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Abstract

We present an O(m log®(n)) work, O(polylog(n)) depth parallel algorithm for minimum cut.
This algorithm matches the work of a recent sequential algorithm by Gawrychowski, Mozes, and
Weimann [ICALP’20, (2020), 57:1-57:15], and improves on the previously best known parallel al-
gorithm by Geissmann and Gianinazzi [SPAA’18, (2018), pp. 1-11] which performs O(m log*(n))
work in O(polylog(n)) depth.

Our algorithm makes use of three components that might be of independent interest. Firstly,
we design a parallel data structure for dynamic trees that solves mixed batches of queries and
weight updates in low depth. It generalizes and improves the work bounds of a previous data
structure of Geissmann and Gianinazzi and is work efficient with respect to the best sequential
algorithm. Secondly, we design a parallel algorithm for approximate minimum cut that improves
on previous results by Karger and Motwani. We use this algorithm to give a work-efficient
procedure to produce a tree packing, as in Karger’s sequential algorithm for minimum cuts.
Lastly, we design a work-efficient parallel algorithm for solving the minimum 2-respecting cut
problem.



1 Introduction

The minimum cut problem is one of the classic problems in graph theory and algorithms. The
problem is to find, given an undirected weighted graph G = (V, E), a subset of vertices S C V
such that the total weight of the edges crossing from S to V'\ S is minimized. Early approaches to
the problem were based on reductions to maximum s-¢ flows [I5] [16]. Several algorithms followed
which were based on edge contraction [30} [3T], 20, 25]. Karger first observed that tree packings [32]
can be used to find minimum cuts [22]. In particular, for a graph with n vertices and m edges
Karger showed how to generate a set of O(logn) spanning trees such that, with high probability,
the minimum cut crosses at most two edges of one of them. The second ingredient is then an
O(mlog?(n)) time algorithm to find the so-called minimum 2-respecting cut of each of these span-
ning trees, yielding an O(mlog®(n)) time algorithm for minimum cut. Karger [22] also describes a
parallel algorithm for finding the minimum 2-respecting cut in O(n?) work in O(log®(n)) depth.

Until very recently, these were the state-of-the-art sequential and parallel algorithms for the
weighted minimum cut problem. A new wave of interest in the problem has recently pushed these
frontiers. Geissmann and Gianinazzi [13] design a parallel algorithm for minimum 2-respecting cuts
that performs O(mlog®(n)) work in O(log?(n)) depth. Their algorithm is based on parallelizing
Karger’s algorithm by replacing a sequential data structure for the so-called minimum path problem,
based on dynamic trees, with a data structure that can evaluate a batch of updates and queries
simultaneously in low depth. Their algorithm performs just a factor of O(log(n)) additional work
than Karger’s sequential algorithm, but substantially improves on the work of Karger’s parallel
algorithm.

Even more recently, a breakthrough from Gawrychowski, Mozes, and Weimann [11] gave an
O(mlog?(n)) algorithm for minimum cuts. Their algorithm is also based on Karger’s algorithm,
and achieves the O(log(n)) speedup by designing an O(mlog(n)) algorithm for finding the minimum
2-respecting cuts, which was the bottleneck of Karger’s algorithm. This is the first result to beat
Karger’s seminal algorithm in over 20 years.

To generate the O(logn) spanning trees, Karger used a combination of random sampling [20]
and a modification of a tree packing algorithm of Gabow [I0]. The random sampling requires a
constant approximation to the minimum cut, which is the most challenging part to parallelize.
Karger and Motwani give a parallel algorithm for approximating the cut that runs with O(m?/n)
work in polylogarithmic depth [24].

In our work, we combine ideas from Gawrychowski et. al and Geissmann et. al with several new
techniques to close the gap between the parallel and sequential algorithms. Our contribution can
be summarized by:

Theorem 1. Given a weighted, undirected graph G, there exists a parallel algorithm that, with high
probability, computes the minimum cut of G in O(mlog?(n)) work and O(log3(n)) depth.

We achieve this using a combination of results that may be of independent interest. Firstly, we
design a framework for evaluating mixed batches of updates and queries on trees work efficiently and
in low depth. This algorithm is based on parallel tree contraction [28] and parallel Rake-compress
Trees (RC trees) [I]. Roughly, we say that a set of update and query operations implemented on an
RC tree is simple (defined formally in Section [3)) if the updates maintain values at the leaves that
are modified by an associative operation and combined at the internal nodes, and the queries read
only the nodes on a root-to-leaf path and their children. Simple operation sets include updates and
queries on path and subtree weights.

Theorem 2. Given a constant-degree RC' tree of size n, and a simple operation set, after O(n)
work and O(logn) depth preprocessing, every following batch of k operations from the operation-set,



can be processed in O(klog(k + n)) work and O(log(n)log(k)) depth. The total space required is
O(n + kmaz), where kpyae is the mazimum size of a batch.

This result generalizes and improves on previous results by Geissmann et. al., who give an algorithm
for evaluating a batch of k path-weight updates and queries in Q(klog?(n)) work.

Next, we design a faster parallel algorithm for approximating minimum cuts, which is used as
an ingredient in producing the tree packing used in Karger’s approach (Section ). To achieve
this, we design a faster sampling scheme for producing graph skeletons, leveraging recent results on
sampling binomial random variables, and a transformation that reduces the maximum edge weight
of the graph to O(mlog(n)) while preserving an approximate minimum cut.

Lastly, we show how to solve the minimum 2-respecting cut problem work-efficiently in parallel,
using a combination of our new parallel dynamic tree algorithms combined with the use of RC
trees to efficiently perform a divide-and-conquer search over the edges of the 2-constraining trees
(Section [9)

Theorem 3. There exists an algorithm that given a weighted, undirected graph G and a rooted
spanning tree T', computes the minimum 2-respecting cut of G with respect to T, in O(mlog(n))
work and O(polylog(n)) depth w.h.p.

Application to the unweighted problem. The unweighted minimum cut problem, or edge
connectivity problem was recently improved by Ghafarri, Nowicki, and Thorup [14] who give an
O(mlog(n) + nlog*(n)) work and O(log®(n)) depth randomized algorithm which uses Geissmann
and Gianinazzi’s algorithm as a subroutine. By plugging our improved algorithm into Ghafarri,
Nowicki, and Thorup’s algorithm, we obtain an algorithm for unweighted minimum cut that runs
in O(mlog(n) + nlog?(n)) work and O(polylog(n)) depth w.h.p.

2 Preliminaries

Model of computation. We analyze algorithms in the work-depth model using fork-join-style
parallelism. A procedure can fork off another procedure call to run in parallel and then wait for
forked procedures to complete with a join. Work is defined as the total number of instructions
performed by the algorithm and depth (also called span) is the length of the longest chain of
sequentially dependent instructions [5]. The model can work-efficiently cross simulate the classic
CRCW PRAM model [5], and the more recent Binary Forking model [6] with at most a logarithmic-
factor difference in the depth.

Randomness. We say that a statement happens with high probability (w.h.p) in n if for any
constant ¢, the constants in the statement can be set such that the probability that the event fails
to hold is O(n™°). In line with Karger’s work on random sampling [2I], we assume that we can
generate O(1) random bits in O(1) time. Since some of the subroutines we use require random
©(log(n))-bit words, these take O(log(n)) work to generate. We can assume that the depth is
unaffected since we can always pre-generate the anticipated number of random words in parallel at
the beginning of our algorithms.

Our algorithms are Monte Carlo, i.e., correct w.h.p. but run in a deterministic amount of time.
We can use Las Vegas algorithms, which are fast w.h.p. but always correct, as subroutines, because
any Las Vegas algorithm can be converted into a Monte Carlo algorithm by halting and returning
an arbitrary answer after the desired time bound. Note that it is not always possible to convert
a Monte Carlo algorithm into a Las Vegas one, unless a fast algorithm for verifying a solution is
available, which is not the case for minimum cuts.



Tree contraction. Parallel tree contraction is a framework for producing dynamic tree algo-
rithms, introduced by Miller and Reif [29]. Tree contraction works by performing a sequence of
rounds, each applying two operations, rake and compress, in parallel across every vertex of the
tree, to produce a sequence of smaller (contracted) trees. The rake operation removes a leaf vertex
and merges it with its parent. The compress operation removes a vertex of degree two and replaces
its two incident edges with a single edge joining its neighbors. For a rooted tree the root is never
removed, and is the final surviving vertex. The technique of Miller and Reif produces a sequence
of O(log(n)) trees w.h.p., with O(n) vertices in total across all of the contracted trees w.h.p. Their
algorithm applies to bounded-degree trees, but arbitrary-degree trees be handled by converting
them into equivalent bounded-degree trees.

A powerful application of tree contraction is that it can be used to produce a recursive clus-
tering of the given tree with attractive properties. From the resulting tree contraction, a recursive
clustering can be produced that consists of O(n) clusters with recursive height O(log(n)) w.h.p.
Such a clustering can be represented as a so-called rake-compress tree (RC tree) [2].

