits. It can also be shown that

CKT(S(n), T(n))^\M(poly(S(n)\ T(n))

provided T(n)^\og
2
S(n) [100, 222]. Thus, for fc^2, we have

NC* ç VM* <= AC* and VM(poly(n\ polylog(n)) = NC.

Several other parallel models and complexity results can be found in [25, 61, 62, 73,
74,182,184,202,222,223,233] (See also Chapter 1 on machine models and simulations
in this Handbook) .

3.7. Randomized complexity classes

In discussing randomized algorithms, we limit ourselves to problems defined in
terms of a binary input-output relation S(x, y). On input x, the task is to find
a y satisfying S(x, y), if such a y exists. A randomized algorithm will output one of the
following three answers:

(a) a suitable value for y;
(b) an indication that no suitable y exists;
(c) an indication of failure, i.e., inability to determine if a suitable y exists or not.
We distinguish between zero-error algorithms (also known as Las Vegas algorithms)

and algorithms with one-sided error (also known as Monte Carlo algorithms). If, on
input x, S(x, y) holds for some y, then the two types of algorithms act alike: each type
produces a suitable y with probability greater than and otherwise reports failure. On
an input χ such that there is no y satisfying S(x, y), the two types of algorithms behave
differently. A zero-error algorithm reports "No suitable y exists" with probability
greater than i, and otherwise reports failure, but a one-sided-error algorithm always
reports failure.

Each of the complexity classes we have defined has its zero-error and one-sided-error
randomized counterparts, indicated by the prefixes Ζ and R respectively. These are the
classes of problems that have randomized algorithms with the corresponding hardware
and time bounds. For randomized algorithms on PRAMs each processor is assumed to
have the capability to generate random (log n)-bit numbers; for randomized computation
on circuits, an η-input circuit is allowed poly(n) additional random input bits. Thus, for
example, a problem is in ZCREW* if it is solvable by a zero-error randomized
algorithm that runs in time 0(log*rc) using poly(n) processors on a CREW PRAM in
which each processor can generate random (log n)-bit numbers, and a problem is in
RNC* if it is solvable with one-sided error by a logspace-uniform family of bounded
fan-in circuits which receive, in addition to the problem input, poly(n) random input
bits.

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 905

3.8. Arithmetic models

For computation involving elements from an arbitrary domain D, it is convenient to
assume that certain specified binary operations on the elements take unit time. This
leads to the definition of arithmetic PRAMs, arithmetic circuits and arithmetic Boolean
circuits (von zur Gathen [93]). An arithmetic PRAM is a regular PRAM which in
addition can execute certain binary operations on elements over D in unit time.
Sometimes D is specified not as a specific structure but according to axiomatic
properties; for example, as an abstract ring. An arithmetic Boolean circuit is analogous
to a Boolean circuit except that the set of gates is augmented to include gates that
compute the specified arithmetic operations on elements over D in unit time. The
conversion from arithmetic to Boolean values is performed by gates that test for zero,
detect the sign, etc. In the reverse direction, Boolean selection circuits are used to select
an output from among several arithmetic inputs. A special case of an arithmetic
Boolean circuit is an arithmetic circuit, which has no Boolean gates. For unbounded
fan-in arithmetic Boolean circuits we allow the Boolean gates to have unbounded fan-in
while the arithmetic gates continue to have fan-in 2. The complexity classes arithmetic
NC* and arithmetic AC* are analogues of NC* and AC* for arithmetic Boolean circuits
and unbounded fan-in arithmetic Boolean circuits respectively. Similarly we have the
analogous P R A M classes arithmetic EREW*, arithmetic CREW*, and arithmetic
CRCW*. It should be noted that other authors (cf. [93]) define arithmetic NC* in terms
of arithmetic circuits (without Boolean gates) with a further restriction to polynomials
or rational functions of polynomial-bounded degree. This restriction avoids certain
trivial separations between complexity classes; for instance, without it, the function
x

2 1
°

8
 " would lie in arithmetic N C

2
 but not arithmetic N C

1
.

When dealing with arithmetic computation involving addition, subtraction and
multiplication of numbers represented in binary, there is an obvious conversion from
arithmetic circuits in Boolean ones that maintains size to within a polynomial, and
increases depth by a factor of log log s, where s is a bound on the size of the arithmetic
operands (and thus the number of bits needed to represent any operand is no more than
[log s]). The bounds on size and depth follow from well-known poly-size log-depth
circuits for addition, subtraction and multiplication of two η-bit numbers (see Section
4.2).

3.9. Parallel Computation Thesis

Finally, an important connection between sequential and parallel computation is
highlighted in the Parallel Computation Thesis [38,46,85,106,187]. Let us say that two
functions are polynomially equivalent if each is bounded above by a polynomial
function of the other. The Parallel Computat ion Thesis states that parallel time is
polynomially equivalent to sequential space. This relationship has been established in
many forms. Parallel time on a vector machine is polynomially equivalent to sequential
space [187, 214]. An ATM can be viewed as a parallel machine, and the result follows
since alternating time is polynomially equivalent to sequential space [46]. Computation
on a PRAM can be simulated by a Turing machine with space polynomially bounded

906 R . M . K A R P , V . R A M A C H A N D R A N

in the parallel time, and conversely, provided the number of processors is no more than
an exponential in the parallel time [85,106]. Finally any computation in nondetermin-
istic space S(n) can be simulated by a circuit of depth S(n)

2
 and any circuit of depth D(n)

can be simulated in deterministic space D(n) [38]. We conclude this section by illus-
trating the Parallel Computat ion Thesis for some of the models we have considered.

We first relate nondeterministic space to parallel time. Consider the computation of
any nondeterministic S(n) space-bounded Turing machine M. Given an input χ to M,
we can formulate the acceptance problem as a reachability problem on a directed graph
G, whose vertices are the configurations of M, and for which there is an arc from vertex
u to vertex ν if and only if the configuration presented by ν can be reached in a single step
from the configuration represented by u. There is also a dummy vertex ζ with an arc
into it from every vertex corresponding to an accepting configuration. If s is the vertex
corresponding to the initial configuration of M on input x, then M accepts χ if and only
if ζ is reachable from s in G. The size of G is 0(c

S(n)
) for some constant c, since the number

of different configurations of an S(n) space bounded Turing machine is no more than an
exponential in S(n). The reachability problem can be solved in A C

1
 (see Section 4) by

finding the transitive closure of the adjacency matrix of G. Since this construction is
logspace uniform, it follows that any computation in nondeterministic space S(n) is in
CKT(c

S (n)
, S

2
(n)) and in UCKT(c

S (n)
, S(n))9 and also in CRCW(c

S (n)
, S(n)) and EREW(c

S (n)
,

S
2
(n)). Thus, in these parallel models, nondeterministic space-bounded computation can

be parallelized to run in time at most the square of the space bound, and using hardware
at most exponential in the space bound.

A similar technique shows that deterministic space S(n) is in EREW(c
S (n)

, S(n)). In this
case the computation of the space-bounded Turing machine can be modeled as a directed
tree, and an input is accepted if and only if the final configuration is reachable from the
initial one. Since reachability in a directed tree is a special case of expression evaluation,
the tree contraction algorithm of Section 2.2 gives the required result.

For the reverse, consider a circuit in CKT(S(n), D(n)). Given a description of this circuit
together with an input to it, a deterministic Turing machine can compute its output in
0(D(n)) space by starting at the output and working its way back to the input, while using
a stack to keep track of the path taken (using L for left input and R for right input), first
testing left inputs and then the right ones. Since the depth of the circuit is D(n\ the stack
has at most D(n) entries, each of which is a constant. Hence the value computed by the
circuit can be evaluated in 0(D(n)) space. By using the results we described earlier in this
section relating parallel time on various models to depth on a corresponding uniform
family of bounded fan-in circuits, it is easy to verify that a parallel algorithm on all of the
models we have considered implies a deterministic sequential algorithm that uses space
at most the square of the parallel time.

4. NC-algorithms and P-complete problems

4.1. Introduction

In this section we locate several important problems within the hierarchy {NC
k
}. We

restrict ourselves to problems that are of central importance because they can be used as

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 907

subroutines in the solution of a wide range of other problems. Among these are the basic
arithmetic operations, Boolean matrix multiplication and transitive closure, the
computation of the inverse and the rank of a matrix, the evaluation of straight-line
programs, and the computation of a maximal independent set in a graph. We also
introduce the concept of P-completeness, state the evidence that the P-complete
problems are unlikely to lie in NC, and give several examples of P-complete problems.

The algorithms we give are not necessarily efficient, in the sense of Section 2, since their
processor-time product may be asymptotically much larger than the execution time of
the best sequential algorithm for the same problem. In this sense, our level of aspiration is
lower than in Section 2, where we concerned ourselves with efficient and optimal
algorithms.

4.2. NC-circuits for arithmetic operations

This section is concerned with Boolean circuits for addition, subtraction, multiplication
and division of integers. We shall show that addition and subtraction are in A C

0
, that

multiplication is in N C
1
 but not A C

0
, and that division is realizable by a family of

bounded fan-in circuits that is of logarithmic depth and polynomial size, but does not
appear to be logspace uniform. Further information on circuits for arithmetic
operations can be found in [9, 185, 204].

4.2.1. Addition and subtraction
The addition problem takes as input two rc-bit binary numbers and produces as

output their (η + l)-bit sum. We represent numbers as tuples in binary notation. Let the
input numbers be (x „ _ i , x „ - 2 , · · · > * o)

 a n
d (yn-1» yn-i> · · · > yoX and let the output be

(z „ , z n z 0) . Let Cj denote the carry out of the jth position. Let öf j = */)>/ and
Pj = Xj ν y y, g} is called the j th carry generate bit and p} is called the j th carry propagate
bit. Then, letting 0 represent "exclusive or" and letting c _ l = 0, we have the recurrences
Cj=gjVpjCj-i and Zj=xj®yj®cj-l for j = 0, l , . . . , n . It follows that Cj =
Wi^j9iPi+i'"Pj- These formulas yield a polynomial-size constant-depth circuit for
addition:

Stage 1: compute all carry generate bits g} and carry propagate bits p}.
Stage 2: compute all products of the form 1 · · · £ , · .

Stage 3: compute all c} as the OR of products computed in Stage 2.
Stage 4: compute each output bit z} from x J 5 y} and c , - i -

This establishes that addition is in A C
0
, and hence, also in N C

1
.

A more economical NC
1
-circuit for addition can be obtained using the prefix sums

algorithm of Section 2.2. That algorithm takes as input an array (α ι , α 2 , . . . , ΰ „) and
produces the array (tfi,tfi * a2,..., ax * a2 * ··· * an\ where * is an associative binary
operation. Since the memory accesses are data independent in the PRAM algorithm for
prefix sums in Section 2.2, that algorithm can also be represented as a circuit of depth
O(logn) and size O(n), with gates that compute *. To apply this construction to
addition, let T} be the transformation that computes carry bit c , from carry bit Cj-i.
This affine Boolean transformation is specified by the equation c} = g} ν p}Cj _ ί. Then c}

908 R . M . K A R P , V. R A M A C H A N D R A N

is obtained by evaluating the transformation Tj*Tj-1 * · · • * T 0 at the point 0; here the
associative operation * is the composition of affine Boolean transformations. Using
a parallel prefix circuit to compute the necessary compositions, one obtains a bounded
fan-in Boolean circuit of size 0(n) and depth 0(log n) which computes the carry bits c,,
and then the output bits Zj. A variant of this construction gives bounded fan-in circuits
of linear size and logarithmic depth for subtraction in either the l's complement or 2's
complement representation.

In [45] it is shown that, if the semigroup defined by * does not contain a nontrivial
group as a subset then, for any strictly increasing primitive recursive function / , the
prefix sums problem can be solved by an unbounded fan-in circuit family of constant
depth and size 0(nf~

l
 (n)). Each gate in such a circuit computes the semigroup product

of its inputs. Dolev, Dwork, Pippenger & Wigderson [70] show that addition cannot
be performed by unbounded fan-in circuits of constant depth and linear size.

4.2.2. Multiplication
The multiplication problem takes as input two η-bit binary numbers and produces as

output their 2/i-bit product. Let the inputs be (x„ _ l , xn _ 2, . . . , X o) and (yn _ {, y„ _ 2,...,
y0), and let the output be (z 2 „ - ι , ζ 2 „ - 2 , · · · > ζ ο)· The standard shift-and-add algorithm
for multiplication can be implemented in the time required to add η binary numbers,
each of length 2n. This latter problem can be solved by a bounded fan-in circuit of depth
0(log n) and polynomial size using the following three-for-two trick which reduces the
problem of adding three n-b\t numbers to the problem of adding two (n+ l)-bit
numbers [179, 240]. Let a = (an _ i, an _ 2,..., a0\b = (bn _ ί, bn _ 2,... ,b0) and c = (cn _ χ ,
c « - 2 > · · • >

 c
o)

 D e
 the three n-bit numbers to be added. If we add the three bits ah bt and c f

for i = 0 , 1 , . . . , η — 1, we will obtain for each i a two-bit number whose upper and lower
bits we shall denote by u{ and vh The ux and v-x can be generated by a linear-size
constant-depth circuit that, for each i, adds the three 1-bit numbers ahbt and c f. Then
a + b + c = u + v, where u = (un-i,un-2,..., u 0, 0) and v = {vn-15i;„_2,..., v0). The addi-
tion of η numbers, each of length 2n, can be achieved by applying 0(log n) iterations of
the three-for-two trick, each of which reduces the number of numbers by a factor of
§, followed by a final stage of adding two 0(n)-bit numbers. This establishes that
multiplication is in N C

1
.

The best bounded fan-in circuit known for multiplication achieves 0(log n) depth
with 0(n log η log log n) size [208]. The construction is logspace-uniform; it is based on
circuits for computing the Discrete Fourier Transform over certain finite rings.

The paper by Fürst, Saxe & Sipser [86] was the first to establish that multiplication is
not in A C

0
. This was done by showing that the rc-input parity function, which is equal to

1 if and only if an odd number of its inputs are 1, does not lie in A C
0
, and then showing

that if multiplication were in A C
0
, then parity would also lie in A C

0
. These results are

presented in [37]. As mentioned in Section 3, parity, and hence multiplication, requires
unbounded fan-in circuits of depth Q(log rc/log log n) if the size is to be polynomial. The
circuit of Schönhage & Strassen [208] can be converted into an 0(log «/log log n)
depth unbounded fan-in circuit for multiplication of size 0(n

l+E
) for any ε > 0 , using

a standard technique of compressing O(log log n) levels of a bounded fan-in circuit
[47].

PARALLEL ALGORITHMS FOR SHARED-MEMORY MACHINES 909

4.2.3. Division
The input to the division problem is a pair of η-bit binary strings representing

integers χ and y with y ̂ 0 . The output is the n-bit binary representation of the integer
part of x/y. We present a simplified version of a construction due to Beame, Cook
& Hoover [28] which yields a family of bounded fan-in division circuits of polynomial
size and logarithmic depth. The construction appears not to be logspace-uniform, and
thus does not establish that division lies in N C

1
.

