Session: Full Paper

SPAA 20, July 15-17, 2020, Virtual Event, USA

Work-Efficient Batch-Incremental Minimum Spanning Trees
with Applications to the Sliding-Window Model

Daniel Anderson
Carnegie Mellon University
dlanders@cs.cmu.edu

ABSTRACT

Algorithms for dynamically maintaining minimum spanning trees
(MSTs) have received much attention in both the parallel and se-
quential settings. While previous work has given optimal algo-
rithms for dense graphs, all existing parallel batch-dynamic algo-
rithms perform polynomial work per update in the worst case for
sparse graphs. In this paper, we present the first work-efficient paral-
lel batch-dynamic algorithm for incremental MST, which can insert
¢ edges in O(¢1g(1 + n/¢)) work in expectation and O(polylog(n))
span w.h.p. The key ingredient of our algorithm is an algorithm for
constructing a compressed path tree of an edge-weighted tree, which
is a smaller tree that contains all pairwise heaviest edges between
a given set of marked vertices. Using our batch-incremental MST
algorithm, we demonstrate a range of applications that become
efficiently solvable in parallel in the sliding-window model, such
as graph connectivity, approximate MSTs, testing bipartiteness,
k-certificates, cycle-freeness, and maintaining sparsifiers.
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1 INTRODUCTION

Computing the minimum spanning tree (MST) of a weighted undi-
rected graph is a classic and fundamental problem that has been
studied for nearly a century, going back to early algorithms of
Bortvka [10], and Jarnik [35] (later rediscovered by Prim [45] and
Dijkstra [18]), and later, the perhaps more well-known algorithm
of Kruskal [40]. The MST problem is, given a connected weighted
undirected graph, to find a set of edges of minimum total weight
that connect every vertex in the graph. More generally, the min-
imum spanning forest (MSF) problem is to compute an MST for
every connected component of the graph. The dynamic MSF prob-
lem is to do so while responding to edges being inserted into and
deleted from the graph. The incremental MSF problem is a special
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case of the dynamic problem in which edges are only inserted.
While most dynamic data structures handle only a single update at
a time, there has also been work on batch-dynamic data structures,
which process a batch of updates. Typically, it is assumed that the
size of a batch can vary from round to round. Batch-dynamic data
structures have two potential advantages—they can allow for more
parallelism, and they can, in some situations, perform less work
than processing updates one at a time.

There has been significant interest in parallelizing incremental
and dynamic MSF. Some of this work studies how to implement
single updates in parallel [14, 16, 20, 21, 37, 39, 44, 52-54], and
some studies batch updates [22, 23, 36, 42, 43, 46]. The most re-
cent and best result [39] requires O(+/nlg n) work per update on n
vertices, and only allows single edge updates. All previous results
that support batches of edge updates in polylogarithmic time re-
quire Q(nmin(¢, n)) work, where ¢ is the size of the batch. This
is very far from the work performed by the best sequential data
structures, which is O(lg n) worst-case time for incremental edge

insertions [5, 48], and O (%) amortized expected time for fully
dynamic edge insertions and deletions [33].

In this paper, we start by presenting a parallel data structure for
the batch-incremental MSF problem. It is the first such data structure
that achieves polylogarithmic work per edge insertion. The data
structure is work efficient with respect to the fastest sequential
single-update data structure, and even more efficient for large batch
sizes, achieving optimal linear expected work [38] when inserting
all edges as a batch. The size of a batch can vary from round to round.
Our main contribution is summarized by the following theorem:

THEOREM 1.1. There exists a data structure that maintains the
MSF of a weighted undirected graph that can insert a batch of ¢ edges
into a graph with n vertices in O (¢1g (1 + %)) work in expectation
and O(1g?(n)) span w.h.p.! in the arbitrary-CRCW PRAM.

We then use our batch-incremental MSF data structure to develop
various data structures for graph problems in a batch variant of
the sliding-window model. In the sliding-window model [17], one
keeps a fixed-size window that supports adding new updates to
the new side of the window and dropping them from the old side.
Each insertion on the new side does a deletion of the oldest element
on the old side. In general, this can be more difficult than pure
incremental algorithms, but not as difficult as supporting arbitrary
deletion in fully dynamic algorithms. This setup has become popular
in modeling an infinite stream of data when there is only bounded
memory, and a desire to “forget” old updates in favor of newer

'We say that g(n) € O(f(n)) with high probability (wh.p.) if g(n) € O(kf(n))
with probability at least 1 — O(1/n*) forallk > 1
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ones. There have been many dozens, perhaps hundreds, of papers
using the model in general. Crouch et. al. [13] have derived several
algorithms for graph problems in this model. For graph algorithms,
the goal is typically to use only O(n) memory.

Here we extend the model to allow for rounds of batch (edge)
insertions on the new side of the window, and batch (edge) deletions
from the old side. Our results allow for arbitrary interleavings of
batch insertions or deletions, and each of arbitrary size. Matching
up equal sized inserts and deletes gives a fixed sized window, but
we do not require this. Based on our batch-incremental MSF data
structure, we are able to efficiently solve a variety of problems in the
batch sliding-window model, including connectivity, k-certificate,
bipartiteness, (1 + €)-MSF, cycle-freeness, and sparsification. This
uses an approach similar to the one of Crouch et. al. [13], which is
based on sequential incremental MSF. In this work, other than using
the batch-incremental MSF data structures, more work is required
to augment their data structures in several ways. Our results are
summarized by the following theorem:

THEOREM 1.2. There exist data structures for the batch sliding-
window model (batch edge insertions on the new side and deletions on
the old size) for the problems of maintaining connectivity, k-certificate,
bipartiteness, (1 + €)-MSF, cycle-freeness, and e-sparsifiers, that all
require O(n) memory, support batch updates of size £ in O(f) work
and polylogarithmic span, and queries (except for sparsifiers) in poly-
logarithmic work, where n denotes the number of vertices.

Finally, we note that we can also apply these techniques to the in-
cremental setting, and, using existing results on batch-incremental
graph connectivity [47], obtain fast algorithms there as well. Table 1
gives more specifics on the individual results and compares them to
the existing bounds for parallel dynamic graphs in the incremental
and fully dynamic settings.

1.1 Technical Overview

The key ingredient in our batch-incremental MSF data structure is
a data structure for dynamically producing a compressed path tree.
Given a weighted tree with some marked vertices, the compressed
path tree with respect to the marked vertices is a minimal tree on
the marked vertices and some additional “Steiner vertices” such
that for every pair of marked vertices, the heaviest edge on the path
between them is the same in the compressed tree as in the original
tree. That is, the compressed path tree represents a summary of
all possible pairwise heaviest edge queries on the marked vertices.
An example of a compressed path tree is shown in Figure 1. More
formally, consider the subgraph consisting of the union of the paths
between every pair of marked vertices. The compressed path tree
is precisely this subgraph but with all of the non-marked vertices
of degree at most two spliced out. To produce the compressed path
tree, we leverage some recent results on parallel batch-dynamic
tree contraction and parallel rake-compress trees (RC trees) [2].
Given a compressed path tree for each component of the graph,
our algorithm follows from a generalization of the classic “cycle
rule” (or “red rule”) for MSTs, which states that given a heaviest
edge on a cycle in a graph, there exists an MST that doesn’t contain
it. This fact is used to produce the efficient O(1g(n)) time solution to
the sequential incremental MSF problem [48]. To handle a batch of
edge insertions, our algorithm computes the compressed path tree
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(a) A weighted tree, with some important vertices marked (in gray).
The paths between the marked vertices are highlighted.