Rake-compress trees. The RC tree of a tree T encodes a recursive clustering of T' corresponding
to the result of tree contraction, where each cluster corresponds to a rake or compress. Figure
illustrates a recursive clustering, and its corresponding RC tree. A cluster is defined to be a
connected subset of vertices and edges of the original tree. Importantly, a cluster can contain an
edge without containing its endpoints. The boundary vertices of a cluster C' are the vertices v ¢ C
such that an edge e € C has v as one of its endpoints. All of the clusters in an RC tree have at most
two boundary vertices. A cluster with no boundary vertices is called a nullary cluster (generated
at the top-level root cluster), a cluster with one boundary is a unary cluster (generated by the
rake operation) and a cluster with two boundaries is binary cluster (generated by the compress
operation). The cluster path of a binary cluster is the path in 7" between its boundary vertices.
Nodes in an RC tree correspond to clusters, such that a node is always the disjoint union of its
children (subclusters). The leaf clusters of the RC tree are the vertices and edges of the original
tree. Note that all non-leaf clusters have exactly one vertex (leaf) cluster as a child. This vertex is
that cluster’s representative vertex. Clusters have the useful property that the constituent clusters
of a parent cluster C share a single boundary vertex in common—the representative of C', and their
remaining boundary vertices become the boundary vertices of C.

In this paper we will be considering rooted trees. In this case the root of the tree is also the
representative of the top level nullary cluster of the RC-tree. All binary clusters have a binary
subcluster whose path is above the representative vertex, which we will refer to as the top cluster,
and a binary cluster below the representative cluster, which we call the bottom cluster. We will
also refer to the binary subcluster of a unary cluster as the top cluster as its path is also above the
representative vertex. In our pseudocode, we will use the following notation. For a cluster x: x—v
is the representative vertex, x—t is the top subcluster, z—b is the bottom subcluster, x—U is a list
of unary subclusters, and z—p is the parent.

RC trees are similar to top trees [3], which are also based on a recursive clustering strategy.
Both data structures support a wide variety of queries. Compared to top trees, however, RC trees
are somewhat simpler (fewer cases) and, importantly for us, it is well understood how to construct
them in parallel [29] 12]. We refer the reader to [I] and [2] for a more in-depth explanation of RC
trees and their properties.

Compressed path trees. For a weighted (unrooted) tree T' and a set of marked vertices V. C T,
the compressed path tree is a minimal tree T, on V and some additional “steiner vertices” from T'
such that for every pair (u,v) € V, the lightest edge on the path from u to v is the same in T" and T.
Alternatively, the compressed path tree is the tree T" with all unmarked vertices of degree less than



(b) A recursive clustering of the tree pro-
duced by tree contraction. Clusters pro-
duced in earlier rounds are depicted in a
darker color.

(¢c) The corresponding RC tree. (Non-base) unary clusters are shown as circles, binary
clusters as rectangles, and the finalize (nullary) cluster at the root with two concentric
circles. The base clusters (the leaves) are labeled in lowercase, and the composite
clusters are labeled with the uppercase of their representative.

Figure 1: A tree, a clustering, and the corresponding RC tree [I].

three spliced out. It is not hard to show that T, has size less than 2|V|. Compressed path trees are
described in [4], where it is shown that given an RC tree for the tree T and a set of k marked vertices,
the compressed path tree can be produced in O(klog(1 +n/k)) work and O(log?(n)) depth w.h.p.
Gawrychowski et al. [I1] define a similar notion which they call “topologically induced trees”, but
their algorithm is sequential and requires O(klogn) work (time).

Karger’s minimum cut algorithm. Karger’s algorithm for minimum cuts [22] is based on the
notion of k-respecting cuts. Given a weighted, undirected graph G and a spanning tree 7', a cut of
G k-respects T if at most k edges of T' cross the cut. Karger’s algorithm is the following two-step
process.

1. Find O(log(n)) spanning trees of G such that w.h.p., the minimum cut 2-respects at least one
of them

2. Find, for each of the aforementioned spanning trees, the minimum 2-respecting cut in G

Karger solves the first step using a combination of random sampling and tree packing. Given a
weighted graph G, a tree packing of G is a set of spanning trees with weights assigned to the edges
such that for each edge in G, its total weight in all of the spanning trees is no more than its weight
in G. Since the underlying tree packing algorithms used by Karger have running time proportional
to the size of the minimum cut, random sampling is used to produce a sparsified graph, or skeleton,
such that the resulting tree packing still has the desired property w.h.p. This allows the tree
packing algorithms to run sufficiently fast. Given the sparsified graph, Karger gives two algorithms
for producing tree packings of size O(log(n)) such that w.h.p., the minimum cut 2-respects one of
them. The first approach uses a tree packing algorithm of Gabow [10]. The second is based on the



packing algorithm of Plotkin et al. [33], and is much more amenable to parallelism. It works by
performing O(log?(n)) minimum spanning tree computations. In total, step one of the algorithm
takes O(m + nlog®(n)) time.

For the second step, Karger develops an algorithm to find, given a graph G and a spanning tree
T, the minimum cut of G that 2-respects T. The algorithm works by arbitrarily rooting the tree,
and considering two cases: when the two cut edges are on the same root-to-leaf path, and when
they are not. Both cases use a similar technique; They consider each edge e in the tree and try
to find the best matching e’ to minimize the weight of the cut induced by the edges {e,e’}. This
is achieved by using a dynamic tree data structure to maintain, for each candidate €', the value
that the cut would have if ¢ were selected as the second cutting edge, while iterating over the
possibilities of e and updating the dynamic tree. Karger shows that this step can be implemented
sequentially in O(mlog?(n)) time, which results in a total runtime of O(mlog®(n)) when applied
to the O(logn) spanning trees.

3 Batched Mixed Operations on Trees

The batched mixed operation problem is to take an off-line sequence of mixed operations on a data
structure, usually a mix of queries and updates, and process them as a batch. The primary reason
for batch processing is to allow for parallelism on what would otherwise be a sequential execution of
the operations. We use the term operation-set to refer to the set of operations that can be applied
among the mixed operations. Here we are interested in operations on trees, and our results apply
to operation-sets that can be implemented on an RC tree in a particular way, defined as follows.

Definition 1. An implementation of an operation-set on trees is a simple RC implementation if
it uses an RC representation of the trees and satisfies the following conditions.

1. The implementation maintains a value at every RC cluster that can be calculated in constant
time from the values of the children of the cluster,

2. every query operation is implemented by traversing from a leaf to the root examining values at
the wisited clusters and their children taking contant time per value examined, and using constant
space, and

3. every update operation involves updating the value of a leaf using an associative constant-time
operation, and then reevaluating the values on each cluster on the path from the leaf to the root.

Note that every operation has an associated leaf (either an edge or vertex). Also note that setting
(i.e., overwriting) a value is an associative operation (just return the second of the arguments). For
simple RC implementations, all operations take time (work) proportional to the depth of the RC tree
since they only follow a path to the root taking constant time at each cluster. Although the simple
RC restriction may seem contrived, most operations on trees studied in previous work [306, 3, 2]
can be implemented in this form, including most path and subtree operations. This is because of
a useful property of RC trees, that all paths and subtrees in the source tree can be decomposed
into clusters that are children of a single path in the RC tree, and typically operations need just
update or collect a contribution from each such cluster.

As an example, consider the following two operations on a rooted tree (the first an update, and
the second a query):

e ADDWEIGHT (v, w) : adds weight w to a vertex v

e SUBTREESUM(v) : returns the sum of weights for the subtree rooted at v



Algorithm 1 The SUBTREESUM query. The query starts at the leaf for v and goes up the RC
tree keeping track of the total weight on the bottom side of v. Note that x will never be a unary
cluster, so if not the representative or top subcluster of p (Line [5]), it is the bottom subcluster with
nothing below it in this cluster.

1: procedure SUBTREESUM(v)

2: w <+ 0
while p is binary do

if (x = p-t) or (x = p—v) then

w 4 w + p=b-w + pov-w + ZuE[HU U—w

X4 p; P xop
return w + pov-w + 30 UDw

These operations can use a simple RC implementation by keeping as the value of each cluster the
sum of values of all its children. Leaves in the RC tree start with zero weight. This satisfies the
first condition since the sums take constant time. An addWeight (v, w) adds weight w to the vertex
v (which is a leaf in the the RC tree) and updates the sums up to the root cluster. This satisfies the
third condition since addition is associative and takes constant time. The query can be implemented
as in Algorithm [I] which only examines values on a path from the start vertex to the root and the
children along that path. Each step takes constant time and the function requires constant space,
satisfying the second condition. The operations therefore has a simple RC implementation.

We are interested in implementing batches of of operations from an an operation-set on trees
with a simple RC implementation. In particular, we prove Theorem

Proof of Theorem[4. The preprocessing just builds an RC tree on the source tree, and sets the
values for each cluster based on the initial values on the leaves. This can be implemented with the
Miller-Reif algorithm [29], or in the binary forking model [6], or deterministically [12]. All take
linear work and logarithmic depth (w.h.p for the randomized versions). Our algorithm for each
batch is then implemented as follows:

1. Timestamp the operations by their position.

2. Collect all operations by their associated leaf, and sort within each leaf by timestamp. This can
be implemented with a single sort.

3. For each leaf use a prefix sum on the update values to calculate the value of the leaf after each
operation, starting from the initial value on the leaf.

4. Initialize each query using the value it received from the prefix sum. We now have a list of
operations on each leaf sorted by timestamp. For each operation we have its value, and for each
query we also have its partial evaluation based on the value. We prepend the initial value. We
call this the operation list. An operation list is non-trivial if it has more than just the initial
value.

5. Sequentially for each level of the cluster tree starting one above the deepest, and in parallel for
every cluster on the level for which at least one child has a non-trivial operation list.
(a) Merge the operation lists from each child into a single list by timestamp.