To describe the construction we require the concept of NC^reducibil i ty. Let A and
Β be functions from {0,1}* into {0,1}*, each having the property that the length of the
output is determined by the length of the input. For each positive integer η we may
derive from Β a function Bn from {0,1}" into {0, l }

m
, where m is the length of the string

B(x) whenever the string χ is of length n. Similarly, we may derive from A a family of
functions An. The function A is said to be NC^reducib le to Β (denoted A < N Ci B) if the
family of functions {An} can be realized by a logspace-uniform family of bounded fan-in
circuits of polynomial size and logarithmic depth, together with "oracle gates" realizing
functions in the family {#„}, subject to the restriction that no two oracle gates lie on the
same input-output path. It follows from this definition that if A<NCiB and Β is
realizable by a bounded fan-in circuit family of polynomial size and logarithmic depth,
then A is also realizable by such a circuit family; moreover, if the circuit family for Β is
logspace-uniform, then the circuit family for A will also be logspace-uniform.

We shall show that

D I V I S I O N < N Ci R E C I P R O C A L < N Ci P O W E R I N G < N CI I T E R A T E D P R O D U C T ,

where the reciprocal, powering and iterated product problems are defined as follows.

R E C I P R O C A L

Input: A non-zero η-bit integer y.
Output: An rc-bit binary function y~

l
 such that y~

l
— 2 ~

n
^ y ~

1
^ y ~

1
.

P O W E R I N G

Input: An η-bit integer χ and an integer i, where 1 ^ i
f
 ^ n.

Output: x
l
 expressed as an n

2
-b\t integer.

I T E R A T E D P R O D U C T

Input: η-bit binary integers w 1 ? w 2 , . . . , w„.
Output: The n

2
-bit product wlw2 ··· w„.

The reductions are as follows.

D I V I S I O N < N Ci R E C I P R O C A L . It suffices to treat the case y>0:

(1) using an oracle gate for R E C I P R O C A L , compute y~
l
\

(2) using an NC^circui t , compute the product xy~
l
;

(3) \f(xy-
l
)y^x

then _xy
 1

J = xy
 1

else _xy~
l
j=xy~

l
 — \.

910 R . M . K A R P , V . R A M A C H A N D R A N

R E C I P R O C A L < N CI P O W E R I N G

(1) let y = 2
j
w, where ^ w < 1, and let t= 1 — w;

(2) in parallel, using oracle gates for powering, compute i
2
, i

3
, . . . , t

n
\

(3) using an NC^circui t for iterated addition, compute 1 - h i - h i
2
H h i " ;

(4) j r
1
= 2 ~

J
' (l + t + t

2
 + --- + t

n
) , rounded to η-bit precision.

P O W E R I N G < N Ci I T E R A T E D P R O D U C T . This is immediate, since powering is a special case
of iterated product.

Given these reductions, the task remaining is to give a polynomial-size logarithmic-
depth bounded fan-in circuit for iterated product. The method used by Beame, Cook
& Hoover [28] for constructing this circuit depends on the following ancient theorem.

C H I N E S E R E M A I N D E R T H E O R E M . Let c u c 2 , . . . ,cm be pairwise relatively prime and let

c = Yl'i
l
=lci. Then

(i) there exist integers vl9 v2, ·. ·, vm such that, for i= 1 ,2, . . . , m and j= 1 ,2, . . . , m,

(ii) for any integer u, u mod c = Σ™= x u^i mod c, where ux = u mod cv

The circuit for computing the product wl ww-· · w„, where the w, are η-bit integers, is as
follows:

(i) Let cu c 2 , . . . , cm be distinct primes less than n
2
 whose product is greater than 2"

2

(for all n>5 such a set of primes exists). Let c = nj l
=1c /-.

(ii) For ι = 1,2, . . . , η and j = 1 ,2 , . . . , m compute w, mod Cj.
(iii) For j= 1 ,2, . . . , η compute w{w2--'Wn mod Cj.
(iv) Using the Chinese Remainder Theorem, compute \ν 1νν 2· · ·νν„modc.
Each of the steps is carried out by a polynomial-size, logarithmic-depth circuit which

has access to certain precomputed constants. We illustrate by describing step (iii), in
which the essential task is to multiply together η elements xh each of which is a residue
modulo a prime ρ which is less than n

2
 (here ρ corresponds to c,-, and x, to w, mod Cj).

Let Z* be the field of non-zero residues modulo p. Then Z* has a primitive root: i.e., an
element g such that every element of Z* is a power of g. If x = g

y
 then y is called the

(discrete) logarithm of x, and χ is the antilogarithm of y. With the help of circuits of
depth 0(log n) for computing logarithms and antilogarithms, we can replace iterated
product mod ρ by iterated summation mod(p— 1). The circuit for computing Χ ι Χ 2 · · · χ „

mod ρ has the following parts:

(i) For i= 1 ,2, . . . , η compute yh the logarithm of x f;
(ii) Using an NC

1
-circuit for iterated addition, compute y = y\+y2-\ \-yn

mod(p— 1).
(iii) Compute x, the antilogarithm of y. Then χ = χ 1 χ 2 · · · χ „ mod p.
This completes our description of a polynomial-size, logarithmic-depth bounded

fan-in circuit for division. Because of the precomputed constants vuv2,... ,vm and
YVf=xCj, the circuit appears not to be logspace-uniform, and it remains an open

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 911

question whether D I V I S I O N is in N C
1
. Reif [197] has shown that division is "almost" in

N C
1
 by giving a logspace-uniform family of division circuits of polynomial size and

depth 0(log η log log n). Shankar & Ramachandran [211] refined the constructions of
Beame, Cook & Hoover and Reif [28,197] by showing that in each case the size can be
reduced to 0(n

l + <5
), where δ is an arbitrarily small positive constant. Reif & Tate [199]

improve upon the result of Shankar & Ramachandran by giving logspace-uniform
division circuits having size 0(n log η log log n) and depth 0(log η log log n).

4.3. Circuits for expression evaluation

In Section 2.2.3 we described a tree contraction algorithm and used it to derive
a simple, optimal 0 (log n) time EREW PRAM algorithm for the expression evaluation
problem. Since the expression evaluation problem is an important one, considerable
work has been done on solving the problem efficiently for a different model of parallel
computation, the arithmetic network.

The problem has both a static version and a dynamic version. In the static version we
are given an η-variable expression over an algebraic structure, and our task is to
construct an arithmetic circuit of small size and depth for that particular expression.
The inputs to the circuit will be the values of the η variables in the expression, and the
output will be the value of the expression. In the more general dynamic version we wish
to construct an arithmetic Boolean circuit that takes as inputs an η-variable arithmetic
expression, presented as a well-formed string of operators, operands and left and right
parentheses, together with the values of the variables, and produces the value of the
expression.

The early circuits for static expression evaluation are based on methods of
decomposing a binary tree into two subtrees of approximately equal size by deleting
a single edge. Let Γ be a tree representing an expression on η variables over a ring. Then
Τ has m = 2n—\ vertices. It is easy to see that Τ has an edge e whose removal breaks it
into two subtrees, 7\ and T 2, each of which has no more than 2n/3 vertices. Let e be
directed from node u to its parent v. Then the subtree rooted at u is one of the two
operands for the operator at v. Let 7\ be the subtree containing ν and T 2, the subtree
containing u. Then we can write the value of the expression computed by 7\ as Ax + B,
where χ is the value of u, which is also the value of the expression computed by T 2. The
method of Brent [42] recursively computes the coefficients A and Β for 7\ and the value
χ for 7 2, and, using a constant-size circuit, combines the outputs of the two subtrees to
obtain Ax + B, the value of the expression. This leads to a log-depth linear-size
arithmetic circuit for the static expression evaluation problem. The tree contraction
algorithm of Section 2.2.3 gives another optimal 0 (log n) depth circuit for the same
problem. Both of these methods are easily extended to handle division.

Brent's method leads to an N C
2
 arithmetic Boolean circuit for the dynamic

expression evaluation problem since, at each recursive stage, the separating edge for
each subtree at that level of recursion can be found in log-depth by a fairly easy
construction. Similarly, since E R E W

1
 ç N C

2
, the tree contraction algorithm gives

another N C
2
 arithmetic Boolean circuit for the dynamic expression evaluation

problem.

912 R . M . K A R P , V . R A M A C H A N D R A N

In [43, 44] an N C
1
 arithmetic Boolean circuit is given for the problem. As in Brent

[42] , the method is based on recursively computing the value of the expression by
decomposing the tree into subtrees; a factor of log η in depth is saved by computing all
the decompositions simultaneously, instead of doing it separately at each of the log η
recursive stages. The algorithm first transforms the expression into a postfix expression
with the property that, for each operator, the length of the second operand is no greater
than that of the first. This expression Ε is then recursively segmented into three
equal-sized, overlapping strings of half its length, consisting of the first half of £, the
middle half of Ε and the last half of E. Each of these strings represents a collection of
subtrees of £, and the algorithm chooses the roots of the first two subtrees in each string
to be the positions at which the expression is to be decomposed. It can be shown that
this method of decomposition leads to a log-depth recursive algorithm for evaluating E.
The method has the advantage that the positions where decomposition takes place at
all levels of recursion can be determined in logarithmic depth by suitably parsing the
string representing the expression £, and this leads to an N C

1
 arithmetic Boolean

circuit for the dynamic expression evaluation problem.
The N C

1
 circuits for static and dynamic expression evaluation work for expressions

over a field, ring or semiring. In particular, the Boolean expression evaluation problem,
in which each input value is 0 or 1, is complete for N C

1
 under deterministic log-time

reductions, and can be considered, in some sense, to be the canonical problem for N C
1

[43] .

4.4. Boolean matrix multiplication and transitive closure

We show that the Boolean matrix multiplication problem is in A C
0
 and the

transitive closure problem is in A C
1
. Let Α = {αί}) and B = (bij) ben χ η matrices of zeros

and ones. Then the (Boolean) product of A and Β is the η χ η matrix C = (ciy), where
Cij= ν k = i^ik ' bkj- The Boolean product of A and Β can be computed by a two-level
unbounded fan-in circuit. At the first level there are n

3
 AND-gates, each of which

computes one of the products aik · bkj. At the second level there are n
2
 η-input OR-gates,

each of which computes ν 2= i<*ik ' bkj for a specific i and j . The specification of these
circuits is clearly logspace-uniform. Thus Boolean matrix multiplication is in A C

0
, and

hence in N C
1
. By imbedding the problem in an appropriate ring and applying fast

matrix multiplication, the number of gates in the bounded fan-in circuit can be reduced
asymptotically to 0(M(n)), where M(n) is the number of processors required by an
arithmetic PRAM to perform η χ η matrix multiplication over a general ring in time
0(log n). It is known that M(n) = 0(n

2316
) (Coppersmith & Winograd [66]).

Let A=(au) be an η χ η matrix of zeros and ones. Let / denote the η χ η identity
matrix. For /c = 0, 1, 2, Λ let A

k
, the kth power of A, be defined inductively as follows:

A° = I; for k= 1, 2 , . . . , A
k
 = A

k
~

1
 Ά. Define A*, the reflexive transitive closure of A as

follows: A* = Vk = 0A
k
. It is not difficult to show that A* = (I ν A)

2llog2U
\ Hence A* can

be computed by initializing the matrix Β to the value I ν A, and successively squaring
the matrix Β [log2̂ times. Since matrix multiplication is in A C

0
, it follows that

transitive closure lies in A C
1
, and hence in N C

2
.

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 913

4.5. Matrix computations

In discussing matrix computations, we work with arithmetic circuits as defined in
Section 3: acyclic circuits in which the inputs are elements of a field F and the gates
perform the four field operations + , —, * and /. It is clear from its defining formula that
matrix multiplication is in arithmetic N C

1
. Similarly, the problem of computing A

n
 is in

arithmetic N C
2
, since it is possible to compute A" in at most 2 f l o g 2n l matrix

multiplications by first computing A
2
,A*,A

8
,... via repeated squaring, and then

multiplying together appropriate matrices of the form A
2k
.

The problem of computing the inverse of a lower triangular matrix illustrates
a divide-and-conquer technique that is often used for the construction of parallel
algorithms. Let A be a square nonsingular lower triangular matrix whose number of
rows is a power of 2 (square matrices of other dimensions can easily be handled by
adding additional rows and columns, whose entries are 0 except for Is on the diagonal,
to pad the dimension out to a power of 2). Then we can block-decompose A into four
matrices of half its dimension, as follows:

Because A is lower triangular, it follows that the upper right-hand submatrix is the
zero matrix, and that Alx and A22 are lower triangular. The inverse of A is given by

This formula for the inverse suggests a recursive parallel algorithm for computing
A'

1
. First, Αϊ γ and A22 are computed recursively in parallel. Then — A2~2

1
A2\A\f/ is

computed via two matrix multiplications. This recursive algorithm leads to a uniform
family of arithmetic circuits with 0(M(n)) gates and depth 0(log

2
n) ; hence the problem

of inverting a lower triangular matrix lies in arithmetic N C
2
.

4.5.1. Computing the determinant
We next turn to the problem of computing the determinant of an η χ η matrix. This

problem presents an interesting challenge because Gaussian elimination, the standard
sequential algorithm for this problem, does not lead to an NC-algorithm. Gaussian
elimination computes the determinant in a series of η stages, each of which transforms
the given matrix without changing its determinant. Each stage requires 0(n

2
)

operations which can be performed in parallel, but it appears that the stages must be
performed in sequence, so that the running time cannot be reduced below Θ(η).

The characteristic polynomial of a square matrix A is the nth-degree polynomial
det(A — xl). In 1976 Csanky [67] showed that, for matrices over a field of characteristic
zero, the problem of computing the characteristic polynomial lies in arithmetic N C

2
.

The result was extended to matrices over an arbitrary ring in [40] (see also [34]) and in
[49]. Let the characteristic polynomial be Σ-^ο^χ'. Then det A = c0; and since, by the

914 R . M . K A R P , V . R A M A C H A N D R A N

Cayley-Hamilton Theorem, a matrix satisfies its own characteristic equation,

„-! -(c1+c2A+-+cHA*-
1
)

A =
Co

This equation yields an arithmetic NC
2
-a lgor i thm for computing A'

1
 and act A

from the characteristic polynomial.
We present Chistov's algorithm [49] for computing the characteristic polynomial.

The following observation will be required. Let Β be an η χ η matrix. Let Bk be the k χ k
matrix in the lower right-hand corner of B\ i.e., (Bk)ij = (B)n-k + i f n- k +j . Assume that, for
k = 1,2, . . . , n, Bk is nonsingular. Then

Chistov's algorithm computes the polynomial det(/ — χ A) in time 0 (log
2
n) using

n
2
M(n) processors. The coefficients of the polynomial det(7 — χ A) are those of the

characteristic polynomial, but in reverse order and, if η is odd, with their signs reversed.
The algorithm performs computations on power series in x; however, since the final
result of the computation is a polynomial of degree n, these power series can be
computed modulo n

n+
 *; i.e., they can be truncated to polynomials of degree n. We will

use the fact that if A(x) is a square matrix in which each element is a power series in
χ with constant term zero, then

η

(I-A(x)y
1
modx

n+1
= X A(xYmodx

n+l
.

i = 0

By using repeated squaring, the powers of A(x) up to the nth can be computed in time
0(log

2
n) using 0(nM(n)) processors, and hence (/ — A(x)) "

1
 mod χ "

+ 1
 can be computed

in time 0(log
2
n) using 0(nM(n)) processors.

Our goal is to compute det £, where Β = I — χ A. Henceforth, all the objects computed
are power series modulo x

n + 1
 or matrices whose elements are such power series. For

k= 1 ,2, . . . , n, Bk is a nonsingular matrix of the form Ik — xAk, where Ik is the k χ k
identity matrix. Then Bk

l
 = (Ik — xAk)"

1
; and, modulo x"

 + 1
, this quantity is equal to

Σ ; = Ο Η) ' ' .

