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Abstract

In this paper we demonstrate that randomization is
an extremely powerful tool for designing very fast and
efficient parallel algorithms. Specifically, a running
time of O(lg*n) (“nearly-constant”), with high prob-
ability, is achieved using n/lg*n (“optimal speedup”)
processors for a wide range of fundamental problems,
including: (1) support dictionary operations: insert,
delete, lookup; this is the first optimal dictionary algo-
rithm that is in RNC! (2) load balancing (an essential
tool for parallel computation); (3) problems consid-
ered in [33], including hashing, leaders election, linear
approximate compaction and generation of random
permutations; (4) simulation of MAXIMUM (a pow-
erful CRCW PRAM model) on TOLERANT (a weak
CRCW PRAM model); (5) integer chain sorting. We
also give a constant time algorithm which, using n pro-
cessors, approximates the sum of n positive numbers
to within an error which is smaller than the sum by
an order of magnitude. A variety of known and new
techniques are used. New techniques, which are of in-
dependent interest, include estimation of the size of a
set in constant time for several settings, and ways for
deriving super-fast optimal algorithms from super-fast
non-optimal ones.

1 Introduction

An ultimate goal for parallel algorithmics is achiev-
ing constant time parallel algorithms whose number
of processors equals the serial complexity of the prob-
lems being considered. As a compromise, we would
be satisfied with “nearly-constant” time parallel algo-
rithms whose time-processor product (i.e., number of
operations) equals this serial complexity. In view of
several lower bounds for very simple problems, such
as computing the parity of n bits, prospects for even
approaching this goal for a wide range of problems
were unclear.

Nevertheless, we feel that the techniques and results
used and presented in this paper in their entirety form
“a theory” of nearly-constant time parallel algorithms;
the key that enabled this knowledge-base to grow
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into what deserved to be called a theory is “parallel
randomization”. The majority of the paper is devoted
to description of algorithms concretely emphasizing
new contributions. Section 1.2, however, takes a
broader perspective.

1.1 Results

We summarize the main results, each preceded by
a short description of the problem, and followed by
a brief literature review. All algorithms mentioned
below are randomized and perform within the stated
time bounds with high probability.
Dictionary The dictionary problem is to maintain a
data structure which supports the insert, delete, and
membership query instructions. Result: O(lg*n) time!
for a batch of n instructions. using n/lg*n processors
(optimal speedup). Previous Work: a deterministic 2—
3 tree parallel data structure, O(nlgn) operations and
O(lgn) time [35] (non-optimal); a dynamic hashing
data structure [11], optimal (O(n) operations) but not
in RNC (O(n*) time).
Hashing Given a set S C U = {0,...,Q -1},
[S] = n, the hashing problem is to find a one-to-
one function A : S +— [1,dn] (for some constant
d > 1) such that h is represented in O(n) space and
for any # € U, h(z) can be evaluated in constant
time. Result: O(lg*n) time using n/lg*n processors
(optimal speedup). Previous Work: Parallel hashing:
(11, 19, 18, 32, 33]. [33]: O(lg*nlg(lg"n)) expected
time, using an optimal number of processors. [19]:
Q(Ig"n) expected time using n processors for a model
of parallel computation that fits our algorithm.
Approximate Sum Given n numbers, compute an
estimate for their sum which is accurate to within a
factor of (1 4+ B) where § = o(1). Result: Constant
time algorithm on an n-processor machine with g =
1/1g*n for any constant k. Note that the complexity of
exact sum is ©(lgn/lglgn); [2]: lower bound (that can
be shown to hold for probabilistic algorithms); [10]:
deterministic algorithm.

—11;—eTlg(‘)z = llg(lg("‘l)a:) for i > 1, and IgVz = lgz;
lg*s = min{i : Ig{)z < 2}. The function Ig*(-) is extremely
slow increasing and for instance 1g*285536 = 5,
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Load Balancing Given m objects distributed
among n processors, redistribute the objects so that
each processor gets O(1+m/n) objects.  Result:
O(lg*n) time for the load balancing as well as for a
more general “interval allocation” problem (defined
by [26]). Previous Work: Nearly-logarithmic time de-
terministic algorithms: [9, 39). O(lglgn) time: [15];
O(lglgnlg® n/lglglgn) time (also for the interval alloca-
tion problem): [26].

Integer Chain-Sorting Given n integers from [1,n]
create a sorted linked list consisting of all inputs.
Result: O(lg*n) time using n/lg*n processors (opti-
mal speedup). Previous Work: [27]: definition of
the problem and an optimal speedup algorithm of
O(lglgnlg* n/lglglgn) time.

CRCW Simulations Simulate the computation of
a powerful n-processor CRCW-PRAM sub-model on
a weaker one. Result: Simulating an n-processor
MAXIMUM on an (n/lg*n)-processor TOLERANT in
O(lg*n) time and O(nlgn) space (optimal speedup),
and on an (n/(lg*n)?)-processor TOLERANT in
O((lg*n)?) time and O(n) space (optimal speedup).
Previous Work: [6, 7, 13, 16, 17, 29, 32]. The best
time previously achieved for any non-trivial simula-
tion is O(lglgn).

Compaction Given a set of at most m objects with
IDs from [1,n], allocate new IDs from the range
[1,0(m)]. (This problem is also known as the lin-
ear approzimate compaction (LAC) problem or the re-
naming problem.) Result: O(lg*n) time using n/lg’n
processors. This implies a similar result for the ran-
dom permutation problem (see (33]). Previous Work:
[20, 28, 15, 18, 33, 25]. [33]: O(lg"n) time using n
processors and O(lg*nlg(lg*n)) time using an optimal
number of processors.

Leaders Election Given a set of n items and their
partition into m subsets (some empty) such that each
item knows to which subset it belongs, the leaders
election problem is to select for each subset a unique
item (“leader”) from the subset, using a space that
is bounded by some function of n (but not of input
values). Result: O(lg"n) time using n/lg"n processors
and O(n) space on ARBITRARY, O(lg"n) time using
n/lg*n processors and O(nlgn) space on TOLERANT,
and O(lg*n)? time using n/(lg"n)? processors and
O(n) space on TOLERANT. Previous Work: [4, 17,
32, 33]. [4): Q(lgn/lglgn) time deterministic lower
bound for the (easier) problem of element distinciness,
using n processors on PRIORITY. [17]: O(lglgn) time
using n processors, and O(lglgnlg*n) time using an
optimal number of processors; both algorithms are on
TOLERANT and use O(n) space. [33]: O(lg"nlg(lg*n))
expected time using an optimal number of processors
and O(n) space on ARBITRARY.