(b) The corresponding compressed path tree. The edges are weighted
to represent the heaviest edge on the corresponding path.

Figure 1: A weighted tree and its corresponding compressed
path tree with respect to some marked vertices.

with respect to their endpoints which, in a sense, generalizes the red
rule, because it represents the heaviest edges on all pairwise paths,
and hence all possible cycles between the newly inserted edges.
More specifically, our algorithm takes the compressed path trees
and inserts the new batch of edges into them, and computes the MSF
of the resulting graph. For the MSF, we can use the algorithm of
Cole et. al. [12], which is linear work in expectation and logarithmic
span w.h.p., which in turn is based on the linear time sequential
algorithm [38]. Since the compressed path tree has size O(¢), this
can be done efficiently. We then show that the edges selected by
this MSF can be added to the MSF of the main graph, and those that
were not selected can be removed, correctly updating the MSF.

Lastly, using a mix of known reductions and several new ideas,
we show how our batch-incremental MSF algorithm can be used to
solve problems in a parallel version of the sliding-window graph
streaming model. A useful ingredient in this step is the recent edge
property [13], which says that by weighting the edges of a graph
stream with successively lower weights over time, connectivity
between a pair of vertices in the window can be tested by inspecting
the heaviest (i.e. oldest) edge on the path from u to v in an MSF
of the graph so far. Combining this idea with the use of several
work-efficient parallel batch-dynamic data structures, we show
how to maintain graph connectivity, bipartiteness, approximate
MSFs, k-certificates, cycle-freeness, and sparsifiers, subject to batch
updates in O(polylog(n)) work and span per edge update, and
O(npolylog(n)) space.

1.2 Related Work

MSTs have a long and interesting history. The problem of dynami-
cally maintaining the MST under modifications to the underlying
graph has been well studied. Spira and Pan [49] were the first
to tackle the dynamic problem, and give an O(n) sequential algo-
rithm for vertex insertion that is based on Boruvka’s algorithm. The
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‘ Incremental (This paper)

‘ Sliding window (This paper)
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‘ Fully dynamic (Previous work)

Connectivity O(fa(n))* (Previous work [47]) O(¢lg(1+n/e))* O(¢lg(n)lg(1+n/0)>T [1]
k-certificate O(kta(n))* O(ktlg(1+n/t))* -

Bipartiteness O(ta(n))* O(¢lg(1+n/e)* -

Cycle-freeness | O(fa(n))* O(tlg(1+n/e))* -

MSF O(tlg(1+n/e))* O(e7lelg(n) lg(1+n/f))*

e-sparsifier O(e7%¢1g* (n)a(n))*

O(e72¢1g* (n) 1Ig(1 + n/e))*

O(¢nlglglg(n) lg(m/n)) [22]

Table 1: Work bounds for new and known parallel batch-dynamic graph algorithms in the incremental (insert-only), sliding
window, and fully dynamic settings. All algorithms run in O(polylog(n)) span and use O(n polylog(n)) space. ¢ denotes the
batch size of updates. Note that the algorithms in the sliding window model are also applicable to the incremental setting,
by simply never moving the left endpoint of the window. For large batch sizes ¢, these algorithms sometimes achieve better
bounds. Some bounds given are randomized (x), amortized (1), or give (1 + ¢)-approximate solutions (%)

first sublinear time algorithm for edge updates was given by Fred-
erickson [24], who gave an O(y/m) algorithm. A well-celebrated
improvement to Frederickson’s algorithm was given by Eppstein et.
al [19], who introduced the sparsification technique to reduce the
cost to O(y/n). A great number of subsequent dynamic algorithms,
including parallel ones, take advantage of Eppstein’s sparsification.
The sequential incremental MST problem, i.e., maintaining the MST
subject to new edge insertions but no deletions, requires O(1g(n))
time per update using dynamic trees [5, 48] to find the heaviest
weight edge on the cycle induced by the new edge and remove it.
Holm et al. gave the first polylogarithmic time algorithm for fully
dynamic MST [32], supporting updates in O(Ig*(n)) amortized time
per operation, later improved by a lglg n factor [33] in expectation.
No worst-case polylogarithmic time algorithm is known for the
fully dynamic case. This paper is concerned with algorithms for
MSTs that are both parallel and dynamic.

Parallel single-update algorithms. Work by Pawagi and Ra-
makrishnan [44] gives a parallel algorithm for vertex insertion
(with an arbitrary number of adjacent edges) and edge-weight up-
dates in O(Ig(n)) span but O(n?1g(n)) work. Varman and Doshi
[53, 54] improve this to O(nlg(n)) work. Jung and Mehlhorn [37]

give an algorithm for vertex insertion in O(lg(n)) span, and O(n)
work. While this bound is optimal for dense insertions, i.e. inserting
a vertex adjacent to ©(n) edges, it is inefficient for sparse graphs.

Tsin [52] extended the work of Pawagi and Ramakrishnan [44]

to handle vertex deletions in the same time bounds, thus giving
a fully vertex-dynamic parallel algorithm in O(lg(n)) span and
O(n?1g(n)) work. Das and Ferragina [14] give algorithms for insert-
ing and deleting edges in O(lg(2) 1g(n)) span and o(n®31g( L))
work. Subsequent improvements by Ferragina [20, 21], and Das
and Ferragina [16] improve the span bound to O(lg(n)) with the
same work bound. A recent result by Kopelowitz et al. [39] gives
an algorithm that takes O(+/nlg(n)) work and O(lg(n)) span.

Parallel batch-dynamic algorithms. The above are all algorithms
for single vertex or edge updates. To take better advantage of par-
allelism, some algorithms that process batch updates have been
developed. Pawagi [42] gives an algorithm for batch vertex insertion
that inserts ¢ vertices in O(lg(n) 1g(¢)) span and O(nflg(n)1g(¢))
work. Johnson and Metaxas [36] give an algorithm for the same
problem with O(lg(n) lg(¢)) span and O(n¢) work.

Pawagi and Kaser [43] were the first to give parallel batch-
dynamic algorithms for fully-dynamic MSTs. For inserting ¢ in-
dependent vertices, inserting ¢ edges, or decreasing the cost of ¢
edges, their algorithms takes O(1g(n) lg(¢)) span and O(nf) work.
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Their algorithms for increasing the cost of or deleting ¢ edges, or
deleting a set of vertices with total degree ¢ take O(Ig(n) + g2 (¢))
span and O (n2 (1 + lli_(nf)))) work. Shen and Liang [46] give an al-
gorithm that can insert £ edges, modify ¢ edges, or delete a vertex of
degree £ in O(Ig(n) lg(¢)) span and O(n?) work. Ferragina and Luc-
cio [22, 23] give algorithms for handling ¢ = O(n) edge insertions
in O(lg(n)) span and O(nlglglg(n)lg(m/n)) work, and ¢ edge up-
dates in O(lg(n) lg(m/n)) span and O(¢nlglglg(n)lg(m/n)) work.
Lastly, Das and Ferragina’s algorithm [14] can be extended to the
batch case to handle ¢ edge insertions in O(¢ +1g(m/n) lg(n)) span
and O(n?/3 (¢ +1g(m/n))) work.