Chistov's algorithm proceeds as follows:
(i) for k = 1 ,2, . . . , η compute Bk

 1
 and extract the element (Bk

 1
) ! 1 ;

(ii) multiply together the η elements extracted in step (i); the resulting product is
1/det B;

(iii) compute det Β by taking the inverse of the power series obtained in step (ii).
Chistov's algorithm requires 0(n

2
M(n)) processors. For fields of characteristic zero,

a variant of Csanky's algorithm due to Preparata & Sarwate [188] computes the
characteristic polynomial in time 0(log

2
rc) using 0(n

35
) processors. Even this

algorithm is not efficient, since, over a field of characteristic zero, the characteristic
polynomial can be calculated sequentially in time 0(n

2 3 7 6
) , where the constant

implied by the "big O " is enormous, or, more practically, in 0 (n
3
) steps, where the

implied constant is small.

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 915

Borodin, Cook & Pippenger [39] have shown that, for each fixed /c, the following
problem is in N C

2
: compute the determinant of a matrix A whose entries are rational

functions of the k variables xl9 x 2 , . . . , x f c, where each entry is presented as a pair of
polynomials of degree at most η in which each coefficient is an n-bit integer. The same
problem, but with the coefficients taken from an arbitrary field, is in arithmetic N C

2
.

4.5.2. Computing the rank
The problem of computing the rank of a matrix A with elements in a field F has been

treated in [121,40,49,174] . If A is diagonalizable then its rank can be read off from the
characteristic polynomial: it is simply n — m, where x

m
 is the highest power of χ that

divides the characteristic polynomial. If A is not diagonalizable, however, then this rule
does not correctly give the rank. For example, the matrix [o o] has rank 1, but its
characteristic polynomial is x

2
. In [121] , it is shown that, if F is a subfield of the reals,

then rank(Ay4
T
) = rank(/l) and the matrix AA

T
 is diagonalizable. Hence, in this case, the

rank may be read off from the characteristic polynomial.

In [174] it is shown that the problem of computing the rank of matrix A over an
arbitrary field F is in arithmetic N C

2
. Mulmuley's algorithm is remarkably simple.

Assume that A is square and symmetric; for, if not, one may work instead with the
square, symmetric matrix

0 A

A
T
 0

whose rank is twice the rank of A. Let Ζ be a diagonal matrix in an indeterminate ζ such
that Zii = z

i
~

1
. Using the algorithm of Borodin, Cook & Pippenger [39] , compute

ß(x) = det(x/ — ZA\ the characteristic polynomial of the matrix Ζ A. Then the rank of
A is η — m, where x

m
 is the highest power of χ that divides the characteristic polynomial

ew-

4.6. Dynamic evaluation of straight-line code

A commutative semiring {R, + , *, 0,1) is an arithmetic structure with domain R and
two commutative, associative binary operations + and *, such that 0 is an additive
identity, 1 is a multiplicative identity, and the distributive law a*(b + c) = a*b + a*c
holds. In conformity with the definition of Section 3.8, an arithmetic circuit over this
semiring is an acyclic connection of input nodes of in-degree 0 and addition and
multiplication nodes of in-degree 2, together with an assignment to each input node of
a value from the domain R. The execution of the indicated multiplication and addition
operations assigns a value from R to each node of the circuit, and the problem of
computing these values is known as the evaluation problem. It is equivalent to the
problem of evaluating straight-line programs with operations from a commutative
semiring.

The performance of algorithms for this problem is stated in terms of two parameters:
n, the size of the circuit C, and d , the (formal algebraic) degree of C. Each node in C can
be viewed as computing a polynomial expression in the inputs, and the degree of C is

916 R . M . K A R P , V . R A M A C H A N D R A N

the maximum of the formal degrees of these expressions. More precisely, the degrees of
the nodes are defined inductively: the degree of an input node is 1, the degree of an
addition node is the larger of the degrees of its two inputs, and the degree of
a multiplication node is the sum of the degrees of its two inputs. The paper by Valiant,
Sky urn, Berkowitz & Rackoff [231] gives a method of converting any arithmetic circuit
of size η and degree d into one of size poly(n) and depth 0(log η · log d). The paper by
Miller, Ramachandran & Kaltofen [170] considers the more general dynamic version
of the problem, in which the input to the evaluation algorithm consists of the arithmetic
circuit C and the values of its inputs; thus no preprocessing based on C alone is allowed.
The algorithm of [170] runs in time 0(log η log(nd)) using M'(ri) processors, where
M'(n) is the number of processors required by an arithmetic PRAM to perform η χ η
matrix multiplication over a general semiring in time O(logn). It is evident that
M'(n) = 0 (n

3
) .

In order to describe the algorithm of Miller, Ramachandran & Kaltofen, we require
the concept of a weighted arithmetic circuit over the semiring R. Such a circuit is
a directed acyclic graph in which each edge (w, v) has a weight W(u9 v) which is an
element of R. The nodes are of three types: leaves, multiplication nodes and addition
nodes. A leaf has in-degree 0, a multiplication node has in-degree 2, and an addition
node has in-degree greater than 0. Associated with each leaf is a value in R. It is required
that no edge be directed from a multiplication node to a multiplication node.

Associated with each node ν in a weighted arithmetic circuit is a value VAL(v). The
values of the leaves are given as part of the specification. If an addition node ν has edges
directed into it from nodes v l 9v 2 , . . . , v h 9 then

h

VAL(v)= X VAL{Vi)*W(vhv).
i= 1

If a multiplication node has edges directed into it from nodes υ γ and v 2 then

VAL(v) = VAL(vx)*W(vuv)* VAL(v2)* W(v2, v).

We see that an ordinary arithmetic circuit over R can be viewed as a weighted
arithmetic circuit in which every weight is equal to 1. The requirement that no edge runs
from one multiplication node to another is easily met by inserting extra addition nodes
of in-degree 1. Starting with the given arithmetic circuit, the algorithm constructs
a sequence of weighted arithmetic circuits, all of which have the same set of nodes.
Moreover, the iteration that produces each weighted arithmetic circuit from its
predecessor in the sequence preserves the values of all nodes.

The iteration is accomplished in three steps:
(1) (MM): compress subcircuits consisting of additions only; the nature of this

operation is indicated in Fig. 4;
(2) (Rake): simultaneously evaluate every node for which all direct predecessors are

leaves, and delete the edges directed into those nodes;
(3) (Shunt): simultaneously bypass every multiplication node having a leaf as a direct

predecessor; the nature of this operation is indicated in Fig. 5.
The cost of executing this iteration is dominated by the first step, which can be

PARALLEL ALGORITHMS FOR SHARED-MEMORY MACHINES 917

Fig. 4. The M M operation.

organized as a matrix multiplication. Thus each iteration can be performed in time
0(log n) using M'(n) processors. It can be shown that all nodes get evaluated within
0(log(w/)) iterations of this transformation.

The paper by Miller & Teng [172] extends the result of [170] to a wider class of
algebraic structures, and Kaltofen [126] gives a randomized algorithm for the static
problem in the case where division is allowed.

4.7. The maximal independent set problem

A set of vertices S in a graph G is called independent if no vertices in S are adjacent,
and maximal independent if it is independent and not properly contained in any
independent set. Noting that the most obvious methods of creating a maximal
independent set do not parallelize, the paper [230] suggested the possibility that the
problem of constructing such a set might be inherently resistant to solution in parallel.
This was shown to be false in 1985, when Karp & Wigderson [140] showed that the
problem of constructing a maximal independent set of vertices in a graph is in N C

4
.

Fig. 5. The Shunt operation.

918 R . M . K A R P , V . R A M A C H A N D R A N

Soon thereafter, effecient randomized parallel algorithms for the problem were pre-
sented in [157] and [8] . On a graph with η vertices and m edges, these algorithms run
in time 0(log

2
n) on an EREW PRAM, and require 0 (m + n) processors. Goldberg

& Spencer [104] give a deterministic algorithm for constructing a maximal indepen-
dent set that runs on an EREW PRAM in time 0(log

4
.n) using O(m-hn) processors.

All of these algorithms for constructing a maximal independent set in a graph
G' = (V\E) have the following overall structure.

begin
I < - 0 : K->K';
while F T * 0 do
begin

G<-the subgraph of G' induced by the vertex set V;
S<-/W(G);
V^V-(SuN(S))
I+-IvS

end
end.

Here IN(G) is an independent set in the graph G, and N(S) denotes the set of vertices
in V that are adjacent to one or more vertices in 5. It is easy to check that, upon
termination of this algorithm, S is a maximal independent set in G.

The algorithms differ in the way they construct the independent set IN(G). Luby's
randomized method [157] is as follows. Let dG(v) denote the degree of vertex ν in G.
Then IN(G) is constructed as follows:

X<-fi
in parallel for all veVdo

insert ν into X with probability \/(2dG(v))
in parallel for all 2-element sets {u,v}^X such that {w, v} is an edge of G do

if dG(u)<dG(v) then delete u from X;
if dG(v)<dG(u) then delete ν from X;
if dG(u) = dG(v) then randomly choose either u or ν and delete it from X.

/N(G)<-X.

The crucial lemma in Luby's analysis of his algorithm is as follows.

L E M M A . Let Ε be the edge set of G. Then the expected number of edges of G incident with
vertices in IN(G)uN(IN(G)) is at least

From the lemma, it easily follows that the expected number of calls on procedure
IN(G) required to construct a maximal independent set in the original graph G' is
0(log n), where η is the number of vertices in G'. As pointed out in [157] , it is sufficient
for the random trials in the algorithm to be pairwise independent rather than mutually
independent. This observation permits the trials to be taken from a probability space
small enough to be searched exhaustively, yielding a deterministic NC-algorithm for
the MIS problem. Luby [158] gives a more refined method of searching through this

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 919

probability space, leading to a deterministic NC-algorithm with a linear number of
processors.

The algorithm of Goldberg & Spencer [104] is based on a direct deterministic
method of constructing an independent set S in a graph G = {V,E). Let | K | = p and
\E\ = q. Then, on an EREW P R A M their method runs in time 0(log

2
/?) using 0(p + q)

processors, and guarantees that \SuN(S)\^p/3 log p. If procedure IN is implemented
using their method then the total number of calls on the procedure will be 0(log

2
n) , and

the overall algorithm will require n + m processors and run in time 0(log
4
n) on an

EREW PRAM.
Thus we see that there is a polylog-time deterministic algorithm to construct

a maximal independent set using a linear number of processors; perhaps, in future
work, the power of log η in the time bound will be reduced below 4.

4.8. Applications

The algorithms given above for computing the transitive closure of a Boolean
matrix, for computing the characteristic polynomial and the rank of a matrix with
entries drawn from a field, and for the fast parallel evaluation of functions specified by
straight-line programs, provide fundamental tools for placing problems in NC. In this
section we describe several of these applications.

4.8.1. Applications of transitive closure techniques
The following is a list of six basic computational problems regarding digraphs:

(i) computing the strong components of a digraph G;
(ii) determining whether G is acyclic;

(iii) constructing a tree rooted at a given vertex ν of G and containing all vertices
reachable from v;

(iv) constructing a breadth-first search tree rooted at a given vertex v;
(v) constructing a topological ordering of the vertices of an acyclic digraph G; i.e.,

a bijection h from the set of η vertices onto the integers 1 ,2 , . . . , η such that, for every
directed edge (w, v), h(u) < h(v);

(vi) computing shortest paths from a given root vertex ν to all other vertices, in
a digraph G whose edges have nonnegative weights.

All of these problems can be placed in N C
2
 using techniques related to transitive

closure. The solutions of (i) and (ii) can be read off directly from the transitive closure.
An NC

2
-a lgor i thm for problem (vi) is easily constructed, based on the well-known

technique of iterated min/ + matrix multiplication. Problem (iv) is a special case of
problem (vi), and a solution to (iv) also solves (iii). Problem (v) can be solved by
computing the length of a longest path to each vertex by iterated max/ + matrix
multiplication, sorting the vertices in increasing order of their longest path lengths (ties
being broken arbitrarily), and then assigning each vertex a number equal to its rank in
this sorted order.

Using techniques related to transitive closure, we have exhibited NC
2
-a lgor i thms for

six elementary problems related to digraphs. Unfortunately, none of these algorithms
are efficient. On a graph with η vertices and m edges, problem (vi) can be solved

920 R . M . K A R P , V . R A M A C H A N D R A N

sequentially in time 0(n log η + m), and each of the other problems can be solved
sequentially in time 0(n + m). By contrast , our parallel algorithms run in time 0 (log

2
n)

and require Μ (ή) processors in the case of problems (iHv)> and M'(n) processors in case
(vi) (see [96]). Thus, we see that the processor-time product for each of our algorithms
is far in excess of the time required to solve the same problem sequentially. In order to
construct efficient parallel algorithms for these problems, it will be necessary to avoid
the use of matrix powering or transitive closure as a subroutine; our inability to do so is
sometimes called the transitive closure bottleneck.

4.8.2. Problems reducible to the solution of linear equations
We have shown that the problems of inverting a matrix and computing the rank of

a matrix are in arithmetic N C
2
. It follows easily that the problem of solving the linear

system Ax = b (where A is not necessarily of full rank) is also in arithmetic N C
2
.

Many problems can be reduced to the solution of a system of linear equations. As an
example, we consider the problem of computing the greatest common divisor (gcd) of
two univariate polynomials / and g of degree η [40]. It can be shown that gcd(/ , g) is of
degree ^ i if and only if there exist polynomials s and t of degree less than η — i such that
sf-\-tg is of degree i. The condition that such polynomials exist is expressed by
a nonsingular system of 2n — 2i linear equations in which the unknowns are the 2n — 2i
coefficients of s and t. Each entry in the matrix of this system is either 0, a coefficient of / ,
or a coefficient of g.

As a second example, consider the problem of drawing a 3-connected planar graph in
the plane without crossing edges, in such a way that all the edges are line segments. Call
a cycle C of G a bounding cycle if there exists a plane imbedding of G in which the cycle
C bounds a face. If Τ is any spanning tree of G then each edge e not in Τ forms a unique
"fundamental cycle" when added to T; at least one of these fundamental cycles is
a bounding cycle. In an interesting paper entitled "How to Draw a Graph", Tutte [225]
gives the following result: Let G be a 3-connected planar graph, and let C be a bounding
cycle. Let the successive vertices of C in cyclic order be vi9 ν2,..., vk. Let pu p2 ..., pk be
points in the plane such that the line segments ΡιΡι,ΡιΡ^,..., pkp\ determine a convex
polygon. Let the vertices of G be placed in the plane so that v(is placed at ph

i = 1,2,..., /c, and each vertex not on C is located at the center of gravity of the vertices
adjacent to it in G. For each edge {«, v}, let the points corresponding to u and ν be joined
by a line segment. Then no two of these lines segments will intersect except at a common
endpoint; i.e., the process produces a straight-line imbedding of G. Thus, as Ja'Ja'
& Simon [123] have observed, a straight-line imbedding of G can be constructed by
identifying a bounding cycle C, and then constructing the associated placement. Once
the vertices of C have been placed at the vertices of a convex polygon, the placement of
the remaining points can be obtained by solving a nonsingular system of linear
equations. The unknowns are the x- and ^-coordinates of the vertices not on C, and the
linear equations express the condition that each vertex lies at the center of gravity of its
neighbors. This approach leads to an NC-algorithm for constructing a straight-line
imbedding.