Optimization Schemes Several families of under-
specified parallel algorithms are considered. Given
an algorithm that is designed to work with a non-
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optimal number of processors, an optimization scheme
enables to convert it into an algorithm that uses
an optimal number of processors. An optimiza-
tion scheme emulates efficiently any algorithm taken
from a broad family, providing a constructive im-
plementation for the methodology which is guided
by Brent’s theorem. Result: (i) O(lg*n) slowdown
for a certain (rather general) type of algorithms
called “loosely specified”; (i) O(lg*nlg*(Ig"n)) ad-
ditive time overhead for “geometric-decaying” algo-
rithms; and (44) O(lg"n) additive time overhead for
“asynchronous geometric-decaying” algorithms. (This
scheme is suitable for all algorithms considered in this
paper.) Previous Work: [25]: O(lglgnlg*n/lglglgn)
slowdown. [33]: O(lg*nlg(lg*n)) additive time over-
head for “task-decaying” algorithms. Concurrent
Work: [22): O(lg’n) slowdown. Our scheme for
the “loosely-specified” algorithm is more general than
the schemes in [22, 25] without compromising perfor-
mance.

Combined Simulation Result The results in this
paper give ways for: (i) efficient simulation of a strong
model of computation by a weaker one, (i) sim-
ulate an algorithm that uses much space by little
space (using the dictionary algorithm), and (i) ig-
nore processors allocations issue (using the optimiza-
tion schemes). This gives much leverage to designer of
parallel algorithms. One may choose to design a par-
allel algorithm on a powerful CRCW model, use large
space, and ignore processors allocations issues; still,
the algorithm may automatically fit a weaker CRCW
PRAM model, become space efficient, and take care
of allocating processors. The only overhead is, with
high probability, a nearly-constant time slowdown.

1.2 The evolving theory

Below we give an overview of the evolving theory of
nearly constant time randomized parallel algorithms
with forward references to the sections where some of
the algorithmic details are described in the paper.

The definitions of the next subsection classify con-
fidence in probabilistic analysis into polynomial and
exponential. Precise degrees of polynomials and expo-
nent parameters are of lesser significance.

Micro-level concepts and techniques that are men-
tioned in Section 3 include: definitions of teams and
anonymous sets, the scattering idea, initial estima-
tions, geometric decomposition, maximum finding,
and table lookup. Section 4 makes more contributions
for estimating the size of an anonymous set (that is,
approximating the number of one’s in a large array,
with a processor allocated to each ‘1’). This problem
enables sometimes replacement of an exact counting
that is inherently slow, as implied by the Q(lgn/lglgn)
lower bound of Beame and Hastad [2]. Constant time
algorithms for estimation under different settings are
given. Further advancement for replacing exact sum
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is made in Section 6, where the sum of n numbers
is estimated in constant time to within a small order
error.

There are several macro-level techniques. The
dominant paradigm that enables O(lg"n) (“nearly-
constant”) time results throughout the paper is pre-
sented in Section 3.2. Its use for the compaction
(LAC) problem and its extension follows. In Section 5
we apply these techniques, together with other ideas,
to get a nearly-constant time algorithm for the load
balancing problem—a fundamental difficulty in paral-
lel computation.

As an application, we design an “optimizer” (given
in Section 8) that can automatically adapt paral-
lel algorithms of a certain (rather general) type to
become processor-efficient. Another optimizer en-
ables to derive O(lg*n) time and optimal speedup
results for the main problems considered in this pa-
per: Taking advantage of some asynchrony prop-
erty of algorithms this second optimizer recalls an
“older” speedup paradigm. Some algorithms actu-
ally have to be redesigned to satisfy this asynchrony
property. Leaders election, hashing (Section 7), inte-
ger chain-sorting (Section 9), and simulation results
(Section 10)—all in nearly-constant time with high
probability—come next.

Finally, our most involved result so far is a an
algorithm implementing the classical dictionary data
type in Section 2. A number of low-level and high-
level new ideas and considerations play a role in this
algorithm. In some sense this algorithm is the high
point of the evolving theory.

Figure 1 demonstrates part of the relationships
between the algorithms and techniques considered in
this paper (excluding optimization schemes).

apprx._,. load
sum alanc.

\

estimation

log* paradigm

Figure 1: Relations among nearly constant time algo-
rithms.

1.3 Analysis of randomized algorithms

In the present extended abstract we use the fol-
lowing, somewhat coarse, terminology for statements
regarding performance of randomized algorithms: an
event A = A(n) is n-negligible if Prob (A) = o(n™¢)
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for some constant ¢ > 0. We say that the comple-
ment event A is n-polynomial overwhelming, or n-
polynomial, in short, and the event is said to occur
with n-polynomial probability.

We will be content with showing that algorithms for
a problem of size n succeed with n-polynomial prob-
ability (although somewhat higher success probabili-
ties are obtainable occasionally). Accordingly, in the
algorithms analysis we will ignore events that are n-
negligible.

We say that an event A = A(n) is n-ezponential if
Prob(4) > 1 — o(2~™") for some constant ¢ > 0,
and the event is said to occur with n-ezponential
probability.

Many of the random variables we will be dealing
with are such that the probability they deviate signifi-
cantly from their expected value is very small. This is
by large a result of Chernoff and Hoeffding bounds?,
which using the above terminology are given as fol-
lows.

Let 2155 %n be independent random variables,

E_lz., and 7 = E(z).
Fact 1.1. (Chernoff) If z; € {0,1} then for all
€,0<e<1, wehave (1~ €)FT <z < (1 + €)T with
(e%)-exponentia] probability.
A generalization to the Chernoff bounds is
Fact 1.2. (Hoeffding) If z; € [0,n°] for some § < 1
and & = Q(n) then, for all fixed A\, A > e, we have
z < AZ with n-exponential probability.

2 Dictionary

A dictionary data structure supports the instruc-
tions insert, delete, and lookup of keys that are drawn
from some finite universe U. Let U = {0,...,Q — 1},
where @ is assumed to be prime. A semi-dictionary
supports only the lookup and insert instructions. A
parallel dictionary handles one batch of keys at a time;
each batch consists of an array of keys and an instruc-
tion: insert, delete, or lookup. The parallel dictionary
processes a batch using several processors. For the
sake of brevity, henceforth dictionary will mean paral-
lel dictionary
Theorem 2.1. There exists a dictionary which, us-
ing p processors, has the following features with p-
polynomial probability:

(a) At all times, the total space used by the dictionary
is linear in the number of keys currently stored in the
dictionary.

(b) Any batch of plg* p keys is processed in O(lg" p) time
(optimal speedup).

(c) A lookup instruction for a batch of p keys is
processed in constant time (optimal).

ZSometimes, the Martingale Tail Inequality (Azuma’s Theo-
rem) is applied for fine analysis of certain algorithmic details.
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(d) If an additional storage space of size O(p) is avail-
able then a batch of p/1g®¥)p keys is processed in O(3)
time.