For a thorough and well written survey on the techniques used
in many of the above algorithms, see Das and Ferragina [15].
Sliding window dynamic graphs. Dynamic graphs in the sliding
window model were studied by Crouch et. al [13]. In the sliding
window model, there is an infinite stream of edges (e1, ey, ...), and
the goal of queries is to compute some property of the graph over
the edges {e;—1+1, €;—L+2, - - -, €), where t is the current time and
L is the fixed length of the window. Crouch et. al showed that sev-
eral problems, including k-connectivity, bipartiteness, sparsifiers,
spanners, MSFs, and matchings, can be efficiently computed in this
model. Several of these results used a data structure for incremental
MSEF as a key ingredient. All of these results assumed a sequential
model of computation.

2 PRELIMINARIES
2.1 Model of Computation

Parallel Random Access Machine (PRAM). The parallel random
access machine (PRAM) is a parallel machine model with p proces-
sors that work in lockstep, connected to a shared memory [34]. In
this paper we work with the Concurrent-Read Concurrent-Write
model (CRCW PRAM), where memory locations are allowed to be
concurrently read and concurrently written to. If multiple writers
write to the same location concurrently, we assume that an arbi-
trary writer wins. We analyze algorithms in terms of their work and
span, where work is the total number of instructions performed
by the algorithm and span (also called depth) is the length of the
longest chain of sequentially dependent instructions [7].

2.2 Tree Contraction and Rake-compress trees

Tree contraction produces, from a given input tree, a set of smaller
(contracted) trees, each with a subset of the vertices from the previ-
ous one, until the final layer which has a single remaining vertex.



Session: Full Paper

Miller and Reif [41] give an algorithm for tree contraction that pro-
duces a set of O(1g(n)) trees w.h.p, with a geometrically decreasing
number of vertices in each one. Specifically, the technique of Miller
and Reif involves sequential rounds of applying two operations in
parallel across every vertex of the tree, rake and compress. The
rake operation removes a leaf from the tree and merges it with
its neighbor. The compress operation takes a vertex of degree two
whose neighbors are not leaves and removes it, merging the two
adjacent edges. The algorithm operates on bounded-degree trees,
but arbitrary degree trees can easily be handled by converting them
into equivalent bounded degree trees, as described in [2].

A powerful application of tree contraction is that it can be used
to produce a recursive clustering of the given tree with attractive
properties. Using Miller and Reif’s tree contraction, a recursive
clustering can be produced that consists of O(n) clusters, with re-
cursive height O(lg(n)) w.h.p. Such a clustering can be represented
as a so-called rake-compress tree (RC tree) [3]. Recent work has
shown how to maintain a tree contraction dynamically subject to
batch-dynamic updates, work efficiently, and with low span [2].
These results also facilitate maintaining RC trees subject to batch-
dynamic updates work-efficiently and in low span. Specifically, an
RC tree can be built in O(n) work in expectation and O(Ig?(n))
span w.h.p., and subsequently updated in O(¢1g(1 + n/¢)) work in
expectation and O(Ig?(n)) span w.h.p. for batches of ¢ edges.

Rake-compress trees. RC trees encode a recursive clustering of
a tree. A cluster is defined to be a connected subset of vertices and
edges of the original tree. Importantly, it is possible for a cluster to
contain an edge without containing its endpoints. The boundary
vertices of a cluster C are the vertices v ¢ C such that an edgee € C
has v as one of its endpoints. All of the clusters in an RC tree have
at most two boundary vertices. A cluster with no boundary vertices
is called a nullary cluster, a cluster with one boundary is a unary
cluster (corresponding to a rake) and a cluster with two boundaries
is binary cluster (corresponding to a compress). The root cluster is
always a nullary cluster. Nodes in an RC tree correspond to clusters,
such that a node is always the disjoint union of its children. The
leaf clusters of the RC tree are the vertices and edges of the original
tree. Note that all non-leaf clusters have exactly one vertex (leaf)
cluster as a child. This vertex is that cluster’s representative vertex.
Clusters have the useful property that the constituent clusters of a
parent cluster C share a single boundary vertex in common—the
representative of C, and their remaining boundary vertices become
the boundary vertices of C. See Figure 2 for an example of a tree, a
recursive clustering, and its corresponding RC tree. Note that for a
disconnected forest, the RC tree algorithm will simply produce a
separate root cluster for each component.

RC trees support a multitude of different kinds of queries [3], all
in O(lg(n)) time. In this paper, we will make use of path queries:
given a pair of vertices u and v, find the heaviest edge on the path
from u to v. We refer the reader to [2] and [3] for a more in-depth
explanation of RC trees and their properties.

3 THE COMPRESSED PATH TREE

Given an RC tree and a set of £ marked vertices, our algorithm
produces the compressed path tree in O(£1g(1 + n/¢)) work in
expectation and O(lg(n)) span w.h.p.
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(a) A tree

(b) A recursive clustering of the tree produced by tree contraction.
Clusters produced in earlier rounds are depicted in a darker color.

(c) The corresponding RC tree. (Non-base) unary clusters are shown
as circles, binary clusters as rectangles, and the finalize (nullary)
cluster at the root with two concentric circles. The base clusters (the
leaves) are labeled in lowercase, and the composite clusters are la-
beled with the uppercase of their representative.

Figure 2: A tree, a recursive clustering of the tree, and the
corresponding RC tree [2].

Broadly, our algorithm for producing the compressed path tree
works as follows. The algorithm begins by marking the clusters
in the RC tree that contain a marked vertex, which is achieved
by a simple bottom-up traversal of the tree. It then traverses the
clusters of the RC tree in a recursive top-down manner. When the
algorithm encounters a cluster that contains no marked vertices,
instead of recursing further, it can simply generate a compressed
representation of the contents of that cluster immediately. The
algorithm uses the following key recursive subroutine.

— ExpANDCLUSTER(C : Cluster) : Graph
Return the compressed path tree of the subgraph corresponding
to the graph C U BounDARY(C), assuming that the boundary
vertices of C are marked.

We use the following primitives to interact with the RC tree. As the
RC tree has bounded degree, each of them takes constant time.

— BounDARY(C : Cluster) : vertex list

Given a cluster in the RC tree, return its boundary vertices.
— CHILDREN(C : Cluster) : Cluster list

Given a cluster in the RC tree, return its child clusters.
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— REPRESENTATIVE(C : Cluster) : vertex
Given a non-leaf cluster in the RC tree, return its representative.
— WEIGHT(B: BinaryCluster) : number
Given a binary cluster in the RC tree, return the weight of the
heaviest edge on the path between its two boundary vertices.

Lastly, we use the following primitives for constructing the resulting
compressed path tree.

— SpLICEOUT(G : Graph, v : vertex) : Graph
If v has degree two in G and is not marked, splice v out by
replacing its two incident edges with a contracted edge. The
weight of the new edge is the heaviest of the two removed edges.
— PrRUNE(G : Graph, v : vertex) : Graph
If v has degree two in G, return SpLICEOUT(G). Otherwise, if v
has degree one in G, with neighbor u, and is not marked, remove
v and the edge (u,0), and return SpLICEOUT(G’, u), where G’ is
the graph remaining after removing v and (u, v).