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 921

4.8.3. Applications of Mulmuley's rank algorithm
Mulmuley's algorithm [174] for computing the rank of a matrix over an arbitrary

field is also a powerful tool for placing problems in NC. Among these are the problem of
solving a (possibly singular) system of linear equations and the problem of factoring
polynomials over finite fields. Mulmuley's algorithm also enables a number of
problems about permutation groups presented by generators to be placed in N C [23] .
These include the problems of determining the order, finding the derived series or
a composition series, testing membership, testing if the permutation group is solvable,
finding a central composition series, and finding pointwise stabilizers of sets when the
permutation group is nilpotent. In each case Mulmuley's algorithm permits an earlier
randomized algorithm to be made deterministic.

4.8.4. Context-free recognition—an application of the technique of Miller, Ramachandran
and Kaltofen

The technique of Miller, Ramachandran & Kaltofen [170] for parallel evaluation of
straight-line code enables several particular problems to be placed in NC. It is
especially applicable to problems that can be solved in polynomial sequential time
using dynamic programming. We shall illustrate the approach by giving an A C

1
-

algorithm for the problem of deciding whether a given string is in the language
generated by a given context-free grammar in Chomsky Normal Form.

Our starting point is the well-known Cocke-Kasami-Younger dynamic program-
ming algorithm for context-free recognition [141,244]. Let (Κ, Σ, P, S) be a context-free
grammar, where V denotes the set of symbols, Σ denotes the set of terminal symbols,
Ρ denotes the set of productions, and S denotes the initial symbol. Since the grammar is
in Chomsky Normal Form, each production is of the form A^BC or A^a, where A,
Β and C denote nonterminal symbols and a denotes a terminal symbol. For A e V—Σ
and w e Σ * , we say that A w (A derives w) if the nonterminal symbol A can generate the
string w.

Let χ = αγ a2 .. .an be the input string, and let x(ij) be the substring a x a i + l. . . a,. For
and for every nonterminal symbol A, let the predicate A(iJ) be true if

A^+x(iJ). The Cocke-Kasami-Younger algorithm evaluates all such predicates; the
string χ is accepted if and only if the predicate S(l, n) is true.

The evaluation of these predicates is based on the following rules:
(i) for i= 1 ,2, . . . , n, A(i,i) is true if and only if there is a production of the form

(ii) for \^i<j^n, A(iJ) is true if and only if there exists a k, i^k<j, and
a production A^>BC, such that B(iTk) and C (/ c + 1,;) are true.

The resulting algorithm can be represented as an arithmetic circuit over the semiring
({0,1}, +, *,0,1), where + is Boolean OR and * is Boolean AND. The circuit contains
0{n

3
) nodes, and the node that computes the predicate A(iJ) is of degree j — i + 1. Thus

d, the maximum degree of any node, is η + 1, and it follows that the number of iterations
required by the parallel evaluation algorithm of [170] is O(logn). The time for each
iteration is dominated by the matrix multiplication required in the M M step of that
algorithm. Since the semiring in this case is Boolean, matrix multiplication is in A C

0
,

922 R . M . K A R P , V. R A M A C H A N D R A N

and thus the time for the entire algorithm is 0(log ri), using a polynomial-bounded
number of processors. It follows that the problem of deciding whether a given string is
in the language generated by a given context-free grammar in Chomsky Normal Form
is in A C

1
. In [202], Ruzzo proved the static version of this result in a different way by

showing that every context-free language can be recognized by an alternating Turing
machine operating within space log η and using log η alternations. It follows that every
context-free language is in A C

1
.

4.9. Randomized NC-algorithms

4.9.1. Testing whether a symbolic determinant is nonzero
The following lemma is an important tool for the design of randomized parallel

algorithms.

L E M M A . Let F(xi, x 2 , . . . , x„) be a polynomial of degree d. If Fis not identically zero then,
for at least half of the (2d +1)" η-tuples in which each component is an integer between — d
and d, F(al,a2,..., αη)φ0.

We omit the proof, which goes by induction on n, with the case η = 1 corresponding
to the Fundamental Theorem of Algebra (see, e.g., [209]).

The lemma suggests a randomized algorithm for testing whether a polynomial of
degree d is not identically zero: simply substitute independent random integers between
d and — d for the variables. If the polynomial is not identically zero then, with
probability greater than \ , a non-zero value will result. For any class of polynomial
expressions that can be evaluated by an NC-algorithm, we obtain in this way an
RNC-algorithm for testing whether a polynomial in that class is not identically zero.

4.9.2. The matching problem
We give an RNC

2
-a lgor i thm for recognizing the graphs that possess perfect

matchings (recall that a perfect matching in a graph G is a set of edges M, such that each
vertex of G is incident with exactly one vertex of M). The algorithm is based on the
following theorem attributed to Tutte.

T H E O R E M . Let G be a simple graph (no loops or multiple edges) with vertex set
{1, 2 , . . . , n) and edge set E. Let Α = (αί3) be the following nxn matrix, in which the
variables χ . · , are indeterminates:

Then G has a perfect matching if and only if the determinant of A is not identically 0.

0 ,

The matrix A is called the Tutte matrix of the graph G. The determinant of A is

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 923

a polynomial of degree η in the indeterminates xi}. Combining Tutte's Theorem, the
lemma, and the existence of an NC

2
-a lgor i thm for computing the determinant of an

nxn matrix with integer entries in [— n,n], we obtain the desired one-sided-error
algorithm for deciding whether a graph has a perfect matching.

This result does not directly yield an RNC
2
-a lgor i thm for constructing a perfect

matching when one exists. Such an algorithm was first provided in [138] . We present
here a particularly elegant RNC

2
-a lgor i thm for the problem, due to Mulmuley,

Vazirani & Vazirani [175]. Their algorithm is based on the following probabilistic
lemma.

L E M M A . Let Che any nonempty collection of subsets of{ 1 ,2, . . . , N}. Let w(l), w(2) , . . . ,
w(N) be independent random variables, each with the uniform distribution over
{ 0 , 1 , 2 , . . . , 2N}. Associate with each set S ^ { 1 , 2 , . ..,N} a weight w(S) = TieSw(i). Then,
with probability greater than j , the family C contains a unique set of minimum weight.

The lemma can be applied to the matching problem by taking C to be the set of
perfect matchings in a graph with Ν edges. If each edge is given a weight drawn from the
uniform distribution over { 0 , 1 , . . . , 2N}, and the weight of a matching is the sum of the
weights of its edges, then, with probability >j, there will be a unique perfect matching
of minimum weight.

Mulmuley, Vazirani & Vazirani go on to show that when there is a unique perfect
matching of minimum weight, it can be constructed at the cost of a single matrix
inversion by the following algorithm.

(1) For each edge {/,;), draw a weight wu from the uniform distribution over
{ 0 , 1 , . . . , 2 | £ | } .

(2) Form the Tutte matrix of G and, for each indeterminate x 0 occurring in the Tutte
matrix, substitute the constant 2

Wij
; let the resulting matrix be B.

(3) Using a parallel matrix inversion algorithm that yields the determinant and the
adjoint, such as the one in [180], compute |B| and adj(J3). The (i,j) entry of adj(ß) is
the minor \BU\.

(4) In parallel, for all edges {i,j}, compute \BU\ 2
Wij

/2
2
™. Let M be the set of edges for

which this quantity is odd.
(5) If M is a perfect matching then output M.

Whenever the weights wu are such that there is a unique perfect matching of
minimum weight, the algorithm will produce this matching. Thus each execution of the
algorithm produces a perfect matching with probability > \ , provided that a perfect
matching exists. The algorithm runs in 0(log

2
n) time using a polynomial-bounded

number of processors. Thus we can conclude that the problem of constructing a perfect
matching is in R N C

2
. Further results by Karloff [134] establish that the problem lies in

Z N C
2
.

We have discussed two problems related to perfect matchings: the decision problem,
in which the task is to decide whether a perfect matching exists, and the search problem,
in which the task is to construct a perfect matching when one exists. Karp, Upfal
& Wigderson [139] have studied the general question of how to construct a parallel

924 R . M . K A R P , V . R A M A C H A N D R A N

algorithm for a search problem, given a subroutine for the corresponding decision
problem.

4.9.3. Applications of matching
Karp, Upfal & Wigderson [138] have shown that the following problems related to

matching and network flows are in RNC:
(i) constructing a perfect matching of maximum weight in a graph whose edge

weights are given in unary notation;
(ii) constructing a matching of maximum cardinality;

(iii) constructing a matching that covers a set of vertices of maximum weight in
a graph whose vertex weights are given in binary;

(iv) constructing a maximum s-t flow in a directed or undirected network whose
edge weights are given in unary notation.

Each of these results is obtained by a reduction of the given problem to the problem
of constructing a perfect matching, or by a closely related algorithmic technique. In
view of the above result of Mulmuley, Vazirani & Vazirani [175], these four problems
lie in R N C

2
.

4.9.4. Depth-first search
Let G = (V, E) be a connected graph. Let Τ be a spanning tree of G rooted at r. Then

Τ is called a depth-first-search tree if, for every edge e e £ , one of the two endpoints of
e is an ancestor of the other.

There is a sequential algorithm running in time 0 (| £ |) for the construction of
a depth-first search tree rooted at a given vertex. This algorithm is the backbone of
linear-time sequential algorithms for testing whether a graph is planar, computing the
biconnected components of a graph, and many other important problems (see, e.g.,
[79].

Although the goal of finding an efficient parallel algorithm for depth-first search has
not been reached, some progress has been made. Define a splitting path as a simple path
having the root as an endpoint, with the property that its deletion breaks the remaining
vertices into connected components of size less than or equal to c\V\, for a suitable
constant c. Once such a splitting path is found, a depth-first search tree for the overall
graph can be constructed recursively out of the splitting path together with depth-first
search trees for these connected components. This approach is used in [215] to solve
the depth-first search problem in the case of planar graphs (see also [102,116, 122] for
efficient implementations of this algorithm), and by Ramachandran [189] in the case of
directed acyclic graphs and reducible flow graphs.

It remained an open question whether the depth-first search problem for general
graphs was in ZNC. Aggarwal & Anderson [2] settled this question by giving
a ZNC

5
-a lgor i thm that constructs a depth-first search tree in an η-vertex undirected

graph. The algorithm has O(log n) levels of recursion, in each of which it constructs
a splitting path; in order to construct such a path, it makes 0(log

2
n) successive calls to

a subroutine for the following problem: given a bipartite graph in which each edge has
weight 0 or 1, find a perfect matching of minimum weight. Each of the bipartite graphs
presented to the subroutine has at most η vertices. Since this matching problem is in

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 925

Z N C
2
, it follows that the depth-first search problem is in Z N C

5
. The algorithm of

Aggarwal & Anderson is quite intricate, and we shall not attempt to describe it here.
Building on results of Kao [131] for planar directed graphs, this result is extended to
yield a Z N C algorithm for depth-first search in directed graphs in [3] .

4.10. Further results

Our treatment of NC-algorithms has focused on methods and results that appear to
be of general utility for placing problems in the classes NC, RNC or ZNC, or for
locating them in the hierarchies such as {AC*} and {NC

f c
}. Many further problems have

been analyzed from this point of view. The following references give a representative
sample of such results.

Graph theory: Babai [22]; Coppersmith, Raghavan & Tompa [65]; Dahlhaus
& Karpinski [68]; Galil & Pan [89]; Gazit & Miller [95]; Gibbons, Karp, Miller
& Soroker [101]; Grigoriev & Karpinski [109]; Johnson [124]; Karloff [134]; Karloff
& Shmoys [136]; Klein & Reif [143]; Kozen, Vazirani & Vazirani [146]; Lev,
Pippenger & Valiant [152]; Lingas & Karpinski [154]; Lovâsz [156]; Nisan & Soroker
[178]; Reif [193, 194]; Savage & Ja 'Ja ' [205]; Soroker [218, 219], Tsin & Chin [224];
Vazirani [232].

Scheduling theory: Hembold & Mayr [117].
Algebra: Babai, Luks & Seress [23]; Ben-Or & Tiwari [32]; Borodin, von zur

Gathen & Hopcroft [40]; Eberly [75]; Fich & Tompa [84]; Galil & Pan [89]; von zur
Gathen [90, 91, 92]; Ibarra, Moran & Rosier [121]; Kaltofen, Krishnamoorthy
& Saunders [127]; Kaltofen & Saunders [128]; Kannan, Miller & Rudolph [130];
Litow & Da vida [155]; Lueker, Megiddo & Ramachandran [159]; Luks [160]; Luks
& McKenzie [161]; McKenzie & Cook [165]; Pan [180]; Pan & Reif [181]; Reif [197].

Language theory: Ibarra, Jiang, Ravikumar & Chang [120]; Klein & Reif [144].
Logic programming: Mayr [163]; Ullman & van Gelder [226].
Analysis: Ben-Or, Feig, Kozen & Tiwari [30]; Ben-Or, Kozen & Reif [31]; Kozen

& Yap [147].
In addition to the work on NC, there is an important body of research concerned

with algorithms that achieve significant speed-up, even if they do not run in polylog
time. A prominent example is Gaussian elimination, which solves a system of η linear
equations in time 0(n) using n

2
 processors. Further examples include the algorithm due

to Eckstein [76] for performing depth-first search in an η-node, m-edge graph in time
0(m/p + η log p\ using ρ processors; the algorithm of Gabow & Tarjan [87] for the
assignment problem on a weighted bipartite graph with η nodes, m edges and
maximum edge weight Ν that runs in

0(Jn~m\og(nN) (log2p)/p)

time with p^m/(y/n log
2
«) processors; and the algorithms of Goldberg, Plotkin

& Vaidya [103] for performing depth-first search on a graph with η vertices and
m edges in time 0(yjη polylog(n)) using n + m processors, and for computing
a maximum matching in an η-node bipartite graph in time O(n

2l3
polylog(n)) using M(n)

926 R . M . K A R P , V . R A M A C H A N D R A N

processors. In the terminology of Kruskal, Rudolph & Snir (cf. Section 2.1), Eckstein's
algorithm achieves polynomial speed-up for dense graphs with constant inefficiency,
the algorithms of Gabow & Tarjan achieve polynomial speed-up with logarithmic
inefficiency, and the algorithms of Goldberg, Plotkin & Vaidya achieve polynomial
speed-up with polynomial inefficiency.

4.11. P-complete problems

Let Ρ denote the set of decision problems solvable by deterministic Turing machines
in polynomial time. Every decision problem in N C lies in P. A fundamental open
question is whether every problem in Ρ lies in NC. If this were so, it would mean,
roughly speaking, that every problem that is efficiently solvable in a sequential model of
computation can be solved very fast in parallel, using a polynomial-bounded number of
processors (this interpretation is disputed in the interesting paper by Vitter & Simons
[239]). Using a reducibility technique, we shall identify a set of problems within
Ρ called the P-complete problems; a P-complete problem lies in N C if and only if
P = NC. Thus the P-complete problems can be viewed as the problems in Ρ most
resistant to parallelization.

We adopt the usual convention of representing a decision problem as a subset of
{0, 1}*. Decision problem A is said to be logspace-reducible to decision problem Β if
there is a function / : {0,l}*->{0, 1}* such that / is computable by a logspace Turing
machine and, for all χ e {0,1 }*, x e A if and only if f(x) e B. A decision problem in Ρ is
called P-complete if every problem in Ρ is logspace-reducible to it. The relation of
logspace-reducibility is transitive and has the following further property: if A is
logspace-reducible to Β and Β is in NC*, where k ^ 2, then A is in NC*. Our interest in
P-completeness stems from the following consequences of this observation: let A be
a P-complete problem; then Ρ = N C if and only if A lies in NC, and, for k ^ 2, Ρ £ NC* if
and only if A lies in NC*.

