
Parallel Batch-Dynamic Graph Connectivity
Umut A. Acar

Carnegie Mellon University

umut@cs.cmu.edu

Daniel Anderson

Carnegie Mellon University

dlanders@cs.cmu.edu

Guy E. Blelloch

Carnegie Mellon University

guyb@cs.cmu.edu

Laxman Dhulipala

Carnegie Mellon University

ldhulipa@cs.cmu.edu

ABSTRACT

In this paper, we study batch parallel algorithms for the dynamic

connectivity problem, a fundamental problem that has received

considerable attention in the sequential setting. The best sequential

algorithm for dynamic connectivity is the elegant level-set algo-

rithm of Holm, de Lichtenberg and Thorup (HDT), which achieves

O (lg2 n) amortized time per edge insertion or deletion, and O (lgn)
time per query.

We design a parallel batch-dynamic connectivity algorithm that

is work-efficient with respect to the HDT algorithm for small batch

sizes, and is asymptotically faster when the average batch size is

sufficiently large. Given a sequence of batched updates, where ∆
is the average batch size of all deletions, our algorithm achieves

O (lgn lg(1+n/∆)) expected amortized work per edge insertion and

deletion and O (lg3 n) depth w.h.p. Our algorithm answers a batch

of k connectivity queries in O (k lg(1 + n/k)) expected work and

O (lgn) depth w.h.p. To the best of our knowledge, our algorithm is

the first parallel batch-dynamic algorithm for connectivity.

ACM Reference Format:

Umut A. Acar, Daniel Anderson, Guy E. Blelloch, and Laxman Dhulipala.

2019. Parallel Batch-Dynamic Graph Connectivity. In 31st ACM Symposium

on Parallelism in Algorithms and Architectures (SPAA ’19), June 22–24, 2019,

Phoenix, AZ, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/3323165.3323196

1 INTRODUCTION

Computing the connected components of a graph is a fundamental

problem that has been studied in many different models of com-

putation [6, 8, 33, 53, 56, 62]. The connectivity problem takes as

input an undirected graph G and requires an assignment of labels

to vertices such that two vertices have the same label if and only if

they are in the same connected component. The dynamic version of

the problem requires maintaining a data structure over an n vertex

undirected graph that supports insertions and deletions of edges,

and queries of whether two vertices are in the same connected

component. Despite the large body of work on the dynamic con-

nectivity problem over the past two decades [22, 29, 30, 33, 34, 38,

40, 45, 63, 64, 69, 70], little is known about batch-dynamic connec-

tivity algorithms that process batches of queries and updates, either

sequentially or in parallel.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6184-2/19/06. . . $15.00

https://doi.org/10.1145/3323165.3323196

Traditional dynamic algorithms were motivated by applications

where data undergos small changes that can be adequately han-

dled by updates of single elements. Today, however, applications

operate on increasingly large datasets that undergo rapid changes

over time: for example, millions of individuals can simultaneously

interact with a web site, make phone calls, send emails and so on.

In the context of these applications, traditional dynamic algorithms

require serializing the changes made and processing them one at a

time, missing an opportunity to exploit the parallelism afforded by

processing batches of changes.

Motivated by such applications, there has been recent interest

in developing theoretically efficient parallel batch-dynamic algo-

rithms [1, 3, 59, 65]. In the batch-dynamic setting, instead of ap-

plying one update or query at a time, a whole batch is applied. A

batch could be of size lgn,
√
n, or n/ lgn for example. There are two

advantages of applying operations in batches.

(1) Batching operations allows for more parallelism.

(2) Batching operations can reduce the cost of each update.

In this paper we are interested in both these advantages. We use

the term parallel batch-dynamic to mean algorithms that process

batches of operations instead of single ones, and for which the

algorithm itself is parallel. The underlying parallel model used in

this paper is a formalization of the widely used shared-memory

work-depth model [9, 11, 14, 17].

Understanding the connectivity structure of graphs is of signifi-

cant practical interest, for example, due to its use as a primitive for

clustering the vertices of a graph [54]. Due to the importance of

connectivity there are several implementations of parallel batch-

dynamic connectivity algorithms [35, 36, 43, 55, 67, 68]. In the worst

case, however, these algorithms may recompute the connected com-

ponents of the entire graph even for very small batches. Since this

requiresO (m+n) work, it makes the worst-case performance of the

algorithms no better than running a static parallel algorithm. On

the theoretical side, existing batch-dynamic efficient connectivity

algorithms have only been designed for restricted settings, e.g., in

the incremental setting when all updates are edge insertions [59],

or when the underlying graph is a forest [1, 52, 65].

Therefore, two important questions are:

(1) Is there a batch-dynamic connectivity algorithm that is asymp-

totically faster than existing dynamic connectivity algorithms for

large enough batches of insertions, deletions and queries?

(2) Can the batch-dynamic connectivity algorithm be parallelized to

achieve low worst-case depth?

In this paper we give an algorithm that answers both of these

questions affirmatively. To simplify our exposition and present the

main ideas, we first give a less efficient version of the algorithm

Session 10 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

381

https://doi.org/10.1145/3323165.3323196
https://doi.org/10.1145/3323165.3323196
https://doi.org/10.1145/3323165.3323196

that runs in O (lg4 n) depth w.h.p.
1
and performs O (lg2 n) expected

amortized work per update, making it work-efficient with respect to

the sequential algorithm of Holm, de Lichtenberg, and Thorup. Next,

we describe the improved algorithm which runs in O (lg3 n) depth
w.h.p. and achieves an improved work bound that is asymptotically

faster than the HDT algorithm for sufficiently large batch sizes. We

note that our depth bounds hold even when processing the updates

one a time, ignoring batching. Our improved work bounds are

derived by a novel analysis of the work performed by the algorithm

over all batches of deletions.

Our contribution is summarized by the following theorem:

Theorem 1.1. There is a parallel batch-dynamic data structure

which, given batches of edge insertions, deletions, and connectivity

queries processes all updates in O
(
lgn lg

(
1 + n

∆

))
expected amor-

tized work per edge insertion or deletion where ∆ is the average

batch size of a deletion operation. The cost of connectivity queries is

O (k lg(1+n/k)) work andO (lgn) depth for a batch of k queries. The

depth to process a batch of edge insertions and deletions is O (lgn)
and O (lg3 n) respectively.

Technical Overview. The starting point of our algorithm is the

classic Holm, de Lichtenberg and Thorup (HDT) dynamic connec-

tivity algorithm [33]
2
. Like nearly all existing dynamic connectivity

algorithms, the HDT algorithm maintains a spanning forest cer-

tifying the connectivity of the graph. The algorithm maintains a

set of lgn nested forests under two carefully designed invariants.

The forests are represented using the Euler tour tree (ET-tree) data

structure [29, 44].

The main challenge in a dynamic connectivity algorithm is to

efficiently find a replacement edge, or a non-tree edge going be-

tween the two disconnected components after deleting a tree edge.

The key idea of the HDT algorithm is to organize the spanning-

forest of the graph into lgn levels of trees. The top-most level of

the structure stores a spanning forest of the entire graph, and each

level contains all tree-edges stored in levels below it. The algorithm

ensures that the largest size of a component at level i is 2i . Using
these invariants, the algorithm is able to cleverly search the tree

edges so that each non-tree edge is examined at most lgn times

as a candidate replacement edge. The main idea is to store each

non-tree edge at a single level (initially the top-most level), and

push the edge to a lower level each time it is unsuccessfully con-

sidered as a replacement edge. Since there are lgn levels, and the

cost of discovering, processing, and removing an edge from each

level using ET-tree operations is O (lgn), the amortized cost of the

HDT algorithm is O (lg2 n) per edge operation. We now discuss the

main challenges and sequential bottlenecks that arise in the HDT

algorithm that a parallel batch-dynamic algorithm must address.

Efficiently searching for replacements: A challenge, and se-

quential bottleneck in the HDT algorithm is the fact that it processes

each non-tree edge one at a time—a property which is crucial for

achieving good amortized bounds. Aside from hindering paral-

lelism, processing the edges one at a time eliminates any potential

for improved batch bounds, since finding the representative of the

1
We say that an algorithm hasO (f (n)) cost with high probability (w.h.p.) if it has

O (k · f (n)) cost with probability at least 1 − 1/nk , k ≥ 1.

2
We provide full details of the HDT algorithm in Section 2.2.

endpoints of an edge costs O (lgn) time per query. Therefore, to

obtain an efficient batch or parallel algorithm we must examine

batches of multiple non-tree edges at a time, while also ensuring

that we do not perform extra work that cannot be charged to level-

decreases on an edge. Our approach is to use a doubling technique,

where we examine sets of non-tree edges with geometrically in-

creasing sizes.

Handling Batches of Deletions: Another challenge is that pro-
cessing a batch of deletions can shatter a component into multiple

disconnected pieces. Since the HDT algorithm deletes at most a

single tree edge per deletion operation, it handles exactly two dis-

connected pieces per level. In contrast, since we delete batches of

edges in our batch-dynamic algorithm, we may have many discon-

nected pieces at a given level, and must search for replacement

edges reconnecting these pieces. Our algorithm searches for a re-

placement edge from each piece that is small enough to be pushed

down to the next lower level.