The intuition behind the PRUNE primitive is that without it, our
algorithm could add redundant vertices to the compressed path
tree. The proof of Lemma 3.1 illuminates the reason for the precise
behavior of PRUNE. We give pseudocode for ExPANDCLUSTER in
Algorithm 1. The compressed path tree of a marked tree is obtained
by calling ExPANDCLUSTER(root), where root is the root cluster
of the correspondingly marked RC tree. For a disconnected forest,
simply call ExPANDCLUSTER on the root cluster of each component.

Algorithm 1 Compressed path tree algorithm

1: // Returns a graph G, which is represented by a pair of sets (V, E),
where V is the vertex set and E is a set of weighted edges. Edges
are represented as pairs, the first element of which is the set of
endpoints of the edge, and the second of which is the weight

2: procedure ExPANDCLUSTER(C : Cluster): Graph

3. if not MARKED(C) then

4 local V « BounDARY(C)

5 if C is a BinaryCluster then

6 local e «— (V,WEiGHT(C))

7 return (V, {e})

8 else

9 return (V,{})

10:  elseif C is a vertex v then

11 return ({0}, {})

12:  else

13: local G < Ucecunpren(c) EXPANDCLUSTER(c)
14: return PRUNE(G, REPRESENTATIVE(C))

3.1 Analysis

Correctness. We first argue that our algorithm for producing the
compressed path tree is correct.

LEMMA 3.1. Given a marked tree T and its RC tree, for any cluster
C, ExpANDCLUSTER(C) returns the compressed path tree of the graph
C U BouNDARY(C), assuming the boundary vertices of C are marked.

Proor. We proceed by structural induction on the clusters, with
the inductive hypothesis that ExPANDCLUSTER(C) returns the com-
pressed path tree for the subgraph C U BouNDARY(C), assuming
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that, in addition to the marked vertices of T, the boundary vertices
of C are marked. First, consider an unmarked cluster C.

(1) If C is a NullaryCluster, then it has no boundary vertices, and
since no vertices are marked, the compressed path tree should
be empty. Line 9 therefore returns the correct result.

(2) If C is a UnaryCluster, then it has as single marked boundary

vertex and no other marked vertices. Therefore the compressed

path tree consists of the just the boundary vertex, so Line 9

returns the correct result.

If C is a BinaryCluster, the compressed path tree contains its

endpoints, and an edge between them annotated with the weight

of the corresponding heaviest edge in the original tree. Line 7

returns this.

®)

Suppose C is a leaf cluster. Since edges cannot be marked, it must
be a cluster corresponding to a single vertex, v. Since v is marked,
the compressed path tree just contains v (returned by Line 11).

We now consider the inductive case, where C is a marked cluster
that is not a leaf of the RC tree. Recall the important facts that
the boundary vertices of the children of C consist precisely of the
boundary vertices of C and the representative of C, and that the
disjoint union of the children of C is C. Using these two facts and the
inductive hypothesis, the graph G (Line 13) is the compressed path
tree of the graph C U BounDARY(C), assuming that the boundary
vertices of C and the representative of C are marked.

It remains to prove that the PRUNE procedure (Line 14) gives the
correct result, i.e., it should produce the compressed path tree with-
out the assumption that REPRESENTATIVE(C) is necessarily marked.
Recall that the compressed path tree is characterized by having no
unmarked vertices of degree less than three. If REPRESENTATIVE(C)
is marked, or if REPRESENTATIVE(C) has degree at least three, then
PRUNE does nothing, which is correct. Suppose REPRESENTATIVE(C)
has degree two and is unmarked. PRUNE will splice out this vertex
and combine its adjacent edges. Observe that splicing out a ver-
tex does not change the degree of any other vertex in the tree. By
the inductive hypothesis, no other vertex of G (Line 13) was un-
marked and had degree less than three, hence the result of Line 14
is the correct compressed path tree. Lastly, consider the case where
REPRESENTATIVE(C) has degree one and is not marked. PRUNE will
correctly remove it from the tree, but this will change the degree
of its neighboring vertex by one. If the neighbor was marked or
had degree at least four, then it correctly remains in the tree. If
the neighbor had degree three and was not marked, then it will
now have degree two, and hence should be spliced out. As before,
this does not change the degree of any other vertex in the tree,
and hence is correct. By the inductive hypothesis, the neighbor
cannot have had degree less than three and been unmarked before
calling PRUNE. Therefore, in all cases, Line 14 returns the correct
compressed path tree.

By induction on the clusters, we can conclude that the algorithm
returns the compressed path tree of the graph C U BounpArY(C),
assuming that the boundary vertices of C are marked. O

THEOREM 3.2. Given a marked tree T and its RC tree, EXPAND-
CLUSTER(root), where root is the root of the RC tree, produces the
compressed path tree of T with respect to the marked vertices.
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ProorF. This follows from Lemma 3.1 and the fact that the root
cluster is a nullary cluster and hence has no boundary vertices. O

Efficiency. We now show that the compressed path tree can be
computed efficiently.

LEMMA 3.3. A compressed path tree for ¢ marked vertices has at
most O(£) vertices.

Proor. Since a compressed path tree has no non-marked leaves,
it has at most ¢ leaves. Similarly, by definition, the compressed path
tree has at most ¢ internal nodes of degree at most two. The result
then follows from the fact that a tree with ¢ leaves and no internal
nodes of degree less than two has O(¢) vertices. O

LEMMA 3.4 ([2]). Given the RC tree of an n-vertex tree, { root-to-
leaf paths in the RC tree touch O(¢1g(1+ n/¢)) nodes in expectation.

THEOREM 3.5. Given the RC tree of a tree on n vertices, the com-
pressed path tree for £ marked vertices can be produced in O(£1g(1 +
n/t)) expected work and O(lg(n)) span w.h.p. on the CRCW PRAM.

Proor. The algorithm for producing the compressed path tree
consists of two bottom-up traversals of the RC tree from the ¢
marked vertices to mark and unmark the clusters, and a top-down
traversal of the same paths in the tree. Non-marked paths in the RC
tree are only visited if their parent is marked, and since the RC tree
has constant degree, work performed here can be charged to the
parent. Also due to the constant degree of the RC tree, at each node
during the traversal, the algorithm performs a constant number of
recursive calls. Assuming that Lines 13 and 14 can be performed in
constant time (to be shown), Lemma 3.4 implies the work bound of
O(¢lg(1+n/¢)) in expectation.

To perform Line 13 in constant time, our algorithm can perform
the set union of the vertex set lazily. That is, first run the algorithm
to determine the sets of vertices generated by all of the base cases,
and then flatten these into a single set by making another traversal
of the tree. Duplicates can be avoided by noticing that the only
duplicate in a union of clusters is the representative of their parent
cluster. Line 14 can be performed by maintaining the edge set as
an adjacency list. Since the underlying tree is always converted to
a bounded-degree equivalent by the RC tree, the adjacency list can
be modified in constant time.

The span bound follows from the fact that the RC tree has height
O(lg(n)) w.h.p. and that each recursive call takes constant time.