2.1 Overview

The basic data structure The structure of the
dictionary is based on the 2-level hashing scheme of
Fredman, Komlés, and Szemerédi [14]. Let S C U
be the set of keys currently stored in the dictionary.
A first-level function f : U — [L,N], N = O(|S]),
partitions S into N buckets. Bucket B; = B;i(f) is
defined as f~1(i) N S; in words, the set of keys in S
mapped by f into i. Each bucket B; has a private
memory block M; and a private second-level function
gi; the keys in B; are mapped by g; into M; in a one-
to-one manner. Given any z € U the scheme maps it
into a memory cell My(s)[95(z)(2)]. The mapping is
injective with respect to g', since no two keys from S
are mapped into the same memory cell. The scheme
stores each key ¢ € S in its memory cell. Thus, each
cell in each of the memory blocks is either empty or
has a single key from S. The function g;, as well as
a pointer to the memory block M;, are stored in a
(bookkeeping) array of size N. Given any z € U the
instruction lookup(z) is carried out in constant-time
by examining cell My(z)[g7(z)(%)]-

Updates to the data structure Deletions are
easy: A key in S is deleted by simply emptying its
associated memory cell. Insertions, however, will add
new keys to buckets, and some second-level functions
may map several keys to the same memory cell,
violating the injectiveness of the mapping. Let s
be a set of new keys to be inserted (S'N S = 0).
We say that a key z € S’ affects B; if i = f(z).
All affected buckets are discarded from the dictionary
and all their keys are retrieved for reinsertion. These
buckets are allocated new memory blocks and new
second level functions. Other buckets are not changed.
Let S = S'U{By) | z € S'} be the set of keys which
are either new or {)elong to affected buckets. The
insertion of S’ is done by building a new dictionary
for S, using the existing first-level function. For the
actual implementation the following issues need to be
addressed: (a) how to perform the retrieval; (b) how
to build the new dictionary for S”. We first describe
the high level management of the dictionary, and then
elaborate on these issues.

2.2 Macro level maintenance

Rebuilding the data structure There are two
cases where the dictionary algorithm starts to rebuild
the whole data structure from scratch. Case 1. Time-
performance degradation. The first-level function is
selected at random from an appropriate class of hash
functions, and with high probability satisfies certain
properties that guarantee certain time performance.
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We keep track of the algorithm time performance. If it
exceeds a certain limit, indicating a possible failure in
the first-level function, we select a new first-level func-
tion and start building the dictionary from scratch.
Case 2. Space-performance degradation. The first-
level function is the dominant factor in determining
the amount of space used by the dictionary. Since we
would like the space used by the algorithm to be linear
in the number of keys actually stored, it becomes nec-
essary to replace the first-level function whenever the
number of stored keys exceeds or drops under certain
limits. Specifically, when too many cells are emptied
as a result of delete instructions, the memory usage by
the dictionary should reflect this, and for this purpose
reorganization is needed. In addition, any first-level
function has a certain upper bound on the number
of keys that it can support and still maintain specific
performance bounds; so once the total number of keys
exceeds a certain bound it should be replaced by a new
function. When replacing the first-level function, the
entire dictionary must be reconstructed afresh.
Monitoring the number of keys The number of
keys in the dictionary is changing dynamically, and
for Case 2 above, we need to monitor it often. The
next few sections develop tools that enable estimation
of the number of keys, as discussed below. Each
processor holds a count of the number of insert and
delete instructions that it had so far (for multiple keys,
only one representative takes the key into account).
At each step, we compute the approximate sum of
this count, by using Theorem 6.1. As long as the
number of steps is at most polylogarithmic in p, this
will give at each step a linear estimate of the size
of the dictionary, with high probability. To support
a dictionary that runs longer than that, we run in
the background a logarithmic time algorithm for exact
sum that enables to update the size of the dictionary
once every O(lgn) steps. Comment: In fact, even the
(simpler) estimation algorithm of Corollary 4.1 can be
used instead of the approximate sum.

How to mask offline activity in an online algo-
rithm In cases 1 and 2 above, where a new data
structure is being built, it takes considerable time
from the moment the dictionary algorithm starts to re-
build an alternative data structure until this new data
structure is ready to replace the existing one. Specif-
ically, rebuilding the dictionary takes at least |S|/p
time while our objective is to have each batch of m
arbitrary instructions be executed with high probabil-
ity in O(m/p +1g" p) time.

The idea is to spread the overhead between all
insertion steps, by slowing each one of them by a
constant factor and run a rehash computation in the
“background”. Related ideas are reviewed in [34].

We first consider a semi-dictionary. We will have
two dictionaries in parallel: Suppose that at some
point in time |S| = 2* + 1 for some integer i. A
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typical situation is where we have a data structure
that can handle up to 2'*! keys; we call it the
current dictionary. At this point in time a second
data structure will start to be built. It will be
designed to handle up to 2:+? keys; this is the support
dictionary. When the size of |S| exceeds 2°+!, the
support dictionary will be ready and at this point in
time it will become the current dictionary. A new
support dictionary will start to be constructed then.
During the time in which S increases from 2 + 1 to
2i+1 the current dictionary runs in a fraction o of its
speed—operating only in one out of every 1/« time
units. In the other time units the construction of the
support dictionary progresses. The exact value of «
is set to satisfy certain timing goals. Eventually, the
last keys to make the set of size 2¢+! will be inserted
simultaneously by both dictionaries. This will enable
the support dictionary to become a current dictionary.

Similar ideas can be applied to cope with a shrink-
ing dictionary, following delete operations, and with
dictionaries that may expand and shrink in an unpre-
dictable way.

2.3 Inserting new and retrieved keys

As explained above, a batch of insertion instruc-
tions is implemented by building a new dictionary for
a set consisting of new and retrieved keys, using the
existing first-level function. The new dictionary will
use space linear in the set size and will be built us-
ing a parallel hashing algorithm. More precisely, only
part of a parallel hashing algorithm is used: assum-
ing a first-level function is fixed, it finds second-level
functions for the elements in the set (namely, for all
elements in affected buckets), and allocates a memory
block to every affected bucket.

An O(lg'nlg(lg"n)) expected time hashing algo-
rithm was given in [33]. It can be used in the dictio-
nary but only to get ezpected amortized time bounds.
In order to get O(Ig*n) execution time with high prob-
ability, we give in Section 7 an improved parallel hash-
ing algorithm, that will also enable the dictionary al-
gorithm work on weaker models of CRCW PRAM.

2.4 Retrieving the affected buckets

For each affected bucket, we need to show how to:
(1) retrieve all its keys, and (2) allocate a memory
block which is big enough.

Number of retrieved keys By Fact 7.1, the num-
ber of retrieved keys is O(|S'|) with |S'|-polynomial
probability (where S’ is the set of new keys to be in-
serted).

How to retrieve old keys Among the new keys of
each affected bucket, one will be selected to represent
the bucket and be “responsible” for retrieving the old
keys in this bucket. This can be done by a leaders-
election algorithm (Theorem 7.2). The main difficulty
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in retrieval is that old keys are scattered in a memory
block that might be much larger than the bucket size
(in fact, it is not uncommon that it will be exponential
in its size). A representative processor (one which is
standing by the representative new key) will retrieve
the entire memory block of the affected bucket, as
follows: the memory block is considered as an array
of tasks, in the custody of the retrieving processor.
A load balancing algorithm is used (Theorem 5.1) to
distribute the tasks evenly among all the processors.
In the process, dummy tasks (i.e., empty cells in the
memory block) are discarded and only old keys remain.
By computing the maximum actual load of a single
processor (in constant time [38]) we derive the size
of memory that will be used for the static hashing
algorithm.