Each round of both of our algorithms can be viewed as calling

an oracle which returns a set of replacement edges incident on the

disconnected pieces that we are trying to reconnect. Unlike in the

HDT algorithm which terminates once it finds any replacement

edge, the edges returned by the oracle may not fully restore the con-

nectivity of the original component. In particular, the replacement

edges that we find may contain multiple edges going between the

same pieces (like in Borůvka’s algorithm) or may contain cycles,

which must be dealt with since each level of the data structure

represents a forest. Our approach to handling these issues is to run

a static spanning forest algorithm on the replacement edges found

in this round, and insert only the spanning forest edges into the

ET-tree at the current level.

Both of our algorithms alternate between a first phase which calls

the oracle to find a set of replacement edges, and a second phase

which determines a set of replacement edges that can be committed

as tree edges. The difference is that our first (simpler) algorithm

(Section 3) requires O (lg2 n) oracle queries per level, whereas the
second algorithm (Section 4) only requires O (lgn) oracle queries
due to a more careful doubling technique.

Dynamic trees supporting batching: Another obstacle to im-

proving on the bounds of the HDT algorithm is that the classic

ET-tree data structure performs links and cuts one at a time. To

achieve good batch bounds for forest operations, we use a recently

developed solution to the batch-parallel forest connectivity problem

by Tseng et al. [65]. Their data structure, which we refer to as a

batch-parallel ET-tree processes a set of k links, cuts, or connectiv-

ity queries in O (k lg(1 + n/k)) work and O (lgn) depth. We extend

the data structure to supports operations such as fetching the first

l non-tree edges in the tree efficiently.

2 PRELIMINARIES

Model. In this paper we analyze our algorithms in the work-depth

model using fork-join style parallelism. Specifically, we use a partic-

ular work-depth model called the Threaded Random Access Machine

(TRAM), which is closely related to the PRAM but more closely

models current machines and programming paradigms that are

asynchronous and support dynamic forking. The model can work-

efficiently cross-simulate a CRCW PRAM, equipped with the same

Session 10 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

382

atomic instructions, and is therefore essentially equivalent to the

classic CRCW PRAM model. We formally define the model and

provide more details about the simulations in the full version of

our paper [2], and refer the interested reader to [12] for full details.

Our algorithms are designed using nested fork-join parallelism

in which a procedure can fork off another procedure call to run

in parallel and then wait for forked calls to complete with a join

synchronization [11]. Our efficiency bounds are stated in terms of

work and depth, where work is the total number of vertices in the

thread DAG and where depth (span) is the length of the longest

path in the DAG [11].

Parallel Primitives. The following parallel procedures are used

throughout the paper. A semisort takes an input array of elements,

where each element has an associated key and reorders the elements

so that elements with equal keys are contiguous, but elements with

different keys are not necessarily ordered. The purpose is to collect

equal keys together, rather than sort them. Semisorting a sequence

of length n can be performed in O (n) expected work and O (lgn)
depth w.h.p. assuming access to a uniformly random hash function

mapping keys to integers in the range [1,nO (1)
] [26, 51].

A parallel dictionary data structure supports batch insertion,

batch deletion, and batch lookups of elements from some universe

with hashing. Gil et al. describe a parallel dictionary that uses linear

space and achievesO (k) work andO (lg∗ k) depth w.h.p. for a batch

of k operations [25].

The pack operation takes an n-length sequence A and an n-
length sequence B of booleans as input. The output is a sequence

A′ of all the elements a ∈ A such that the corresponding entry in

B is true. The elements of A′ appear in the same order that they

appear in A. Packing can be easily implemented in O (n) work and

O (lgn) depth [37].

Useful Lemmas. The following lemmas are useful for analyzing

the work bounds of our parallel algorithms. We provide proofs in

the full version of our paper [2].

Lemma 2.1. Letn1,n2, ...,nc and k1,k2, ...,kc be sequences of non-
negative integers such that

∑
ki = k , and

∑
ni = n. Then

c∑
i=1

ki lg

(
1 +

ni
ki

)
≤ k lg

(
1 +

n

k

)
.

Lemma 2.2. For any non-negative integers n and r ,

r∑
w=0

2
w
lg

(
1 +

n

2
w

)
= O

(
2
r
lg

(
1 +

n

2
r

))
.

Lemma 2.3. For any n ≥ 1, the function x lg
(
1 + n

x

)
is strictly

increasing with respect to x for x ≥ 1.

2.1 Batch-Dynamic Trees

The batch-dynamic trees problem is to represent a forest as it un-

dergoes batches of links, cuts, and connectivity queries. A link
operation inserts an edge connecting two trees in the forest. A cut
deletes an edge from the forest, breaking one tree into two trees.

A connectivity query returns whether two vertices are connected

by a path (in the same tree) in the forest. The interface is formally

defined as follows:

Batch-Dynamic Trees Interface.

• BatchLink({(u1,v1), . . . , (uk ,vk)}) takes a sequence of edges
and adds them to the graphG . The input edges must not create a

cycle in G.

• BatchCut({(u1,v1), . . . , (uk ,vk)}) takes a sequence of edges
and removes them from the graph G.

• BatchConnected({(u1,v1), . . . , (uk ,vk)}) takes a sequence

of tuples representing queries. The output is a sequence where

the i-th entry returns whether vertices ui and vi are connected
by a path in G.

• BatchFindRepr({(x1, . . . ,xk }) takes a sequence of pointers

to tree elements. The output is a sequence where the i-th entry

is the representative (repr) of the tree in which xi lives. The

representative is defined so that repr(u) = repr(v) if and only

if u and v are in the same tree. Note that representatives are

invalidated after the tree is modified.

Batch-Parallel Euler Tour Trees. In this paper we make use of

a recently developed, parallel solution to the batch-dynamic trees

problem, called a batch-parallel Euler tour tree (batch-parallel ET-

trees) [65]. The data structure represents each ET-tree sequence

using a concurrent skip-list, and reduces bulk link, cut, and query

operations to bulk operations on the concurrent skip-list.

Tseng et al. [65] prove the following theorem on the efficiency

of the batch-parallel ET-tree:

Theorem 2.4. A batch of k links, k cuts, k connectivity queries, or

k representative queries over an n-vertex forest can be processed in

O (k lg(1 + n/k)) expected work and O (lgn) depth with high proba-

bility.

The trees also support augmentation with an associative and

commutative function f : D2 → D with values from D assigned

to vertices and edges of the forest. The goal is to compute f over

subtrees of the represented forest. The interface can be easily ex-

tended with the following batch-parallel primitives for updating

and querying augmented values.

The full version of our paper [2] contains information about

additional tree operations that are needed to efficiently implement

our algorithms.

2.2 The sequential (HDT) algorithm

Our parallel algorithm is based on the sequential algorithm of Holm,

De Lichtenberg, and Thorup [33], which we refer to as the HDT

algorithm. The HDT algorithm assigns to each edge in the graph,

an integer level from 1 to lgn. The levels correspond to sequence

of subgraphs G1 ⊂ G2 ⊂ ... ⊂ G
lgn = G, such that Gi contains all

edges with level at most i . The algorithm also maintains a spanning

forest Fi of each Gi such that F1 ⊂ F2 ⊂ ... ⊂ F
lgn . Each forest is

maintained using a set of augmented ET-trees which we describe

shortly. Throughout the algorithm, the following invariants are

maintained.

Invariant 1. ∀i = 1... lgn, the connected components of Gi have

size at most 2
i
.

Invariant 2. F
lgn is a minimum spanning forest where the weight

of each edge is its level.

Session 10 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

383

Connectivity Queries. To perform a connectivity query in G, it
suffices to query F

lgn , which takes O (lgn) time by querying for

the root of each Euler tour tree and returning whether the roots

are equal. We note that in [33], a query time of O (lgn/ lg lgn) is
achieved by storing the Euler tour of F

lgn in a B-tree with branching

factor lgn.

Inserting an Edge. An edge insertion is handled by assigning the

edge to level lgn. If the edge connects two currently disconnected

components, then it is added to F
lgn .

Deleting an Edge. Deletion is the most interesting part of the

algorithm. If the deleted edge is not in the spanning forest F
lgn ,

the algorithm removes the edge and does nothing to F
lgn as the

connectivity structure of the graph is unchanged. Otherwise, the

component containing the edge is split into two. The goal is to find

a replacement edge, that is, an edge crossing the split component.

If the deleted edge had level i , then the smaller of the two result-

ing components is searched starting at level i in order to locate a

replacement edge. Before searching this component, all tree edges

whose level is equal to i have their level decremented by one. As the

smaller of the split components at level i has size ≤ 2
i−1

, pushing

the entire component to level i − 1 does not violate Invariant 1.

Next, the non-tree edges at level i are considered one at a time as

possible replacement edges. Each time the algorithm examines an

edge that is not a replacement edge, it decreases the level of the

edge by one. If no replacement is found, it moves up to the next

level and repeats. Note that because the algorithm first pushes all

tree edges to level i − 1, any subsequent non-tree edges that may

be pushed from level i to level i − 1 will not violate Invariant 2.