(b) Calculate for each element the latest value of each child at or before the timestamp. This
can be implemented by prefix sums.



(c) For each element in the list calculate the value at that timestamp from the child values
collected in the previous step.

(d) For queries use the values and/or child values to update the query.

Note that this algorithm needs to have children with non-trivial operation lists identify parents that
need to be processed. This can be implemented by keeping a list of all the clusters at a level with
non-trivial operation lists left-to-right in level order. When moving up a level, adjacent duplicates
that share the same parent can be combined.

We first consider why the algorithm is correct. We assume by structural induction (over sub-
trees) that the operation lists contain the correct values for each timestamped operation in the list.
This is true at the leaves since we apply a prefix sum across the associative operation to calculate
the value at each update. For internal clusters, assuming the child clusters have correct operation
lists (values for each timestamp valid until the next timestamp, and partial result of queries), we
properly determine the operation lists for the cluster. In particular for all timestamps that appear
in children we promote them to the parent, and for each we calculate the value based on the current
value, by timestamp, for each child.

We now consider the costs. The cost of the batch before processing the levels is dominated by
the sort which takes O(klog k) work and O(log k) depth. The cost at each level is then dominated
by the merging and prefix sums which take O(k) work and O(log k) depth accumulated across all
clusters that have a child with a non-trivial operation list. If the RC tree has depth O(logn) then
across all levels the work is bounded by O(klogn) work and O(log(n)log(k)) depth. The total
work and depth is therefore as stated. The space for each batch of size k is bounded by the size
of the RC tree which is O(n) and the total space of the operation lists at any two adjacent levels,
which is O(k). O

Note that we could maintain operation lists at each cluster for all operations on the source tree
(along with links to the child nodes) across all batches. This woud allow arbitrary queries back in
time in O(logn) work per query. However it would not satisfy the desired space bounds.

3.1 Path Updates and Path/Subtree Queries

We now consider implementing mixed operations consisting of updating paths, and querying both
paths and subtres. We will use these in batch in Sections and 0| In particular we wish to
maintain, given a rooted tree T = (V, E) a weight w(e) for each e € F, a data structure that
supports the following operations.

e ADDPATH(u,v,z): For u,v € V adds z to the weight of all edges on the u — v path.
e QUERYSUBTREE(v): Returns the lightest weight of an edge in the subtree rooted at v € V,
e QUERYPATH(u,v): For u,v € T, returns the lightest weight of an edge on the v — v path.

e QUERYEDGE(e): Returns w(e)

We also consider ADDPATH’(v,z), which adds z to the path from v to the root, and QUERY-
PATH(u, v), which requires that v be the representative vertex of an ancestor of u in the RC tree.
The more general forms can be implemented from these with a constant number of calls given the
LCA in the original tree for ADDPATH and in the RC tree for QUERYPATH.

The interface can be implemented in O(log(n)) time by using top trees [3]. Here we describe a
simple RC implementation to allow efficient batching.



Lemma 1. The ADDPATH’, QUERYSUBTREE, QUERYPATH’, and QUERYEDGE operations on
bounded degree trees can be supported with a simple RC implementation.

Algorithm 2 A simple RC implementation of ADDPATH and QUERYSUBTREE.

procedure funaRy (Wy, (M, L, wt),U)
w' Wy + Z(m,w)EU w
My, < min(m’w)eU m
return (min(my, l; +w’, m,), w, +w')

1:
2:
3:
4
5: procedure fRINARY (Wo, (Mt b, we), (M, lp, wp), U)
6
7
8
9

w' — w, +wp + Z(m,w)eU w
My < min(m,’w)eU m
return (min(my, my, my,), min(l; + w', ), wy + w')
: procedure ADDPATH’ (v, w)
10:  v—value < v—value + w
11:  Reevaluate the f(-) on path to root.

12: procedure QUERYSUBTREE(v)
13:  w<+o00;l+ o

14: X 4= V; P TP

15:  while binary p do

16: if (x = p-t) or (z = p—v) then

17: W' = pobow 4 povow + 30 uow
18: [ + min(l 4+ w’, p—b-l)

19: m <— min(m, p—b-m, min, e,y u-m)
20: T 4Py P TP

21: W povosw A+ Y uow
22:  return min(l 4+ w’, m, ming ey u—m)

Proof. Our simple RC implementation for combining values, ADDPATH, and QUERYSUBTREE is
given in Algorithm [2 The other two operations can be found in Appendix [E] The value of each
vertex (leaf) in the cluster is the the total weight added to that vertex by ADDPATH. The value
for each unary cluster consists of: m, the minimum weight edge in the cluster, and w, the total
weigh of ADDPATHS originating in the cluster. For each binary cluster we separate the minimum
weights on and off the cluster path. In particular, the value of each binary cluster consists of: m,
the minimum weight edge not on the cluster path, [, the minimum edge on the cluster path due to
all ADDPATH originating in the cluster, and w, the total weight of ADDPATHs originating in the
cluster. The fbinary and funary calculate the values for unary and binary clusters from the values
of their children. We initialize each vertex with zero, and each edge e (which are binary clusters)
with (m =0,l = w(e),w = 0).

It is a simple RC implementation since (1) the f(-) can be computed in constant time, (2) the
queries just traverse from a leaf on a path to the root (possibly ending early) only examining child
values, taking constant time per level and constant space, and (3) the update just sets a leaf using
an associative addition, and reevaluates the values to the root.

We argue the implementation is correct. Firstly we argue by structural induction on the RC
tree that the values as described in the previous paragraph are maintained correctly by fbinary and
funary. In particular assuming the children are correct we show the parent is correct. The values
are correct for leaves since we increment the value on vertices with ADDPATH, and initialize the
edges appropriately. To calculate the minimum edge weight of a unary cluster funary takes the
minimum of three quantities: the minimum off-path edge of the child binary cluster, the overall



minimum edge of any of the child unary clusters, and, importantly, the minimum edge on the
cluster path of the child binary cluster plus the ADDPATH weight contributed by the unary clusters
and the representative vertex (i.e., min(my, l; + w’,my)). This is correct since all paths from those
clusters to the root go through the binary edge, so it needs to be adjusted. The off-path edges and
child unary clusters do not need to be adjusted since no path from the cluster vertex goes through
them. The minimum weight is therefore correct. The total ADDPATH weight is trivially correct
since it just adds the contributions.

For binary clusters we need to separately consider the minimum off and on path edges. For the
off-path edges the parts that are off the cluster path are the off path edges from the two binary
children, plus all edges from the unary children (i.e., min(my, my, m,)). For the on-path edges
both the top and bottom binary clusters contribute their on-path edges. The on-path edges from
the bottom binary cluster do not need to be adjusted because no vertices in the cluster are below
them. The on-path edges from the top binary cluster need to be adjusted by the ADDPATH weights
from all vertices in the bottom cluster, all vertices in unary child clusters, and the representative
vertex since they are all below the path (this sum is given by w’). The minimum of the resulted
adjusted top edge and bottom edge is then returned, which is indeed the minimum edge on the
path accounting for ADDPATHSs on vertices in the cluster.

The QUERYSUBTREE accumulates the appropriate minimum weights within a subtree as it goes
up the RC tree. As with the calculation of values it needs to separate the on-path and off-path
minimum weight. Whenever coming as the upper binary cluster to the parent, QUERYSUBTREE
needs to add all the contributing ADDPATH weights from vertices below it in the parent cluster
(the representative vertex, the lower binary cluster and the unary clusters) to the current minimum
on-path weight. A minimum is then taken with the lower on-path minimum edge to calculate
the new minimum on path edge weight (Line . The off path minimum is the minimum of the
current off path minimum, the minimum off path edge of the bottom cluster and the minimums of
the unary clusters (Line . Once we reach a unary cluster we are done since for a unary cluster all
subtrees of vertices within the cluster are fully contained within the cluster. The final line therefore
just determines the overal minimum for the subtree rooted at v by considering the on-path edges
adjusted by ADDPATH contributions, the off path edges, and all edges in child unary clusters. [

Corollary 1. Given a bounded-degree tree of size n, any sequence of m ADDPATH, QUERY-
SUBTREE, QUERYPATH, and QUERYEDGE operations can be evaluated in O(n + mlogn) work,
O(log?(n +m)) depth and O(n +m) space.

Proof. The LCAs required to convert ADDPATH to ADDPATH’ and QUERYPATH to QUERYPATH’
can be computed in O(n) work, O(log(n)) depth, and O(n) space [35] . The rest follows from
Theorem [2] and Lemma [I O

3.2 Improving Previous Results

Using our batched mixed operations, we can improve previous results on finding 2-respecting cuts.
In particular we can shave off a log factor in the work of Geissmann and Gianinazzi’s (GG) algo-
rithm [13], and we can parallelize Lovett and Sandlund’s (LS) algorithm [26].

Geissmann and Gianinazzi find 2-respecting cuts by first finding an O(m) sequence of mixed
ADDPATH and QUERYPATH operations for each of O(logn) trees. They show how to find each
set in O(mlogn) work and O(logn) depth [I3| Lemma 12]. On each set they then use their own
data structure to evaluate the sequence in O(mlog®n) work and O(log®n) depth, for a total of
O(mlogn) work and O(log®n) depth across the sets. Replacing their data structure with the
result of Corollary [I| improves their results to O(m log®n) work.



