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Jve describe a randomized c’RC\Y PRALI algorithm that

finds a minimum spanning forest of an n-vertex graph in

O(log n ) time and linear work. This shaves a factor of ?ioK* “

off the best previous running time for a linear-work algo-

rithm. The novelty in our approach is to divide the conlpn-

tatiou into two phases, the first of which finds only a partial

solution. This idea has been used prevlonsly in parallel con-

nected components algorithms.

1 Introduction

lye describe the first work-optimal minimum spanning for-

est (M SF) algorithm that runs in O(log n ) time. The algo-
rithm uses a random-sampling technique previously used by

Karger, Klein, and Tarjan in a sequential linear-time algo-
rithm and by Cole, Klein, and Tarjan in a parallel algorithm.

These previous algorithms have the following form. Choost
a rauclom subset of edges, and recursively calculate the hISF
of the sample graph, the graph consisting of the chosen edges.

{Ise the recursively calculated minimum spanning forest to

identify edges of the original graph that are guaranteed not

to belong to the iYISF. Discard these edges. and recursively

calculate the iUSF of the remaining graph.

Identifying the edges to be discarded seems to require

@(log n) time; thus the time required by an algorithm hav-

ing the above form is O(log n ) times the number of recursive

invocations. Previously [5], by varying the sampling prob-

ability depending on the recursion depth. we were able to

bound the number of invocations by 0(210g” ‘), but there

seems no way to reduce it further to a constant, which is
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what would be necessary to achieve 0( log n ) time using this

approach.

In this paper we resolve this dilemma by breaking the

commutation mto two phases. In the first phase the number

of recursive invocations remains 0( 210s” “‘), hut we manage

to reduce the time per invocation to something significantly
less than @(log n), The result of the first phase, however,
is not the entire IvISF but only a subset of it. IVe then

contract the edges in this subset, and, m the second phase,
calculate the IUSF of the contracted graph. The i’d SF of the
oliginal graph is the MSF of the contracted graph together
with the contracted edges. Because the contracted graph

is significantly smaller than the input graph, we can ensure
that the second phase consists of only a constant number
of invocations (each taking O(log n ) time). Thus the overall

time bound for the two phases is O(log n).
The first phase is the challenge. How can we reduce

the time per invocation? We modify the criterion by which
edges can be discarded. The intuition is as follows. In the
first recnrslve call ( which operates on the sample graph),
why should we completely solve the MSF problem when the
solution is only intended to help us discard edges’? Jve for-

mulate a less ambitious goal—partial solution of the MSF
problem-and show that using a partial solution for the sam-
ple graph we can quickly identify edges of the original graph

that C1Onot belong to the partial solution for the original
graph. J1’e later define what, we mean by “pal tial soln-

tiou.” For the moment, we remark merely that it is a “large
enough” set of edges that is a subset, of the MSF.

A technical difficulty arises in carrying out the modified
sampling approach. In the discarding step, we might discard

edges that belong to the MSF. For this reason, if we were not
careful in carrying out the second recursive call, we might

include in the partial solution edges that do not belong to
the MSF ( “bad edges”). ~’e therefore do not entirely dis-

card edges but rather designate them as “ou-edges” for this
recursive call. The out-edges are used t o guard against the
partial solution getting too big and including t)ad edges. ~~e

show that the choice of out-edges ensures essentially that if

the partial solution is about to include an out-edge, it is
already big enough. We also show that the set of out-edges
can be represented compactly, which is necessary for the
efficiency of our algorithm.

1.1 Previous work

Several researchers have addressed the problem of giving

a work-efficient parallel algorithm for finding a minimum
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spanning tree. Chin, Lam, and Chen [3] gave an algo-

rithm that, runs in 0( log2 n ) time using n-/ logz n proces-
sors. Thus their algorithm achieves linear speed-up when
the input graph is a complete graph. However, it is not

very work-efficient for sparse input graphs. Awerbuch and
Shdoach [I] proposed a parallel algorithm for finding a min-
imum spanning tree; their algorithm requires O(log n ) time

using m + n processors, where n and m are, respectively, the

number of vertices and edges of the graph. However, their

result assumes a model in which write-conflicts are resolved

by priority, where the priority of a processor is determined

by the weight of the edge assigned to it.