Implementation and Cost. To efficiently search for replacement

edges, the ET-trees are augmented with two additional pieces of

information. The first augmentation is to maintain the number of

non-tree edges whose level equals the level of the tree. The second

augmentation maintains the number of tree-edges whose level is

equal to the level of the tree.

Using these augmentations, each successive non-tree edge (or

tree edge) whose level is equal to the level of the tree can be found

in O (lgn) time. Furthermore, checking whether the edge is a re-

placement edge can be done in O (lgn) time. Lastly, the cost of

pushing an edge that is not a replacement edge to the lower level is

O (lgn), since it corresponds to inserting the edge into an adjacency

structure and updating the augmented values. Since each edge can

be processed at most once per level, paying a cost of O (lgn), and
there are lgn levels, the overall amortized cost per edge isO (lg2 n).

3 A PARALLEL ALGORITHM

In this section, we give a simple parallel batch-dynamic connectivity

algorithm based on the HDT algorithm. The underlying invariants

maintained by our parallel algorithm are identical to the sequen-

tial HDT algorithm: we maintain lgn levels of spanning forests

subject to Invariants 1 and 2. The main challenge, and where our

algorithm departs from the HDT algorithm is in how we search for

replacement edges in parallel, and how we search multiple compo-

nents in parallel. We show by a charging argument that this parallel

algorithm is work-efficient with respect to the HDT algorithm—it

performs O (lg2 n) amortized work per edge insertion or deletion.

Furthermore, we show that the depth of this algorithm is O (lg4 n).

Although these bounds are subsumed by the improved parallel

algorithm we describe in Section 4, the parallel algorithm in this

section is useful to illustrate the main ideas in this paper.

Data Structures. Each spanning forest, Fi , is represented using a

set of batch-parallel ET-trees [65]. We represent the edges of the

graph in a parallel dictionary ED for convenience (see Section 2).

We also store an adjacency array,Ai [u], at each level i , and for each
vertex u to store the tree and non-tree edges incident on u with

level i . Note that tree and non-tree edges are stored separately so

that they can be accessed separately. The adjacency arrays support

batch insertion and deletion of edges, as well as the ability to fetch a

batch of edges of a desired size. These operations have the following

cost bounds.

Lemma 3.1. InsertEdges, DeleteEdges, and FetchEdges can be

implemented in O (1) amortized work per edge and in O (lgn) depth.

We refer the reader to the full version of our paper [2] for proofs

and full details on the adjacency data structure.

3.1 Connectivity Queries

As in the sequential algorithm, a connectivity query can be an-

swered by simply performing a query on F
lgn . Algorithm 1 gives

pseudocode for the batch connectivity algorithm. The bound we

achieve follows from the batch bounds on batch-parallel ET-trees.

Algorithm 1 The batch query algorithm

1: procedure BatchQuery({(u1,v1), (u2,v2), ..., (uk ,vk)})
2: return F

lgn .BatchQuery({(u1,v1), (u2,v2), ..., (uk ,vk)})

Theorem 3.2. A batch of k connectivity queries can be processed

in O
(
k lg

(
1 + n

k

))
expected work and O (lgn) depth w.h.p.

Proof. Follows from Theorem 2.4. □

3.2 Inserting Batches of Edges

To perform a batch insertion, we first determine a set of edges in

the batch that increase the connectivity of the graph. To do so, we

treat each current connected component of the graph as a vertex,

and build a spanning forest of the edges being inserted over this

contracted graph. The edges in the resulting spanning forest are

then inserted into the topmost level in parallel.

Algorithm 2 The batch insertion algorithm

1: procedure BatchInsert(U = {(u1,v1), . . . , (uk ,vk)})
2: For all ei ∈ U , set l (ei) ← lgn in parallel

3: Update A
lgn[u] for edges incident on u

4: R ← {(F
lgn .FindRepr(u), Flgn .FindRepr(u)) | (u,v) ∈ U }

5: T ′ ← SpanningForest(R)
6: T ← edges inU corresponding to T ′

7: Promote edges in T to tree edges

8: F
lgn .BatchInsert(T)

Algorithm 2 gives pseudocode for the batch insertion algorithm.

We assume that the edges given as input in U are not present in

the graph. Each vertex u that receives an updated edge inserts its

edges into A
lgn[u] (Line 3). This step can be implemented by first

running a semisort to collect all edges incident on u.

Session 10 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

384

The last step is to insert edges that increase the connectivity of

the graph as tree edges (Lines 4–8). The algorithm starts by com-

puting the representatives for each edge (Line 4). The output is

an array of edges, R, which maps each original (u,v) edge in U to

(FindRepr(u), FindRepr(v)) (note that these calls can be batched

using BatchFindRepr). Next, it computes a spanning forest over

the tree edges (Line 5). Finally, the algorithm promotes the corre-

sponding edges in U to tree edges. This is done by updating the

appropriate adjacency lists and inserting them into F
lgn (Lines 7–8).

Theorem 3.3. A batch of k edge insertions can be processed in

O
(
k lg

(
1 + n

k

))
expected work and O (lgn) depth w.h.p.

Proof. Lines 2–3 costO (k) work andO (lgk) depth w.h.p. using

our bounds for updating A (see Lemma 3.1). The find represen-

tative queries (Line 4) can be implemented using a BatchFind-

Repr call, which costs O
(
k lg

(
1 + n

k

))
expected work and O (lgn)

depth w.h.p. by Theorem 2.4. Computing a spanning forest (Line 5)

can be done in O (k) expected work and O (lgk) depth w.h.p. us-

ing Gazit’s connectivity algorithm [24]. Finally, updating the adja-

cency lists and inserting the spanning forest edges into F
lgn costs

O
(
k lg

(
1 + n

k

))
expected work and O (lgn) depth w.h.p. (Lines 7–

8). □

3.3 Deleting Batches of Edges

As in the sequential HDT algorithm, searching for replacement

edges after deleting a batch of tree edges is the most interesting

part of our parallel algorithm. A natural idea for parallelizing the

HDT algorithm is to simply scan all non-tree edges incident on each

disconnected component in parallel. Although this approach has

low depth per level, it may examine a huge number of candidate

edges, but only push down a few non-replacement edges. In general,

it is unable to amortize the work performed checking all canidates

edges at a level to the edges that experience level decreases. To

amortize the work properly while also searching the edges in par-

allel we must perform a more careful exploration of the non-tree

edges. Our approach is to use a doubling technique, in which we

geometrically increase the number of non-tree edges explored as

long as we have not yet found a replacement edge. We show that

using the doubling technique, the work performed (and number of

non-tree edges explored) is dominated by the work of the last phase,

when we either find a replacement edge, or run out of non-tree

edges. Our amortized work-bounds follow by a per-edge charging

argument, as in the analysis of the HDT algorithm.

The Deletion Algorithm. Algorithm 3 shows the pseudocode

for our parallel batch deletion algorithm. As with the batch inser-

tion algorithm, we assume that each edge is present in U in both

directions. Given a batch of k edge deletions, the algorithm first

deletes the given edges from their respective adjacency lists in par-

allel (Line 2). It then filters out the tree edges (Line 3) and deletes

each tree edge e from Fi . . . , Flgn , where i is the level of e (Line 4).
Next, it computes C , a set of components (representatives) from the

deleted tree edges (Line 5). For each deleted tree edge, e , the algo-
rithm includes the representatives of both endpoints in the forest

at l (e), which must be in different components as e is a deleted tree
edge. Finally, the algorithm loops over the levels, starting at the

lowest level where a tree edge was deleted (Line 7), and calls Paral-

lelLevelSearch at each level. Each call to ParallelLevelSearch

takes i , the level to search, C , the current set of disconnected com-

ponents, and S , an initially empty set of replacement edges that the

algorithm discovers over the course of the searches (Line 8)

Algorithm 3 The batch deletion algorithm

1: procedure BatchDeletion(U = {e1, . . . , ek })
2: Delete e ∈ U from A0, . . . ,Algn
3: T ← {e ∈ U | e ∈ F

lgn } ▷ Tree edges to delete

4: Delete e ∈ T from F0, . . . , Flgn
5: C ← ∪e=(u,v)∈T (Fl (e) .FindRepr(u), Fl (e) .FindRepr(v))
6: S ← ∅
7: for i ∈ [minl ← mine ∈T , lgn] do
8: (C, S) ← ParallelLevelSearch(i,C, S)

Algorithm 4 The parallel level search algorithm

1: procedure ComponentSearch(i, c)
2: w ← 1, wmax ← c .NumNonTreeEdges
3: whilew < 2wmax do

4: w ← min(w,wmax)
5: Ec ← Firstw non-tree edges in c
6: Push all non-replacement edges in Ec to level i − 1
7: if Ec contains a replacement edge then