Our official definition of a P-complete problem requires that it be specified as
a function from strings over one alphabet to strings over another. In practice, the inputs
and outputs to a problem are often other kinds of symbolic objects: graphs, formulas,
circuits, grammars, families of sets and the like. In describing such problems and
proving them P-complete, we will often not specify how their inputs and outputs are
encoded as strings, since the details of that encoding are seldom of interest.

The usual method of proving a problem P-complete is to show that it lies in Ρ and
that some standard P-complete problem is logspace-reducible to it. The standard
problem most often used for this purpose is the monotone circuit value problem
(MCVP) (Goldschlager [105]). Informally, the input to this problem is a single-output
fan-in-2 Boolean circuit without NOT-gates, together with an assignment of
a constant value (0 or 1) to each input line. More precisely, the input is given as
a sequence of equations, specifying the outputs of the gates in a monotone circuit. The
first two equations are g0 = 0 and g ! = 1, and for each i, i = 2 , 3 , . . . , n, there is either an
equation of the form gx = g3 ν gk or an equation of the form g{ = g^ Λ gkt where j and k are
nonnegative indices less than i. The first of these two equations corresponds to the case
where gate i is an OR-gate with inputs from gates j and fc; similarly, the second equation

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 927

corresponds to the case where gate i is an A N D - g a t e . The output is the value of g„ in the
unique solution of this system of equations.

We sketch the proof that M C V P is P-complete. Let A be a decision problem in P.
Then A is accepted by a deterministic one-tape Turing machine M which has a unique
accepting state q* and operates within the polynomial time bound T(n). For a given
input string x, let T= T(|x|). Then Tis an upper bound on the execution time of M on x,
and the only tape squares whose contents can change during the computation are
within distance Τ of the home square. Introduce the following Boolean variables to
represent the computation of M on input x:

• h(U t\ meaning "the head is on tape square i at time i";
• a(iy t\ meaning "the symbol on square i at time t is 0";
• q(t\ meaning "the state at time t is q".
Here a ranges over the tape alphabet of M, q ranges over the state set of M, — T < i < Τ
and O^t^T. The input χ is accepted if and only if q*(T)= 1.

Given input χ and the description of the transition function of M, there is a logspace
algorithm to generate a system of monotone Boolean equations, in the format of the
M C V P problem, specifying the values of these variables. This is the required logspace
reduction from problem A to the MCVP. Since A is an arbitrary problem in P, it follows
that M C V P is P-complete.

We shall give two further examples of P-completeness proofs, each involving
a reduction from MCVP. The first example involves a certain "greedy" sequential
algorithm for constructing a maximal independent set of vertices in a graph. Let G be
a graph with vertex set K, and let a linear ordering of V be given. The following
algorithm constructs a maximal independent set in G.

G R E E D Y I N D E P E N D E N T S E T A L G O R I T H M

for i = l , 2 , . . . , | K | do
begin

let ν be the ith element in the linear ordering of V\
if ν is adjacent to no vertex in S
then S^Su{v}

end.

The following decision problem related to this algorithm is P-complete (Cook [61]).

G R E E D Y I N D E P E N D E N T S E T

Input: Graph G = (F,E) where F i s linearly ordered,
Property: The last vertex in the linear ordering of V is in the independent set

constructed by the greedy independent set algorithm.

We give a reduction from MCVP. Let an instance of M C V P be specified, as
described above, by equations for the gate outputs go,g γ , . . . , g„. The reduction will
produce a graph G with vertex set V— {v0,vl9..., vn}u{w0, w l 5. . . , w„), together with
a linear ordering of V. The linear ordering is such that, whenever i < v \ and vv, precede

928 R . M . K A R P , V . R A M A C H A N D R A N

VJ and Wj. The relative ordering of vt and w, and the specification of the edges incident
with Vi and w, depend on the nature of the equation for g{ as follows: w 0 precedes v0\vx

precedes w1; if the equation for gt is g[= g-3v gk then w, precedes vt and the graph
contains the edges { i ^ w j and {vk, w,}; if the equation is gi = gj*gk then ^precedes w,
and the graph contains the edges {vv,, i ; J and {wfc, In addition, all edges {vh w j are
present.

The construction of the graph from the circuit can be performed by a logspace
algorithm. It is easy to prove by induction on η that vt lies in the greedy independent set
if and only if the output of g{ is 1, and vv, lies in the greedy independent set if and only if
the output of g{ is 0 . Thus we have a logspace-reduction from the monotone circuit
value problem to the lexicographically-first-independent-set problem, showing that the
latter problem is P-complete. The P-completeness of this problem stands in contrast to
the result that the problem of constructing some maximal independent set, not
necessarily the one produced by the greedy algorithm, is in E R E W

4
.

As a final example, we show that the following problem is P-complete [1 0 7] .

M A X - F L O W

Input: A directed graph G = (K, £), a pair of distinct vertices s and t called the source
and sink respectively, and a function c from Ε into the nonnegative integers, assigning
to each edge e a capacity c(e).

Property: The value of the maximum flow from s to ί is an odd integer.

We give a reduction from the M C V P to M A X - F L O W . Let C be a monotone circuit. We
may assume without loss of generality that the following properties hold:

(i) each gate has fan-out at most 2 (i.e., each variable gx occurs on the right-hand side
of at most two equations);

(ii) gn is the output of an OR-gate.
We refer to the edges of the circuit as wires in order to distinguish them from the

edges of the network produced by the reduction. The network has vertex set
{s, i, v0, V U . . . , vn], and its edges and capacities are specified as follows:

(i) for each wire of C connecting the output of gj to the input of gi9 there is an edge of
capacity 2

n
~

J
 from vj to vt\

(ii) there is an edge of capacity 2 "
+ 1

 from s to vn;
(iii) there is an edge of capacity 1 from vn to i;
(iv) if gx is an OR-gate then there is an edge from vx to s;
(v) if gx is an AND-gate, there is an edge from vt to t and

(vi) the capacities of the edges specified in (iv) and (v) are such that the sum of the
capacities of the edges directed into any vertex vx is equal to the sum of the capacities of
the edges directed out of that vertex.

It is easy to prove by induction on η that there is a maximum flow in G having the
following properties:

(i) if a wire in C carries the signal 0 then the flow in the corresponding edge of G is 0;
(ii) if a wire in C carries the signal 1 then the flow in the corresponding edge of G is

equal to the capacity of that edge;
(iii) with the exception of the edges from vn to s and r, the flow in every edge of G is an

even integer;

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 929

(iv) The flow in the edge from vn to t is 0 if the output of C is 0, and 1 if the output of
C i s 1.

It follows that the value of a maximum flow in G is odd if and only if the output of C is
1. This establishes that the reduction is correct.

Thus we see that the max-flow problem is P-complete. In contrast to this is the result
given in Section 4.9.3 that when the capacities of the edges are bounded by
a polynomial in the number of vertices, the max-flow problem is in Z N C

2
.

The seminal results on P-complete problems are given in [60,125,149]. More recent
P-completeness results can be found in [11, 19, 69, 71, 135, 195].

4.12. Open problems

The following is a list of problems, solvable in sequential polynomial time, whose
parallel complexity remains unknown despite the efforts of many researchers. It is not
known whether these problems lie in Z N C , and they have not been proven to be
P-complete. One resolution of these questions would be a proof that Ρ = NC, but this
seems unlikely to be true and, in any case, unlikely to be settled by known proof
methods.

1. E X I S T E N C E O F A P E R F E C T M A T C H I N G

Input: A graph G.
Question: Does G have a perfect matching?

This problem is in ZNC, as is the related problem of constructing a perfect matching
when one exists (see Section 4.9.2). In the bipartite case, an algorithm running in
0{n

2/3
polylog(n)) time using a polynomial-bounded number of processors is known

[103].

2. U N D I R E C T E D D E P T H - F I R S T S E A R C H

Input: A connected graph G and a vertex v.
Output: A spanning tree Τ of G, rooted at ν and having the following property: for

each non-tree edge {w, w}, u is either an ancestor or a descendant of w in T.

This problem is in RNC (see Section 4.9.4). A J~n polylog(n) time algorithm using
poly(n) processors is known [103].

3. D I R E C T E D D E P T H - F I R S T S E A R C H

Input: A digraph G and a vertex ν from which all vertices of G are reachable.
Output: An oriented tree T, rooted at ν and containing a directed path from ν to

each vertex of G, such that Τ is a subgraph of G and has the following directed
depth-first search property: there is a preorder numbering of G such that, if (w, w) is an
edge of G — Τ then either w precedes u in the preorder numbering, or w is a descendant
of u in T.

The problem is in RNC [3] .

930 R . M . K A R P , V . R A M A C H A N D R A N

4. W E I G H T E D M A T C H I N G

Input: A graph G with η vertices and, for each edge e, a positive integer weight w(e).
Output: A matching of maximum total weight.

When the weights are polynomial in η this problem is in Z N C [138] .

5. M A X I M A L I N D E P E N D E N T S E T I N A H Y P E R G R A P H

Input: A collection C of subsets of a finite set X.
Output: A set X' ç X which is maximal with respect to the property that it does not

contain any set in the collection C.

The case where C is a collection of 2-element sets is the maximal independent set
problem for graphs, which is in NC (see Section 4.7).

6. T W O - V A R I A B L E L I N E A R P R O G R A M M I N G

Input: A linear system of inequalities Ax ^ b over the rationals, such that each row of
A has at most two non-zero elements.

Output: A feasible solution, if one exists.

This problem has a polylog-time parallel algorithm with nP
o l

y
l 0

^ processors [159] .

7. I N T E G E R G C D

Input: Integers a and b.
Output: The greatest common divisor of a and b.

A sublinear-time algorithm using a polynomial-bounded number of processors is
given in [130] , and subsequently improved in [50] . The problem of computing the
greatest common divisor of two polynomials is in N C (see Section 4.8.2).

8. M O D U L A R I N T E G E R E X P O N E N T I A T I O N

Input: η-bit integers a, b and m.
Output: a^rnod m.

9. M O D U L A R P O L Y N O M I A L E X P O N E N T I A T I O N

Input: Polynomials a(x) and m(x) with coefficient from a ring, and a positive integer e.
Output: a(x)

e
mod m(x).

Problem 8 is a special case. Over fields of some fixed characteristic the problem is in
arithmetic N C

2
, provided that unit-time operations over the base field are assumed

[84] .

10. P O L Y N O M I A L R O O T A P P R O X I M A T I O N

Input: An nth-degree polynomial P(x) with integer coefficients, and a positive error
bound ε.

PARALLEL ALGORITHMS FOR SHARED-MEMORY MACHINES 931

The examples we have given in this survey of parallel algorithms are of interest not
only for their theoretical significance, but also as illustrations of typical methods of
exploiting the parallelism inherent in problems. Basic algorithms for such problems as
prefix sums, list ranking, sorting, and graph searching can serve as fundamental
building blocks for further algorithm construction. As parallel computation grows in
importance, such algorithms will find their way into the undergraduate textbooks, and
will become part of the general lore of computer science.

We have seen that, within many different abstract models, the class N C represents
the collection of problems solvable in polylog time with a polynomial-bounded
number of computing elements, and we have identified many basic problems as lying in
NC. The robustness of this class suggests that it is of fundamental importance, and
lends interest to the question of whether N C coincides with the familiar complexity
class P. We have also seen the usefulness of the concept of P-completeness in identifying
the problems in Ρ least likely to lie in NC.

So far, the studies of complexity within the PRAM model have been somewhat
unrealistic because of the assumption that the number of processors is allowed to grow
as a function of the size of the input. It would be useful to complement this line of
research with studies in which the number of processors remains fixed as the input size
grows; this assumption is closer to the typical situation in practice.

Although the PRAM model neglects communication issues, it is a very convenient
vehicle for the logical design of parallel algorithms. For this reason, there has been
intense interest in the simulation of PRAMs on more feasible models of parallel
computation. The chief components of such a simulation are the choice of a processor
interconnection pattern; the mapping of the address space of the PRAM onto the set of
memory cells of the simulating machine; and the algorithm for routing read and write
requests, and the replies to read requests, through the network of processors.

A series of more and more refined PRAM simulations [166,227,228,133,10] has
culminated in Ranade's efficient randomized simulation of an η-processor C R C W
PRAM on an rc-processor butterfly network [191] . The simulation time per PRAM
step is only logarithmic in the number of processors. This simulation opens the way for
a programming environment in which algorithms are designed within the convenient

5. Conclusion

This problem is complete in the complexity class CC defined in [164] .

11. C O M P A R A T O R C I R C U I T V A L U E

Input: A comparator network (see Section 2.4) together with values for its inputs.
Output: The value of a specified output.

When all roots are real the problem is in N C [30] .

Output: For each (real or complex) root ξ of P, an approximation ξ' such that

\ξ-ξ'\<*·

9 3 2 R . M . K A R P , V. R A M A C H A N D R A N

PRAM model and then simulated efficiently on a network of processors, and thus
underscores the value of the PRAM model, and the applicability of algorithms
designed within it.

Acknowledgment

Many colleagues have provided valuable comments on earlier drafts of this chapter.
We would like to express our thanks to Richard Anderson, Laszlo Babai, David
Barrington, Robert Boyer, Joachim von zur Gathen, Hillel Gazit, Mark Goldberg,
Michael Goodrich, Erich Kaltofen, Jânos Komlos, Jan van Leeuwen, Michael Loui,
Eugene Luks, Jay Misra, Ketan Mulmuley, Steve Omohundro , Victor Pan, James
Renegar, John Reif, Wojciech Rytter, John Savage, Marc Snir, Robert Tarjan, Prasoon
Tiwari, Martin Tompa, Stephen Vavasis, Jeffrey Vitter, Yaacov Yesha and, especially,
Torben Hagerup and Larry Stockmeyer. Finally, we owe an enormous debt of
gratitude to Ann DiFruscia, who assisted us with great dedication and skill in the
preparation of this manuscript.

The research of the first author was supported by the International Computer
Science Institute, Berkeley, CA, and N S F Grant Nos. DCR-8411954 and CCR-8612563.
The research of the second author was supported by the International Computer
Science Institute, Berkeley, CA, and by Joint Services Electronics Program N 0 0 0 1 4 -
84-C-0149 while she was with the University of Illinois, Urbana, IL.

References

[1] A B R A H A M S O N , K. , N. D A D O U N , D.A. K I R K P A T R I C K and T. P R Z Y T Y C K A , A simple parallel tree
contraction algorithm, in: Proc. 25th Ann. Allerton Conf. on Communication. Control and Computing

(mi) 6 2 4 - 6 3 3 .

[2] A G G A R W A L , A. and R.J. A N D E R S O N , A random N C algorithm for depth first search, in: Proc. 19th Ann.