Cole and Vishkin [6] have claimed an algorithm running

on a CRCW PRAM that requires O(log n ) time and O((rr +

m ) log log log n / log n ) processors. Their algorithm assumes

the same strong model as the algorithm of Awerbuch and

Shiloach.

Karger [17] has claimed an algorithm running on an EREW

PRAM that requires O(log n) time and m/ log n + nl+’ pro-
cessors for any constant e > 0. Thus his algorithm is within

a constant factor of optimal for sufficiently dense graphs,
and is within a fractional polynomial factor for very sparse

graphs.
A related but simpler problem is that of finding con-

nected components. Gazit [10] discovered a randomized

logarithmic-time, linear-work CRCJV PRAM connected-
components algorithm. Halperin and Zwick [12] discovered

how to test connectivity on a CREW PRAM in the same
bounds using Gazit’s approach, and later refrned their algo-
rithm to actually find connected components [13]. Gazit’s

approach was the inspiration for our two-phase MSF algo-

rlthm: CTazit’s algorithm first builds pieces of components
and then combines them in a second phase Extending this

idea to the LISF problem is not straightforward and is where
the main technical contributions of our paper lie.

2 The top-level algorithm

We now give the top-level algorithm. It uses contraction of

edges. Contraction of an edge with endpoints u and o results

in removal of the edge and coalescing of the endpoints u

and w to form a new vertex. Every other edge that had as

endpoint either u or u has the new vertex as endpoint after

the contraction. Thus every edge that existed in the graph

before the contraction exists in the graph after contraction

(except for the edge contracted ), albeit with new endpoints.

Let G’o denote the input graph, and let m be the num-

ber of edges in GO.

Let k := v’-. Note: k is a parameter used in

the procedure FIND FOREST.

Call FINDFOREST(GO, log* m).

Let G1 be the graph obtained from GO by contracting
all edges designated as in-edges by FIND FOREST.

Call FINISHUP(GI )

Output the union of the in-edges of G1 and the in-

edges of GO.

The algorithm uses two procedures, ~indForest and FIN-

ISHUP. The call FINDFOREST(GO, log* m) designates as zn-

edge.s a subset of the edges of GO’s minimum spanning forest

(MSF). Since GI is obtained by contracting these edges. it

follows that the MSF of GO consists of these edges together

with the MSF of G’1. The call FINISH UP(GI ) designates as

in-edges all the edges of G’s MSF. Thus the set of edges

output by the algorithm is the MSF of GO.

NOW we preview the analysis. lVe show below that the

call FIND FOREST(GO, log* m) results in 0(210~” ~) recursive

invocations. Assume for simplicity that GO is connected.

Each invocation requires expected time O(log m log log log m/ log log n

so the total time is o(log m ). We show that the total work

is O(m ). We show also that in the forest of edges of GO des-

ignated as in-edges, each tree has at least k edges. Hence

the number of vertices in G1 is at most l/k times the num-

ber of vertices in GO, and hence at most l/k times m. The

procedure FINISHUP uses this fact to find the MSF of G1 in

O(log m) time using linear work.

2.1 in-edges

One correctness condition for the algorithm is the zn-edge

soundness condhon:

all in-edges belong to the MSF.

To maintain this property, the algorithm uses the follow-

ing simple proposition, If all present in-edges belong to the

MSF, and an edge e is the cheapest edge incident to a com-

ponent of in-edges, then e is in the i’vISF (and can therefore

safely be designated an in-edge).

The algorithm keeps track of the components of in-edges,

which are trees, and the edges between these trees. When

an edge is newly designated an in-edge, the trees it connects

are merged into one.

2.2 Min trees

In order to precisely define the correctness condition for

FIND FOREST, we introduce some terminology about partial
solutions to the MSF problem.

Recall the following algorithm for finding a minimum

spanning tree in a connected graph G. Initialize the set

S of spanned vertices to be {v} for some vertex v. Then
repeat the following step until S contains all the vertices of
G: select the cheapest edge vw incident to S, and add to S
whichever endpoint is not already in S. The set of edges vw

selected by the above algorithm is the minimum spanning
forest of G.