8: return {r }, where r is any replacement edge in Ec

9: w ← 2w
10: return ∅

11: procedure ParallelLevelSearch(i , L = {c1, c2, . . .}, S)
12: Fi .BatchInsert(S)
13: C ← c ∈ L with size ≤ 2

i−1

14: D ← c ∈ L with size > 2
i−1

15: while |C | > 0 do

16: Push level i tree edges of components inC to level i − 1
17: R ← ∪c ∈C ComponentSearch(i, c) ▷ In parallel

18: R′ ← {(Fi .FindRepr(u), Fi .FindRepr(v)) | (u,v) ∈ R}
19: T ′ ← SpanningForest(R′)
20: T ← Edges in R corresponding to edges in T ′

21: Promote edges in T to tree edges

22: Fi .BatchInsert(T)
23: S ← S ∪T
24: C ← {Fi .Repr(c) | c ∈ C}
25: Q ← {c ∈ C with no non-tree edges, or size > 2

i−1}

26: D ← D ∪Q
27: C ← C \Q

28: return (D, S)

Searching a Level in Parallel. The bulk of the work done by

the deletion algorithm is performed by Algorithm 4, which imple-

ments a subroutine that searches the disconnected components at

a given level of the data structure in parallel. The input to Par-

allelLevelSearch is an integer i , the level to search, a set of

representatives of the disconnected components, L, and the set of

replacement spanning forest edges that were found in levels lower

than i , S . The output of ParallelLevelSearch is the set of com-

ponents that are still disconnected after considering the non-tree

edges at this level, and the set of replacement spanning forest edges

found so far.

Session 10 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

385

ParallelLevelSearch starts by inserting the new spanning

forest edges in S into Fi (Line 12). Next, it computes C and D,
which are the components that are active and inactive at this level,

respectively (Lines 13–14). Themain loop of the algorithm (Lines 15–

27) operates in a number of rounds.
Each round first pushes down all tree edges at level i of every

active component. It then finds a single replacement edge incident

to each active component, searching the active components in

parallel, pushing any non-replacement edge to level i − 1. It then
promotes a maximal acyclic subset of the replacement edges found

in this round to tree edges, and proceeds to the next round. The

rounds terminate once all components at this level are deactivated

by either becoming too large to search at this level, or because the

algorithm finished examining all non-tree edges incident to the

component at this level.

The main loop (Lines 15–27) works as follows. The algorithm

first pushes any level i tree edges in an active component down

to level i − 1. The active components in C have size at most 2
i−1

,

meaning that any tree edges they have at level i can be pushed to

level i−1 (Line 16) without violating Invariant 1. Next, the algorithm
searches each active component for a replacement edge in parallel

by calling the ComponentSearch procedure in parallel over all

components (Line 17). This procedure either returns an empty set

if there are no replacement edges incident to the component, or

a set containing a single replacement edge. Next, the algorithm

maps the replacement edge endpoints to their current component’s

representatives by calling FindRepr on each endpoint (Line 18).

It then computes a spanning forest over these replacement edges

(Line 19) and maps the edges included in the spanning forest back

to their original endpoints ids (Line 20). Observe that the edges in

T constitute a maximal acyclic subset of replacement edges of R in

Fi . The algorithm therefore promotes the edges in T to tree edges

(Lines 21– 22). Note that the new tree edges are not immediately

inserted into all higher level spanning trees. Instead, the edges are

buffered by adding them to S (Line 23) so that they will be inserted

when the higher level is reached in the search. Finally, the algorithm

updates the set of components by computing their representatives

on the updated Fi (Line 24), and filtering out any components which

have no remaining non-tree edges, or become larger than 2
i−1

(i.e.,

become unsearchable at this level) into D (Lines 30–27).

We now describe the ComponentSearch procedure (Lines 1–

10). The search consists of a number of phases, where the i’th
phase searches the first 2

i
non-tree edges, or all of the non-tree

edges if 2
i
is larger than the number of non-tree edges in c . The

search terminates either once a replacement edge incident to c is
found (Line 7), or once the algorithm unsuccessfuly examines all

non-tree edges incident to c (Line 3). Initiallyw , the search size, is

set to 1 (Line 4). On each phase, the algorithm retrieves the first

w many non-tree edges, Ec (Line 5). It pushes all non-tree edges

that are not replacements to level i − 1 (Line 6). It then checks

whether any of the edges in Ec are a replacement edge, and if

so, returns one of the replacement edges in Ec (Line 8). Note that
checking whether an edge is a replacement edge is done using

BatchFindRepr. Otherwise, if no replacement edge was found it

doublesw (Line 9) and continues.

Cost Bounds.We now prove that our parallel algorithm has low

depth, and is work-efficient with respect to the sequential HDT

algorithm. For simplicity, we assume that we start with no edges in

a graph on n vertices.

Theorem 3.4. A batch of k edge deletions can be processed in

O (lg4 n) depth w.h.p.

Proof. The algorithm doubles the number of edges searched

in each phase. Therefore, after lgm = O (lgn) phases, all non-tree
edges incident on the component will be searched.

In every round, each active component is either deactivated, or

has a replacement edge found. In the worst case, the edges found

for each active component pair the components off, leaving us with

half as many active components in the subsequent round. As we

lose a constant fraction of the active components per round, the

algorithm takes O (lgn) rounds.
A given level can therefore perform at most O (lg2 n) phases.

Each phase consists of fetching, examining, and pushing down non-

tree edges, and hence can be implemented in O (lgn) depth w.h.p.

by Lemma 3.5, Theorem 2.4, and Lemma 3.6. Therefore, the overall

depth for a given level is O (lg3 n) w.h.p. As all lgn levels will be

processed in the worst case, the overall depth of the algorithm is

O (lg4 n) w.h.p. □

We now analyze the work performed by the algorithm. We begin

by stating the following lemmas on the efficiency of the augmented

ET-tree operations.

Lemma 3.5. Given some vertex, v in a batch-parallel ET-tree, we

can fetch the first l tree (or non-tree) edges referenced by the aug-

mented values in the tree inO
(
l lg

(
1 +

nc
l

))
work andO (lgn) depth

w.h.p. where nc is the number of vertices in the ET-tree at the cur-

rent level. Furthermore, removing the edges can be done in the same

bounds.

Lemma 3.6. Decreasing the level of l tree (or non-tree) edges in a

batch-parallel ET-tree can be performed inO
(
l lg

(
1 +

nc
l

))
expected

work andO (lgn) depth w.h.p. where nc is the number of nodes in the

ET-tree at the current level.

The proofs of these lemmas are provided in the full version of

our paper [2]. We now have the tool to analyze the work performed

by batch deletion.

Lemma 3.7. The work performed by BatchDeletion excluding

the calls to ParallelLevelSearch is

O
(
k lgn lg

(
1 +

n

k

))
,

in expectation.

Proof. The edge deletions performed by Line 2 cost O (k) work
by Lemma 3.1. Filtering the tree edges (Line 3) can be done in O (k)
work. Deleting the tree edges costs at most O (k lg (1 + n/k)) work
by Lemma 2.3 (Line 4).

Line 5 perform a FindRepr call for each endpoint of each deleted

tree edge. These calls can be implemented as a single BatchFind-

Repr call which costs O (k lg (1 + n/k)) work in expectation by

Theorem 2.4. Since in the worst case each tree edge must be deleted

from lgn levels, the overall cost of this step isO (k lgn lg (1 + n/k))

Session 10 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

386

in expectation. Summing up the costs for each level proves the

lemma. □

Theorem 3.8. The expected amortized cost per edge insertion or

deletion is O (lg2 n).

Proof. Algorithm 3 takes as input a batch of k edge deletions.

By Lemma 3.7, the expected work performed by BatchDeletion

excluding the calls to ParallelLevelSearch is

O
(
k lgn lg

(
1 +

n

k

))
,

which is at most O (k lg2 n) in expectation. We now consider the

cost of the calls to ParallelLevelSearch. Specifically, we show

that the work performed during the calls to ParallelLevelSearch

can either be charged to level decreases on edges, or is at most

O (k lgn) per call in expectation. Since the total number of calls to

ParallelLevelSearch is at most lgn, the bounds follow.
First, observe that the number of spanning forest edges we dis-

cover, |S |, is at most k , since at most k tree edges were deleted

initially. Therefore, the batch insertion on Line 12 costs O (k lgn)
in expectation by Theorem 2.4. Similarly, L, the number of com-

ponents that are supplied to ParallelLevelSearch, is at most k .
Therefore, the cost of filtering the components in L based on their

size, and checking whether their representative exists in Fi is at
most O (k lgn) in expectation (Lines 13–14).

To fetch, examine, and push down l tree or non-tree edges costs

O
(
l lg

(
1 +

n

l

))
,

work in expectation, by Lemma 3.5, Theorem 2.4, and Lemma 3.6.

Note that this is at most O (lgn) per edge. In particular, the cost of

retrieving and pushing the tree edges of active components to level

i − 1 (Line 6) is therefore at most O (lgn) per edge in expectation,

which we charge to the corresponding level decreases.

We now show that all work donewhile searching for replacement

edges (Lines 15–27) can be charged to level decreases. Consider an

active component, c in some round. Suppose the algorithm performs

q > 0 phases before either the component is exhausted (all incident

non-tree edges have been checked), or a replacement edge is found.