The total size of a retrieved memory blocks
The distribution of buckets sizes in the first level
function, as proved in Fact 7.1, is used to prove the
following.

Lemma 2.1. The sum of the sizes of retrieved mem-
ory blocks (of affected buckets) is O(]|S']|) with |S'|-
polynomial probability.

2.5 Reducing memory space require-
ments of algorithms

A standard application of a data structure that
supports the semi-dictionary operations is as follows.
Take any (parallel) algorithm, and implement its
memory using a semi-dictionary. The amount of space
being used will be linear in the number of the memory
cells actually used. Each time unit of the algorithm
will be implemented within the time bound for one
batch of semi-dictionary instructions.

3 Basic Concepts and Techniques

3.1 On teams and anonymous sets

Teams In a p-processor PRAM, processors are num-
bered Py,...,P,. This numbering is often used as a
cooperation tool in parallel algorithms. A team is
defined as a set of processors with consecutive in-
dices, such that the starting and the ending indices
are known to all members of the set. A team is allo-
cated to a task by appointing its first processor (the
team “leader”) to the task. In many cases it will be
implicitly assumed that the p PRAM’s processors are
divided into teams and that each team has a private
memory linear in its size. The private memory as-
sumption does not add more than O(p) memory to
the whole machine, and it allows the team to use its
regular structure in functioning like a sub-PRAM.

An exponential team constant time paradigm
Suppose a small problem is given to a very large team
on a CRCW. Then the range of input values gives
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crude limits on the set of possible output sequences.
The algorithm proceeds by separately examining each
output sequence against the input. We demonstrate
the paradigm with the prefix sum problem.

Fact 3.1. Using (a team of) 9% processors, the prefix
sum of k®() integers of k°() bits each can be com-
puted in constant time.

Anonymous sets In the algorithms presented here,
we often run into situations where the challenge is
to use processors that are available in a concerted
manner. One form in which processors are available
leads to the following definition: A set of processors @
is anonymous if each processor in the set knows that
it belongs to ® and no processor outside the set claims
that it belongs to the set; no other information, such
as cardinality, ordinal place, and membership of other
processors is assumed to be available to a processor.
A partition of the processors into several anonymous
gets is such that each processor belongs to exactly one
of the sets. An anonymous set is allocated a resource
(e.g., memory, team of processors) if all processors in
it know this allocation, and no other processor claims
this resource.

Scattering A scatter of an anonymous set of proces-
gors into an array is a primitive operation that does
the following. Each processor selects independently
and with uniform distribution an array position into
which it tries to write its name. A processor collides
if some other processor selected the same cell. If a
write-collision in such an attempt occurs, the collid-
ing processors know about that. A scatter is injective
if no processor collides; it is covering if all the array
cells are selected.

Lemma 3.1. In a scatter of an anonymous set @,
|®| = p, into an array of size k,

() Prob (scatter is injective) > 1 — w2 /k.

(b) Prob (scatter is covering | k < p/4) > 1—keH/6k,
Estimations An estimation of a positive quantity p
is denoted by fi. The relative error of the estimation
is |fi — p|/u. We say that 7 is an e-estimate if its
relative error is at most €. 7 is a linear-estimate
if max(fi/p, p/B) is bounded by a constant; fiis a
polynomial-estimate of p if lgfi is a linear-estimate
of lgp.

Lemma 3.2. (self estimation) Suppose that an
anonymous set ®, |®| = p, Is allocated an array of
size 2lgn. Then & can compute in constant time an
estimate fi, such that fi is a linear estimate with con-
stant probability and a polynomial estimate with p-
polynomial probability.

The algorithm for Lemma, 3.2 is inspired by [23, 29,
43, 45). A tool called geometric decomposition is used
(under different names) in all these papers.
Geometric decomposition A geometric decompo-
sition of a set of processors @ is performed by having
each processor in & choose to belong to exactly one
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subset ®; with probability 2—%, for ¢ > 1. For imple-
mentation purpose, the number of subsets @1, ®3,...,
into which the decomposition is done, is bounded by
some d, and with probability 2~¢, no subset is selected.
Maximum finding

Fact 3.2. ([17], generalizing [38]) Let ® be an
anonymous set, |®| < k, such that every P € ® has
a value val(P). If @ is allocated with an array of size
k¢, for some constant e > 0, then max {val(P) | P € ®}
can be computed in constant time, with k-polynomial
probability.

3.2 The log-star paradigm

Consider an abstract problem whose input is an ar-
ray of n active items. A single processor can deac-
tivate an active item with constant probability in a
single time unit; ¢ (independent) processors can deac-
tivate an active item with g-exponential probability in
a single time unit. The problem is to deactivate all
items.

The log-star paradigm consists of 1g* n basic rounds.
The number of active items at the beginning of round
i is at most n/q¢, where {g;} is a sequence defined by
Qiy1 = 29:, q,,¢ > 0 are sufficiently large constants,
and € > 0 is a constant.

Round i consists of two steps:

allocation: Allocate to each active item a team of size
g;. The allocation succeeds for all but in/q5,, active
items with n-polynomial probability. 6nly allocated
items participate in the next step.
deactivation: Deactivate each participating item. The
deactivation succeeds for all but 1n/gf,, active items
with n-polynomial probability.
How is the paradigm used? Given a concrete
problem, only the deactivation step needs to be im-
plemented. The allocation step of [33] can be used
as is. The deactivation step is implemented using a
deactivation routine; in a deactivation routine a par-
ticipating item becomes inactive with g¢;-exponential
probability (the “deactivation probability”).

In the algorithms that apply the log-star paradigm
the following situation always exists: The participat-
ing items are partitioned into subsets. The deacti-
vation probability of a participating item is pseudo-
independent with respect to all participating items
outside its subset; this means that this deactivation
probability is at most g;-exponential irrespectful of
which subset of these items became deactivated. How-
ever, for our analysis we need an additional condition:
an upper bound, of say z = n® where § < 1 is some -
constant, on the size of each subset.

Then, one iteration of the deactivation routine
suffices for implementing the deactivation step (by
Hoeffding bounds).

To achieve an upper bound of z on each subset,
the following dependency limiting step is performed,
prior to application of the log-star paradigm. ‘Large’
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subsets (of size > n® only) are handled, using the fact
that only (relatively) few such sets (< n1~%) may exist.

The paradigm’s framework was first used in [19] for
an algorithm in a nonstandard model of computation.
The paradigm was first used for PRAM algorithms in
[33]. Allocation of processors o jobs was a fundamental
problem that had to be overcome.

3.3 Compaction

A basic problem that was solved by the log-star
paradigm (and was actually used to demonstrate it)
is the compaction problem. Given is an anonymous
set ®. Let p denote |®|, and assume that m > p is
known. The compaction problem is to find an injective
(one-to-one) mapping from & into an array of size
O(m).

Fact 3.3. ([33]) (global-team compaction) Using a
team of size n, the compaction problem can be solved
in O (Ig"* 1) time, with n-exponential probability.

The deactivation step of the compaction algorithm
satisfies the following:

Fact 3.4, Assume that there are n/q active items and
an array of size O(n), in which at least a constant
fraction of the cells are empty. Then, using a global
team of m processors, each active item can find a
private cell (and thus become inactive) in constant
time, with g-exponential probability.