ACM Symp. on Theory of Computing (1 9 8 7) 3 2 5 - 3 3 4 ; revised version, Combinatorica 8 (1 9 8 8) 1 - 1 2 .
[3] A G G A R W A L , Α., R.J. A N D E R S O N and M . K A O , Parallel depth-first search in general directed graphs, in:

Proc. 21 st Ann. ACM Symp. on Theory of Computing (1 9 8 9) 2 9 7 - 3 0 8 .
[4] A G G A R W A L , Α., Β. C H A Z E L L E , L. G U I B A S , C. O ' D U N L A I N G and C. Y A P , Parallel computational

geometry, in: Proc. 26th Ann. IEEE Symp. on Foundations of Computer Science (1 9 8 5) 4 6 8 - 4 7 7 .
[5] A J T A I , M . , Σ [-formulae on finite structures, Ann. Pure Appl. Logic 24 (1 9 8 3) 1 - 4 8 .

[6] A J T A I , M . , J. K O M L O S , W.L. S T E I G E R and E. S Z E M E R É D I , Deterministic selection in O(loglogn)

parallel time, in: Proc. 18th Ann. ACM Symp. on Theory of Computing (1 9 8 6) 1 8 8 - 1 9 5 .
[7] A J T A I , M . , J. K O M L O S and E. S Z E M E R É D I , Sorting in c log η parallel steps, Combinatorica 3 (1 9 8 3) 1 - 1 9 .

[8] A L O N , N M L. B A B A I and A. I T A I , A fast and simple randomized parallel algorithm for the maximal
independent set problem, J. Algorithms 7 (1 9 8 6) 5 6 7 - 5 8 3 .

[9] A L T , H., Comparison of arithmetic functions with respect to Boolean circuit depth, in: Proc. 16th Ann.

ACM Symp. on Theory of Computing (1 9 8 4) 4 6 6 - 4 7 0 .
[1 0] A L T , Η . , T . H A G E R U P , K . M E H L H O R N and F.P. P R E P A R A T A , Deterministic simulation of idealized

parallel computers on more realistic ones, SIAM J. Comput 1 6 (1 9 8 7) 8 0 8 - 8 3 5 .
[1 1] A N D E R S O N , R.J. and E.W. M A Y R , Parallelism and greedy algorithms, in: Advances in Computing

Research, Vol. 2 4 (JAI Press, Greenwich, CT, 1 9 8 7) 1 7 - 3 8 .
[1 2] A N D E R S O N , R.J. and G.L. M I L L E R , Deterministic parallel list ranking, in: VLSI Algorithms and

PARALLEL ALGORITHMS FOR SHARED-MEMORY MACHINES 933

Architectures, Proc. 3rd Aegean Workshop on Computing, Lecture Notes in Computer Science, Vol.

319 (Springer, Berlin, 1988) 81-90.

[13] ATALLAH, M.J., Parallel strong orientation of an undirected graph, Inf. Proc. Letters 1 8 (1984) 37-39.

[14] ATALLAH, M.J., R. COLE and M.T. GOODRICH, Cascading divide-and-conquer: a technique for

designing parallel algorithms, in: Proc. 28th Ann. IEEE Symp. on Foundations of Computer Science

(1987) 151-160.

[15] ATALLAH, M.J. and M.T. GOODRICH, Efficient parallel solutions to some geometric problems, J.

Parallel Distr. Comput. 3 (1986) 492-507.

[16] ATALLAH, M.J. and M.T. GOODRICH, Parallel algorithms for some functions of two convex polygons,

Algorithmica 3 (1988) 535-548.

[17] ATALLAH, M.J., M.T. GOODRICH and S.R. KOSARAJU, Parallel algorithms for evaluating sequences of

set manipulation operations, in: VLSI Algorithms and Architectures, Proc. 3rd Aegean Workshop on

Computing, Lecture Notes in Computer Science, Vol. 319 (Springer, Berlin, 1988) 1-10.

[18] ATALLAH, M. and U. VISHKIN, Finding Euler tours in parallel, J. Comput. System Sei. 2 9 (1984)

330-337.

[19] A VENHAUS J. and K . MADLENER, The Nielsen reduction and P-complete problems in free groups,

Theoret. Comput. Sei. 3 2 (1984) 61-76.

[20] AWERBUCH, B., A. ISRAELI and Y. SHILOACH, Finding Euler circuits in logarithmic parallel time, in:

Proc. 16th Ann. ACM Symp. on Theory of Computing (1984) 249-257.

[21] AWERBUCH, B. and Y. SHILOACH, New connectivity and MSF algorithms for shuffle-exchange

network and PRAM, IEEE Trans. Comput. 3 6 (1987) 1258-1263.

[22] BABAI, L., A Las-Vegas N C algorithm for isomorphism of graphs with bounded multiplicity of

eigenvalues, in: Proc. 27th Ann. IEEE Symp. on Foundations of Computer Science (1986) 303-312.

[23] BABAI, L., E.M. LUKS and A. SERESS, Permutation groups in NC, in: Proc.19th Ann. ACM Symp. on

Theory of Computing (mi) 409-420.

[24] BAR-ON, I. and U. VISHKIN, Optimal parallel generation of a computation tree form, ACM Trans.

Programming Languages and Systems 1 (1985) 348-357.

[25] BARRINGTON, D.A., Bounded-width polynomial-size branching programs recognize exactly those

languages in N C
1
, in: Proc 18th Ann. ACM Symp. on Theory of Computing (1986) 1-5.

[26] BATCHER, K.E. , Sorting networks and their applications, in: Proc. AFIPS Spring Joint Summer

Computer Conf, Vol. 32 (1968) 307-314.

[27] BEAME, P.W., Limits on the power of concurrent-write parallel machines, Inform, and Comput. 7 6

(1988) 13-28.

[28] BEAME, P.W., S.A. COOK and H.J. HOOVER, Log depth circuits for division and related problems,

SIAM J. Comput. 1 5 (1986) 994-1003.

[29] BEAME, P. and J. HASTAD, Optimal bounds for decision problems on the CRCW PRAM, in: Proc.

19th Ann. ACM Symp. on Theory of Computing (1987) 83-93.

[30] BEN-OR, M., E. FEIG, D. KOZEN and P. TIWARI, A fast parallel algorithm for determining all roots of

a polynomial with real roots, SIAM J. Comput. 1 7 (1988) 1081-1092.

[31] BEN-OR, M., D. KOZEN and J. REIF, The complexity of elementary algebra and geometry, in: Proc.

16th Ann. ACM Symp. on Theory of Computing (1984) 457-464.

[32] BEN-OR, M. and P. TIWARI, A deterministic algorithm for sparse multivariate polynomial

interpolation, in: Proc. 20th Ann. ACM Symp. on Theory of Computing (1988) 301-309.

[33] BERKMAN, O., D. BRESLAUER, Ζ . GALIL, Β . SCHIEBER and U. VISHKIN, Highly parallelizable problems,

in: Proc. 21st Ann. ACM Symp. on Theory of Computing (1989).

[34] BERKOWITZ, S.J., On computing the determinant in small parallel time using a small number of

processors, Inf. Proc. Letters 1 8 (1984) 147-150.

[35] BILARDI, G . and A. NICOLAU, Bitonic sorting with 0 (N log N) comparisons, in: Proc. 20th Ann. Conf

on Information Science and Systems, Princeton Univ., Princeton, Ν J (1986) 309-319.

[36] BOPPANA, R., Optimal separations between concurrent-write parallel machines, in: Proc. 21st Ann.

ACM Symp. on Theory of Computing (1989) 320-326.

[37] BOPPANA, R. and M. SIPSER, The complexity of finite functions, in: J. van Leeuwen, ed., Handbook of

Theoretical Computer Science, Vol. A (North-Holland, Amsterdam, 1990) 757-804.

[38] BORODIN, Α., On relating time and space to size and depth, SIAM J. Comput. 6 (1977) 733-744.

934 R.M. K A R P , V. R A M A C H A N D R A N

[39] B O R O D I N , Α., S.A. C O O K and N. P I P P E N G E R , Parallel computation for well-endowed rings and

space-bounded probabilistic machines, Inform, and Control 5 8 (1983) 113-136.

[40] B O R O D I N , Α., J. V O N Z U R G A T H E N and J.E. H O P C R O F T , Fast parallel matrix and G C D computations,

in: Proc. 23rd Ann. IEEE Symp. on Foundations of Computer Science (1982) 65-71.

[41] B O R O D I N , A. and J.E. H O P C R O F T , Routing, merging, and sorting on parallel models of computation,

J. Comput. System Sei. 3 0 (1985) 130-145.

[42] B R E N T , R.P., The parallel evaluation of general arithmetic expressions, J. ACM 2 1 (1974) 201-206.

[43] Buss, S.R., The Boolean formula value problem is in ALOGTIME, in: Proc. 19th Ann. ACM Symp. on

Theory of Computing (1987) 123-131.

[44] Buss, S.R., S.A. C O O K , A. G U P T A and V. R A M A C H A N D R A N , An optimal parallel algorithm for fomula

evaluation, Manuscript, Toronto, Canada, 1989.

[45] C H A N D R A , A.K., S. F O R T U N E , R.J. L I P T O N , Unbounded fan-in circuits and associative functions, J.

Comput. System Sei. 3 0 (1985) 222-234.

[46] C H A N D R A , A.K, D.C. K O Z E N and L.J. S T O C K M E Y E R , Alternation, J. ACM 2 8 (1981) 114^133.

[47] C H A N D R A , A.K., L. S T O C K M E Y E R and U. V I S H K I N , Constant depth reducibility, SIAM J. Comput. 1 3

(1984) 423-439.

[48] C H I N , F.Y., J. L A M and I. C H E N , Efficient parallel algorithms for some graph problems, Comm. ACM

2 5 (1982) 659-665.

[49] C H I S T O V , A.L., Fast parallel calculation of the rank of matrices over a field of arbitrary characteristic,

in: Fundamentals of Computation Theory, FCV85, Lecture Notes in Computer Science, Vol. 199

(Springer, Berlin, 1985) 63-79.

[50] C H O R , Β. and O. G O L D R E I C H , An improved parallel algorithm for integer gcd, Manuscript, 1985.

[51] C H O W , Α., Parallel algorithms for geometric problems, Dissertation, Computer Science Dept., Univ.

of Illinois at Urbana-Champaign, 1980.

[52] C H R O B A K , M. and M. Y U N G , Fast parallel and sequential algorithms for edge -coloring planar graphs,

in: VLSI Algorithms and Architectures, Proc. 3rd Aegean Workshop on Computing, Lecture Notes in

Computer Science, Vol. 319 (Springer, Berlin, 1988) 11-23.

[53] C O L E , R., Parallel merge sort, SIAM J. Comput. 1 7 (1988) 770-785.

[54] C O L E , R. and M.T. G O O D R I C H , Optimal parallel algorithms for polygon and point-set problems, in:

Proc. 4th Ann. ACM Conf. on Computational Geometry (1988) 201-210.

[55] C O L E , R. and U. V I S H K I N , Deterministic coin tossing with applications to optimal parallel list

ranking, Inform, and Control 7 0 (1986) 32-53.

[56] C O L E , R. and U. V I S H K I N , Approximate and exact parallel scheduling with applications to list, tree

and graph problems, in: Proc. 27th Ann. IEEE Symp. on Foundations of Computer Science (1986)

478-491.

[57] C O L E , R. and U. V I S H K I N , The accelerated centroid decomposition technique for optimal parallel tree

evaluation in logarithmic time, Algorithmica 3 (1988) 329-346.

[58] C O L E , R. and U. V I S H K I N , Approximate parallel scheduling, part I: the basic technique with

applications to optimal parallel list ranking in logarithmic time, SIAM J. Comput 1 7 (1988) 128-142.

[59] C O L E , R. and C.K. Y A P , A parallel median algorithm, Inf. Proc. Letters 2 0 (1985) 137-139.

[60] C O O K , S.A., An observation on time-storage trade-off, J. Comput. System Sei. 9 (1974) 308-316.

[61] C O O K , S.A., Towards a complexity theory of synchronous parallel computation, Enseign. Math. 2 7

(1981) 99-124.

[62] C O O K , S.A., A taxonomy of problems with fast parallel algorithms, Inform, and Control 6 4 (1985) 2-22.

[63] C O O K , S.A., C. D W O R K and R. R E I S C H U K , Upper and lower time bounds for parallel random access

machines without simultaneous writes, SIAM J. Comput. 1 5 (1986) 87-97.

[64] C O O K , S.A. and R.A. R E C K H O W , Time-bounded random access machines, J. Comput. System Sei.

7 (1973) 354-375.

[65] C O P P E R S M I T H , D., P. R A G H A V A N and M. T O M P A , Parallel graph algorithms that are efficient on the

average, in: Proc. 28th Ann. IEEE Symp. on Foundations of Computer Science (mi) 260-270.

[66] C O P P E R S M I T H , D. and S. W I N O G R A D , Matrix multiplication via arithmetic progressions, in: Proc. 19th

Ann. ACM Symp. on Theory of Computing (1987) 1-6.

[67] C S A N K Y , L., Fast parallel matrix inversion algorithms, SIAM J. Comput. 5 (1976) 618-623.

[68] D A H L H A U S , Ε. and M. K A R P I N S K I , The matching problem for strongly chordal graphs is in NC, Tech.

Report 855-CS, Institut für Informatik, Universität Bonn, 1986.

PARALLEL ALGORITHMS FOR SHARED-MEMORY MACHINES 935

[69] DOBKIN, D., R.J. LIPTON and S. REISS, Linear programming is log-space hard for P, Inf. Proc. Letters

8 (1979) 96-97.

[70] DOLEV, D., C. DWORK, N. PIPPENGER and A. WIGDERSON, Superconcentrators, generalizes and

generalized connectors with limited depth, in: Proc: 15th Ann. ACM Symp. on Theory of Computing

(1983) 42-51 .

[71] DWORK, C , P.C. KANELLAKIS and J.C. MITCHELL, On the sequential nature of unification, J. Logic

Programming 1 (1984) 35-50.

[72] DWORK, C , P.C. KANELLAKIS and L. STOCKMEYER, Parallel algorithms for term matching, SI AM J.

Comput 1 7 (1988) 711-731.

[73] DYMOND, P .W. and S.A. COOK, Hardware complexity and parallel complexity, in: Proc. 21st Ann.

IEEE Symp. on Foundations of Computer Science (1980) 360-372.

[74] DYMOND, P .W. and W.R. Ruzzo , Parallel RAMs with owned global memory and deterministic

context-free language recognition, in: Proc. 13th Internat. Coll. on Automata Languages and

Programming (1986) 95-104.

[75] EBERLY W . , Very fast parallel matrix and polynomial arithmetic, in: Proc. 25th Ann. IEEE Symp. on

Foundations of Computer Science (1984) 21-30.

[76] ECKSTEIN, D.M., Parallel processing using depth-first search and breadth-first search, Ph.D. Thesis,

Dept. of Computer Science, Univ. of Iowa, Iowa City, Iowa, 1977.

[77] ECKSTEIN, D.M., Simultaneous memory access. Tech. Report TR-79-6, Computer Science Dept.,

Iowa State Univ., Ames, I A, 1979.

[78] EPPSTEIN, D. and Z . GALIL, Parallel algorithmic techniques for combinatorial computation,

Manuscript, Dept. of Computer Science, Columbia Univ., New York, 1988.

[79] EVEN, S., Graph Algorithms (Computer Science Press, Potomac, M D , 1979).

[80] FICH, F . E . , New bounds for parallel prefix circuits, in: Proc. 15th Ann. ACM Symp. on Theory of

Computing (1983) 27-36.

[81] FICH, F . E . , F . MEYER AUF DER HEIDE and A. WIGDERSON, Lower bounds for parallel random-access

machines with unbounded shared memory, Advances in Computing Research, Vol. 4 (JAI Press,

Greenwich, CT, 1987) 1-15.