Lastly, note that this argument also holds for disconnected graphs
by simply traversing each component (i.e. each root cluster) in
parallel after the marking phase. O

Building compressed path trees concurrently. As described,
since the algorithm for producing a compressed path tree marks
the underlying RC tree, this method can not be used to construct
multiple compressed path trees concurrently. Although our algo-
rithm does not need this feature, we remark on it here since other
applications may wish to take advantage. To support the ability
to build multiple compressed path trees concurrently, we can in-
stead use a local hashtable to remember the marked nodes. Since
hashtable operations can be supported in O(1) expected work and
O(lg(n)) span w.h.p., this leaves the work of the algorithm unaf-
fected, but increases the span to O(Ig?(n)) w.h.p.
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4 PARALLEL BATCH-INCREMENTAL MSF

Armed with the compressed path tree, our algorithm for batch-
incremental MSF is a natural generalization of the standard sequen-
tial algorithm: Use a dynamic tree data structure [48] to find the
heaviest edge on the cycle created by the newly inserted edge. By
the classic “red rule,” delete this edge to obtain the new MSF.

In the batch setting, when multiple new edges are added, many
cycles may be formed, but the same idea still applies. Broadly, our
algorithm takes the batch of edges and produces the compressed
path trees with respect to all of their endpoints. The key obser-
vation here is that the compressed path trees will represent all of
the possible paths between the new edge endpoints, and hence, all
possible cycles that could be formed by their inclusion. Taking the
compressed path tree and adding the newly inserted edges there-
fore results in a small graph that represents all possible cycles made
by the new edges. To determine which edges should be added to
the MSF, it is then a matter of computing the MSF of this repre-
sentative graph, and taking the newly inserted edges that were
selected. Conversely, the edges to be removed from the MSF are
those corresponding to the compressed path tree edges that were
not selected for the MSF of the representative graph.

We express the algorithm in pseudocode in Algorithm 2. It takes
as input, an RC tree of the current MSF, and the new batch of edges
to insert, and modifies the RC tree to represent the new MSF. The
subroutine COMPRESSEDPATHTREES computes the compressed path
trees for all components containing a marked vertex (in K) using
Algorithm 1. We simplify the pseudocode by referring to edges
in the compressed path trees and the corresponding edges in the
MSF interchangably. That is, when we say to insert edges from the
compressed path tree into the MSF, we really mean to insert the
edges from ET whose heaviest weight that they correspond to, and
similarly for deletion.

Algorithm 2 Batch-incremental MSF

1: procedure BATCHINSERT(T : RCTree, E* : edge list)
2 local K « U({u’v}’w)ey{u,v}

3. local C « ComPRESSEDPATHTREES(RC, K)

4 local M «— MSF(CU EY)

5. T.BATcHDELETE(E(C) \ E(M))

6:  T.BATCHINSERT(E(M) N E*)

4.1 Analysis

Correctness. We first argue that our algorithm for updating the
MSEF is correct. We will invoke a classic staple of MST algorithms
and their analysis, the “cycle rule” (called the “red rule” by Tarjan).

LEMMA 4.1 (RED RULE [51]). For any cycle C in a graph, and a
heaviest edge e on that cycle, there exists a minimum spanning forest
of G not containing e.

THEOREM 4.2. Let G be a connected graph. Given a set of edges E¥,
let C be the compressed path tree of G with respect to the endpoints of
E*, and let M be the MST of C U E*. Then a valid MST of G U E* is

M’ = MST(G) U (E(M) N E") \ (E(C) \ E(M)),

where the edges of C are identified with their corresponding heaviest
edges in G whose weight they are labeled with.
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Proor. First, we use the fact that AU (B\ C) = (AUB) \ Cas
long as A and C are disjoint. Then, by some simple Boolean algebra,
since E(M) N ET = E* \ (E* \ E(M)), we have

M’ = (MST(G) UE™) \ (E(C) \ E(M)) \ (E* \ E(M)).

We will prove the result using the following strategy. We will begin
with the graph MST(G) U E*, and then show, using the red rule,
that we can remove all of the edges in E(C) \ E(M) and E* \ E(M),
such that the resulting graph is still a superset of an MST. We will
then show that M” has the same number of edges as an MST, and
hence is in fact an MST.

Let e = (u,0) be an edge in E(C) \ E(M). We want to show that
e is a heaviest edge on a cycle in C U E*. To do so, consider the
cycle formed by inserting e into M. If e was not a heaviest edge
on the cycle, then we could replace the heavier edge with e in M
and reduce its weight, which would contradict M being an MST.
Therefore, e is a heaviest edge on a cycle in C U E*. Since every
edge in C represents a corresponding heaviest edge on a path in
G, e must also correspond to a heaviest edge on the corresponding
cycle in G U E*. Since e is a heaviest edge on some cycle of G U E*,
the red rule says that it can be safely removed. Since we never
remove an edge in M, the graph remains connected, and hence
we can continue to apply this argument to remove every edge in
E(C) \ E(M), as desired.

The exact same argument also shows that we can remove all of
the edges in E* \ E(M), and hence, we can conclude that M’ is a
superset of an MST. It remains to show, lastly, that M” is an MST,
i.e. contains no cycles. To do so, we will show that the algorithm
removes the same number of edges that it inserts. First, since we
assume that G is connected, |[E(M)| = |E(C)| = |V(C)| — 1. Then,
since E(C) and E* are disjoint, and E(M) c E(C) U E*, simple
Boolean algebra yields |[E(M) N E*| = |[E(C) \ E(M)|, which shows
that the algorithm inserts and removes the same number of edges.
Therefore, since M’ is a superset of an MST and has the same
number of edges as an MST, it must be an MST. ]

COROLLARY 4.3. Algorithm 2 correctly updates the MSF.

Proor. Theorem 4.2 shows that the algorithm is correct for con-
nected graphs. For disconnected graphs, apply the same argument
for each component, and observe that the previously disconnected
components that become connected are connected by an MSF. O

Efficiency. We now show that the batch-incremental MSF algo-
rithm achieves low work and span.

THEOREM 4.4. Batch insertion of { edges using Algorithm 2 takes
O(¢1g(1+n/t)) expected work and O(lgz(n)) span w.h.p.

Proor. Collecting the endpoints of the edges (Line 2) takes O(¢)
work in expectation and O(lg(¢)) span w.h.p. using a semisort [31].
By Theorem 3.5, Line 3 takes O(¢1g(1 + n/f)) work in expectation
and O(lg(n)) span w.h.p. By Lemma 3.3, the graph C U E™ is of size
O(?), and hence by using the MSF algorithm of Cole et. al. [12],
which runs in linear work in expectation and logarithmic span
w.h.p, Line 4 takes O(¢) work in expectation and O(lg(¢)) span
w.h.p. Then, since C U E* is of size O(¢), the batch updates to the
RC tree (Lines 5 and 6) take O(¢lg(1+n/¢)) work in expectation and
O(lg?(n)) span w.h.p. Lastly, since O(lg(¢£)) = O(Ig(n)), summing

57

SPAA 20, July 15-17, 2020, Virtual Event, USA

these up, we can conclude that Algorithm 2 takes O(¢1g(1 + n/f))
work in expectation and O(lg?(n)) span w.h.p. O

5 APPLICATIONS TO SLIDING WINDOW

We apply our batch-incremental MSF algorithm to efficiently solve
a number of graph problems on a sliding window. For each prob-
lem, we present a data structure that implements the following
operations to handle the arrival and departure of edges:

— BATCHINSERT(B: edge list) Insert the set of edges B into the
underlying graph.