Lovett and Sandlund significantly simplify Kargers’ algorithm by first finding a heavy-light
decomposition—i.e., a vertex disjoint set of paths in a tree such that every path in the tree is
covered by at most O(logn) of them. It then reduces finding the 2-respecting cuts to a sequence of
ADDPATH and QUERYPATH operations on the decomposed paths induced by each non-tree edge,
for a total of O(mlogn) operations. Using Geissmann and Gianinazzi’s O(nlogn) work O(log?n)
algorithm for finding a heavy-light decomposition [13, Lemma 7], and the results of Corollary
again gives an O(mlog®n) work, O(log®n) algorithm.

4 Producing the Tree Packing

We follow the general approach used by Karger to produce a set of O(log(n)) spanning trees
such that w.h.p., the minimum cut 2 respects at least one of them. We have to make several
improvements to achieve our desired work and depth bounds. At a high level, Karger’s algorithm
works as follows.

1. Compute a constant-factor approximation to the minimum cut ¢
2. Sample the edges of G with probability O(log(n)/c)
3. Use the tree packing algorithm of Plotkin [33] to generate a packing of O(log(n)) trees

Step 2 is trivial to parallelize, as the sampling can be done independently in parallel. The sampling
procedure produces an unweighted multigraph with O(mlog(n)) edges, and takes O(mlog?(n))
work and O(log(n)) depth

In Step 3, Plotkin’s algorithm consists of O(log?(n)) sequential minimum spanning tree (MST)
computations on a weighting of the sampled graph, which has O(mlog(n)) edges. Naively this
would require O(mlog®(n)) work. To save work, we can use the trick mentioned by Gawrychowski
et al. [IT]. Since the sampled graph is a multigraph sampled from a graph with m edges, the MST
algorithm need only know about the lightest of each parallel edge, which can be maintained in O(1)
time since the weights change by a fixed amount each iteration. Using Cole, Klein, and Tarjan’s
linear work and O(log(n)) depth MST algorithm [§] results in a total of O(mlog?(n)) work in
O(log3(n)) depth w.h.p.

The only nontrivial part of parallelizing the tree production is actually Step 1, computing a
constant-factor approximation to the minimum cut. In the sequential setting, Matula’s algorithm
can be used, which runs in linear time on unweighted graphs, and can be extended to weighted
graphs to run in O(mlog®(n)) time. To the best of our knowledge, the only known parallelization
of Matula’s algorithm is due to Karger and Motwani [24], but it takes O(m?/n) work, which is
far too much for our purposes. In Appendix [A] we derive a faster version of the approximation
algorithm that runs in O(mlog®(n)) work and O(log®(n)) depth. Taking all of this together, we
have the following theorem.

Theorem 4. Given a weighted, undirected graph, a set of O(log(n)) spanning trees can be produced
in O(mlog?(n)) work and O(log3(n)) depth such that w.h.p., the minimum cut two respects at least
one of them

5 Finding Minimum 2-respecting Cuts

We are given a graph G and a set of O(log(n)) trees such that, w.h.p., the minimum cut of G 2-
respects at least one of the trees. In this section, we will give an algorithm that finds the minimum
2-respecting cut of G with respect to a tree T in O(mlog(n)) work and O(polylog(n)) depth.
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Our faster O(mlog(n)) work algorithm, like those that came before it, finds the minimum 2-
respecting cut by considering two cases. We assume that the tree 1" is rooted arbitrarily. In the
first case, we assume that the two tree edges of the cut occur along the same root-to-leaf path,
i.e. one is a descendant of the other. This is called the descendant edges case. In the second
case, we assume that the two edges do not occur along the same root-to-leaf path. This is the
independent edges case. We assume we are given an undirected weighted graph G = (V, E) with
maximum degree three. Note that any arbitrary degree graph can easily be ternarized by replacing
high-degree vertices with paths of infinite weight edges, resulting in a graph of maximum degree
three with the same minimum cut, and only a constant-factor larger size.

5.1 Descendant edges

We now present our algorithm for minimum 2-respecting cut for the descendant edges case. Let
T be a spanning tree of a connected graph G = (V, E) of degree at most three, and root T at an
arbitrary vertex of degree at most two. The rooted tree is binary since G is a connected graph with
bounded degree three.

We use the following fact. For any tree edge e € T, let F, denote the set of edges (u,v) € FE
(tree and non-tree) such that the u — v path in T' contains the edge e. Then the weight of the cut
induced by a pair of edges {e, e’} is given by

W(FAFy) = w(Fe) +w(Fo) —2w(Fe N Fer),

where A denotes the symmetric difference between the two sets. For each tree edge e, our algorithm
seeks the tree edge €’ that minimizes w(F.AF,/), which is equivalent to minimizing the expression

w(Fe/) — 2w(Fe N Fe/>.

To do so, it traverses 1" from the root while maintaining dynamic weights on a tree data structure
that satisfies the following invariant:

Invariant 1 (Current subtree invariant). When visiting e = (u,v), for every edge €' € Subtree(v),
the weight of €' in the dynamic tree is w(Fy) — 2w(F. N Fyr)

The initial weight of each edge e is therefore w(F,). Maintaining this invariant as the algorithm
traverses the tree can then be achieved with the following observation. When the traversal descends
from an edge p = (w,u) to a neighboring child edge e = (u,v), the following hold for all ¢’ €
Subtree(v):

(Fe N Fer) D (F,N F.), since any path that goes through p and ¢’ must pass through e.

1.
2. (F.NFy)\ (FpyNF) are the edges (z,y) € Fr such that e is a top edge of the path z —y in T'
(i.e., e is on the path from z to y in T', but the parent edge of e is not).

Therefore, to maintain the current subtree invariant, when the algorithm visits the edge e, it need
only subtract twice the weight of all x — y paths that contain e as a top edge. This can be done
efficiently by precomputing the sets of top edges. There are at most two top edges for each path
x —y, and they can be found from the LCA of z and y in T. We need not consider tree edges since
they will never appear in F.,. By maintaining the aforementioned invariant, the solution follows
by taking the minimum value of w(F.) + QUERYSUBTREE(v) for all edges e = (u,v) during the
traversal. As described, this algorithm is entirely sequential, but it can be parallelized using our
mixed-batch evaluation algorithm (Corollary .
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The operation sequence can be generated as follows. First, the weights w(F,) for each edge can
be computed using the batch evaluation algorithm (Corollary where each edge (u, v) of weight w
creates an ADDPATH(u, v, w) operation, followed by a QUERYEDGE(e) for every edge e € T'. This
takes O(mlog(n)) work and O(log?(n)) depth. The LCAs required to compute the sets of top edges
can be computed using the parallel LCA algorithm of Schieber and Vishkin [35] in O(m) work and
O(log(n)) depth in total. By computing an Euler tour of the tree T' (an ordered sequence of visited
edges) beginning at the root, the order in which to perform the tree operations can be deduced in
O(n) work and O(log(n)) depth. Each edge in the Euler tour generates an ADDPATH operation for
each of its top edges, followed by a QUERYSUBTREE operation. Note that each edge is visited twice
during the Euler tour. The second visit corresponds to negating the ADDPATH operations from
the first visit. The solution is then the minimum result of all of the QUERYSUBTREE operations.
Since there are a constant number of top edges per path, and O(m) paths in total, the operation
sequence has length O(m). Using Corollary |1, we arrive at the following result.

Theorem 5. There exists an algorithm that given a weighted, undirected graph G and a rooted
spanning tree T', computes the minimum 2-respecting cut of G with respect to T such that one of
the cut edges is a descendant of the other in O(mlog(n)) work and O(log?(n)) depth w.h.p.

5.2 Independent edges

The independent edge case is where the two cutting edges do not fall on the same root-to-leaf
path. To solve the independent edges problem, we use the framework of Gawrychowski et al. [I1],
which is to decompose the problem into a set of subproblems, which they call bipartite problems.
The key challenge in parallelizing the solution to the bipartite problem is dealing with the fact
that the resulting trees might not be balanced. The algorithm of Gawrychowski et al. relies on
performing a biased divide-and-conquer search guided by a heavy-light decomposition [I7], and
then propagating results up the trees bottom up. Since the trees may be unbalanced, this can not
be easily parallelized. Our solution is to use the recursive clustering of RC trees to guide a divide
and conquer search in which we can maintain all of the needed information on the clusters, so we
never have to propagate anything up the original possibly unbalanced tree.

Definition 2 (The bipartite problem). Given two weighted rooted trees T1 and T> and a set of
weighted edges that cross from one tree to the other, i.e. L = {(u,v) : u € T1,v € Ty}, the bipartite
problem is to select ey € T and ex € Ty with the goal of minimizing the sum of the weight of e1
and ez plus the weights of all edges (v1,v2) € L such that vy is in the subtree underneath ey and vy
is in the subtree underneath eo. The size of a bipartite problem is the size of L plus the sizes of Ty
and T5.

Gawrychowski et al. observe that if 77 and 75 are disjoint subtrees of T', then, assigning weights of
—2w(F,) to each edge, the solution to the bipartite problem is the minimum 2-respecting cut such
that e; € T1 and es € T». The independent edges problem is then solved by reducing it to several
instances of the bipartite problem, and taking the minimum answer among all of them. We will
show how to generate the bipartite problems efficiently, and how to solve them efficiently, both in
parallel.