[82] FICH, F . E . , P. RAGDE and A. WIGDERSON, Simulations among concurrent-write models of parallel

computation, Algorithmica 3 (1988) 43-51.

[83] FICH, F . E . , P. RAGDE and A. WIGDERSON, Relations between concurrent-write models of parallel

computation, SI AM J. Comput. 1 7 (1988) 606-627.

[84] FICH, F . E . and M. TOMPA, The parallel complexity of exponentiating polynomials over finite fields, J.

ACM 3 5 (1988) 651-667.

[85] FORTUNE, S. and J. WYLLIE, Parallelism in random access machines, in: Proc. 10th Ann. ACM Symp.

on Theory of Computing (1978) 114-118.

[86] FÜRST, M., J.B. SAXE and M. SIPSER, Parity, circuits and the polynomial time hierarchy, Math.

Systems Theory 1 7 (1984) 13-28.

[87] GABOW, H.N. and R.E. TARJAN, Almost-optimum speed-ups of algorithms for bipartite matching and

related problems, in: Proc. 20th Ann. ACM Symp. on Theory of Computing (1988) 514-527.

[88] GALIL, Z. , Optimal parallel algorithms for string matching, Inform, and Control 6 7 (1985) 144-157.

[89] GALIL, Z . and V. PAN, Improved processor bounds for algebraic and combinatorial problems in

RNC, in: Proc. 26th Ann. IEEE Symp. on Foundations of Computer Science (1985) 490-495.

[90] VON ZUR G ATHEN, J., Parallel algorithms for algebraic problems, SI AM J. Comput. 13(1984) 802-824.

[91] VON ZUR GATHEN, J., Parallel arithmetic computations: a survey, in: Proc. 12th. Internat. Symp. on

Mathematical Foundations of Computer Science, Lecture Notes in Computer Science, Vol. 233

(Springer, Berlin, 1986) 93-113.

[92] VON ZUR GATHEN, J., Computing powers in parallel, SI AM J. Comput. 1 6 (1987) 930-945.

[93] VON ZUR GATHEN, J., Algebraic complexity theory, Ann. Rev. Comp. Sei. 3 (1988) 317-347.

[94] GAZIT, H., An optimal randomized parallel algorithm for finding connected components in a graph,

in: Proc. 27th Ann. IEEE Symp. on Foundations of Computer Science (1986) 492-501.

[95] GAZIT, H. and G.L. MILLER, A parallel algorithm for finding a separator in planar graphs, in: Proc.

28th Ann. IEEE Symp. on Foundations of Computer Science (1987) 238-248.

[96] GAZIT, H. and G.L. MILLER, An improved parallel algorithm that computes the bfs numbering of

a directed graph, Inf. Proc. Letters 28 (1988) 61-65.

936 R . M . K A R P , V. R A M A C H A N D R A N

[97] G A Z I T , H . , G .L . M I L L E R and S.H. T E N G , Optimal tree contraction in the EREW model, in: S.K.

Tewksbury, B.W. Dickinson and S.C. Schwartz, eds., Concurrent Computations: Algorithms, Archi-

tecture, and Technology (Plenum, New York, 1988) 139-156.

[98] G I B B O N S , A.M. and W. R Y T T E R , An optimal parallel algorithm for dynamic expression evaluation

and its applications, in: Proc. 6th Conf. on Foundations of Software Technology and Theoretical

Computer Science, Lecture Notes in Computer Science, Vol. 241 (Springer, Berlin, 1986) 453-469.

[99] G I B B O N S , A.M. and W. R Y T T E R , Efficient Parallel Algorithms (Cambridge Univ. Press, Cambridge,

UK, 1988).

[100] G I B B O N S , P., Personal communication, 1987.

[101] G I B B O N S , P., R.M. K A R P , G . M I L L E R and D. S O R O K E R , Subtree isomorphism is in Random NC, in:

VLSI Algorithms and Architectures, Proc. 3rd Aegean Workshop on Computing, Lecture Notes in

Computer Science, Vol. 319 (Springer, Berlin, 1988) 43-52.

[102] G O L D B E R G , A.V., S.A. P L O T K I N and G . E . S H A N N O N , Parallel symmetry-breaking in sparse graphs, in:

Proc. 19th Ann. ACM Symp. on Theory of Computing (1987) 315-324.

[103] G O L D B E R G , A.V., S.A. P L O T K I N and P.M. V A I D Y A , Sublinear-time parallel algorithms for matching

and related problems, in: Proc. 29th Ann. IEEE Symp. on Foundations of Computer Science (1988)

174-185.

[104] G O L D B E R G , M. and T. S P E N C E R , A new parallel algorithm for the maximal independent set problem,

in: Proc. 28th Ann. IEEE Symp. on Foundations of Computer Science {mi) 161-165.

[105] G O L D S C H L A G E R , L.M., The monotone and planar circuit value problems are log space complete for P,

SIGACT News 9 (1977) 25-29.

[106] G O L D S C H L A G E R , L.M., A unified approach to models of synchronous parallel machines, J. ACM 2 9

(1982) 1073-1086.

[107] G O L D S C H L A G E R , L.M., R.A. S H A W and J. S T A P L E S , The maximum flow problem is log space complete

for P, Theoret. Comput. Sei. 2 1 (1982) 105-111.

[108] G O O D R I C H , M.T., Triangulating a polygon in parallel, J. Algorithms 1 0 (1989) 327-351.

[109] G R I G O R I E V , D.Y. and M. K A R P I N S K I , The matching problem for bipartite graphs with polynomially

bounded permanents is in NC, in: Proc. 28th Ann. IEEE Symp. on Foundations of Computer Science

(1987) 166-172.

[110] G R O L M U S Z , V. and P. R A G D E , Incomparability in parallel computation, in: Proc: 28th Ann. IEEE

Symp. on Foundations of Computer Science (1987) 89-98.

[I l l] H A G E R U P , T., Towards optimal parallel bucket sorting, Inform, and Comput. 7 5 (1987) 39-51.

[112] H A G E R U P , T., Optimal parallel algorithms on planar graphs, in: VLSI Algorithms and Architectures,

Proc. 3rd Aegean Workshop on Computing, Lecture Notes in Computer Science, Vol. 319 (Springer,

Berlin, 1988) 24-32.

[113] H A S T A D , J., Almost optimal lower bounds for small depth circuits, in: Proc. 18th Ann. ACM Symp. on

Theory of Computing (1986) 6-20.

[114] H A S T A D , J., Computational Limitations for Small Depth Circuits (MIT Press, Cambridge, MA, 1986).

[115] H E , X. and Y. Y E S H A , Binary tree algebraic computation and parallel algorithms for simple graphs, J.

Algorithms 9 (1988) 92-113.

[116] H E , X. and Y. Y E S H A , A nearly optimal parallel algorithm for constructing depth-first spanning trees

in planar graphs, SIAM J. Comput. 1 7 (1988) 486-492.

[117] H E L M B O L D , D. and E. M A Y R , Two-processor scheduling is in NC, in: VLSI Algorithms and

Architectures, Proc. Aegean Workshop on Computing, Lecture Notes in Computer Science, Vol. 227

(Springer, Berlin, 1986) 12-25.

[118] H I R S C H B E R G , D.S., A.K. C H A N D R A and D.V. S A R W A T E , Computing connected components on

parallel computers, Comm. ACM 2 2 (1979) 461-464.

[119] H O O V E R , H J . , M.M. K L A W E and N.J. P I P P E N G E R , Bounding fan-out in logical networks, J. ACM 3 1

(1984) 13-18.

[120] I B A R R A , O.H., T. J I A N G , B. R A V I K U M A R and J . H . C H A N G , On some languages in N C
1
, in: VLSI

Algorithms and Architectures, Proc. 3rd Aegean Workshop on Computing, Lecture Notes in Computer

Science, Vol. 319 (Springer, Berlin, 1988) 64-73.

[121] I B A R R A , O.H., S. M O R A N and L.E. R O S I E R , A note on the parallel complexity of computing the rank of

order η matrices, Inf. Proc. Letters 1 1 (1980) 162.

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 937

[122] J A \ J A \ J. and S.R. K O S A R A J U , Parallel algorithms for planar graph isomorphism and related problems,
IEEE Trans, on Circuits and Systems, 3 5 (1988) 304-311.

[123] JA'JA', J. and J. S I M O N , Parallel algorithms in graph theory: planarity testing, SIAM J. Comput. 1 1

(1982) 314-328.

[124] J O H N S O N , D.B., Parallel algorithms for minimum cuts and maximum flows in planar networks, J.

ACM 3 4 (1987) 950-967.

[125] J O N E S , N.D. and W . T . L A A S E R , Complete problems for deterministic polynomial time, Theoret.

Comput. Sei. 3 (1977) 105-117.

[126] K A L T O F E N , Ε., Uniform closure properties of P-computable functions, in: Proc. 18th Ann. ACM

Symp. on Theory of Computing (1986) 330-337.

[127] K A L T O F E N , Ε., M.S. K R I S H N A M O O R T H Y and B.D. S A U N D E R S , Fast parallel computation of Hermite

and Smith forms of polynomial matrices, SIAM J. Alg. Discrete Methods 8 (1987) 683-690.

[128] K A L T O F E N , Ε. and B.D. S A U N D E R S , Parallel algorithms for matrix normal forms, Report No. 88-6,

Dept. of Computer Science, RPI, Troy, NY, 1988.

[129] K A N E V S K Y , A. and V. R A M A C H A N D R A N , Improved algorithms for graph four-connectivity, in: Proc.

28th Ann. IEEE Symp. on Foundations of Computer Science (1987) 252-259.

[130] K A N N A N , R., G.L. M I L L E R and L. R U D O L P H , Sublinear parallel algorithm for computing the greatest

common division of two integers, in: Proc. 25th Ann. IEEE Symp. on Foundations of Computer Science

(1984) 7-11.

[131] K A O , M., All graphs have cycle separators and planar directed depth-first search is in D N C , in: VLSI

Algorithms and Architectures, Proc. 3rd Aegean Workshop on Computing, Lecture Notes in Computer

Science, Vol. 319 (Springer, Berlin, 1988) 53-63.

[132] K A O , M. and G. S H A N N O N , Local reorientation, global order, and planar topology, in: Proc. 21st Ann.

ACM Symp. on Theory of Computing (1989) 286-296.

[133] K A R L I N , A.R. and E. U P F A L , Parallel hashing—an efficient implementation of shared memory in:

Proc. 18th Ann. ACM Symp. on Theory of Computing (1986) 160-168.

[134] K A R L O F F , H.J., A Las-Vegas RNC algorithm for maximum matching, Combinatorica 6 (1986)

387-392.

[135] K A R L O F F , H.J. and W . L . Ruzzo , The iterated mod problem, Inform, and Comput. 8 0 (1989) 193-204.

[136] K A R L O F F , H.J. and D.B. S H M O Y S , Efficient parallel algorithms for edge coloring problems, J.

Algorithms 8 (1987) 39-52.

[137] K A R P , R.M. and M.O. R A B I N , Efficient randomized pattern-matching algorithms, IBM J. Res. Dev. 3 1

(1987) 249-260.

[138] K A R P , R.M., E. U P F A L and A. W I G D E R S O N , Constructing a perfect matching is in random NC,

Combinatorica 6 (1986) 35-48.

[139] K A R P , R.M., E. U P F A L and A. W I G D E R S O N , The complexity of parallel search, J. Comput. System. Sei.

36(2) (1988) 225-253.

[140] K A R P , R.M. and A. W I G D E R S O N , A fast parallel algorithm for the maximal independent set problem,

J. ACM 3 2 (1985) 762-773.

[141] K A S A M I , T., An efficient recognition and syntax—analysis algorithm for context-free languages,

Science Report AFCRL-65-758, Air Force Cambridge Research Lab., Bedford, MA, 1965.

[142] K L E I N , P.N., Efficient parallel algorithms for chordal graphs, in: Proc. 29th Ann. IEEE Symp. on

Foundations of Computer Science (1988) 150-161.

[143] K L E I N , P.N. and J.H. R E I F , An efficient parallel algorithm for planarity, in: Proc. 27th Ann. IEEE

Symp. on Foundations of Computer Science (1986) 465-477.

[144] K L E I N , P.N. and J.H. R E I F , Parallel time O(logn) acceptance of deterministic CFLs on an

exclusive-write P-RAM, SIAM J. Comput. 1 7 (1988) 463-485.

[145] K O S A R A J U , S.R. and A.L. D E L C H E R , Optimal parallel evaluation of tree-structured computations by

raking, in: VLSI Algorithms and Architectures, Proc. 3rd Aegean Workshop on Computing, Lecture

Notes in Computer Science, Vol. 319 (Springer, Berlin, 1988) 101-110.

[146] K O Z E N , D., U.V. V A Z I R A N I and V.V. V A Z I R A N I , N C algorithms for comparability graphs, interval

graphs, and testing for unique perfect matching, in: Proc. 5th Conf on Foundations of Software

Technology and Theoretical Computer Science, Lecture Notes in Computer Science, Vol. 206

(Springer, Berlin, 1985) 496-503.

938 R . M . K A R P , V. R A M A C H A N D R A N

[147] K O Z E N , D. and C.-K. Y A P , Algebraic cell decomposition in NC, in: Proc. 26th Ann. IEEE Symp. on

Foundations of Computer Science (1985) 515-521.

[148] K U C E R A , L., Parallel computation and conflicts in memory access, Inf. Proc. Letters 14(1982) 93-96.

[149] L A D N E R , R.E., The circuit value problem is log space complete for P, SI G ACT News 7(2) (1975) 18-20.

[150] L A D N E R , R.E. and M.J. F I S C H E R , Parallel prefix computation, J. ACM 27 (1980) 831-838.

[151] L A N D A U , G.M. and U. V I S H K I N , Introducing efficient parallelism into approximate string matching

and a new serial algorithm, in: Proc. 18th Ann ACM Symp. on Theory of Computing (1986) 220-230.

[152] L E V , G.F., N. P I P P E N G E R and L.G. V A L I A N T , A fast algorithm for routing in permutation networks,

IEEE Trans. Comput. 30 (1981) 93-100.

[153] Li, M. and Y. Y E S H A , New lower bounds for parallel computation, Inform, and Comput. 73 (1987)

102-128.

[154] L I N G A S , A. and M. K A R P I N S K I , Subtree isomorphism and bipartite perfect matching are mutually

NC-reducible, Report No. 856-CS, Institut für Informatik, Universität Bonn, 1986.

[155] L I T O W , B.E. and G.I. D A V I D A , O(log(n)) parallel time finite field inversion, in: VLSI Algorithms and

Architectures, Proc. 3rd Aegean Workshop on Computing, Lecture Notes in Computer Science, Vol.

319 (Springer, Berlin, 1988) 74-80.

[156] L O V Â S Z , L., Computing ears and branchings in parallel, in: Proc. 26th Ann. IEEE Symp. on

Foundations of Computer Science (1985) 464-467.

[157] L U B Y , M., A simple parallel algorithm for the maximal independent set problem, SIAM J. Comput. 15

(1986) 1036-1053.

[158] L U B Y , M., Removing randomness in parallel computation without a processor penalty, in: Proc. 29th

Ann. IEEE Symp. on Foundations of Computer Science (1988) 162-173.

[159] L U E K E R , G.S., N. M E G I D D O and V. R A M A C H A N D R A N , Linear programming with two variables per

inequality in poly-log time, in: Proc. 18th Ann. ACM Symp. on Theory of Computing (1986) 196-205.