First consider the case where it finds a replacement edge. If q = 1,

only a single edge was inspected, so then we charge the lgn work

for the round to the edge, which will become a tree edge. Otherwise,

it performs q − 1 phases which do not produce any replacement

edge.

Since phasew inspects 2
w
edges, it costs O (2w lgn) work. The

total work over all q phases is therefore

q∑
w=0

2
w
lgn = O (2q lgn)

in expectation. However, since no replacement was found during

the first q − 1 phases, there are at least 2
q−1 = O (2q) edges that

will be pushed down, so we can charge O (lgn) work to each such

edge to pay for this. In the other case, q phases run without finding

a replacement edge. In this case, all edges inspected are pushed

down, and hence each assumes a cost of O (lgn) in expectation.

Now, we argue that the work done while processing the replace-

ment edges isO (k lgn) in expectation over all rounds. Since k edges

were deleted, the algorithm discovers at most k replacement edges.

We charge the work in these steps to the replacement edges that

we find. Let k ′ be the number of replacement edges that we find.

Filtering the edges, and computing a spanning forest all costsO (k ′)
work. Promoting the edges to tree edges (inserting them into Fi
and updating the adjacency lists) costs O (k ′ lgn) work in expec-

tation. Finally, updating the components costs O (k ′ lgn) work in

expectation, which we can charge to either the component, if it is

removed from C in this round, or to the replacement edge that it

finds, which is promoted to a tree edge. Since the algorithm can

find at most k replacement edges, the cost per level is O (k lgn) in
expectation for these steps as necessary.

In total, on each level the algorithm performsO (k lgn) expected
work that is not charged to a level decrease. Summing over lgn
levels, this yields an amortized cost of O (lg2 n) expected work per

edge deletion. Finally, since the level of an edge can decrease at

most lgn times, and an edge is chargedO (lgn) expected work each
time its level is decreased, the expected amortized cost per edge

insertion is O (lg2 n).
□

4 AN IMPROVED ALGORITHM

In this section we design an improved version of the parallel algo-

rithm that performs less work than the algorithm from Section 3.

Furthermore, the improved algorithm runs inO (lg3 n) depth w.h.p.,

improving on Algorithm 4 which runs in O (lg4 n) depth w.h.p.

4.1 The Interleaved Deletion Algorithm

Overview. Algorithm 5 is based on interleaving the phases of dou-

bling that search for replacement edges with the spanning forest

computation performed on the replacement edges. Recall that in

Algorithm 4, the number of edges examined in each round is reset,

and the doubling algorithm must therefore start with an initial

search size of 1 on the next round. Because the doubling resets from

round to round, the number of phases per round can be O (lgn) in
the worst case, making the total number of phases per levelO (lg2 n).
Instead, the interleaved algorithm avoids resetting the search size

by maintaining a single, geometrically increasing search size over

all rounds of the search.

The second important difference in Algorithm 5 compared with

Algorithm 4 is that it defers inserting tree edges found on this

level until the end of the search. Instead, it continues to search for

replacement edges from the initial components until the component

is deactivated. This property is important to show that the work

done for a component across all rounds is dominated by the cost

of the last round, since the number of vertices in the component is

fixed, but the number of non-tree edges examined doubles in each

round. For the same reason, it also defers inserting the pushed edges

onto level i − 1. We crucially use this property to obtain improved

batch work bounds (Section 4.3).

Another difference in the modified algorithm is that if a com-

ponent is still active after adding the replacement edges found in

this round (i.e., the component on level i still has size at most 2
i−1

),

then all of the edges found in this round can be pushed to level i − 1
without violating Invariant 1. Notice now that when pushing down

edges, both the tree and non-tree edges that are found in this round

Session 10 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

387

Algorithm 5 The interleaved level search algorithm

1: procedure ComponentSearch(i, c, s)
2: wmax ← c .NumNonTreeEdges
3: w ← min(s,wmax)
4: Ec ← Firstw non-tree edges in c
5: return {All replacement edges in Ec }

6: procedure PushEdges(i, c, s,M)

7: wmax ← c .NumNonTreeEdges
8: w ← min(s,wmax)
9: Ec ← {Firstw non-tree edges in c}
10: if M[c].size ≤ 2

i−1
andw < wmax then

11: Remove edges in Ec from level i
12: return Ec
13: return ∅

14: procedure InterleavedLevelSearch(i , L = {c1, c2, . . .}, S)
15: Fi .BatchInsert(S)
16: C ← c ∈ L with size ≤ 2

i−1

17: D ← c ∈ L with size > 2
i−1

18: Push level i tree edges of all components inC to level i − 1
19: r ← 0, T ← ∅, EP ← ∅
20: M ← {c → c | c ∈ C}
21: while |C | > 0 do

22: w ← 2
r

23: R ← ∪c ∈C ComponentSearch(i, c,w) ▷ In parallel

24: R′ ← {(Fi .FindRepr(u), Fi .FindRepr(v)) | (u,v) ∈ R}
25: T ′r ← SpanningForest(R′)
26: Tr ← Edges in R corresponding to edges in T ′r
27: T ← T ∪Tr
28: UpdateM , the map of supercomponents and their sizes

29: EP ← EP ∪c ∈C PushEdges(i, c,w,M) ▷ In parallel

30: Dr ← {c ∈ C with no non-tree edges, or size > 2
i−1}

31: D ← D ∪ Dr
32: C ← C \ Dr
33: r ← r + 1
34: Promote edges in T not in Ep to tree edges at level i
35: Fi .BatchInsert(T)
36: Insert non-tree and tree edges in EP to level i − 1
37: return (D, S ∪T)

are pushed. Pushing down all edges ensures that the algorithm

performs enough level decreases to which to charge the work per-

formed during the next round. The component deactivates either

once it runs out of incident non-tree edges, or when it becomes too

large. Since the algorithm defers adding the new tree edges found

until the end of the level, it also maintains an auxiliary data struc-

ture that dynamically tracks the size of the resulting components

as new edges are found.

The Deletion Algorithm. We briefly describe the main differ-

ences between InterleavedLevelSearch, the new level search

procedure, and ParallelLevelSearch. The algorithm consists of

a number of rounds (Lines 21–33). We use r to track the round

numbers, and we use EP to store the set of both tree and non-tree

edges that will be pushed to level i − 1 at the end of the search at

this level (Line 19). T stores the set of tree edges that have been

selected, which will be added to the spanning forest at the end of

the level. Lastly, we useM to maintain a dynamic mapping from all

the components in L to a unique representative for their contracted

supercomponent (initially itself), and the size of the contracted

supercomponent.

In round r , the algorithm first retrieves the first 2
r
(or fewer)

edges of each the active components in parallel, and finds replace-

ment edges. All replacement edges are added to the set R (line 23).

The algorithm then computes a spanning forest over the edges

in R, and computes Tr , which are the original replacement edges

in R that were selected as spanning forest edges (lines 25–27). The

spanning forest computation returns, in addition to the tree edges, a

mapping from the vertices in R′ to their connectivity label (line 25),

which can be used on line 28 to efficiently update the representatives

of all affected components and the sizes of the supercomponents.

The next step maps over the components in parallel again, calling

PushEdges on each active component, and checks whether the

edges searched in this round can be (lazily) pushed to level i − 1

(Line 29).
3
If a component is still active (its new size is small enough

to still be searched, and the component still has some non-tree edges

remaining) (line 10), all of the searched edges are removed from the

adjacency lists at level i (line 11) and are added to the set of edges

that will be pushed to level i − 1 at the end of the level (Lines 12

and 29). Note that this set of edges contains both replacement tree

edges we discovered, and non-tree edges. The tree-edges can be

pushed down to level i − 1 because the component with the tree

edges added has size ≤ 2
i−1

.

The end of the round (lines 30–33) handles updating the set of

components and incrementing the round number, as in Algorithm 4.

Finally, once all components are inactive, the tree edges found at

this level that are not contained in Ep are promoted (the tree edges

added to Ep have their level decreased to i − 1) and inserted into

Fi (Lines 34–35), and all edges added to EP in Line 29 are pushed

down to level i − 1 (Line 36). Note that any tree-edges found in this

set are promoted in level i − 1 and added to Fi−1. The procedure
returns the set of components and all replacement edges found at

this level and levels below it (Line 37).

4.2 Cost Bounds

We start by showing that the depth of Algorithm 5 is O (lg3 n).

Lemma 4.1. The number of rounds performed by Algorithm 5 is

O (lgn) and the depth of each round is O (lgn) w.h.p.. The depth of

the InterleavedLevelSearch is therefore O (lg2 n) w.h.p..

Proof. Each round of the algorithm increases the search size of

a component by a factor of 2. Therefore, afterO (lgn) rounds, every
non-tree edge incident on a component will be considered and the

algorithm will terminate.