If k is smaller than the number of vertices in the graph,

the first k edges selected by the above algorithm form a

tree containing u. We call this tree the k-man tree of u (in

G). The k’h edge chosen by this algorithm is called u’s k’h
min edge. If the connected component of G that contains u

consists of fewer than k + 1 vertices, we define u’s k-Prim

tree to be the minimum spanning tree of that component.

Lemma 1 Suppose an edge e ts inctdent to a uertex u in

G, and u‘s k-mzn tree does not contazrr c. Then e u costker
than any edge in this t~ee.

The goal of FIND FOREST( G, i.) is to identify a subset F of

the MSF of G obeying the following completeness condition:

for each vertex v of G, the k-rein tree of v in G

is contained in F.

1While commonly attributed to Prim, this algorlthm appears in
papers by Jarruk [15] and Dljkstra
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It follr)\vs frot[l the ~t)uIpleteuew condltton that the forest

of in-edges of G“ designatml by the top-level call,

FIYDFO”RES~(GO, log; )t~ ). consists of trees each of size at

least ~, a5 requile(i.

2.3 Out-edges

The efficiency of FiNDFORE>~ is based on identifying eclSes

that are not necessary for completeness: the procedure deslg-

nat, es these edges ah o~(f-cdye~. Thns the out-edge sounclnt sj

Corldrtl or? is,

each out-edge of (; does not belong to the k-

miutree of any vertex in G.

h-ote that an edge ma! belong to the LISF hut not to any

vertex’s k-rein tree: hence even some hISF edges nught get

desi~uated as on-edges. ,in edge that has not, been desig-

nated an in-edge or an ont-eclge is said to be neutral,

One might think that out-edges could simply he deleted,

However, since they nught heloug to the kISF, deleting them

would cauw FIND FORE+T t o misidentify some remaining

ecfges as \ISF edges: the procedure would determine that

some edge was the cheapest neutral edge incident to a tree

of il~-eclges, and wonhl infer that this edge helongecl t o the

klSF-thouglr the cheapest edge incident to that tree might,

he an out-edge. To prevent such misidentification. FIND-

FOREST represent. on-edges as follows: for each tree of

in-edges. the procedure keeps track of the cheapest inci-

dent out-edge (if any ). This represent at, ion can easily he

updated when t~vo such trees merge. There is no need for

explicit representation of out-edges.

2.4 Borslvka steps

One basic operation used repeatedly by our algorithm is a

Bortiuku strp, which \ve adapt from Borfl\,ka’s algorithm for

finding a L1SF[2]. Let C; he a graph in \vhich some irl-edges

and out-edges ha~re been deslgnateci. call a tree of In-edges

~nocftoe if its cheapest iucrdent edge has prevlonsly been

(letermine(l to be an out-edge (and act~cle otherwise. In our

version of a Borui, ka step, a subset TI , , Tt of acti~,e in-

edge trees are selected, and for each tree T, the cheapest

neutral edge e, is detelmiued. If e, is cheaper than the

cheapest out-eclge incident to T, then e, is designated an

ill-edge. Note that these edges belong to the hISF, so this

step preserves In-edge soundness, We require our Boruvka

step to satisfy two properties:

noninterference: For each tree T,, the endpoint of e, not

m T, must not belong to another selected tree T,.

likelihood: For each tree ‘T of in-ecfges, if T has an incident

edge then the probability is at least 1/8 that T is one

of the trees selected.

Such a Bori~\,ka step can be implemented to run in 0(I)

expected time using a number of processors equal to the

number of active in-edge trees plus the number of neutral

edges incident to such trees [5],

3 The Phase I Algorithm: Overview

J\re now give the recursive procedure FIND FOREST, It refers

to m, which denotes the number of edges in the original in-

put graph. It also lefer~ to a global parameter k whose value

i+ W=. Lt-e use lo~’ ‘) nl to denote the application to

m of the ~-fold compositiorl of log with itself, e.g. log log rrl

can be written Iog,(” m. ‘rhe procedure makes use of two

constants u and b such that o > Jb, and a fe~v zworted ron-

stants hidden by the hig-011 notation TIIe second algllment

to FIND FOREST i~ a de~cending counter that in(llcatw the

depth of the reculsion

FIND FOREST(G, t)

Step O: If t =? theu call B.\sE(;.+sE(G) and return.

Step 1: PerformO (loS[(log(f -’)m )”]) Boruvka steps.