This step is sometimes used as a basic sub-step of
the deactivation routine in other algorithms (see Sec-
tion 9).

In Fact 3.4 the n processors are required to be given
in a team in order to enable reallocation throughout
the algorithm run. If sufficiently many processors are
given to each item a priori then we have
Lemma 3.3. (allocated-teams compaction) Assume
that to each member of ® there is an allocated
team of size Q(lgu). Then, the compaction problem
can be solved in O (Ig*p) time, with n-exponential
probability.

A generalization of the compaction problem is solv-
ing several such problems simultaneously for several
anonymous sets. In particular, given ¥ anonymous
sets ®; and k arrays D;[1...4m;], where m; > |®;],
i = 1,...,k, the multiple compaction problem is to
find for each set ®; an injective mapping into array
D;. In this abstract, we only need the case k = Ign.
We have
Lemma 3.4, (multiple compaction) Let n
2f=1 |®;| for k < lgn. Then, using n processors, the
multiple-compaction problem can be solved in O(lg"n)
time, with n-polynomial probability.

The algorithm of Lemma 3.4 treats separately small
sets, of size at most lgn, and large sets. For large
sets, a variant of the compaction algorithm (Fact 3.3)
is used. Small sets are treated separately, using
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Team size | Team size | Accuracy Success

per item per set probability
— — linear p-polynomial
— exponential exact p-exponential
— polynomial 1/1g"p p-polynomial
— logarithmic linear lgu-polynomial
v — linear v-exponential

Table 1: Constant time estimations of y—the size of
an anonymous set.

an algorithm for polynomial approzimate compaction
(see [33, 37]) and Fact 3.1.

3.4 Models of computation

As a model of computation we use the concurrent-
read concurrent-write parallel random access machine
(CRCW PRAM) family. The members of this family
differ by the outcome of the event where more than
one processor attempt to write simultaneously into
the same shared memory location: In the TOLERANT
([24]) the content of that cell does not change (it
may be viewed as a CREW with an additional ability
to try concurrent write); in the ARBITRARY ([40])
one of the processors succeeds, and it is not known
in advance which one; in the PrIoRITY ([21]) the
lowest-numbered processor succeeds; in the MAXIMUM
([1]) the processor trying to write the maximum value
succeeds.

Whenever the model of computation is not specified
it is assumed to be ARBITRARY.

4 Size Estimates of Anonymous Sets

The main contribution of this section is an esti-
mation procedure that is suitable for employment in
the log-star paradigm. Given a team of ¢ processors
allocated to each set member, we aim at an estima-
tion algorithm that succeeds with g-exponential prob-
ability. Building towards this, an additional setting,
where a global team is allocated to the set as a whole,
is considered. Interesting consequences are improved
estimation algorithms for a setting where no external
processing power is available (see Corollary 4.1). Pa-
rameters of interest are: accuracy, error probability,
and time complexity. Table 1 summarizes all estima-
tion results.

Global team estimations Let ® be an anonymous
set, |®| = p, which is allocated a team of size v. Let
8,k > 0 be any constants.

Lemma 4.1. If v > 2% then ® can compute in
constant time fi, such that i = u with v-polynomial
probability.
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Proof (Sketch) The algorithm is based on finding
an injective scatter of @ into an array A of size 2k?,
where k = lgv/6 > p. This is done by scattering ®
(Lemma 3.1(a)): first to allocate processors to each
member of ® and then to use the allocated processors
for finding an injective mapping into A. Once ® is
represented in A, Fact 3.1 is used to compute p. L]
Lemma 4.2, If v > p® then ® can compute in
constant time fi, such that the relative error of ji is
at most 1/1g*v with v-polynomial probability.

Proof (Sketch) We assume that u > 1g%**!v (oth-
erwise Lemma 4.1 may be applied). The anonymous
set ® is partitioned, using a geometric decomposition,
into O(lgv) subsets ®,®,,.... Each sub-set is then
allocated a sub-team of size §2 (v/lgv); this sub-team
tries to compute exactly |®;| with v-polynomial proba-
bility, by applying Lemma 4.1 and a guess that |®;] <
1g?**1y. Let £ = min {i: |®;| was computed}, then
clearly £ can be computed in constant time. Our esti-
mate is 2¢|®,].

We have E(|®;|) = p/2°. By Chernoff bounds
(Fact 1.1), the relative error of |®;| with respect to
E(|®:|) is € with €2E (|®;|)-exponential probability.
For the purpose of the proof we choose ¢ = 1/1g%v.
It can be shown that with v-polynomial probability, £
will be such that |®,| ~ 1gZ*+1y. =

Theorem 4.1. If v > lg**’y then & can compute in
constant time fi, such that the relative error of ji is at
most 1/1g¥v with v-polynomial probability.

Proof (Sketch) The proof outline is the similar to
that of Lemma 4.2; instead of applying exponential
team estimation for computing |®;| exactly, the esti-
mation algorithm of Lemma 4.2 is tried on all |®;]|. =
Self estimations We consider settings similar to the
above with the exception that no external team is
available.

Corollary 4.1. The anonymous set ®, with an allo-
cated array of size p°, can compute in constant time
B, such that the relative error of fi is at most 1/1gtv
with v-polynomial probability.

Proof (Sketch) Compute a polynomial estimate f
of p, with p-polynomial probability (Lemma 3.2),
such that i < p. Scatter ® over an array of
size min(f!/3,v%). By Lemma 3.1(b), the scatter
is covering with p-exponential probability, and thus
provides an external team of size v®. We then apply
Theorem 4.1. .
Estimation using a team for each member We
turn now to deal with a setting where a team of size ¢
is allocated to each member of ®. This can be thought
of as having g copies of ®. The first step is to show how
to check an estimate. This checking is useful for the
following reason. Using Lemma 3.2 a linear estimate
can be computed with constant probability. Then, the
probability of success can be amplified by running ¢
estimation algorithms in parallel and then checking
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each estimate. Several checking results were obtained,
all using the fact that an injective mapping into a
“sufficiently large” array can be computed in constant
time with high probability, while an injective mapping
into a “sufficiently small” array does not exist. These
results, together with Lemma 3.2 and using a load
balancing step (Corollary 5.1) lead to

Theorem 4.2. (multiple estimation) Given is a par-
tition of the processors Py, ..., Py, into anonymous sets,
such that each processor is allocated a team of size q.
Then, there exists a constant time algorithm that for
each set 8, |®| = u, computes a linear-estimate with
glgp-exponential probability.

5 Load Balancing

Assume that m independent unit-time tasks are
partitioned among n processors of a PRAM. The in-
put to a processor P; consists of m;, the number of
tasks allocated to this processor (its “load”), together
with a pointer to an array of task’s representations; no
other information about the global partition is avail-
able. The load balancing problem is to redistribute the
tasks among the processors such that each processor
has at most O(1 + m/n) tasks. We have
Theorem 5.1. (load balancing) The load balancing
problem can be solved in O (lg* min(n, m)) time with
n-polynomial probability.