To argue the depth bound, we consider the main steps performed

during a round. Fetching, examining and removing the edges from

level i takes O (lgn) depth w.h.p. by Lemma 3.5, Theorem 2.4, and

Lemma 3.6. Computing a spanning forest on the replacement edges

and filtering the components (at most k replacement edges, or

components) can be done in O (lgk) depth. The depth per round is

3
Note that the set of edges retrieved by PushEdges in Line 9 is assumed to be the same

as the one in Line 4. This assumption is satisfied by using our FetchEdges primitive

on a batch-parallel ET-tree, and can be satisfied in general by associating the edges

retrieved in ComponentSearch to be used in PushEdges.

Session 10 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

388

thereforeO (lgn)w.h.p. and the depth of InterleavedLevelSearch
is O (lg2 n) w.h.p. □

Combining Lemma 4.1 with the fact that there are lgn levels

gives the following theorem.

Theorem 4.2. A batch of k edge deletions can be processed in

O (lg3 n) depth w.h.p.

We now consider the work performed by the algorithm. We

start with a lemma showing that the search-size for a component

increases geometrically until the round where the component is

deactivated.

Lemma 4.3. Consider a component, c , that is active at the end of
round r − 1. If c is not removed fromC , then it examines ≥ 2

r−1
edges

that are pushed down to level i − 1 at the end of the search.

Proof. We prove the contrapositive. Suppose that < 2
r−1

edges

are pushed down in total by c in the last round. Then, we will show

that c cannot be active in the next round (i.e., it is removed from C
in round r − 1).

Notice that c must be active at the start of round r − 1. Consider

the check on Line 10, which checks whether w ≤ 2
r−1

and w <
wmax on this round. Suppose for the same of contradiction that

both conditions are true. Then, by the fact thatw < wmax, it must

be the case thatw = 2
r−1

by Line 8. If the condition is true, then on

Line 11 the algorithm adds 2
r−1

edges to be pushed to level i − 1,
contradicting our assumption that < 2

r−1
edges are pushed.

Therefore the check on Line 10 must be false, giving that either

w > 2
i−1

, orw = wmax. This means that c will bemarked as inactive

on Line 30, and then become deactivated on line 32. Therefore, if

< 2
r−1

edges are pushed down by c in round r − 1, c is deactivated
at the end of the round, concluding the proof.

□

Lemma 4.4. Consider the work done by some component c over
the course of InterleavedLevelSearch at a given level. Let R be the

total number rounds that c is active. Then, c pushes down pc = 2
R − 1

edges in total. Furthermore, the total cost of searching for and pushing

down replacement edges performed by c is

O

(
pc lg

(
1 +

nc
pc

))
in expectation, where nc is the number of vertices in c .

Proof. By Lemma 4.3, for each round r < R, c adds 2r edges

to be pushed down. Summing over all rounds shows that the total

number of edges added to be pushed down is 2
R − 1. The cost of

pushing down these edges at the end of the search at this level is

exactly

O

(
pc lg

(
1 +

nc
pc

))
.

by Lemma 3.6, since the size of the tree that is affected is nc .
We now consider the cost of fetching and examining the edges

over all rounds. The cost of fetching and examining 2
r
edges is

O
(
2
r
lg

(
1 +

nc
2
r

))
,

in expectation by Theorem 2.4 and Lemma 3.5. Summing over all

rounds r < R, the work is

R−1∑
r=1

O
(
2
r
lg

(
1 +

nc
2
r

))
in expectation to fetch and examine edges in the first R − 1 rounds,

which is equal to

O
(
2
R
lg

(
1 +

nc

2
R

))
,

by Lemma 2.2. Since on round R, the algorithm searches at most

2
R
edges, the total cost of searching for replacement edges over all

rounds is at most

O
(
2
R
lg

(
1 +

nc

2
R

))
= O

(
pc lg

(
1 +

nc
pc

))
.

□

Lemma 4.5. The cost of InterleavedLevelSearch is at most

O

(
k lg

(
1 +

n

k

)
+ p lg

(
1 +

n

p

))
in expectation where p is the total number of edges pushed down.

Proof. First consider lines 2–5. Since we are deleting a batch

of k edges, we can find at most k replacement edges to reconnect

these components. Therefore line 2 performs O
(
k lg

(
1 + n

k

))
ex-

pected work by Theorem 2.4. Pushing t spanning tree edges to

the next level (line 5) can be done in O
(
t lg

(
n
t + 1

))
) expected

work by Lemmas 3.5, 3.6, and 2.1, and Theorem 2.4. Hence in total,

lines 2–5 perform at most O
(
k lg

(
1 + n

k

)
+ t lg

(
1 + n

t

))
work in

expectation.

Now, consider the cost of the steps which scan or update the

components that are active in each round. On the first round, this

cost is O (k). In every subsequent round, r , by Lemma 4.3 each

currently active component must have added 2
r−1

edges to be

pushed down on the previous round. Therefore, we can charge the

O (1) work per component performed in this round to these edge

pushes.

Next, we analyze the work done while searching for and push-

ing replacement edges. Consider some component c ∈ C that is

searched on this level. By Lemma 4.4, the cost of searching for and

pushing down the replacement edges incident on this component

is

O

(
pc lg

(
1 +

nc
pc

))
in expectation, where nc is the number of vertices in c and pc is

the total number of edges pushed down by c .
The total work done over all components to search for replace-

ment edges and push down both the original tree edges, and the

edges in each round is therefore

O *
,
t lg

(
1 +

n

t

)
+

∑
c ∈C

pc lg

(
1 +

nc
pc

)
+
-
.

in expectation. Since

∑
nc = n, by Lemma 2.1 this costs

O

(
p lg

(
1 +

2n

p

))
= O

(
p lg

(
1 +

n

p

))

Session 10 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

389

work in expectation, where p = t +
∑
pc is the total number of

edges pushed, including tree and non-tree edges. Therefore, the

total cost is

O

(
k lg

(
1 +

n

k

)
+ p lg

(
1 +

n

p

))
in expectation. □

Theorem 4.6. The expected amortized cost per edge insertion or

deletion is O (lg2 n).

Proof. The proof follows from the same argument as Theo-

rem 3.8, by using Lemma 4.5. □

4.3 A Better Work Bound

We now show that by a more careful analysis, we can obtain a

tighter bound on the amount of work performed by the interleaved

algorithm. In particular, we show in this section that the algorithm

performs

O
(
lgn lg

(
1 +

n

∆

))
amortized work per edge in expectation, where ∆ is the average

batch size of all batches of deletions. Therefore, if we process batches

of deletions of size O (n/polylog(n)) on average, our algorithm per-

formsO (lgn lg lgn) expected amortized work per edge, rather than

O (lg2 n). Furthermore, if we have batches of size O (n), the cost is
just O (lgn) per edge.

At a high level, our proof formalizes the intuition that in the

worst case, all edges are pushed down at every level, and that

performing fewer deletion operations results in larger batches of

pushes which take advantage of work bounds of the ET-tree. Our

proof crucially relies on the fact that although the deletion algo-

rithm at a level can perform O (lgn) ET-tree operations per com-

ponent, since the batch sizes are geometrically increasing, these

operations have the cost of a single ET-tree operation per compo-

nent. Furthermore, Lemma 4.5 shows that the costs per component

can be combined so that the total cost is equivalent to the cost of a

single ET-tree operation on all the vertices. Therefore, the number

of deletion operations can be exactly related to the effective number

of ET-tree operations at a level. We relate the number of deletions to

the average batch size, which lets us obtain a single unified bound

for both insertions and deletions.

Theorem 4.7. Using the interleaved deletion algorithm, the amor-

tized work performed by BatchDeletion and BatchInsertion on a

batch of k edges is

O
(
k lgn lg

(
1 +

n

∆

))
,

in expectation where ∆ is the average batch size of all batch deletions.

Proof. Batch insertions perform onlyO
(
k lg

(
1 + n

k

))
work by

Theorem 3.3, so we focus on the cost of deletion since it dominates.

Consider the total amount of work performed by all batch deletion

operations at any given point in the lifetime of the data structure.

We will denote by kb , the size of batch b, and by pb,i , the num-

ber of edges pushed down on level i during batch b. Combining

Lemmas 3.7, and 4.5, the total work is bounded above by

O *.
,

∑
batchb

∑
level i

kb lg

(
1 +

n

kb

)
+ pb,i lg

(
1 +

n

pb,i

)
+/
-
.

We begin by analyzing the first term, which is paid for by the

deletion algorithm. Let

K =
∑
batchb

kb

denote the total number of deleted edges. Applying Lemma 2.1, and

using the fact that there are lgn levels, we have

O *.
,

∑
batchb

∑
level i

kb lg

(
1 +

n

kb

)
+/
-
= O

(
K lgn lg

(
1 +

n · d

K

))
,

where d is the number of batches of deletions. Since K/d = ∆, this
is equal to

O
(
K lgn lg

(
1 +

n

∆

))
,

work in expectation. Each batch can therefore be charged a cost

of lgn lg (1 + n/∆) per edge, and hence the amortized cost of batch

deletion is

O
(
k lgn lg

(
1 +

n

∆

))
in expectation.