— BATCHEXPIRE(A: int) Delete the oldest A edges from the under-
lying graph.

Additionally, the data structure provides query operations specific

to the problem. For example, the graph connectivity data structure

offers an 1SCONNECTED query operation.

This formulation is a natural extension of the sequential sliding-
window model. Traditionally, the sliding-window model [17] entails
maintaining the most recent W items, where W is a fixed, prespeci-
fied size. Hence, an explicit expiration operation is not necessary.
More recently, there has been interest in maintaining variable-sized
sliding windows (e.g., events in the past 11 minutes). The interface
used in this work allows for rounds of batch inserts (to accept new
items) and batch expirations (to evict items from the old side). No-
tice that BATCHEXPIRE differs from a delete operation in dynamic
algorithms in that it only expects a count, so the user does not
need to know the actual items being expired to call this operation.
Our results allow for arbitrary interleavings of batch insertions or
expirations, and each of arbitrary size.

Small space is a hallmark of streaming algorithms. For insert-
only streams, Sun and Woodruff [50] show a space lower-bound of
Q(n) words for connectivity, bipartiteness, MSF, and cycle-freeness,
and Q(kn) words for k-certificate assuming a word of size O(lgn)
bits. All our results below, which support not only edge insertions
but also expirations, match these lower bounds except for MSF,
which is within a logarithmic factor.

5.1 Graph Connectivity

We begin with the problem of sliding-window graph connectivity:
to maintain a data structure so the users can quickly test whether a
given pair of vertices can reach each other in the graph defined by
the edges in the sliding window. We prove the following theorem:

THEOREM 5.1 (CONNECTIVITY). For an n-vertex graph, there is
a data structure, SW-Conn, that requires O(n) words of space and

supports the following:

— BATCHINSERT(B) handles { = |B| new edges in O(1 + £1g(n/t))
expected work and O(Ig? £) span w.h.p.

— BATCHEXPIRE(A) expires A oldest edges in O(1) worst-case work
and span.

— 1SCONNECTED(u, v) returns whether u and v are connected in
O(lgn) work and span w.h.p.

Following Crouch et al. [13], we will prove this by reducing it
to the problem of incremental minimum spanning tree. Let 7(e) be
the index that edge e appears in the whole stream. (The ith edge
has index i.) Then, implicit in their paper is the following lemma:
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LEMMA 5.2 (RECENT EDGE [13]). IfF is a minimum spanning forest
(MSF) of the edges in the stream so far, where each edge e carries a
weight of —t(e), then any pair of vertices u and v are connected if and
only if (1) there is a path between u and v in F and (2) the heaviest
edge e* (i.e, the oldest edge) on this path satisfies t(e*) > Ty, where
Ty is the 7(-) of the oldest edge in the window.

ProOF OF THEOREM 5.1. We maintain (i) an incremental MSF
data structure from Theorem 1.1 and (ii) a variable Ty, which
tracks the arrival time 7(-) of the oldest edge in the window. The
operation BATCHINSERT(B) is handled by performing a batch insert
of ¢ = |B| edges, where an edge e € B is assigned a weight of —z(e).
The operation BATCHEXPIRE(A) is handled by advancing Ty by A.
The cost of these operations is clearly as claimed.

The query 1SCONNECTED(u, v) is answered by finding the heav-
iest edge on the path between u and v in the RC tree maintained
and applying the conditions in the recent edge lemma (Lemma 5.2).
The claimed cost bound follows because the MSF is maintained as
an RC tree, which supports path queries in O(1gn) [2]. O

Often, applications depend on an operation NUMCOMPONENTS()
that returns the number of connected components in the graph. It
is unclear how to efficiently support this query using the above
algorithm, which uses lazy deletion. Below is a variant, known as
SW-Conn-Eager, which supports NUMCoMPONENTs() in O(1) work.

The number of connected components can be computed from the
number of edges in the minimum spanning forest (MSF) that uses
only unexpired edges as # of components = n — # of MSF edges.

To this end, we modify SW-Conn to additionally keep a parallel
ordered-set data structure 9, which stores all unexpired MSF edges
ordered by 7(-). This is maintained as follows: The BATCHINSERT
operation causes some sets of edges to be added to and removed
from the MSF (Algorithm 2, Lines 5-6). We can then adjust D
using cost at most O(nlg(n/t)) work and O(lg2 n) span (e.g., [8, 9]).
The BATCHEXPIRE operation applies SPLIT to find expired edges
(costing O(lg n) work and span) and explicitly deletes these edges
from the MSF (costing expected O(Alg(n/A)) work and O(lg? n)
span w.h.p.). With these changes, NUMCoMPONENTS() is answered
by returning n — || and SW-Conn-Eager has the following cost
bounds:

THEOREM 5.3 (CONNECTIVITY WITH COMPONENT COUNTING).
For an n-vertex graph, there is a data structure, SW-Conn-Eager, that
requires O(n) space and supports the following:

— BATCHINSERT(B) handles ¢ = |B| new edges in O(1 + ¢1g(n/?))
expected work and O(1g? n) span w.h.p.

— BATCHEXPIRE(A) expires A oldest edges in O(Alg(1+n/A)+lgn)
expected work and O(1g? n) span w.h.p.

— 1SCONNECTED(u,v) returns whether u and v are connected in
O(lgn) work and span w.h.p.

— NUMCOMPONENTS() returns the number of connected components
in O(1) worst-case work and span.

5.2 Bipartiteness

To monitor bipartiteness, we apply a known reduction [4, 13]—a
graph G is bipartite if and only if its cycle double cover D(G) has
exactly twice as many connected components as G. A cycle double
cover is a graph in which each vertex v is replaced by two vertices
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v1 and vy, and each edge (u,v), by two edges (u1,v2) and (ug,v1).
Hence, D(G) has twice as many vertices as G.

We can track the number of connected components of both the
graph in the sliding window and its double cover by running two
parallel instances of SW-Conn-Eager. Notice the edges of the cycle
double cover D(G) can be managed on the fly during BATCHINSERT
and BATcHEXPIRE. Hence, we have the following:

THEOREM 5.4 (BIPARTITE TESTING). For an n-vertex graph, there
is a data structure, SW-Bipartiteness, that requires O(n) space and
supports the following:

— BATcHINSERT(B) handles ¢ = |B| new edges in O(£1g(1 + n/t))
expected work and O(Ig? n) span w.h.p.

— BATCHEXPIRE(A) expires A oldest edges in O(Alg(1+n/A)+1gn)
expected work and O(lg? n) span w.h.p.

— ISBIPARTITE() returns a Boolean indicating whether the graph is
bipartite in O(1) worst-case work and span.