Proof We first assume that m = n. The load
balancing is achieved by finding an embedding of
the processors’ tasks-arrays into distinct segments of
a global array A of size O(n); each tasks-array is
mapped into a segment linear in its size. Part of the
algorithm is based on the O(iglgnlg*n/lglglgn) time
load balancing algorithm of Hagerup [26] and it uses
his idea of “logarithmic standard lengths” [27]. The
main steps are given below. All steps succeed with
n-polynomial probability, and all except for the last
step take constant time.

1. Each processor P; rounds m;, its load, to the nearest
larger power of 2. This step does not increase the total
number of tasks by more than a factor of 2.

2. Define the sequence of anonymous sets {®;}, by
®; = {Pj |mj =2'} and allocate each set ®; with
a team of size |n/lgn]. Let py = |®;]. Using the
teams, compute for each y; an estimate f;, which,
with n-polynomial probability, is a linear-estimate and
greater than p; (Theorem 4.1). )
3. Compute the prefix sums of the sequence {ﬁﬂ'}
(Fact 3.1). Note that the total sum is still O (n).
Based on the prefix sums, partition array A into sub-
arrays A;, such that |A;| = 47;2.

4. Partition each sub-array A; into 4fi; segments of
size 2' each; each segment represents a team; the
segments are represented by an array D;[1...4%].

5. Use Lemma 3.4 to find injective mappings from &;
into D;, for i = 1,...,Ign. If P; € ®; is mapped into
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D;[k] for some k, then the team of size 2' represented
by D;[k] will take care of the m; < 2* tasks of P;.

The extension of the algorithm for the case where
m is unknown is as follows. If a linear-estimate
i for m is known then each set of [®/n] tasks is
considered as a unit-task, thus reducing the problem
to the case m = n. It remains to show how to compute
a linear-estimate M for the sum m of n numbers.
The maximum load z is computed with n-polynomial
probability in constant time (Fact 3.2). The sum m
is between z and nz. Each number y is replaced by
[yn/z]. The new numbers are now bounded by n, and
a linear-estimate for their sum can be computed by
steps 1-3 above. It is easy to verify that by multiplying
this estimate by z/n, we get a linear-estimate for m. =

The load balancing algorithm provides an injective
mapping from the set of processors into a linear size
array, such that a processor P; is mapped into a sub-
array of size > m;. It is therefore a generalization
of the compaction problem, which can be thought of
as load balancing with m; = 1 for all j. Sometimes
the load balancing will take place as a basic sub-step
in another algorithm that uses the log-star paradigm
(see Section 9). By using Fact 3.4 in Step 6 we have
Corollary 5.1. Assume that each participating pro-
cessor has an allocated team of size ¢. Then using
linear space and constant time, each participating pro-
cessor with load y can be allocated with a sub-array
of size > y with g-exponential probability.

6 Approximate Sum

It follows from the proof of Theorem 5.1 that
a linear-estimate for the sum of n integers drawn
from the range [0,n°(M)] can be computed in constant
time with n-polynomial probability. This section
presents a more accurate sum estimation algorithm
that works for unbounded integer inputs as well as for
real numbers.
Definition 6.1. Givenn numbers z1,...,%n, the ap-
proximate sum problem is to find an estimate X for
X = 3", a; such that the relative error of X is o(1).
The estimate X is the approximate-sum.
Theorem 6.1. There exists a constant time algo-
rithm that, using n processors, solves the approximate
sum problem with n—polynomial probability. Specifi-
cally, the relative estimation error is < 1/lg*n for any
constant k.
Overview The algorithm consists of three parts.
In the first part (steps 1-2) the input numbers are
modified to integers from [1...nZ]. In the second part
(step 3) the input is further modified to get a more
favorable distribution of values, where the relatively
larger values can only exist in “big” groups; the reason
being that misetimating larger values contributes more
to an error, and having them in bigger groups enables
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evaluating their number with higher probability. The
third part (steps 4-6) is a computation similar to
steps 1-3 in the load balancing algorithm, with a
modification that enables higher accuracy.

The algorithm uses an array r[1...n] of registers.
Denote by ri[i] the value of r[i] at the end of step k
of the algorithm, and let Ry = Y ;-, &[i]. We assume
that initially [Z] = no[] = =;.

1. Find r = max; r[§] (Fact 3.2), and let § = r/n%.
Let r[i] « r[i]/6,fori=1,...,n. Then, Ry = Ry/6 =
X/6, max; r1[i] = n? and n? < R; <n®.

2. Let r[i] « [r[e]], for ¢ = 1,...,n. Then, R; <
Ry < Ri+(n—1) < (14+1/n)Ry, and r¢[i] € [0...n7],
i=1,...,n.

3. For j = 0,1,...,2lgn let ®; be the anonymous
set of all processors P; such that |lgr[i]] = j. The
input is so modified that for all j, 1.5lgn < j < 2lgn,
®; is either empty or of size > n!/!2. This is done
by “breaking” large numbers to many small numbers,
similarly to the Disperse procedure of [15]. For this,
injective scatters of the small sets (of size < nl/ 12)
into arrays of size n/4 is computed (Lemma 3.1); each
member of these sets is thereby allocated with a team.
Each allocated number is “dispersed” among its team
members.

This transformation does not change the sum, i.e.,
R3 = R, and adds less than n new numbers to the
input.

4. Each r[i] is rounded and set to r4i] which is
either 2/ or 2+!, where % < rg[i] < 2/*1. The
rounding is chosen at random to satisfy E (r4i]) =
ra[i]. Specifically, Prob (rs = 27) = 2 — r3[é]2~7 and
Prob (ry = 211) = r3i]2~7 — 1. Clearly, E(Ry) =
Rs. It can be shown by Chernoff bounds (proof
omitted) that |R4— Rs|/Rs < 1/n with n-polynomial
probability.

5. Compute estimates #; for |®, for j
0,1,...,2lgn, by applying Theorem 4.1 with a rela-
tive error < 1/1gn.

6. Compute the sum N = Zf!__g(;' ;% (Fact 3.1). The
approximate sum is X =6N.

Analysis All steps above take constant time, and

they all succeed with n-polynomial probability. The
relative errors accumulated in the algorithm are: 1/n

in Step 2, 1/n in Step 4, and 1/1gfn in Step 5. The
total relative estimation error is therefore < 1/lgkn.

7 Hashing

The hashing problem is solved in two steps. First,
a leaders election algorithm is used to remove dupli-
cates from the array of keys. Then, a hashing algo-
rithm that assumes distinct keys is used. Both leaders
election and hashing algorithms in [33] use the log-star
paradigm. They take O(lg"nlg(ig*n)) expected time,

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on February 11,2021 at 19:35:00 UTC from IEEE Xplore. Restrictions apply.



since the deactivation probabilities may be dependent
without any limitation. In the leaders elections al-
gorithm, the dependency comes from items being in
the same anonymous set. We will therefore employ a
dependency limiting step, in which large sets will be
handled separately. In the hashing algorithm, the as-
sumed dependency was caused by lack of knowledge
about the first level function. We show stronger prop-
erties of the class of hash functions from which the
first level function is selected. These properties imply
that there is only a limited dependency. As a result
we get

Theorem 7.1. There exists an algorithm for the
hashing problem that, using nlg(‘)n processors, takes
O(:) time and O(nlg(‘)n) space, for any i > 0, with
n-polynomial probability.