[160] L U K S , E.M., Parallel algorithms for permutation groups and graph isomorphism, in: Proc. 27th

Ann. IEEE Symp. on Foundations of Computer Science (1986) 292-302.

[161] L U K S , E.M. and P. M C K E N Z I E , Fast parallel computation with permutation groups, in: Proc. 26th

Ann. IEEE Symp. on Foundations of Computer Science (1985) 505-514.

[162] M A O N , Y., B. S C H I E B E R and U. V I S H K I N , Parallel ear decomposition search (EDS) and si-numbering

in graphs, Theoret. Comput. Sei. 47 (1986) 277-298.

[163] M A Y R , E.W., The dynamic tree expression problem, in: S.K. Tewksbury, B .W. Dickinson and S.C.

Schwartz, eds. Concurrent Computations: Algorithms, Architecture, and Technology (Plenum, New

York, 1988) 157-180.

[164] M A Y R , E. W . and A. S U B R A M A N I A N , The complexity of circuit value and network stability, in: Proc. 4th

Ann. Conf. on Structure in Complexity Theory (1989) 114-123.

[165] M C K E N Z I E , P. and S.A. C O O K , The parallel complexity of the abelian permutation group membership

problem, in: Proc. 24th Ann. IEEE Symp. on Foundations of Computer Science (1983) 154-161.

[166] M E H L H O R N , Κ . and U. V I S H K I N , Randomized and deterministic simulation of PRAMs by parallel

machines with restricted granularity of parallel memories, Acta Inform. 21 (1984) 339-374.

[167] M E Y E R A U F D E R H E I D E , F. and A. W I G D E R S O N , The complexity of parallel sorting, SIAM J. Comput.

16 (1987) 100-107.

[168] M I L L E R , G.L. and V. R A M A C H A N D R A N , Efficient parallel ear decomposition with applications,

Manuscript, MSRI, Berkeley, CA, 1986.

[169] M I L L E R , G.L. and V. R A M A C H A N D R A N , A new graph triconnectivity algorithm and its parallelization,

in: Proc. 19th Ann. ACM Symp. on Theory of Computing (1987) 335-344.

[170] M I L L E R , G.L., V. R A M A C H A N D R A N and E. K A L T O F E N , Efficient parallel evaluation of straight-line

code and arithmetic circuits, SIAM J. Comput. 17 (1988) 687-695.

[171] M I L L E R , G.L. and J . H . R E I F , Parallel tree contraction and its application, in: Proc. 26th Ann. IEEE

Symp. on Foundations of Computer Science (1985) 478-489.

[172] M I L L E R , G.L. and S. T E N G , Dynamic parallel complexity of computational circuits, in: Proc. 19th Ann.

ACM Symp. on Theory of Computing (1987) 254-263.

[173] M I Y A N O , S., The lexicographically first maximal subgraph problems: P-completeness and N C

algorithms, Manuscript, Universität Paderborn, Paderborn, Fed. Rep. Germany, 1986.

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 939

[174] M U L M U L E Y , K., A fast parallel algorithm to compute the rank of a matrix over an arbitrary field,

Combinatorica 7 (1987) 101-104.

[175] M U L M U L E Y , K., U.V. V A Z I R A N I and V.V. V A Z I R A N I , Matching is as easy as matrix inversion, in: Proc.

19th Ann. ACM Symp. on Theory of Computing (1987) 345-354.

[176] N A T H , D. and S.N. M A H E S H W A R I , Parallel algorithms for the connected components and minimal

spanning tree problems, Inf. Proc. Letters 1 4 (1982) 7-11.

[177] N I S A N , N . , C R E W PRAMs and decision trees, in: Proc. 21st Ann. ACM Symp. on Theory of Computing

(1989) 327-335.

[178] N I S A N , N. and D. S O R O K E R , Parallel algorithms for zero-one supply-demand problems, SIAM J.

Discrete Math. 2 (1989) 108-125.

[179] O F M A N , Y U . , On the algorithmic complexity of discrete functions, English translation in: Sov. Phys.

Dokl. 7 (1963) 589-591; original in: Dokl. Akad. Nauk SSSR 1 4 5 (1963) 48-51.

[180] P A N , V., Fast and efficient algorithms for the exact inversion of integer matrices, in: Proc. 5th Ann.

Conf on Foundations of Software Technology and Theoretical Computer Science, Lecture Notes in

Computer Science, Vol. 206 (Springer, Berlin, 1985) 504-521.

[181] P A N , V. and J. R E I F , Efficient parallel solution of linear systems, in: Proc. 17th Ann. ACM Symp. on

Theory of Computing (1985) 143-152.

[182] P A R B E R R Y , I., Parallel Complexity Theory (Pitman, London, 1987).

[183] P A T E R S O N , M.S., Improved sorting networks with O (l o g N) depth, Research Report 89, Dept. of

Computer Science, Univ. of Warwick, Coventry, 1987.

[184] P I P P E N G E R , N., On simultaneous resource bounds, in: Proc. 20th Ann. IEEE Symp. on Foundations of

Computer Science (1979) 307-311.

[185] P I P P E N G E R , N., The complexity of computations by networks, IBM J. Res. Dev. 31 (1987) 235-243.

[186] P I P P E N G E R , N., Communication networks, in: J. van Leeuwen, ed., Handbook of Theoretical Computer

Science, Vol. A (North-Holland, Amsterdam, 1990) 805-833.

[187] P R A T T , V.R. and L.J. S T O C K M E Y E R , A characterization of the power of vector machines, J. Comput.

System Sei. 1 2 (1976) 198-221.

[188] P R E P A R A T A , F.P. and D.V. S A R W A T E , An improved parallel processor bound in fast matrix inversion,

Inf. Proc. Letters 7 (1978) 148-150.

[189] R A M A C H A N D R A N , V., Fast parallel algorithms for reducible flow graphs, in: S.K. Tewksbury, B.W.

Dickinson and S.C. Schwartz, eds., Concurrent Computations: Algorithms, Architecture, and Tech-

nology (Plenum, New York, 1988) 117-138.
[190] R A M A C H A N D R A N , V. and U. V I S H K I N , Efficient parallel triconnectivity in logarithmic time, in: VLSI

Algorithms and Architectures, Proc. 3rd Aegean Workshop on Computing, Lecture Notes in Computer
Science, Vol. 319 (Springer, Berlin, 1988) 33-42.

[191] R A N A D E , A.G., How to emulate shared memory, in: Proc. 28th Ann. IEEE Symp. on Foundations of

Computer Science {mi) 185-194.
[192] R E G H B A T I (A R J O M A N D I) , E. and D.G. C O R N E I L , Parallel computations in graph theory, SIAM J.

Comput. 7 (1978) 230-237.

[193] R E I F , J.H., Parallel algorithms for graph isomorphism, Tech. Report TR-14-83, Aiken Computation

Laboratory, Harvard. Univ. Cambridge, MA, 1983.
[194] R E I F , J.H., Symmetric complementation, J. ACM 3 1 (1984) 401-421.

[195] R E I F , J.H., Depth-first search is inherently sequential, Inf. Proc. Letters 2 0 (1985) 229-234.
[196] R E I F , J.H., An optimal parallel algorithm for integer sorting, in: Proc. 26th Ann. IEEE Symp. on

Foundations of Computer Science (1985) 496-504.
[197] R E I F , J.H., Logarithmic depth circuits for algebraic functions, SIAM J. Comput. 1 5 (1986) 231-242.
[198] R E I F , J. and S. S E N , Polling: a new randomized sampling technique for computational geometry, in:

Proc. 21st Ann. ACM Symp. on Theory of Computing (1989) 394-404.
[199] R E I F , J. and S. T A T E , Optimal size integer division circuits, in: Proc. 21st Ann. ACM Symp. on Theory

of Computing (1989) 264-273.
[200] R E I F , J.H. and L.G. V A L I A N T , A logarithmic time sort for linear size networks, J. ACM 3 4 (1987)

60-76.
[201] R E I S C H U K , R., A fast probabilistic sorting algorithm, SIAM J. Comput. 14 (1985) 396-409.

940 R . M . K A R P , V. R A M A C H A N D R A N

[202] Ruzzo , W.L., Tree-size bounded alternation, J. Comput. System Sei. 2 1 (1980) 218-235.

[203] Ruzzo , W.L., On uniform circuit complexity, J. Comput. System. Sei. 2 2 (1981) 365-383.

[204] S A V A G E , J . E , The Complexity of Computing (Wiley, New York, 1976).

[205] S A V A G E , C . and J. J A J A \ Fast, efficient parallel algorithms for some graph problems, SIAM J. Comput.

1 0 (1981) 682-691.

[206] S A V I T C H , W.J. and M.J. S T I M S O N , Time bounded random access machines with parallel processing, J.

ACM 2 6 (1979) 103-118.

[207] S C H I E B E R Β. and U. V I S H K I N , On finding lowest common ancestors: simplification and paralleliza-

tion, in: VLSI Algorithms and Architectures, Proc. 3rd Aegean Workshop on Computing, Lecture Notes

in Computer Science, Vol. 319 (Springer, Berlin, 1988) 111-123.

[208] S C H Ö N H A G E , A. and V. S T R A S S E N , Schnelle Multiplikation grosser Zahlen, Comput. 7 (1971)

281-292.

[209] S C H W A R T Z , J . T , Fast probabilistic algorithms for verification of polynomial identities, J. ACM 2 7

(1980) 701-717.

[210] S E I F E R A S , J , Machine-independent complexity theory, in: J. van Leeuwen, e d . Handbook of

Theoretical Computer Science, Vol. A (North-Holland, Amsterdam, 1990).

[211] S H A N K A R , N. and V. R A M A C H A N D R A N , Efficient parallel circuits and algorithms for division, Inf. Proc.

Letters 2 9 (1988) 307-313.

[212] S H I L O A C H , Y. and U. V I S H K I N , Finding the maximum, merging, and sorting in a parallel computation

model, J. Algorithms 2 (1981) 88-102.

[213] S H I L O A C H , Y. and U. V I S H K I N , An O(logn) parallel connectivity algorithm, J. Algorithms 3 (1982)

57-67.

[214] S I M O N , J , On feasible numbers, in: Proc. 9th Ann. ACM Symp. on Theory of Computing (1977)

195-207.

[215] S M I T H , J .R, Parallel algorithms for depth-first searches: I. planar graphs, SIAM J. Comput. 15(1986)

814-830.

[216] S M O L E N S K Y , R, Algebraic methods in the theory of lower bounds for Boolean circuit complexity, in:

Proc. 19th Ann. ACM Symp. on Theory of Computing (1987) 77-82.

[217] S N I R , M , On parallel searching, SIAM J. Comput. 1 4 (1985) 688-708.

[218] S O R O K E R , D , Fast parallel algorithms for finding hamiltonian paths an cycles in tournaments, J.

Algorithms 9 (1988) 276-286.

[219] S O R O K E R , D , Fast parallel strong orientation of mixed graphs and related augmentation problems, J.

Algorithms 9 (1988) 205-223.

[220] S T O C K M E Y E R , L. and U. V I S H K I N , Simulation of parallel random access machines by circuits, SIAM J.

Comput. 1 3 (1984) 409-422.

[221] T A R J A N , R.E. and U. V I S H K I N , An efficient parallel biconnectivity algorithm, SIAM J. Comput. 1 4

(1985) 862-874.

[222] T R A H A N , J , Instruction sets for parallel random access machines, Ph. D . Thesis, Coordinated Science

Lab, Univ. of Illinois, Urbana, IL, 1988.

[223] T R A H A N , J , V. R A M A C H A N D R A N and M.C. Loui, The power of parallel random access machines with

augmented instruction sets, in: Proc. Fourth Ann. Conf. on Structure in Complexity Theory (1989)

97-103.

[224] T S I N , Y.H. and F.Y. C H I N , Efficient parallel algorithms for a class of graph theoretic problems, SIAM

J. Comput. 1 3 (1984) 580-598.

[225] T U T T E , W.T, How to draw a graph, Proc. London Math. Soc. 1 3 (1963) 743-767.

[226] U L L M A N , J . D . and A. V A N G E L D E R , Parallel complexity of logical query programs, Algorithmica

3 (1988) 5-42.

[227] U P F A L , E , A probabilistic relation between desirable and feasible models of parallel computation, in:

Proc. 16th Ann. ACM Symp. on Theory of Computing (1984) 258-1265.

[228] U P F A L , E. and A. W I G D E R S O N , How to share memory in a distributed system, J. ACM 3 4 (1987)

116-127.

[229] V A L I A N T , L . G , Parallelism in comparison problems, SIAM J. Comput. 4 (1975) 348-355.

[230] V A L I A N T , L . G , Parallel computation, in: Proc. 7th IBM Symp. on Mathematical Foundations of

Computer Science (1982) 173-189.

P A R A L L E L A L G O R I T H M S F O R S H A R E D - M E M O R Y M A C H I N E S 941

[231] V A L I A N T , L.G., S. S K Y U M , S. B E R K O W I T Z and C. R A C K O F F , Fast parallel computation of polynomials

using few processors, SIAM J. Comput. 1 2 (1983) 641-644.

[232] V A Z I R A N I , V . V . , N C algorithms for computing the number of perfect matchings in K 3) 3- free graphs

and related problems, Computer Science Dept., Cornell Univ., Ithaca, NY, 1987.

[233] V E N K A T E S W A R A N , H. and M. T O M P A , A new pebble game that characterizes parallel complexity

classes, in: Proc. 27th Ann. IEEE Symp. on Foundations of Computer Science (1986) 348-360.

[234] V I S H K I N , U., Implementation of simultaneous memory address access in models that forbid it, J.

Algorithms 4 (1983) 45-50.

[235] V I S H K I N , U., Randomized speed-ups in parallel computation, in: Proc. 16th Ann. ACM Symp. on

Theory of Computing (1984) 230-239.

[236] V I S H K I N , U., On efficient parallel strong orientation, Inf. Proc. Letters 2 0 (1985) 235-240.

[237] V I S H K I N , U., Optimal parallel pattern matching in strings, Inform, and Control 6 7 (1985) 91-113.

[238] V I S H K I N , U. and A. W I G D E R S O N , Trade-offs between depth and width in parallel computation, SIAM

J. Comput. 1 4 (1985) 303-314.

[239] V I T T E R , J.S. and R.A. S I M O N S , New classes for parallel complexity: a study of unification and other

complete problems for P, IEEE Trans, on Computers 3 5 (1986) 403-418.

[240] W A L L A C E , C.S., A suggestion for a fast multiplier, IEEE Trans. Comput. 1 3 (1964) 14-17.

[241] W H I T N E Y , H., Non-separable and planar graphs, Trans. Amer. Math. Soc. 3 4 (1932) 339-362.

[242] W Y L L I E , J.C., The complexity of parallel computations, Ph.D. Dissertation, Computer Science Dept.,

Cornell Univ., Ithaca, NY, 1981.

[243] Y A O , A.C., Separating the polynomial-time hierarchy by oracles; Part I, in: Proc. 26th Ann. IEEE

Symp. on Foundations of Computer Science (1985) 1-10.

[244] Y O U N G E R , D.H., Recognition and parsing of context-free languages in time n
3
, Inform, and Control 1 0

(1967) 189-208.

[245] K R U S K A L , CP . , L. R U D O L P H and M. S N I R , A complexity theory of efficient parallel algorithms, RC

13572 (#60702) , IBM Research Division, 1988.