Step 2: Obtain graph G’ from G by first includ-

ing, in G all in-rclges of G (des%nated as ill-

edges of G“) anti not including any ont-edgek,

Each of the remaining, neutral edges of (; is

included in C;’ Independently \vitll probability

p= l/(log(’–l’m)~,

Step 3: ~’all FIND FOREST(G’, i- 1).

Step 4: Call FILrER(G, G”), designating some edges

of G as out-edges,

Step 5: Call FIXDFOREST(G’. L – 1).

The procedure FIND FOREST depends on two suhprocedures,

B.. HE Cf.\SE ancf FILTER. The corwctrtt S,Scorrdtttorljor B.+sEC’.$srz( G)

is:

If G satisfies the u-edge and on-edge sonnd-

ness conditions then after the call BASE C. WE(G}.

G’ satisfies the cornpletenew condition and the

soundness conditions.

The correctness cond~tion for FILTER(G, G’) is as follows:

Suppose G’ is a snhgraph of C;, and G and C;’

satisfy the in-edge and out-edge soundness con-

clitions. Suppose moreover that G“ satisfies the

completeness condition. Then the edges of G des-

ignated as out-edges by FILTER satisfy the ont -

edge soundness condltlon.

\Ve give the details of B.A.SE C’,ISE and FILTER later, and

<how they satisfy their correctness conditions. Assume for

now that these conditions hold.

3.1 Correctness of FIND FOREST

Finally, the correctness invariant for FIND FOREST( G, L) is as

follows:

Suppose C; satisfies the in-edge and out-edge souRd-

ness conditions, Then after the call FIND FOREST( C;, L),

G satisfies the completeness condition and the

soundness conditions.

We show by induction that the algorithm satisfies the above

invariant.

Suppose that G’ satisfies the soundness conditions and

consider the call FIND FORE ST(G, L). If r = 2 then it follows

from the correct ness condition for BASE f.2.WE that after the

call BASE C!ASE( G), G satisfies completeness and soundness.

245



Now suppose ~ > 2. First consider the Borrlvka steps

executed in Step 1 of FIND FOREST. These steps designate

some MSF edges as in-edges. preserving the soundness con-

ditions.

Next consider the graph G’ obtained from G in Step 2.

Since C;’ is a subgraph of G“, every iUSF edge of G that

appears in G’ is also an MSF edge of G“. The in-edges of
G’ are precisely the in-edges of G, which are MSF edges

of G by the in-edge soundness of G. Thus the in-edges of
G’ are MSF edges of G’, so in-edge soundness holds for G’.

Out-edge soundness trivially holds for G’ since G’ has no
out-edges.

Next consider G’ after the call FINDFOREST(G’, I – 1).
By the inductive hypothesis, G’ satisfies completeness and

soundness.
Next in Step -! there is a call FILTER( G, G’), designating

some of the edges of G as out-edges. By the correctness con-

dition of FILTER, these edges satisfy the out-edge soundness

condition.
We have seen that at the beginning of Step 5, G satis-

fies the soundness conditions. By the induction hypothesis,

therefore, after the call FINDFOREST(G, i – 1) in that step,

G satisfies completeness and soundness.

3.2 Bounds on graph parameters

Now we consider the resource requirements of FIPJDFOR-
EST. The first step in the analysis is to prove bounds on the

number of neutral edges and the number of in-edge trees in

graphs arising at different levels of recursion. Consider a
call FIND FOREST (G, t). Jve claim that the number of active

in-edge trees in G is at most rn/(log(’) m)” and the expected

number of neutral edges in G is at most m/(log~’) rn)b. The

claim 1s trivially true for the initial call, since for that call

t = log” m, so log(’) = 1. We show that an invocation

FINDFOREST(G, Z) preserves the truth of the claim in its re-

cursive invocations. Each Bortrvka step in Step 1 reduces

by a constant factor the expected number of active in-edge

trees in G. Since Step I performs O(log[(log[t–l~ m)”]) such

steps, by choice of the constant hidden by the big Oh, the

expected number of trees after the step is at most the num-

ber before the step divided by 2(log( ‘–]) m)”, which in turn

is certainly at most m /(log(”1 j m)”. N-ow we consider the

number of edges.
The neutral edges of G’ are obtained from the neutral

edges of G by sampling with probability p = I/(log(’-]) rrr)b.