5.2.1 Generating the bipartite problems

The following parallel algorithm generates O(n) instances of the bipartite problem with total size
at most O(m). For each edge e in T', the algorithm first assigns them a weight equal to —2w(F).
Now consider all non-tree edges, i.e. all edges e € E(G),e ¢ T, and group them by the LCA of
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their endpoints in 7. This forms a partition of the O(m) edges of G, each group identified by a
vertex. Each vertex in T conversely has an associated (possibly empty) list of non-tree edges.

For each vertex v in T" with a non-empty associated list of edges, create a compressed path tree
of T" with respect to the endpoints of the associated edges and v. Finally, for each such compressed
path tree, root it at v (the common LCA of the edge endpoints). The bipartite problems are
now generated as follows. For each vertex v with a non-empty list of non-tree edges, and the
corresponding compressed path tree T, consider the children z,y of v in T,. The bipartite problem
consists of 77, which contains the edge (v, ) and the subtree of T, rooted at x, and likewise, T5,
which contains the edge (v,y) and the subtree of T, rooted at y, and L, the associated list of
non-tree edges.

Lemma 2. There exists an algorithm that can generate the bipartite problems in O(mlog(n)) work
and O(log?(n)) depth w.h.p.

Proof. The edge weights can be computed using the batch evaluation algorithm in O(m log(n)) work
and O(log?(n)) depth in the same way as before. LCAs can be computed using the parallel LCA
algorithm of Schieber and Vishkin [35] in O(m) work and O(log(n)) depth. Grouping the edges by
LCA can be achieved using a parallel sorting algorithm in O(mlog(n)) work and O(log(n)) depth.
Together, these steps take O(mlog(n)) work and O(log?(n)) depth. For each group, computing the
compressed path tree takes O(m; log(1+n/m;)) < O(m;log(n)) work and O(log?(n)) depth w.h.p.,
where m; is the number of edges in the group. Performing all compressed path tree computations
in parallel and noting that the edge lists of each vertex are a disjoint partition of the edges of G,
this takes at most O(mlog(n)) work and O(log®(n)) depth in total w.h.p. O

It remains only for us to show that the bipartite problems can be efficiently solved in parallel.

5.2.2 Solving the bipartite problems

Our solution is a recursive algorithm that utilizes the recursive cluster structure of RC trees. Recall
that RC trees consist of unary and binary clusters (and the nullary cluster at the root, but this is not
needed by our algorithm). See Figure[2] A unary cluster is the disjoint union of exactly one binary
cluster at the top, zero to two unary clusters at the bottom, and one leaf cluster corresponding
to the representative vertex joining them in the middle. A binary cluster is the disjoint union of
two binary clusters, one on top and one below; zero or one unary clusters at the bottom; and the
leaf cluster corresponding to the representative vertex joining them in the middle. All non-leaf
clusters, except the root cluster are either unary or binary clusters. Since the bipartite problems
are constructed such that trees 77 and 75 always have a root with a single child, the root cluster
of their RC trees consists of exactly one unary cluster.

High-level idea. Recall that the goal is to select an edge e; € T and an edge es € T5 that
minimizes their costs plus the cost of all edges (u,v) € L such that u is a descendant of e; and v
is a descendant of eo. Our algorithm first constructs an RC tree of T, and weights the edges in T
and T, by their cost. At a high level, the algorithm then works as follows. Given a binary cluster
c1 of T1, the algorithm maintains weights on 75 such that for each edge eo € T5, its weight is the
weight of es in the original tree plus the sum of the weights of all edges (u,v) € L such that w is
a descendant of the bottom boundary of ¢1, and v is a descendant of ey. This implies that for a
binary cluster of 77 consisting of an isolated edge e; € 11, the weights of each ey € T5 are precisely
such that w(e;) + w(ez) is the value of selecting {e1, ea} as the solution. This idea leads to a very
natural recursive algorithm. We start with the topmost unary cluster of 77 and proceed recursively
down the clusters of 77, maintaining 75 with weights as described. When the algorithm recurses
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(a) A unary cluster consisting of one binary ~ (b) A binary cluster consisting of two bi-
subcluster and two unary subclusters nary subclusters and one unary subcluster

Figure 2: Unary clusters and binary clusters

into the top binary child of a cluster, it must add the weights of all (u,v) € L that are descendants
of that cluster to the corresponding paths in T5. If recursing on the bottom binary subcluster of a
binary cluster, the weights on 75 are unchanged. When recursing on a unary cluster, since it has
no descendants, the algorithm uses the original weights of T5. Once the recursion hits a binary
cluster that consists of a single edge ey, it can return the solution w(e;) + w(ez), where eg is the
lightest edge with respect to the current weights on T5. Lastly, to perform this process efficiently,
the algorithm compresses, using the compressed path tree algorithm [4], the tree T every time it
recurses, keeping only the vertices that are endpoints of the crossing edges that touch the current
cluster of T7.

Implementation. We provide pseudocode for our algorithm in Algorithm [3| Given a bipartite
problem (717,75, L), we use the notation L(C) to denote the edges of L limited to those that are
incident on some vertex in the cluster C. Furthermore, we use Vr,(L(C)) to denote the set of
vertices given by the endpoints of the edges in L(C) that are in Ty. The pseudocode does not
make the parallelism explicit, but all that is required is to run the recursive calls in parallel. The
procedure takes as input a cluster C' of T, a compressed version of 75 with its original weights,
and T3, the compressed version of T» with updated weights. At the top level, it takes the cluster
representing all of 77 for the first argument, and the cluster for all of T5 for the second and third
argument. The COMPRESS function compresses the given tree with respect to the given vertex set
and its root, and returns the compressed tree still rooted at the same root. ADDPATHS(S) takes a
set S C L of edges and for each one, adds w(u,v) to the root-to-v path, where v € Ty, returning a
new copy of the tree.

Remark 1 (Identifying vertices). Since this algorithm creates many copies of Ta, we must ensure
that we can still identify and locate a desired vertex given its label. One simple way to achieve this
1s to build a static hashtable alongside each copy of T> that maps vertex labels to the instance of
that vertex in that copy. Since our bounds are already randomized, using hashing is okay.

An ingredient that we need to achieve low depth is an efficient way to update the weights in 75
when adding weights to a collection of paths. Although RC trees support batch-adding weights to
paths, the standard algorithm does not meet our cost requirements. This is easy to achieve in linear
work and O(log(n)) depth using ideas similar to standard treefix sum algorithms (See Appendix D]
for details). It remains to show that the BIPARTITE procedure runs in low work and depth.

Theorem 6. A bipartite problem of size m can be solved in O(mlog(m)) work and O(log3(m))
depth w.h.p.
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Algorithm 3 Parallel bipartite problem algorithm
1: procedure BIPARTITE(C : Cluster, T» : Tree, TS : Tree, L : Edge list)

2:  if C ={e} then

3: return w(e) + LIGHTESTEDGE(TY)

4: else

5: local Teyp < To.COMPRESS(Vrp, (L(C-t)))

6: local Ty < T5.ADDPATHS(L(C) \ L(C-t))

T: local T, + T3 .CoMPRESS(Vr, (L(C—t)))

8: local ans < BIPARTITE(C~t, Temp, Topp, L(C-t))
9: for each cluster C' in C—U do

10: local Tyyp < To.COMPRESS(Vr, (L(C")))

11: ans <— min(ans, BIPARTITE(C', Temp, Temp, L(C')))
12: if C is a binary cluster then

13: local T¢yp < T5.COMPRESS(Vr, (L(C-D)))

14: local T¢,,,,, < T5.CoMPRESS(Vr, (L(C-b)))

15: ans < min(ans, BIPARTITE(Temp, Loy, L(C-D)))
16: return ans

Proof. First, since all recursive calls are made in parallel and the recursion is on the clusters of 77,
the maximum levels of recursion is O(log(m)) w.h.p. We will show that the algorithm performs
O(m) work in total at each level, in O(log?(m)) depth w.h.p. Observe first that at each level of
recursion, the edges L for each call are a disjoint partition of the non-tree edges, since each recursive
call takes a disjoint subset. We will now argue that each call does work proportional to |L|. Since T5
and Ty are both compressed with respect to L, their size is proportional to |L|. ADDPATHS can be
implemented in linear work in the size of 75 and O(log(m)) depth (Appendix [D]), and hence takes
O(|L]) work and O(log(m)) depth. CoMPRESS(K) takes O(|K|log(1 + |T2|/|K])) < O(|K| + |Tz|)
work and O(log?(m)) depth w.h.p.. Since compression is with respect to some subset of L, all of
the compress operations take O(|L|) work and O(log®(m)) depth w.h.p. In total, this is O(|L|)
work in O(log?(m)) depth w.h.p. at each level for each call. Since the Ls at each level are a disjoint
partition of the non-tree edges, the total work per level is O(m) w.h.p., and hence the desired
bounds follow. O]

Since there are O(n) bipartite problems of total size O(m), solving them all in parallel gives us the
following theorem, which, when combined with Theorem [5] proves Theorem

Theorem 7. There exists an algorithm that given a weighted, undirected graph G and a rooted
spanning tree T', computes the minimum 2-respecting cut of G with respect to T such that the cut
edges are independent, in O(mlog(n)) work and O(log®(n)) depth w.h.p.

Combining Theorem [3| with Theorem [4] concludes our main result (Theorem [I)).