The remainder of the cost, which comes entirely from searching

for replacement edges, is charged to the insertions. Consider this

cost and let

P =
∑
batchb

∑
level i

pb,i

denote the total such number of edge pushes. Since the total number

of terms in the double sum is d lgn, Lemma 2.1 allows us to bound

the total work of all pushes by∑
batchb

∑
level i

pb,i lg

(
1 +

n

pb,i

)
= O

(
P lg

(
1 +

nd lgn

P

))
.

in expectation. Since every edge can only be pushed down once

per level, we have

P ≤ m lgn,

wherem is the total number of edges ever inserted. Therefore by

Lemma 2.3, the total work is at most

O

(
m lgn lg

(
1 +

nd lgn

m lgn

))
= O

(
m lgn lg

(
1 +

nd

m

))
in expectation. Since d = K/∆, this is equal to

O
(
m lgn lg

(
1 +

nK

m∆

))
in expectation. Since each edge can be deleted only once, we have

K ≤ m, and hence we obtain that the total work to push all tree

edges down is at most

O
(
m lgn lg

(
1 +

n

∆

))
.

in expectation. We can therefore charge O (lgn lg(1 + n/∆)) per
edge to each batch insertion. Since this dominates the cost of the

insertion algorithm itself, the amortized cost of batch insertion is

therefore

O
(
k lgn lg

(
1 +

n

∆

))
,

Session 10 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

390

in expectation as desired, concluding the proof. □

5 RELATEDWORK

Parallel Dynamic Algorithms. There are only a few results on

parallel dynamic algorithms. Earlier results [20, 23] are not work-

efficient with respect to the fastest sequential dynamic algorithms,

do not support batch updates, and perform polynomial work per

update. Some more recent results such as parallel dynamic depth-

first search [41] and minimum spanning forest [42] process updates

one at a time, and are therefore not batch-dynamic algorithms.

Work efficient parallel batch-dynamic algorithms include those for

the well-spaced point sets problem [3] and those for the dynamic

trees problem [1, 52, 65].

Parallel Connectivity. Parallel algorithms for connectivity have

a long history [10, 19, 32, 39, 48, 50, 56, 66], and there are many

existing algorithms that solve the problem work-efficiently and

in low-depth [18, 24, 27, 28, 47, 49, 58], some of which are also

practical [21, 58]. However, there is no obviousway to adapt existing

parallel connectivity algorithms to the dynamic setting, particularly

for batch updates.

Parallel Dictionaries and Trees. There are many results on par-

allel dictionaries and trees supporting batch updates [7, 13, 15, 16,

25, 57, 60]. The dictionary data structures in the literature culmi-

nated in dictionaries supporting batch insertions, deletions and

lookups in linear work and O (lg∗ n) depth w.h.p. [25]. Early work

on batch insertions into trees focused on optimizing the depth, but

was not work-efficient. Paul et al. design batch search, insertion and

deletion algorithms for 2-3 trees on the EREW PRAM [46]. These

results were later extended to B-trees by Higham et al. [31]. The

algorithms of both Paul et al. and Higham et al. perform O (m lgn)
work form tree operations.

Recent work on parallel tree data structures has focused on how

to parallelize batch operations for various balancing schemes in

binary search trees [13], and also how to improve the depth of these

operations [7]. There is also some very recent work on extending

these tree data structures to support range and segment queries [60]

as well as practical implementations of parallel trees supporting

batch insertions, deletions and lookups [61].

OtherRelatedWork.There is also recentwork on parallel working-

set structures that supports batching by Agrawal et al. [5]. Earlier

work by Agrawal et al. [4] introduces the idea of implicit batching

which uses scheduler support to convert dynamically multithreaded

programs using an abstract data type to programs that perform

batch accesses to an underlying parallel data structure.

6 DISCUSSION

In this paper, we present a novel batch-dynamic algorithm for the

connectivity problem. Our algorithm is always work-efficient with

respect to the Holm, de Lichtenberg and Thorup dynamic connec-

tivity algorithm, and is asymptotically faster than their algorithm

when the average batch size is sufficiently large. A parallel imple-

mentation of our algorithm achieves O (lg3 n) depth w.h.p., and is,

to the best of our knowledge, the first parallel algorithm for the

dynamic connectivity problem performing O (T polylog(n)) total
expected work, where T is the total number of edge operations.

There are several natural questions to address in future work.

First, can the depth of our algorithm be improved to O (lg2 n) with-
out increasing the work? Investigating lower bounds in the batch

setting would also be very interesting—are there non-trivial lower-

bounds for batch-dynamic connectivity? Lastly, in this paper we

show expected amortized bounds. One approach to strengthen these

bounds is to show that our tree operations hold w.h.p. and argue

that our amortized bounds hold w.h.p. Another is to design a deter-

ministic batch-dynamic forest connectivity data structure with the

same asymptotic complexity as the batch-parallel ET-tree, which

would make the randomized bounds in this paper deterministic.

Two additional questions are whether we can extend our re-

sults to give parallel work-efficient batch-dynamic MST, 2-edge

connectivity and biconnectivity algorithms. MST seems solvable

using the techniques presented in this paper, although our dynamic

tree structure would need to be extended with additional primi-

tives. Existing sequential 2-edge connectivity and biconnectivity

algorithms require a dynamic tree data structure supporting path

queries which are not supported by ET-trees. However, RC-trees [1]

can be extended to support path queries, which makes them a possi-

ble candidate for this line of work. Finally, it seems likely that ideas

from our work can be extended to give a parallel batch-dynamic

Monte-Carlo connectivity algorithm based on the Kapron-King-

Mountjoy algorithm [38].

ACKNOWLEDGEMENTS

We thank Tom Tseng and Goran Zuzic for helpful discussions. This

work was supported in part by NSF grants CCF-1408940, CCF-

1533858, and CCF-1629444.

REFERENCES

[1] U. A. Acar, V. Aksenov, and S. Westrick. Brief announcement: Parallel dynamic

tree contraction via self-adjusting computation. In ACM Symposium on Paral-

lelism in Algorithms and Architectures (SPAA), 2017.

[2] U. A. Acar, D. Anderson, G. E. Blelloch, and L. Dhulipala. Parallel batch-dynamic

graph connectivity. arXiv preprint arXiv:1903.08794, 2019.

[3] U. A. Acar, A. Cotter, B. Hudson, and D. Türkoglu. Parallelism in dynamic

well-spaced point sets. In ACM Symposium on Parallelism in Algorithms and

Architectures (SPAA), 2011.

[4] K. Agrawal, J. T. Fineman, K. Lu, B. Sheridan, J. Sukha, and R. Utterback. Provably

good scheduling for parallel programs that use data structures through implicit

batching. In ACM Symposium on Parallelism in Algorithms and Architectures

(SPAA), 2014.

[5] K. Agrawal, S. Gilbert, and W. Q. Lim. Parallel working-set search structures. In

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2018.

[6] K. J. Ahn, S. Guha, and A. McGregor. Analyzing graph structure via linear

measurements. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages

459–467, 2012.

[7] Y. Akhremtsev and P. Sanders. Fast parallel operations on search trees. In IEEE

International Conference on High Performance Computing (HiPC), 2016.

[8] A. Andoni, C. Stein, Z. Song, Z. Wang, and P. Zhong. Parallel graph connectivity

in log diameter rounds. In IEEE Symposium on Foundations of Computer Science

(FOCS), 2018.

[9] N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for multi-

programmed multiprocessors. Theory of Computing Systems (TOCS), 34(2), Apr

2001.

[10] B. Awerbuch and Y. Shiloach. New connectivity and MSF algorithms for Ultra-

computer and PRAM. In International Conference on Parallel Processing (ICPP),

1983.

[11] G. E. Blelloch. Programming parallel algorithms. Commun. ACM, 39(3), Mar.

1996.

[12] G. E. Blelloch and L. Dhulipala. Introduction to parallel algorithms. http://

www.cs.cmu.edu/~realworld/slidesS18/parallelChap.pdf, 2018. Carnegie Mellon

University.

[13] G. E. Blelloch, D. Ferizovic, and Y. Sun. Just join for parallel ordered sets. In ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA), 2016.

Session 10 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

391

http://www.cs.cmu.edu/~realworld/slidesS18/parallelChap.pdf
http://www.cs.cmu.edu/~realworld/slidesS18/parallelChap.pdf

[14] G. E. Blelloch, P. B. Gibbons, and Y. Matias. Provably efficient scheduling for

languages with fine-grained parallelism. J. ACM, 46(2), Mar. 1999.

[15] G. E. Blelloch and M. Reid-Miller. Fast set operations using treaps. In ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA), 1998.

[16] G. E. Blelloch and M. Reid-Miller. Pipelining with futures. Theory of Computing

Systems (TOCS), 32(3), 1999.

[17] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by

work stealing. J. ACM, 46(5):720–748, 1999.

[18] R. Cole, P. N. Klein, and R. E. Tarjan. Finding minimum spanning forests in

logarithmic time and linear work using random sampling. In ACM Symposium

on Parallelism in Algorithms and Architectures (SPAA), 1996.

[19] R. Cole and U. Vishkin. Approximate parallel scheduling. II. Applications to

logarithmic-time optimal parallel graph algorithms. Information and Computation,

92(1):1–47, 1991.