5.3 Approximate MSF Weight

For this problem, assume that the edge weights are between 1 and
no, Using known reductions [4, 11, 13], the weight of the MSF
of G can be approximated up to 1 + ¢ by tracking the number of
connected components in graphs Gy, G, . . ., where G; is a subgraph
of G containing all edges with weight at most (1 + ¢)*. Specifically,
the MSF weight is given by

(n = cc(Go)) + ) (cc(Gi-1) = cc(Gi)) (1 +e)’,

i1

(1)

where cc(G) is the number of connected components in graph G.

Let R = O(¢! Ig n). We maintain R instances of SW-Conn-Eager
Fi,...,Fp_1 corresponding to the connectivity of Gy, Gy, . .
The arrival of ¢ new edges involves batch-inserting into R SW-
Conn-Eager instances in parallel. Symmetrically, edge expiration is
handled by batch-expiring edges in R instances in parallel. Addition-
ally, at the end of each update operation, we recompute equation
(1), which involves R terms and calls to NUMComMPONENTS(). This
recomputation step requires O(R) work and O(IgR) = O(lg? n)
span. Overall, we have the following:

.,GRo1.

THEOREM 5.5 (APPROXIMATE MSF). Fix ¢ > 0. For an n-vertex
graph, there is a data structure for approximate MSF weight that
requires O(¢~nlgn) space and supports the following:

— BATCHINSERT(B) handles £ = |B| new edges in O(¢ ' ¢1gnlg(1 +
n/t)) expected work and O(lg2 n) span w.h.p.

— BATCHEXPIRE(A) expires A oldest edges in O(e ! Alg nlg(1+n/A))
expected work and O(1g? n) span w.h.p.

— WEIGHT() returns an (1 + €)-approximation to the weight of the
MSF in O(1) worst-case work and span.

5.4 k-Certificate and Graph k-Connectivity

For a graph G, a pair of vertices u and v are k-connected if there are k
edge-disjoint paths connecting u and v. Extending this, a graph G is
k-connected if all pairs of vertices are k-connected. This generalizes
the notion of connectivity, which is 1-connectivity. To maintain
a “witness” for k-connectivity, we rely on a maximal spanning
forest decomposition of order k, also known as a k-jungle, which
decomposes G into k edge-disjoint spanning forests Fy, Fo, .. ., Fy
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such that F; is a maximal spanning forest of G\ (F{UF,U- - -UF;_q).

This yields a number of useful properties, notably:

(P1) ifu and v are connected in F;, then they are at least i-connected;

(P2) u and v are k-connected in F{ U Fp U - - - U Fy iff. they are at
least k-connected in G; and

(P3) F{ UF, U - U F is k-connected iff. G is at least k-connected.

Crouch et al. [13] show how to maintain such decomposition on a
sliding window. When extended to the batch setting, the steps are
as follows: Let Og be the new batch of edges B. Then:
Fori=1,...,k, insert O;_; into F;, capture the edges
being replaced as F; and the edges from O;-; that
become part of F; as F;, and set O; = F; U(Oj—1 \ F).
Via known reductions [4, 13], we have that the F;’s are maximal
spanning forests and the unexpired edges of F{UF,U- - -UF; form a
k-certificate in the sense of properties (P1)-(P3) above. Additionally,
this preserves all cuts of size at most k. We have the following:

THEOREM 5.6 (k-CERTIFICATE). For an n-vertex graph, there is a
data structure for k-certificate that requires O(kn) space and supports
the following:

— BATCHINSERT(B) handles ¢ = |B| new edges in O(kt1g(1+n/t))
expected work and O(k1g? n) span w.h.p.

— BATCHEXPIRE(A) expires A oldest edges in O(kAlg(1 + n/A))
expected work and O(1g? n) span w.h.p.

— MAKECERT() returns a k-certificate involving at most k(n — 1)
edges in O(kn) work and O(lgn) span.

Proor. We maintain each F; using a batch incremental MSF
data structure from Theorem 1.1. To allow eager eviction of expired
edges, we additionally keep for each F; a parallel ordered-set data
structure (e.g., [8, 9]) D;, which stores all unexpired edges of F;.
The operation BATCHINSERT is handled by sequentially working
oni=1,2,...,k, where for each i, edges are bulk-inserted into the
MSF data structure for F;, propagating replaced edges to Fi41. The
ordered-set data structure 9; can be updated accordingly. Note that
the size of the changes to D; never exceeds O(f). The operation
BATcHEXPIRE involves expiring edges in all 9;’s. Finally, the op-
eration MAKECERT is supported by copying and returning Ulez)i.
Because each F; is a forest, it has at most n — 1 edges, for a total of
at most k(n — 1) edges across k spanning forests. O

Testing whether a graph is k-connected appears to be difficult in
the fully-dynamic setting. Sequentially, an algorithm with O(nlgn)
time per update is known [19]. By contrast, for the incremental
setting, there is a recent algorithm with O(1) time per update [30].
In the sliding window model, as a corollary of Theorem 5.6, the
k-certificate can be used to test k-connectivity via a parallel global
min-cut algorithm (e.g., [27, 28]). Because there are O(kn) edges,
this takes O(knlgn + nlg* n) work and O(lg® n) span [28].

5.5 Cycle-freeness

To monitor whether a graph contains a cycle, we observe that a
graph that has no cycles is a spanning forest. Hence, if F; is a
maximal spanning forest of a graph G, then G \ F; must not have
any edges provided that G has no cycles. To this end, we use the
data structure from Theorem 5.6 with k = 2, though we are not
interested in making a certificate. To answer whether the graph
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has a cycle, we check to see if F is empty, which can be done in
O(1) work and span. Hence, we have the following:

THEOREM 5.7 (CYCLE-FREENESS). For an n-vertex graph, there is a
data structure for cycle-freeness that requires O(n) space and supports
the following:

— BATCHINSERT(B) handles ¢ = |B| new edges in O(£1g(1 + n/t))
expected work and O(Ig? n) span w.h.p.
— BATCHEXPIRE(A) expires A oldest edges in O(Alg(1+n/A)) ex-

pected work and O(1g? n) span w.h.p.

— HASCYCLE() returns true or false indicating whether the graph
has a cycle in O(1) work and span.

5.6 Graph Sparsification

The graph sparsification problem is to maintain a small, space-
bounded subgraph so as to, when queried, produce a sparsifier of
the graph defined by the edges of the sliding window. An ¢-sparsifier
of a graph G is a weighted graph on the same set of vertices that pre-
serves all cuts of G up to 1 + ¢ but has only about O(n - polylog(n))
edges. Existing sparsification algorithms commonly rely on sam-
pling each edge with probability inversely proportional to that
edge’s connectivity parameter. We use the following result:

THEOREM 5.8 (FUNG ET AL. [25]). Given an undirected, unweighted
graph G, let c, denote the edge connectivity of the edge e. If each edge

e is sampled independently with probability pe > min (1, % 1g? n)
and assigned a weight of 1/ pe, then with high probability, the resulting
graph is an e-sparsifier of G.

In the context of streaming algorithms, implementing this has
an important challenge: the algorithm has to decide whether to
sample/keep an edge before that edge’s connectivity is known.

Our aim is to show that the techniques developed in this paper
enable maintaining an e-sparsifier with O(n - polylog(n)) edges in
the batch-parallel sliding-window setting. To keep things simple,
the bounds, as stated, are not optimized for polylog factors.