6 Conclusion

We present the first work-efficient algorithm for minimum cuts that runs in low depth. That
is, the first highly parallel algorithm that performs no more work than the best sequential algo-
rithm. Since our algorithm is work efficient, finding a faster parallel algorithm would entail finding
a faster sequential algorithm. Our algorithm is Monte Carlo and it runs in O(mlog?®(n)) work
and O(polylog(n)) depth. It remains an open problem to find a deterministic algorithm, even a
sequential one, that runs in O(m polylog(n)) time.
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A A Parallel Constant-Factor Minimum Cut Approximation

Step one of Karger’s procedure for producing a tree packing is to compute a constant-factor approx-
imation to the minimum cut, which is then used to derive the sampling probability for constructing
a sparse skeleton. In this section, we will derive an algorithm for a constant-factor approximate
minimum cut that runs in O(mlog?®(n)) work and O(polylog(n)) depth. Karger and Motwani [24]
give an algorithm that runs in O(m?/n) work and O(polylog(n)) depth. We achieve our bounds
by improving Karger’s algorithm and speeding up several of the components. Specifically, we use
the following combination of ideas, new and old.

1. We extend a k-approximation algorithm of Karger [20] to work in parallel, allowing us to produce
an O(log(n))-approximate minimum cut in low work and depth

2. The log(n)-approximate minimum cut allows us to make O(loglog(n)) guesses of the minimum
cut such that at least one of them is a constant-factor approximation

3. We use a faster sampling technique for producing Karger’s skeletons for weighted graphs. This
is done by transforming the graph into a graph that maintains an approximate minimum cut
but has edge weights each bounded by O(mlog(n)), and then using binomial random variables
to sample all of the multiedges of a particular edge at the same time, instead of separately.

4. We show that the parallel sparse k-certificate algorithm of Cheriyan, Kao, and Thurimella [7]
for unweighted graphs can be modified to run on weighted graphs

5. We show that Karger and Motwani’s parallelization of Matula’s algorithm can be modified to
run on weighted graphs

We will use the following result due to Karger.

Definition 3 (p-skeleton of a graph). Given an unweighted graph G and a probability p, the skeleton
G(p) consists of the vertices of G and a random subset of the edges of G, each sampled with
probability p.

Lemma 3 (Karger [19]). With high probability, if G(p) is constructed and has minimum cut ¢ =
Q(log(n)/e?) for e < 1, then the minimum cut in G is (1 £ &)e/p.

Parallelising the k-approximation algorithm. Karger describes an O(mn?/*log(n)) time
sequential algorithm for finding a cut in a graph within a factor of k of the optimal cut [20].
Karger’s algorithm works by randomly selecting edges to contract with probability proportional
to their weight until a single vertex remains, and keeping track of the component with smallest
incident weight (not including internal edges) during the contraction. This relies on the following
Lemma.

Lemma 4 (Karger [20]). Given a weighted graph with minimum cut ¢, with probability n=2/*,

the meta-verter with minimum incident weight encountered during a single trial of the contraction
algorithm implies a cut of weight at most kc.

Running O(nQ/ *log(n)) rounds yields a cut of size at most kc w.h.p. Here we show how to parallelize
Karger’s algorithm using batched mixed operations yielding the following result:

Lemma 5. For a weighted graph, a cut within a factor of k of the minimum cut can be found
w.h.p. in O(mn?*log?(n)) work and polylogarithmic depth.
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Karger shows how to parallelize picking the (weighted) random permutation of the edges with
O(mlog?(n)) work. It can easily slightly modified to improve the bounds by a logarithmic factor as
follows. The algorithm selects the edges by running a prefix sum over the edge weights. Assuming
a total weight of W, it then picks m random integers up to W, and for each uses binary search
on the result of the prefix sum to pick an edge. This process, however, might end up picking only
the heaviest edges. Karger shows that by removing those edges the total weight W decreases by
a constant factor, with high probability. Since the edges can be preprocessed to be polynomial in
n (see below), repeating for log(n) rounds the algorithm will select all edges in the appropriate
weighted random order. Each round takes O(mlog(n)) work for a total of O(mlog?®(n)) work.
However, by replacing the binary search with a sort of the random integers and merge into the the
result of the prefix sum yields an O(mlog(n)) work randomized algorithm. In particular m random
numbers uniformly distributed over a range can be sorted in O(m) work and O(log(n)) span by
first determining for each number which of m evenly distributed buckets within the range it is in,
then sorting by bucket using an integer sort [34] and finally sorting within buckets.

The more interesting part to parallelize is identifying the component with smallest incident
weight during the contraction process. Identifying the edges that are contracted is easy using a
minimum spanning tree over the position on which the edge is selected, but keeping track of the
smallest incident weight of a component is somewhat trickier. To achieve this, we use our parallel
batch mixed operations framework from Section[3] In Appendix [B] we show that that the following
operations have a simple RC implementation and therefore can be applied in batch.

e SUBTRACTWEIGHT(v, w): Subtract weight w from vertex v
e JOINEDGE(e): Mark the edge e as “joined”

e QUERYWEIGHT(v): Return the weight of the connected component containing the vertex wv,
where the components are induced by the joined edges

With this tool, we can simulate the contraction process, and determine the minimum incident
weight of a component as follows:

1. Compute an MST with respect to the random edge ordering, where a heavier weight indicates
that an edge contracts later

2. For each edge (u,v) € G, determine the heaviest edge in the MST on the unique (u,v) path

3. Construct a vertex-weighted tree from the MST, where the weights are the total incident weight
on each vertex in G. For each edge (u,v) in the MST in contraction order:

e Determine the set of edges in G such that (u,v) is the heaviest edge on its MST path. For
each such edge identified, SUBTRACTWEIGHT from each of its endpoints by the weight of the
edge

e Perform JOINEDGE on the edge (u,v)

e Perform QUERYWEIGHT on the vertex u

Observe that the weight of a component at the point in time when it is queried is precisely the
total weight of incident edges (again, not including internal edges). Taking the minimum over the
initial degrees and all query results therefore yields the desired answer.

Step takes O(mlog(n)) work and O(log?(n)) depth to compute the random edge permutation
using Karger’s technique [20], and O(m) work and O(log(n)) depth to run a parallel MST algo-
rithm [23]. Step [2| takes O(mlog(n)) work and O(log(n)) depth using RC trees [2] [1], and Step
takes O(mlog(n)) work and O(log?(n)) depth using our batch evaluation framework (Theorem [2)).
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Based on Lemma |4 trying O(n%*log(n)) random contractions yields the result of Lemma [5| Set-
ting k = log(n) then gives a log(n) approximation in O(mlog?(n)) work and O(log?(n)) depth.
Transformation to bounded edge weights. For our algorithm to be efficient, we require that
the input graph has small integer weights. Karger [19] gives a transformation that ensures all edge
weights of a graph are bounded by O(n®) without affecting the minimum cut by more than a a
constant factor. For our algorithm O(n®) would be too big, so we design a different transformation
that guarantees all edge weights are bounded by O(mlog(n)), and only affects the weight of the
minimum cut by a constant factor.

Lemma 6. There exists a transformation that, given an integer-weighted graph G, produces an
integer-weighted graph G' no larger than G, such that G' has edge weights bounded by O(mlog(n)),
and the minimum cut of G’ is a constant-approximate minimum cut in G.

Proof. Let G be the input graph and suppose that the true value of the minimum cut is c¢. First,
we use Lemma [5| to obtain a O(log(n))-approximate minimum cut, whose value we denote by ¢
(c < ¢ < clog(n)). We can contract all edges of the graph with weight greater than ¢ since they
can not appear in the minimum cut. Let s = ¢/(2mlog(n)). We delete (not contract) all edges
with weight less than s. Since there are at most m edges in any cut, this at most affects the value
of a cut by sm = ¢/(2log(n)) < ¢/2. Therefore the minimum cut in this graph is still a constant
factor approximation to the minimum cut in G.

Next, scale all remaining edge weights down by the factor s, rounding down. All edge weights
are now integers in the range [1,2mlog(n)]. This is the transformed graph G’. It remains to argue
that the value of the minimum cut is a constant-factor approximation. First, note that the scaling
process preserves the order of cut values, and hence the true minimum cut in G has the same value
in G’ as the minimum cut in G’. Consider any cut in G’, and scale the weights of the edges back
up by a factor s. This introduces a rounding error of at most s per edge. Since any cut has at most
m edges, the total rounding error is at most sm < ¢/2. Therefore the value of the minimum cut in
G’ is a constant factor approximation to the value of the minimum cut in G. O

Lastly, observe that this transformation can easily be performed in parallel by using a work-efficient
connected components algorithm to perform the edge contractions, as is standard (see e.g. [25]).

Sampling the skeleton from a weighted graph. Note that by definition, the p-skeleton of
a graph has O(pm) edges in expectation. For a weighted graph, the p-skeleton is defined as the
p-skeleton of the corresponding unweighted multigraph in which an edge of weight w is replaced
by w parallel multiedges. The p-skeleton of a weighted graph therefore has O(pW) edges in ex-
pectation, where W is the total weight in the graph. Karger gives an algorithm for generating a
p-skeleton in O(pW log(m)) work, which relies on performing O(pW') independent random samples
with probabilities proportional to the weight of each edge, each of which takes O(log(m)) amor-
tized time. In Karger’s algorithm, given a guess of the minimum cut ¢, he computes p-skeletons for
p = O(log(n)/c), which results in a skeleton of O(mlog(n)) edges, and hence takes O(mlog?(n))
work to compute.