The hashing algorithm is used in the dictionary al-
gorithm of Section 2. [32] list several algorithms where
hashing is sufficient to reduce to space requirement to
linear space or close to it. Yet another application
is to get a more efficient algorithm for constructing a
function that is lgn-wise independent [42].

7.1 Leaders election

Theorem 7.2. Using nlg®n processors, the leaders
election problem can be solved in O(i) time with n-
polynomial probability on ARBITRARY, using O(n)
space, and on TOLERANT, using O(nlgn) space. In
particular, using n processors, the time complexity
is O(lg*n). It can also be solved on TOLERANT,
using O(n) space, in O(1g"n)? time, with n-polynomial
probability.

To get the algorithm on ARBITRARY, it is sufficient
to add the dependency limiting step below to the
algorithm in [33]. In order to have it on TOLERANT,
the arbitrary convention is replaced by having at
step i, ¢; geometric decompositions into arrays of size
lgn. To obtain the algorithm on TOLERANT using
linear space, some other ideas need to be employed.
The dependency limiting step We select a ran-
dom sample with the following properties: (i) The
size of the sample is “small”; (ii)} For each “large” set,
there is at least one item from the set in the sample.
Property (i) enables to easily solve the leaders elec-
tion problem for the items in the sample, since we can
use an array that is much larger than the sample size.
Property (ii) guarantees that after solving the prob-
lem for the sample, all “large” sets can be eliminated
from the input.

7.2 Hashing distinct keys

The first level function The hashing algorithm
imposes requirements on the distribution of buckets
gize, as determined by the first level function. These
requirements are met with high probability- by ran-
dom functions. However, a random function cannot
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be represented efficiently, nor can it be evaluated in
constant time. Siegel [42] and then Dietzfelbinger
and Meyer auf der Heide [12] described classes of
functions that are, for our purpose, as good as ran-
dom functions. These functions can be represented
efficiently and be evaluated in constant time. The
hashing algorithm uses the construction of [12], i.e.,
a class R of functions from U to [1,N], which is
suitable for any universe size. The deactivation
step in round i of the hashing algorithm only deals
with keys from buckets of size < ¢;. The property
of the class R that makes it suitable for the log-star
paradigm is [12]: For f randomly chosen from R, ¥r,
E({B() BN 2 7)) < ISH(er=2/r)"? for
some constant d. To show that the dependency is lim-
ited, we prove a stronger property, using the Martin-
gale Tail Inequality (Azuma’s Theorem) [31].

Fact 7.1. Let SC U, |S| < N, be fixed.

Let f be randomly chosen from R. Then there
exists a constant ¢, such that with |S|-polynomial
probability

vi,r #{z € Bi(f) :|1Bi(f)| > r} < c|S|27" .

8 Optimizing Parallel Algorithms

Many PRAM algorithms are designed using the
well known work-time methodology. (See [30, Chap-
ter 1.3] for a detailed discussion; first use in a PRAM
algorithm in [41].) Guided by Brent’s theorem (5],
the methodology suggests to first describe a meta-
algorithm in terms of a sequence of rounds; each
round may include any number of independent con-
stant time operations. Second, the meta-algorithm is
implemented on a p-processor PRAM using a schedul-
ing principle: if the number of operations in round r
is wy, then each of the p processors should execute
a set of O(wp/p) operations (“optimal simulation”,
below). Let W = 3, wr be the total number of op-
erations of the meta-algorithm. If T, the number of
rounds of the meta-algorithm, satisfies T = O (W/p)
then the resulting time T, will satisfy pTp = O (W).

Traditionally, the scheduling principle above is be-
ing implemented in an ad-hoc manner. However, in
this section, we advance towards implementing it au-
tomatically, which would wishfully mean automatic
implementation of any meta-algorithm on a PRAM.
We note that this goal does not appear to be well-
defined since any meta-algorithm is an unclear notion.
Our results will apply to a family of so called loosely
specified algorithms.

8.1 Loosely-specified algorithms

Assume that we are given a parallel algorithm A
which is specified as follows: It consists of rounds;
in each round several unit-time tasks are to be per-
formed. All the tasks for round 1 are given in an
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array. The tasks for a round ¢ > 1 can be specified
in any of the following forms: In an array; or, upon its
completion, each task in a round j < i can “appoint”
an array of tasks for a single later round. We assume
that a task in round i is being specified exactly once. A
parallel algorithm which is so specified is called loosely
specified. Assume that the total number of tasks is at
most W and the number of rounds is at most 7. We
say that a simulation of the algorithm by p processors
in time T, is optimal if the time-processor product,
pTp, is within a constant factor from W. We show

Lemma 8.1. The problem of optimally simulating
one round of the loosely specified algorithm A can be
reduced in constant time and O(T - W) space to the
load balancing problem.

By using the fast load balancing algorithm (The-
orem 5.1) and the fast dictionary (Theorem 2.1) for
space reduction we have

Theorem 8.1. (The randomized optimizer) Algo-
rithm A has an optimal simulation in time T,
O(Tg"p), with p-polynomial probability, and o(W) =
O(pT) space.

Comment: In a concurrent work [22], Goodrich
considered an alternative randomized optimizer and
demonstrated quite a few applications to parallel
computational geometry. Theorem 8.1 provides a
more general optimizer.

8.2 Task-decaying algorithms

Assume that we restrict the loosely specified algo-
rithm as follows: each task in round i can appoint at
most one task and only for round ¢ 4+ 1. In particular,
this guarantees the number of tasks will not increase
as the algorithm proceeds. We call these algorithms
task-decaying algorithms. Quite a few parallel algo-
rithms are of this type. [33] showed how to simulate
task-decaying algorithms using an optimal number of
processors by using the compaction algorithm. The
overhead in their simulation result is an additive fac-
tor of O(lg*nlg(lg"n)). It appears, however, that often
task-decaying algorithms actually satisfy a geometric
decaying. Namely, an upper bound on the number of
tasks in round ¢ decreases at least geometrically.

Let A be a geometric-decaying algorithm that takes
time T', where the upper bound on the number of tasks
in round 1 is n. [18] showed that such algorithms can
be simulated with an optimal number of processors
p = n/Ty, by having O(lg*T,) calls to a load bal-
ancing algorithm. By using the O(lglgn) load balanc-
ing algorithm of [15] their simulation had an additive
overhead of O(lglgnlg*n) time. By using the new load
balancing algorithm (Theorem 5.1), we have
Corollary 8.1. (The additive optimizer) Algorithm
A can be implemented in time T, = O(T +
1g*nlg*(1g"n)), with n-polynomial probability, and an
optimal number of processors.
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Corollary 8.1 can be used to get optimal speedup
results for the problems considered in this paper. The
algorithms presented in this paper are in general “fast”
(usually of O(lg*n) time), using n processors. These
algorithms are therefore non-optimal. Each of the
algorithms given can be easily transformed into a
geometric-decaying one. The additive optimizer is
used to implement these (optimal) geometric-decaying
algorithms and reduce the number of active items to
less than n/lg*n. The fast (and non-optimal) algo-
rithms can now be employed. This general strategy is
called accelerating cascades in [8].