Thus the expectecl number of neutral edges in G’ is p times

the number of neutral edges in G. The number of edges in

G is certainly at most m, so the expected number of neutral

edges in G’ is at most pm, which is m/(log(’-l) m)b. Thus

the recursive call in Step 3 satisfies the claim.

Next we consider the recursive call in Step 5. $tTe use

a bound on the number of edges not designated out-edges

in Step 4. The following lemma is a generalization of the

lemma at the heart of the analysis of a linear-time random-

ized sequential algorithm for minimum spanning trees [19].

Lemma 2 Let n be the number- of Zn-edge trees zn G. After
the call FILTER(G, G’), the expected number of neutral edges

tn G is at most 2n/p.

Since n < m/2(log(’-1~ m)” and p = I/(log(’–l) m)b, we

infer that the expected number of neutral edges in G after

Step 4 is at most m/(log( ‘-’) m)”-bi which in turn is at most

m/(log(L–l) rn)b since a z 2b.

3.3 Analysis of resource requirements of FIND FOREST

The depth of the recursion is log* m Hence the number of

invocations is ~io~” ‘. In each invocation the dominant steP

is the call to FILTER. We show later that the time required

by FILTER is O(log m log log log m/ log log m ) and the work

is linear. Thus the total time is 0( 210g” ‘“ log m log log log m/ log log m

which is o(log m).

Now we bound the work done. For each invocation, the

work done is linear in the number of neutral edges. Hence

at each level of recursion (each value of z), the work done

is linear in the number of neutral edges in graphs G that

aPPear as arguments to invocations at that level. There is

one top-level call, two calls at the next level, four at the

next, and so on. Using the expected bounds on the sizes

of graphs that were derived in the previous subsection, we

infer that the total expected work is ~, 2’O(m/(log(’) nr)b,

which is linear.

4 The subprocedure BASECASE

We describe the subprocedure BASECASE(G) used in Step

O of FIND FOREST for the base case of the recursion. In this

case, it is assumed of the graph G that the number of trees

in the forest of in-edges is small compared to the number of
vertices in the original graph, and that the number of neu-

tral edges is small compared to the number of edges in the
original graph. Hence we can afford to use a fairly inefficient

algorithm for this case.

The subprocedure also constructs an auxiliary graph,

used by the subprocedure FILTER, consisting of a path PT

for each tree T of edges that are in-edges at the beginning

of the call. Each such path is called the trunk of T.

Let G be the graph obtained from G by contracting all

the imedges, As mentioned in Subsection 2.1, the algorithm

keeps track of the components of imedges and the edges

between them, so the contraction step is trivial. Each tree

T of in-edges is contracted to a vertex v in G, called the

target of T. For each such vertex, we calculate an k-rein

tree Tu of U. (If v’s Zth min edge is an out-edge, we let To

be the (z – 1)-min tree of v.) Finally, for each edge in such
a tree TV, we designate the corresponding edge in G as an

in-edge.

To find the trees T,,, we proceed as follows. Replace each

edge zv of G with two oppositely directed arcs, z ~ ~ and

Y— z. Next, for each vertex z determine the k cheapest
outgoing arcs z -- y. Let G be the graph consisting of the

union over all vertices z of the k cheapest outgoing arcs of r.
Next, for each vertex u we execute the following variant of
Prim’s algorithm. Initialize the set Su to { o}. Initialize the
trunk to consist only of the vertex U. Repeat the following

step k times: find the cheapest arc z — y outgoing from
SV. Append it to the end of the trunk. If it is an out-edge,

halt. Otherwise, designate the corresponding edge xy as

belonging to Tu, insert y into Su, and repeat.

Since Su never contains more than k + 1 vertices and
each vertex has at most k outgoing arcs, the minimum can
be found in O(k2 ) time. Thus the above loop takes O(k3)

time using one processor per vertex of G.
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Lemma 3 B.wEC.\sE(G) scltlsjies ~t$ correctness cond?t~on.