Our algorithm instead does the following. For each edge e in the graph, sample a binomial
random variable  ~ B(w(e), p). The skeleton then contains the edge e with weight x (conceptually,
x unweighted copies of the multiedge e). This results in the same graph as if sampled using Karger’s
technique. In Appendix[C| we show how to use recent results on sampling binomial random variables
to perform samples from B(n’,1/2) in O(log(n')) time w.h.p., and from B(n/, p) in O(log?(n')) time
w.h.p., for any n’ < N after O(N 1/2+e ) work preprocessing. Since we can preprocess the graph to
have edge weights at most O(mlog(n)) (Lemmal6]), this is no more than O(m) work in preprocessing.
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At first glance, this does not improve on Karger’s bounds, since we need to perform O(log?(n))

work per edge when sampling from B(n,p). However, we use the fact that only the first sample
of the graph needs to be this expensive. In Karger’s algorithm, and by extension, our algorithm,
subsequent samples always take p as exactly half of the value of p from last iteration, and hence
we can use subsampling to only require random variables from B(n,1/2). This means that we can
perform up to O(log(n)) rounds of subsampling in O(m log?(n)) total work, instead of O(m log3(n))
work.
Sparse certificates. A k-connectivity certificate of a graph G = (V, E) is a graph G’ = (V, E' C
E) such that every cut in G of weight at most k has the same weight in G’. In other words, a
k-connectivity certificate is a subgraph that preserves cuts of weight up to k. A k-connectivity
certificate is called sparse if it has O(kn) edges.

Cheriyan, Kao, and Thurimella [7] introduce a parallel graph search called scan-first search,
which they show can be used to generate k-connectivity certificates of undirected graphs. Here, we
briefly note that the algorithm can easily be extended to handle weighted graphs. The scan-first
search algorithm is implemented as follows

Algorithm 4 Scan-first search [7]

1: procedure SFS(G = (V, E) : Graph, r : Verter)

2:  Find a spanning tree T’ rooted at r

3:  Find a preorder numbering to the vertices in T”

4:  For each vertex v € T" with v # r, let b(v) denote the neighbor of v with the smallest preorder number
5:  Let T be the tree formed by {v,b(v)} for all v # r

Using a linear work, low depth spanning tree algorithm, scan-first search can easily be implemented
in O(m) work and O(log(n)) depth. Cheriyan, Kao, and Thurimella show that if E; are the edges
in a scan-first search forest of the graph G;—1 = (V, E \ (E1 U ...E;_1)), then Fy U ...E is a sparse
k-connectivity certificate. A sparse k-connectivity certificate can therefore be found in O(km) work
and O(klog(n)) depth by running scan-first search k times.

In the weighted setting, we treat an edge of weight w as w parallel unweighted multiedges. As
always, this is only conceptual, the multigraph is never actually generated. To compute certificates
in weighted graphs, we therefore use the following simple modification. After computing each scan-
first search tree, instead of removing the edges present from G, simply lower their weight by one,
and remove them only if their weight becomes zero. It is easy to see that this is equivalent to
running the ordinary algorithm on the unweighted multigraph. We therefore have the following.

Lemma 7. Given a weighted, undirected graph G = (V, E), a sparse k-connectivity certificate can
be found in O(km) work and O(klog(n)) depth.

Parallel Matula’s algorithm for weighted graphs. Matula [27] gave a linear time sequential
algorithm for a (2+¢)-approximation to edge connectivity (unweighted minimum cut). It is easy to
extend to weighted graphs so that it runs in O(m log(n) log(W)) time, where W is the total weight of
the graph. Using standard transformations to obtain polynomially bounded edge weights, this gives
an O(mlog®(n)) algorithm. Karger and Motwani [24] gave a parallel version of Matula’s unweighted
algorithm that runs in O(m?/n) work. We will show that a slight modification to this algorithm
makes it work on weighted graphs in O(dm log(W/m)) work and O(dlog(n)log(W)) depth, where
d is the minimum degree of the graph. When d = O(log(n)) and W = O(m polylog(n)), this gives
a work bound of O(mlog(n)loglog(n)).

Essentially, Karger and Motwani’s version of Matula’s algorithm does the following steps as
indicated in Algorithm
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Algorithm 5 Approximate minimum cut

1: procedure MATULA(G = (V, E) : Graph )

2:  local d + minimum degree in G

local k + d/(2+¢)

local C' + Compute a sparse k-certificate of G
local G’ + Contract all non-certificate edges of E
return min(d, MATULA(G"))

It can be shown that at each iteration, the size of the graph is reduced by a constant factor,
and hence there are at most O(log(n)) iterations. Furthermore, the work performed at each step
is geometrically decreasing, so the total work, using the sparse certificate algorithm of Cheriyan,
Kao, and Thurimella [7] is O(dm) and the depth is O(dlog?(n)).

To extend this to weighted graphs, we can replace the sparse certificate routine with our modified
version for weighted graphs, and replace the computation of d with the equivalent weighted degree.
By interpreting an edge-weighted graph as a multigraph where each edge of weight w corresponds to
w parallel multiedges, we can see that the algorithm is equivalent. To argue the cost bounds, note
that like in the original algorithm where the size of the graph decreases by a constant factor each
iteration, the total weight of the graph must decrease by a constant factor in each iteration. Because
of this, it is no longer true that the work of each iteration is geometrically decreasing. Naively, this
gives a work bound of O(dmlog(W)), but we can tighten this slightly as follows. Observe that after
performing log(WW/m) iterations, the total weight of the graph will have been reduced to O(m), and
hence, like in the sequential algorithm, the work must subsequently begin to decrease geometrically.
Hence the total work can actually be bounded by O(dmlog(W/m)+ dm) = O(dmlog(W/m)). We
therefore have the following.

Lemma 8. Given an undirected, weighted graph G with minimum weighted-degree d and total weight
W, a constant-factor approximation to the minimum cut can be computed in O(dmlog(W/m)) work

and O(dlog(n)log(W)) depth.

A parallel approximation algorithm for minimum cut. The final ingredient needed to
produce the parallel minimum cut approximation is a trick due to Karger. Recall that to produce
Karger’s skeleton graph, the sampling probability must be inversely proportional to the weight of
the minimum cut, which paradoxically is what we are trying to compute. This issue is solve by using
doubling. The algorithm makes successively larger guesses of the minimum cut and computes the
resulting approximation. It can then verify whether the guess was too high by checking whether the
minimum cut in the skeleton contained too few edges (Lemma . Specifically, Karger’s sampling
theorem (Lemma 6.3.2 of [19]) says that we will know that we have made the correct guess within
a factor two when the skeleton has Q(log(n)) edges in its minimum cut. To perform the minimum
amount of work, we use Lemma to first produce a O(log(n))-approximation to the minimum cut,
which allows us to make just O(loglog(n)) guesses with the guarantee that one of them will be
correct to within a factor two.

Our algorithm proceeds by making these O(loglog(n)) guesses in parallel. For each, we con-
sider the corresponding skeleton graph and compute a O(log(n)) certificate, since, by assump-
tion, until we have made the correct guess, the minimum cut in the skeleton will be less than
O(log(n)) w.h.p. This then guarantees that we can run our version of parallel Matula’s algorithm
in O(nlog(n)loglog(n)) work (Lemmalg)), since, after producing the certificate, the total weight of
the graph is at most O(nlog(n)), and the minimum degree is no more than O(log(n)). The details
are depicted in Algorithm@ It takes O(mlog?(n)) work to produce the sequence of graph skeletons,
O(mlog(n)loglog(n)) work to compute the sparse certificates, and O(n log(n)(loglog(n))?) work to
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compute the resulting approximations from Matula’s algorithm. All together, the algorithm takes
at most O(mlog?(n)) work, and runs in O(log3(n)) depth.

Algorithm 6 Approximate minimum cut algorithm

1: procedure APPROXMINCUT(G = (V, E) : Graph )
2:  local C <+ A log(n)-approximation of MinCut(G)

3:  for c € {C/log(n),2C/log(n),...C’} do in parallel
4 p(e) « O(log(n)/c)
5: local G, < Compute the skeleton graph G'(p)
6: local Gj, +- Compute a ©(log(n))-certificate of G,
T é(c) < MaTuLA(Gy)
8 if ¢(C/log(n)) < O(log(n)) then
9: return ¢(C/log(n))
10:  else
11: local ¢ + min{c | é(¢) > O(log(n))}
12: return é(c)/p(c)

To see that the final returned value is correct, we appeal to Karger’s sampling theorem, which says
that w.h.p., if our guess of the minimum cut is too high by a factor two, the minimum cut of the
skeleton will have less than O(log(n)) edges w.h.p. [19], and hence the certificate algorithm does
not damage the minimum cut. Once our guess is below the minimum cut by a factor two, the
sampling theorem says that the minimum cut of the skeleton exceeds Q(log(n)). Provided that we
set the constant of the ©(log(n)) certificate to be a constant factor larger than this threshold, a
Chernoff bound shows us that one of our guesses leads to a skeleton with approximate minimum cut
¢ = Q(log(n)) that is not damaged by the certificate, and then Lemma [3|says that ¢/p is a constant-
factor approximation of the minimum cut w.h.p. This argument works only if the minimum cut of
G has size at least Q(log(n)), but note that if it does not, the skeleton construction G’(1) (which
must occur during the last iteration) and the certificate completely preserve the minimum cut and
hence the last iteration of the loop finds a constant factor approximation of the minimum cut in G.