We support graph sparsification by combining and adapting ex-
isting techniques for fast streaming connectivity estimation [29]
and sampling sufficiently many edges at geometric probability
scales (e.g., [4, 13]).

The key result for connectivity estimation is as follows: For i =
,2,...,L=0(gn)and j = 1,2,...,K = O(lgn), let Gl.(]) denote
a subgraph of G, where each edge of G is sampled independently
with probability 1/2¢ and Gé] ) -G Then, the level L(u,v), defined

to be the largest i such that u and v are connected in Gl.(j ) for all
0 < j < K, gives an estimate of uv connectivity:

LEMMA 5.9 ( [29]). With high probability, for every edge e of G,
O(se/lgn) < 2L(e) < 2c,, where s, denotes strong connectivity and
ce denotes edge connectivity.

The same argument also gives ¢, < e(2Le) lg n) w.h.p. While
we cannot explicitly store all these Gl.(j ’s, it suffices to store each
Gi(j ) as a SW-Conn data structure (Theorem 5.1), requiring a total
of O(K - L - n) = O(nlg? n) space.

When an edge e is inserted, if the algorithm were able to de-
termine that edge’s connectivity, it would sample that edge with
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the right probability (p.) and maintain exactly the edges in the
sparsifier. The problem, however, is that connectivity can change
until the query time. Hence, the algorithm has to decide how to
sample/keep an edge without knowing its connectivity. To this
end, we resort to a technique adapted from Ahn et al. [4]: Let Hy
be the graph defined by the edges of the sliding window and for
i=1,2,...,L, let H; C Hy be obtained by independently sampling
each edge of Hy with probability 1/2¢. Intuitively, every edge is
sampled at many probability scales upon arrival.

Storing all these H;’s would require too much space. Instead, we
argue that keeping each Hj as Q;, where Q; is a k-SW-Certificate
data structure (Theorem 5.6) with k = O(ELZ lg3 n) is sufficient?.
Maintaining these requires a total of O(knL) = O(¢~%nlg* n) space.

Ultimately, our algorithm simulates sampling an edge e with
probability 27118 P¢] where

De = min (1, O(Z_L(e)f_2 lg2 n)) ,

which uses an estimate of 2-(€) in place of c. It answers a SPARSIFY
query as follows:

Fore € Ule Q;, output e in the sparsifier with weight
1/pe if e appears in Qp(,), where f(e) = |lg; pe .
We now show that the Q;’s retain sufficient edges.

LEMMA 5.10. With high probability, an edge e that is sampled into
Hpg(e) is retained in Qg c).-

Proor. Consider an edge e = {u, v}. There are ¢, disjoint paths
between u and 0. With high probability, because ¢, < ©(2L(€) Ign),
the expected number of paths that stay connected in Hg,) is at
most 2P, - ¢ < O(e721g> n). By Chernoff bounds, it follows that
w.h.p., e has edge connectivity in Hg,) at most k = 0(e721g* n) for
sufficiently large constant. Hence, e is retained in Qg(¢) wh.p. O

This means that at query time, with high probability, every edge
e is sampled into the sparsifier with probability 2™ Ugz pel > Pe, SO
the resulting graph is an e-sparsifier w.h.p. (Theorem 5.8). Moreover,
the number of edges in the sparsifier is, in expectation, at most

Z 2pe = 0(e721g n) Z é =0(e2nlg®n),
e€E(G) e€E(G)

where we used Lemma 5.9 and the fact that ), 1/se < n—1 [6, 25].

All the ingredients developed so far are combined as follows: The
algorithm maintains a SW-Conn data structure for each Gi(] ) and a
k-SW-Certificate Q; for each H;. The BATCHINSERT operation in-
volves inserting the edges into KL + L data structures and the same
number of independent coin flips. The cost is dominated by the cost
of inserting into the Q;’s, each of which takes O(k¢lg(1 + n/t))
expected work and O(k1g? n) span w.h.p. The BATCHEXPIRE op-
eration involves invoking BATCHEXPIRE on all the data structures
maintained; the dominant cost here is expiring edges in the Q;’s. Fi-
nally, the query operation sPARSIFY involves considering the edges
of U{-‘zl Q; in parallel, each requiring a call to L(e), which can be an-
swered in O(LK g n) = O(Ig> n) work and span. In total, this costs
O(nkL1g> n) = O(n polylog(n)) work and O(polylog(n)) span. The
following theorem summarizes our result for graph sparsification:

2We remark that the Q; instances themselves contain enough information to estimate
ce for all edges, but we do not know how to do so efficiently.
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THEOREM 5.11 (GRAPH SPARSIFICATION). For an n-vertex graph,
there is a data structure for graph (cut) sparsification that requires
O(¢%nlg* n) space and supports the following:

— BATCHINSERT(B) handlest = |B| new edges in O(Slzt’ lg(1+%) lg* n)

expected work and O(e721g> n) span w.h.p.

— BATCHEXPIRE(A) expires A oldest edges in O(fizA lg(1+ %) 1g* n)

expected work and O(1g? n) span w.h.p.

— SPARSIFY() returns an e-sparsifier with high probability. The spar-
sifier has O(¢~%nlg® n) edges and is produced in O(n polylog(n))

work and O(polylog(n)) span w.h.p.

5.7 Connection to Batch Incremental

All applications studied here were built on top of the connectivity
data structures (Theorem 5.1). In the related batch incremental set-
ting, an analog of Theorem 5.1 was given by Simsiri et al. [47], where
BATCHINSERT takes O(fa(n)) expected work and O(polylog(n))
span, and 1SCONNECTED takes O(a(n)) work and span.

With this result, we can derive an analog of Theorem 5.3 us-
ing the following ideas: (i) maintain a component count variable,
which is decremented every time a union successfully joins two
previously disconnected components; and (ii) maintain a list of
inserted edges that make up the spanning forest. This can be im-
plemented as follows: Simsiri et al. maintains a union-find data
structure and handles batch insertion by first running a find on the
endpoints of each inserted edge and determining the connected
components using a spanning forest algorithm due to Gazit [26].
Notice that the edges that Gazit’s algorithm returns are exactly
the new edges for the spanning forest we seek to maintain and
can simply be appended to the list. This yields an analog of The-
orem 5.3, where BATCHINSERT still takes O(fa(n)) expected work
and O(polylog(n)) span, 1IsSCONNECTED takes O(a(n)) work and
span, and NUMCOMPONENTS takes O(1) work and span. Ultimately,
this means that replacing Theorems 5.1 and 5.3 with their analogs
in each application effectively replaces the 1g(1 + n/¢) factor in the
work term with an a(n) term, leading to the cost bounds presented
in Table 1.

6 CONCLUSION

This paper presented the first work-efficient parallel algorithm
for batch-incremental MSFs. The algorithm is even asymptotically
faster than the sequential algorithm for sufficiently large batch
sizes. A key ingredient was the construction of a compressed path
tree—a tree that summarizes the heaviest edges on all pairwise
paths between a set of marked vertices. We demonstrated the use-
fulness of our algorithm by applying it to a range of problems in a
generalization of the sliding-window model.

We are, to the best of our knowledge, the first to tackle sliding
window dynamic graph problems in the parallel setting. Investigat-
ing other algorithms in this setting could lead to a variety of new
problems, tools, and solutions.
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