Proof sketch: JVe assume that G satisfies in-edge and out-

eclge soundness before the call to B.~sEC.\SE. By in-edge

soundness, the in-edges of G’ belong to the MSF. It follows

that the MSF of ~ is contained in the MSF of G’. Each

edge designated as an imedge by the procedure belongs to

the MSF of 6’ and hence of G. Thus in-edge soundness is

preserved. By out-edge soundness of G before the call, for

every vertex u, the k-rein tree of v is contained among the

in-edges and neutral edges of G before the call, Let w be

the vertex into which t, is coalesced by the contractions It

is straightforward to show that each edge of u’s k-ruin tree

that is neutral before the call belongs to Tw and is therefore

designated aniu-edge, Thus thecall achieves sonndnes.. ❑

5 The FILTER subprocedure

The goal of FILTER(G, G’) is to identify edges in G that

are not needed for completeness and can therefore be des-

ignated as out-edges without violating out-edge soundness.

To facditate this task, the subprocedure uses the forest of

in-edges selected in the sample graph G’ during the re-

cursive call FIND FOREST (G’, Z + 1) in Step 3. More pre-

cisely, FILTER uses the trunks constructed during the call

to B~sEC.4SE(G’) and a forest, called the merge forest, de-

scribed in the next subsection, that is constructed during

the Bortivka steps. We refer to the nodes of the trunks and

the merge forest to distinguish them from the vertices of the

graphs.

5.1 The merge forest

We define a rooted forest .~f, called the merge forest, that

captures the effect of the Borfrvka steps performed during

a call to FIND FORZST. This structure resembles closely the

Bortrvka tree defined and used by King [21] for verification of

minimum spanning trees. (The differences reflect our nlod-

ification of the Borfivka step. )

The nodes of Af correspond to in-edge trees in the graph,

and we use q$ to denote the mapping from in-edge trees to

nodes of M. For each in-edge tree T arising during a call to

FIND FOREST, there is a node O(T). If during a Borfivka step

some in-edge trees TI, T2, . . . . T, are merged to form a tree T

because some edges between them are designated in-edges,

then @(Tl), . . . . ~(T, ) are the children of #(T) in the merge

forest J1l. For z = 1, . . . . t, if the new in-edge e incident

to T, is the cheapest edge incident to T, then the edge in

M from @(T,) to its parent 4(T) is assigned the cost of e;

otherwise the edge in M is assigned cost negative infinity.

Construction of the merge forest can be incorporated into
the implementation of Borfrvka steps.

Note that the depth of the merge forest for a graph
is bounded by the number of Bortivka steps executed on

that graph. The number of Borlivka steps at level z is

O(log[(log(’-l) m )a]), which is O(log(’) m), so the total num-
ber of Borfrvka steps executed on a graph is

o(log(3’ rn+log(l~rn +...)

which is O(log( 3) m).

+
a trunk

:
:
:

A
A tree of

the merge forest

+
:

the filtering :

tree
:

A

Figure 1: A filtering tree isobtaiued by attaching astemto

a tree of the merge forest.

5.2 The Filtering Forest

The subprocedure FILTER(G, G’ ) builds a structure from the

merge forest M and trunks resulting from the recursive call

FINDFOREST(G’, z + 1) in Step 3. For each rooted tree T in

the merge forest, the filtering structure contains the rooted

tree obtained from T by attaching the first node of a trunk

P to the root of T. The trunk P used is the trunk associated

with the in-edge tree corresponding to the root of T. We call

the resulting tree a filtertng tree, and the collection of these

trees is called the jilterzng forest.

We define a kind of least-common ancestor for the falte-

ring forest. Let FO be the forest of in-edges before the call

FINDFOREST(G’, z + 1) in Step 3, and let F be the forest

after the call. For a vertex u of G’, let Fo( u) denote the tree

of FO that contains u, and similarly define F(u). Let P(u)
denote the trunk whose first node is the target2 of F( u).

For vertices u and w of G’, we define ancu ( w) accord-

ing to the following three cases (depicted in Figure 5.2).

If F(w) = F(u) then ~(Fo(0)) and #( Fo(uJ)) are nodes of

the same rooted tree of the merge forest IV. In this case,

ancti ( w) is defined to be the least common ancestor of these

two nodes. Assume F(w) # F( u), Suppose that the tar-

get of F(w) appears as a node in the trunk P(u), In this

case, ant. (w) is defined to be that node. Finally, suppose

that the target of F(w) does not appear in the trunk P( u).