B Mixed Component Weight Operations

Here, we describe a simple RC implementation of the following operations, which is hence amenable
to our batched mixed operations framework.

e SUBTRACTWEIGHT(v, w): Subtract weight w from vertex v
e JOINEDGE(e): Mark the edge e as “joined”

e QUERYWEIGHT(v): Return the weight of the connected component containing the vertex wv,
where the components are induced by the joined edges

The values stored in the RC clusters are as follows. Vertices store their weight, and unary clusters
store the weight of the component reachable via joined edges from the boundary vertex. A binary
cluster is either joined, meaning that its boundary vertices are connected by joined edges, in which
case it stores a single value, the weight of the component reachable via joined edges from the
boundaries, otherwise it is split, in which case it stores a pair: the weight of the component
reachable via joined edges from the top boundary, and the weight of the component reachable via
joined edges from the bottom boundary. We provide pseudocode for the update operations for
Hlustration in Algorithm [7]
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Algorithm 7 A simple RC implementation of SUBTRACTWEIGHT and JOINEDGE.

: procedure funaRry(Vy,t,U)
if t = (¢, b,) then return ¢,

else return v, +t + ZuueU Uy

1

2

3

4: procedure fgiNaRy (Vy,t,b,U)

5. if t=t, and b = b, then

6 return t, + b, + v, + >, o Uy

7. elseif t = (t,,t,) and b = b, then

8 return (t,,tp, + vy + by + X2, cpr Un)
9: elseift=t, and b= (b;,,bp,) then

10: return (t, + v, + by, + ZuveU Uy)

11:  elseif t = (t,,t,) and b = (b;,, by,) then
12: return (t;,,bp,)

13: procedure SUBTRACTWEIGHT (v, w)

14:  wv—value + v—-value - w

15:  Reevaluate the f(-) on path to root.
16: procedure JOINEDGE(e)

17:  e—value < 0

18:  Reevaluate the f(-) on path to root.

The initial value of a vertex is its starting weight. The initial value of an edge is (0,0), indicating
that it is split at the beginning. Note that funary and fbinary can be evaluated in constant time,
and the structure of the updates involves setting the value at a leaf using an associative operation
and re-evaluating the values of the ancestor clusters.

We can argue that the values are correctly maintained by structural induction. First consider
unary clusters. If the top subcluster is split, then the representative vertex and unary subclusters
are not reachable via joined edges, and hence the only reachable component is the component
reachable inside the top subcluster from its top boundary, whose weight is t,. If the top subcluster
is joined, then the representative vertex is reachable, which is by definition the boundary vertex of
the unary subclusters, and hence the reachable component is the union of the reachable components
of all of the subclusters, whose weight is as given.

For binary clusters, there are four possible cases, depending on whether the top and bottom
subclusters are joined or not. If both are joined, then the representative and hence the boundary of
all subclusters is reachable from both boundaries, and hence the cluster is joined and the reachable
component is the union of the reachable components of the subclusters. If either subcluster is split,
then the reachable component at the corresponding boundary is just the reachable component of
the subcluster, whose weight is as given. Lastly, if one of the subclusters is not split, then the
corresponding boundary can reach the representative vertex, and hence the reachable components
of the unary subclusters, whose weights are as given.

It remains to argue that we can implement QUERY WEIGHT with a simple RC implementation.
Consider a vertex v whose component weight is desired and consider the parent cluster P of v, i.e.,
the cluster of which v is the representative. If P has no binary subclusters that are joined, observe
that P must contain the entire component of v induced by joined edges, since the only way for a
component to exit a cluster is via a boundary which would have to be joined. Answering the query
in this situation is therefore easy; the result is the sum of the weights of v, the unary subclusters
of P, the bottom boundary weight of the top subcluster (if it exists), and the top bounary weight
of the bottom subcluster (if it exists). Suppose instead that P contains a binary subcluster that
is joined to some boundary vertex u # v. Since the subcluster is joined, u is in the same induced
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component as v, and hence QUERYWEIGHT(v) has the same answer as QUERY WEIGHT(u). By
standard properties of RC trees, since u is a boundary of P, we also know that the leaf cluster u
is the child of some ancestor of P. Since the root cluster has no binary subclusters, this process
of jumping to joined boundaries must eventually discover a vertex that falls into the easy case,
and since such a vertex u is always the child of some ancestor is P, the algorithm only examines
clusters that are on or are children of the root-to-v path in the RC tree, and hence the algorithm
is a simple RC implementation.

C Sampling Binomial Random Variables

Our graph sampling procedure makes use of binomial random variables. We will use the following
results due to Farach-Colton et al. [9].

Lemma 9 (Farach-Colton et al. [9], Theorem 1). Given a positive integer n, one can sample a ran-
dom variate from the binomial distribution B(n,1/2) in O(1) time with probability 1 —1/n*Y) and
in expectation after O(n'/>*¢)-time preprocessing for any constant € > 0, assuming that O(log(n))
bits can be operated on in O(1) time. The preprocessing can be reused for any n' = O(n)

We can also use the following reduction to sample B(n,p) for arbitrary 0 < p < 1.

Lemma 10 (Farach-Colton et al. [9], Theorem 2). Given an algorithm that can draw a sample from
B(n',1/2) in O(f(n)) time with probability 1 — 1/n®*V) and in expectation for any n' < n, then
drawing a sample from B(n',p) for any real p can be done in O(f(n)log(n)) time with probability
1 —1/n*™) and in expectation, assuming each bit of p can be obtained in O(1) time

We note, importantly, that the model used by Farach-Colton et al. assumes that random ©(log(n))-
size words can be generated in constant time. Since we only assume that we can generate random
bits in constant time, we will have to account for this with an extra O(log(n)) factor in the work
where appropriate. Note that this does not negatively affect the depth since we can pregenerate
as many random words as we anticipate needing, all in parallel at the beginning of our algorithm.
Lastly, we also remark that although it might not be clear in their definition, the constants in
the algorithm can be configured to control the constant in the (1) term in the probability, and
therefore their algorithms take O(1) time and O(log(n)) time w.h.p.

Preprocessing in parallel. In order to make use of these results, we need to show that the
preprocessing of Lemma [J] can be parallelized. Thankfully, it is easy. The preprocessing phase
consists of generating n¢ alias tables of size O(y/nlog(n)). Hubschle-Schneider and Sanders [I§]
give a linear work, O(log(n)) depth parallel algorithm for building alias tables. Building all of them
in parallel means we can perform the alias table preprocessing in O(n'/?*¢) work and O(log(n))
depth. The last piece of preprocessing information that needs to be generated is a lookup table
for decomposing any integer n’ = O(n) into a sum of a constant number of square numbers. This
table construction is trivial to parallelize, and hence all preprocessing runs in O(nl/ 2+¢) work and
O(log(n)) depth.

D Bulk Path Updates For RC Trees

Given an RC tree of a tree on n vertices and a set of k path updates of the form (v;, x;), denoting
that z; is to be added to the weight of all edges on the path from r to v;, we can apply all of them
in O(n) work and O(log(n)) depth w.h.p. The idea is similar to a standard treefix sum algorithm.
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First, the algorithm associates each vertex v; with its weight x;. Now the operation is to add to
each edge (u,v), where v is a child of u, the weight of all vertices in the subtree rooted at v. The
algorithm then proceeds in two steps. First, in a traversal of the RC tree, it computes, for each
cluster C, the total weight W(C') of all vertices in it. This step is the same as the first step of
our batch evaluation algorithm, and takes O(n) work and O(log(n)) depth w.h.p. Second, for each
child cluster of the root, it traverses the RC tree top-down, maintaining the weight w of all vertices
that are descendants of the current cluster (initially zero). This is achieved when recursing on C—t,
by adding W (C') — W(C—t) to the accumulated weight w, otherwise keeping w the same. When
reaching a base edge cluster, the value w is added to the weight of the edge. This takes O(n) work
and O(log(n)) depth w.h.p.
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E Additional Mixed Tree Operations

Algorithm 8 A simple RC implementation of QUERYEDGE and QUERYPATH’. For QUERYPATH’
the node v must be the representative node of an ancestor of u in the RC tree. It maintains m, the
minimum off cluster path, ¢, the minimum on cluster path above where the path from u meets the
cluster path, and b, the minimum on cluster path below that point. Once v is found it picks one of
b or t depending on which side v is, or neither if a unary cluster. If a binary cluster it then needs
to continue up the tree to add in the additional weights for binary clusters.

1: procedure QUERYEDCGE(e)

2w« w(e)
3: €T 4= €, p < T-p
4:  while binary p do
5: if x = p—t then
6: W = W+ p=bow + povow + 30 g uow
T T DP; P4 D
8 return w+ povow 4 30 o g UDW
9: procedure QUERYPATH’(u, v)
100 m+ o005t + o0; b+ o0
11: X 4= U; P < T=p
12:  while not p—»v = v do
13: W' = povow Y USW
14: if unary p then
15: if x = p—t then m + min(t + w’, m)
16: else m « min(p-t—l + w’, m)
17: t < 00; b+ o0;
18: else
19: w' — w' + p=b-w
20: if x = p—t then ¢t < t + w'; b < min(b, p—b-l)
21: else if © = p—b then ¢ « min(p—t—l + w',t)
22: else t < p—t—l +w'; b+ p=t—l
23: TPy P4 =D
24: if x =p-otthenl <« b
25:  elseif x = p-bthen [« t
26:  else return m
27:  while binary p do
28: W' <= povow + pobow + 37 usw
29: if (x =p-t) thenl «+ [+ v’
30:  return min(m,!)
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