Is this a tight analysis? Take an iteration of one
of our algorithms. Using p = n processors the step
that dominates its running time consists of having n
items thrown into a linear number of cells. A fraction
of the items will occupy singleton cells. Observing
that p’ < p processors are used to emulate the D
processors in [p/p’] rounds, our situation improves
since at each round only g items are being thrown
into the cells. Note that the word emulation is
correct only in a weak sense since the execution by
P’ processors might be different than the execution
by the p processors. A key observation, however, is
that the execution by p' processor is still be correct.
Algorithms that result in correct execution regardless
of the order in which the p processors are emulated
are called “asynchronous”. It turns out that for the
compaction algorithm this idea is enough to get a
considerable improvement. For the other algorithms
some additional effort is needed. Specifically, selecting
the subsets of p' processors at random at each round
among the p processors (until all p processors are
exhausted) would yield a similar improvement. Some
algorithms (e.g., the hashing algorithm) require some
adaptation to become asynchronous.

Comment: In the additive optimizer (Corollary 8.1)
the processors are synchronized in rounds; therefore,
geometric decaying is the only requirement from the
algorithm.

To get random subsets, we apply a random per-
mutation to the set of p processors and then emulate
them by p’ processors in a round robin fashion. We
refer the reader to section 4 in [44], where a similar ap-
plication of random permutations has been used and
analyzed. Finally, we note that a padded representa-
tion of a randomized permutation (as provided in [33])
suffices. We can show
Lemma 8.2. The following problems have asyn-
chronous geometric-decaying algorithms: Hashing,
leaders election, load balancing, compaction, random
permutation, simulating MAXIMUM on TOLERANT,
and integer chain-sorting.

We therefore have

Theorem 8.2. For the following problems we have
algorithms that run in O(lg*n) time with n-
polynomial probability using n/lg*n processors (op-
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timal speedup): Hashing, leaders election, load bal-
ancing, compaction, random permutation, simulating
MAXIMUM on TOLERANT, and integer chain-sorting.

9 Integer Chain Sorting

Given n input numbers, the chain sorting problem
is to chain them in a linked list such that for each
element, its successor in the list is of greater value.
The integer chain sorting problem is when the input
numbers are from the range [1...n]. We have
Theorem 9.1. The integer chain sorting problem can
be solved in O (1g"n) time, with n-polynomial proba-
bility, using n/lg*n processors (optimal speedup).

Each set of input numbers with the same value
is considered as an anonymous set: ®; is the set of
elements with value i. We may view the integer chain
sorting problem as two different chaining problems.
One is to chain the items within each set ®;, and the
other is to chain between the sets ®;,...,%,. The
latter problem can be easily reduced to the nearest-one
problem: given an array of zeros and ones, find for each
cell the nearest cell with the value ‘1’. This problem
has a deterministic o(lg*n) time algorithm [3, 37} .
It therefore remains to chain-sort only within each
bucket.

The algorithm consists of O(lg*n) basic iterations.
At iteration i, we allocate to each anonymous set ®; a
private sub-array D; in a global array D, and map a
subset &) C @; into D;. Since all the elements in @}
are in the same sub-array, they can be chained using
a nearest-one algorithm, applied for the §lobal array
D. On the other hand, the subsets ‘J}},<I>j, ... can be
chained in a simple manner (sequentially in time). As
a result, the required linked list will be derived. A
leaders election algorithm (Theorem 7.2) is employed
in a pre-processing step to enable allocation of sub-
arrays to anonymous sets.

We use the log-star paradigm. Assume that each
participating item is allocated with a team of size ¢°.
The deactivation step consists of the following sub-
steps, each taking constant time: (1) An estimate
pj for the number of participating items in each set
®; is computed; each estimate is a linear-estimate
with g-exponential probability. (2) To each set ®;
try to allocate a sub-array D; of size O (i), using
Corollary 5.1. (3) Try to map each participating item
in ®; into sub-array Dj, using Fact 3.4.

The dependency limiting step: Each set is parti-
tioned into n—? subsets by scattering into an ar-
ray [L.n1~%]. All subsets are of size O(n’) with n-
polynomial probability. We only need to chain within
the subsets of the same set. A leader is selected for
each set, and an integer chain sorting algorithm is used
to chain the leaders in each (original) set. For 6 > 1/2
the number of leaders in each set is < n'~% < n’, as
required.
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10 Simulating MAXIMUM on TOLERANT

The concurrent write operation of a CRCW ma-
chine partitions the processors into anonymous sets in
a natural way. An anonymous set is defined as all
processors that try to write into the same memory
cell. Using the techniques developed for computing on
anonymous sets we have
Theorem 10.1.

One step of an n-processor MAXIMUM can be simu-
lated on an (n/lg*n)-processor TOLERANT in O(lg"n)
time with n-polynomial probability.

Comment: In the simulation algorithm, O(nlgn)
auxiliary space is used by the simulating machine; the
original memory used by the MAXIMUM is addressed
with an ezclusive-write convention.

In a pre-processing step, a leaders election algo-
rithm is employed. The dependency limiting step of
this algorithm, slightly modified, will serve also the
simulation algorithm.

We use the log-star paradigm. Assume that each
participating item is allocated with a team of size
¢®. The deactivation step uses ideas from the load
balancing algorithm and consists of the following sub-
steps, each taking constant time: (1) An estimate
for the number of participating items in each set is
computed by Theorem 4.2; each estimate is a linear-
estimate with g-exponential probability. (2) The sets
are (implicitly) grouped into lgn super-sets, where
super-set W; consists of all sets whose estimate is
between 2¢-! and 2¢. (3) An estimate p; for the size
of each super-set ¥; is computed by Theorem 4.2(b);
all estimates are linear-estimates with n-polynomial
probability. (4) Each super-set ¥; is allocated with
a sub-array of size O(q?u;2), using Fact 3.1. This
sub-array is partitioned into segments of size 2 each,
represented by an array of size O(¢®;). (5) For
each super-set ¥; we try to find an injective mapping
into an array of size O(gp;) by having ¢ copies (with
distinct identifiers) for each participating set in the
super-set ¥; and applying a hash function selected
at random from a 2-universal class of hash functions
into the range O(gp;). For each participating set,
there exists at least one copy that does not collide
when applying the hash function, with g-exponential
probability. An injective mapping enables to allocate
a team of size ¢2¢ to each participating set in W;, if
p; is a linear-estimate. It is not known however if a
scatter is injective or not. The following step is done
by assuming for each scatter that it is injective. (6) For
each set and for each of its potential allocated teams
we do ¢ maximum computations using Fact 3.2. For a
set with a polynomial-estimate and with an allocated
team at least one of the computations will succeed
with g-exponential probability.
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