In this case, ancu(w) is the last node of the trunk attached

to M(u), i.e. the root of the corresponding filtering tree.

Note that in each of the tree cases, ancv ( w) is a ancestor of

@(FO ( u)) in the filtering forest.

Define c,(w) to be the maximum cost of an edge on the

path in the filtering forest from @(Fe(v)) to ancu(tu).

Lemma 4 Suppose that after the call FINDFOREST(G’, i+l)

zn Step ,9, G’ satzsfies soundness and completeness. Let uw

be an edge of G. If the cost of vw exceeds max c.(w), CW(V)

then vw is not in the k-rein tree of any node in G.

The procedure FILTER designates as out-edges all those

edges of G that satisfy the condition of Lemma 4.

2That 1s, the result of contraction ]n BASECASE See Sect Ion 4,
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5.3 Efficient implementation of FILTER

A

,p

L\ancv(w)

A&h
v w

A

w y ancv(w)

J \/\ 22/’ix
v

~c”(w)

v w

Figure 2: The three cases in the definition of ant,, (w). In

the first case, u and w map to nodes of the same merge

tree. In the second case, w maps to a node on the trunk of

the merge tree containing u. In the third case, w does not

appear on either u’s merge tree or on the attached trunk.

combined tree is obtained by attaching a stem to a tree of

the merge forest.

We describe how to efficiently identify all edges r u that

by Lemma 4 can be designated as out-edges. First process

the filtering forest so that anc,( u’) can be determined in

constant time for any vertices o and w

5.3.1 Structures for calculating anc,, ( LO)

This step consists in processing the trunks and processing

the merge forest. For each trunk, bmld a perfect hash table

of the nodes comprising it. This can be done in time pro-

portional to the size of the trunk (This step can be done

once dnrmg BASEC.WSE(G” ). )

For the merge forest, build a least-common ancestor struc-

ture [Ii, ZT] for M so that, given a pair of nocles .r and V,

the least common ancestor of .r and ~ in .11 can be cfeter-

mined in constant time. We use the structure proposed by

Schieber and Vishkin, but to construct it we use an algo-

rithm whose running trme depends on the height D of .}I.

It is straightforward to adapt their algorithm to run in time

0( D log n/ log log n) and work 0(n), where n is the size of

M. The mam difficulty m the Schleber/ Vishkin algorithm

is to number the vertices in left to right ordel, but this can

be done by means of a sweep up the trees to compute the

size of the subtree of each node, followed by a sweep down

to calculate the numbering. Each step in the up-sweep is a

parallel prefix-sums computation.

Once these structures have been built, one can find anc. ( w)

in constant time. If I’( u) = F( w) then use the least-common-

ancestor structure for the merge forest. If F(L, ) # F(w)

then use the hash table associated with the trunk P(U) to

determine If the target of F( w) occurs m P( u). If SO, that

occurrence is ant,, (UI) If not. then ant, ( w) is the last node

of P(u).

5.3.2 Processing the lengths on trunk edges

Next, build a table for each of the trunks by traversing its

edges, first to last. For the Zth edge, record the maximum

cost among edges 1 through J. This step takes time propor-

tional to the saze of the trunk. (This step can also be done

during BASECASE(G’). )

5.3.3 Determining costs on leaf-to-root paths of the merge

forest

Next, build a table for each node of the merge forest by

scanning down the merge forest starting at the roots. For

each node, record the mammum cost on the path from the

root to that node.

5.3.4 Determining c,,(w): the easy case

For each edge VW, if ant,, [u) belongs to P(u) then c,( w),

the maximum cost on the path from @( Fo( u)) to ancu( w).
can be determined in constant time by consulting the table

for the merge forest ancl the table for the trunk I’( u).

5.3.5 Determining c,,(w): the hard case

Use a parallel version of King’s algorithm [?1] to determine

c,(u) for each edge uroin G’such that d(Fo( u)) and @(Fe(u))

occur in the same tree of the merge forest. King’s algorithm

consists primarily of scanning down the forest, assigning la-

bels to the nodes. The time per node is O(log log n). At each

248



level, the work needs to be rebalanced among the processors
but, this can be done in O(log log n) time using standard
techniques. The total time is thus 0( D log log n), where D

is the depth of the merge forest. The total work is linear

in the number of edges that need to be checked, which is

bounded bythenumber ofneutral edges of G’.

5.3.6 Designating out-edges

Finally, designate eclges vwof G’asout-edgesin accordance

with Lemma 4: if the cost of OUI exceeds c,,(w) and cti, (o)

then UUI is designated an out-edge. To maintain the rep-

resentation of out-edges, calculate for each in-edge tree the

cost of the cheapest incident out-edge. This can be done in

O(log log n ) time and linear work using the minimum-finding

algorithm of Shiloach ancl Vishkin [28].

5.3.7 Resource requirements

The most time-consuming step is constructing the least-

common ancestor structure. This takes time 0( D log n / log log n )

and O(n) work, where n is the size of the merge f;rest .~f, -

and D is its depth. ;Ve showed that D = 0(log(3) m), and of

course n is the number of in-edge trees in G’ before the recur-

sive call FIND FORE ST(G’, i+ 1 ) in Step 3. The total time for

FILTER(G, G“) is therefore O(log n log log log m / log log n). The

work is O(n + m), where m is the number of neutral edges.

6 The Phase II Algorithm

The Phase II algorithm, FINISHUP(G), is much simpler. It
invokes a recursive procedure that resembles FIND FOREST;

however, each recursive call finds a minimum spanning for-
est. Edges can therefore be simply deleted instead of being

designated out-edges. Furthermore, the recursion depth is
constant. Here is the procedure FINISHUP( G):

Step O: Let G’ be obtained from G by including each edge

of G independently with probability p = 1/v@, where

k is as specified in the top-level algorithm.

Step 1: Call BASIC(G’, 3) to obtain the MSF of G’.

Step 2: Use the minimum spanning forest of G’ to deter-

mine some edges of G that do not belong to the MSF

of G, and delete these edges from G.

Step 3: Call B.xsIc(G, 3) to find the MSF of G.

The choice of edges to delete in Step 2 is based on a simpler

condition than that used in FILTER. For an edge ZJWof G, if
there is a path in the MSF of G’ that connects v to w, and

every edge on this path is cheaper than UU!, then vw does
not belong to the MSF of G. Dixon, Rauch, and Tarjan [7]

have given a parallel algorithm to implement this check for
all edges of G in logarithmic time and linear work.

As in the main algorithm, we let m denote the number of
edges in the original input graph GO. Then at the beginning

of FINISH UP(G), the graph G certainly has at most m edges,

so the expected number of edges in the graph G’ is mp, which

is m/h. It follows from the main lemma of [19] that the

expected number of edges in G after the deletions in Step 3

is at most n/p, where n is the number of vertices in G. As

we showed in Section 3, n < m/k, so the number of edges

in G after the deletions is at most mjfi.

lNOW we give the recursive procedure B.*sIc(G, i). Jt’e

assume that on entry the expected number of neutral edges

in G is 0( m/ log(’) m). This holcls for the call BASIC(G 3)

in Step 3 of FINISHUP. Jte show in the procedure that

consequently this invariant holds for recursive invocations

u,, .

Step O: Perform @(log(1) m ) Borirvlia steps. The re-

sulting graph has expected 0( rrrj(log( ‘-1 ) m)2)

in-edge trees. If t = 1 then the in-edges selected

comprise the MSF of G; return in this case.

step 1: obtain G’ from G by randomly including

each edge independently with probability p =

I/log(’-l) r72. The sample graph has expected

O(rn/log( ’-’) m) edges.

Step 2: Recursively call BASIC(G”, i – 1 ) to designate

as in-edges all the remaining hISf? edges of G).

Step 3: As in Step 2 of FINISHUP, use the i’vlSF of G’

to determine which edges of G to clelete. This

takes O(log m ) time and expected 0( m / log[’J m )

work. By the main lemma of [19], the ex-

pected number of remaining edges is the nnm-

ber of in-edge trees times I/p. This product is

O(m/log(’-’) m).

Step 4: Recursively call BMIc(G’, i – I) to designate

as in-edges all the remaining MSF edges of G. of

G.

The work done by this procedure is linear in each invocation.

The time required is logarithmic. The number of recursive

invocations resulting from the top-level call BMIC( G, 3) in

Step 3 of FINISHUP-is seven. Thus the total time is loga-

rithmic and the work is linear.
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