[20] S. K. Das and P. Ferragina. An o (n) work EREW parallel algorithm for updating

MST. In European Symposium on Algorithms (ESA), 1994.

[21] L. Dhulipala, G. E. Blelloch, and J. Shun. Theoretically efficient parallel graph algo-

rithms can be fast and scalable. In ACM Symposium on Parallelism in Algorithms

and Architectures (SPAA), 2018.

[22] D. Eppstein, Z. Galil, G. F. Italiano, andA. Nissenzweig. Sparsification–a technique

for speeding up dynamic graph algorithms. J. ACM, 44(5):669–696, 1997.

[23] P. Ferragina and F. Luccio. Batch dynamic algorithms for two graph problems.

International Conference on Parallel Architectures and Languages Europe (PARLE),

1994.

[24] H. Gazit. An optimal randomized parallel algorithm for finding connected com-

ponents in a graph. SIAM J. on Computing, 20(6):1046–1067, 1991.

[25] J. Gil, Y. Matias, and U. Vishkin. Towards a theory of nearly constant time parallel

algorithms. In IEEE Symposium on Foundations of Computer Science (FOCS), 1991.

[26] Y. Gu, J. Shun, Y. Sun, and G. E. Blelloch. A top-down parallel semisort. In ACM

Symposium on Parallelism in Algorithms and Architectures (SPAA), 2015.

[27] S. Halperin and U. Zwick. An optimal randomized logarithmic time connectivity

algorithm for the EREW PRAM (extended abstract). In ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA), 1994.

[28] S. Halperin and U. Zwick. Optimal randomized EREW PRAM algorithms for

finding spanning forests. In J. Algorithms, 2000.

[29] M. R. Henzinger and V. King. Randomized dynamic graph algorithms with

polylogarithmic time per operation. In ACM Symposium on Theory of Computing

(STOC). ACM, 1995.

[30] M. R. Henzinger and V. King. Maintaining minimum spanning forests in dynamic

graphs. SIAM J. on Computing, 31(2):364–374, 2001.

[31] L. Higham and E. Schenk. Maintaining B-trees on an EREW PRAM. J. Parallel

Distrib. Comput., 22(2), 1994.

[32] D. S. Hirschberg, A. K. Chandra, and D. V. Sarwate. Computing connected

components on parallel computers. Commun. ACM, 22(8):461–464, Aug. 1979.

[33] J. Holm, K. De Lichtenberg, and M. Thorup. Poly-logarithmic deterministic

fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and

biconnectivity. J. ACM, 48(4):723–760, 2001.

[34] S.-E. Huang, D. Huang, T. Kopelowitz, and S. Pettie. Fully dynamic connectivity

in O(log n(log log n)2) amortized expected time. In ACM-SIAM Symposium on

Discrete Algorithms (SODA), pages 510–520, 2017.

[35] A. Iyer, L. E. Li, and I. Stoica. CellIQ : Real-time cellular network analytics at

scale. In USENIX Symposium on Networked Systems Design and Implementation

(NSDI), 2015.

[36] A. P. Iyer, L. E. Li, T. Das, and I. Stoica. Time-evolving graph processing at scale.

In International Workshop on Graph Data Management Experiences and Systems

(GRADES), 2016.

[37] J. JaJa. Introduction to Parallel Algorithms. Addison-Wesley Professional, 1992.

[38] B. M. Kapron, V. King, and B. Mountjoy. Dynamic graph connectivity in poly-

logarithmic worst case time. In ACM-SIAM Symposium on Discrete Algorithms

(SODA), 2013.

[39] D. R. Karger, N. Nisan, and M. Parnas. Fast connected components algorithms

for the EREW PRAM. SIAM J. on Computing, 28(3):1021–1034, Feb. 1999.

[40] C. Kejlberg-Rasmussen, T. Kopelowitz, S. Pettie, and M. Thorup. Faster Worst

Case Deterministic Dynamic Connectivity. In European Symposium on Algorithms

(ESA), 2016.

[41] S. Khan. Near optimal parallel algorithms for dynamic DFS in undirected graphs.

In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2017.

[42] T. Kopelowitz, E. Porat, and Y. Rosenmutter. Improved worst-case deterministic

parallel dynamic minimum spanning forest. In ACM Symposium on Parallelism

in Algorithms and Architectures (SPAA), 2018.

[43] R. McColl, O. Green, and D. A. Bader. A new parallel algorithm for connected com-

ponents in dynamic graphs. In IEEE International Conference on High Performance

Computing (HiPC), 2013.

[44] P. B. Miltersen, S. Subramanian, J. S. Vitter, and R. Tamassia. Complexity models

for incremental computation. Theoretical Computer Science (TCS), 130(1), 1994.

[45] D. Nanongkai and T. Saranurak. Dynamic spanning forest with worst-case update

time: adaptive, las vegas, andO (n1/2−ε)-time. In ACM Symposium on Theory of

Computing (STOC). ACM, 2017.

[46] W. Paul, U. Vishkin, and H. Wagener. Parallel dictionaries on 2–3 trees. In Intl.

Colloq. on Automata, Languages and Programming (ICALP), 1983.

[47] S. Pettie and V. Ramachandran. A randomized time-work optimal parallel algo-

rithm for finding a minimum spanning forest. SIAM J. on Computing, 31(6),

2002.

[48] C. A. Phillips. Parallel graph contraction. In ACM Symposium on Parallelism in

Algorithms and Architectures (SPAA), 1989.

[49] C. K. Poon and V. Ramachandran. A randomized linear work EREW PRAM

algorithm to find a minimum spanning forest. In International Symposium on

Algorithms and Computation (ISAAC), 1997.

[50] J. Reif. Optimal parallel algorithms for integer sorting and graph connectivity.

TR-08-85, Harvard University, 1985.

[51] J. H. Reif and S. Sen. Parallel computational geometry: An approach using

randomization. In J. Sack and J. Urrutia, editors, Handbook of Computational

Geometry, chapter 18. Elsevier Science, 1999.

[52] J. H. Reif and S. R. Tate. Dynamic parallel tree contraction (extended abstract).

In ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 1994.

[53] O. Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17:1–17:24, Sept.

2008.

[54] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu. The ubiquity of large

graphs and surprising challenges of graph processing. Proceedings of the VLDB

Endowment (PVLDB), 11(4):420–431, 2017.

[55] M. Sha, Y. Li, B. He, and K.-L. Tan. Accelerating dynamic graph analytics on

GPUs. Proceedings of the VLDB Endowment (PVLDB), 11(1):107–120, Sept. 2017.

[56] Y. Shiloach and U. Vishkin. An O (lgn) parallel connectivity algorithm. J.

Algorithms, 3(1):57–67, 1982.

[57] J. Shun and G. E. Blelloch. Phase-concurrent hash tables for determinism. In

ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), 2014.

[58] J. Shun, L. Dhulipala, and G. Blelloch. A simple and practical linear-work parallel

algorithm for connectivity. In ACM Symposium on Parallelism in Algorithms and

Architectures (SPAA), 2014.

[59] N. Simsiri, K. Tangwongsan, S. Tirthapura, and K.-L. Wu. Work-efficient parallel

union-find with applications to incremental graph connectivity. In European

Conference on Parallel Processing (Euro-Par), 2016.

[60] Y. Sun and G. E. Blelloch. Parallel range and segment queries with augmented

maps. arXiv preprint:1803.08621, 2018.

[61] Y. Sun, D. Ferizovic, and G. E. Blelloch. Pam: Parallel augmented maps. In ACM

Symposium on Principles and Practice of Parallel Programming (PPOPP), 2018.

[62] R. E. Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,

22(2):215–225, 1975.

[63] M. Thorup. Decremental dynamic connectivity. J. Algorithms, 33(2):229–243,

1999.

[64] M. Thorup. Near-optimal fully-dynamic graph connectivity. In ACM Symposium

on Theory of Computing (STOC). ACM, 2000.

[65] T. Tseng, L. Dhulipala, and G. Blelloch. Batch-parallel Euler tour trees. Algorithm

Engineering and Experiments (ALENEX), 2019.

[66] U. Vishkin. An optimal parallel connectivity algorithm. Discrete Applied Mathe-

matics, 9(2):197–207, 1984.

[67] K. Vora, R. Gupta, and G. Xu. KickStarter: Fast and accurate computations

on streaming graphs via trimmed approximations. In International Conference

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS), 2017.

[68] C. Wickramaarachchi, A. Kumbhare, M. Frincu, C. Chelmis, and V. K. Prasanna.

Real-time analytics for fast evolving social graphs. In IEEE/ACM International

Symposium on Cluster, Cloud and Grid Computing (CCGrid), 2015.

[69] C. Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In

ACM-SIAM Symposium on Discrete Algorithms (SODA), 2013.

[70] C. Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved worst-

case update time. In ACM Symposium on Theory of Computing (STOC). ACM,

2017.

Session 10 SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA

392

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Batch-Dynamic Trees
	2.2 The sequential (HDT) algorithm

	3 A Parallel Algorithm
	3.1 Connectivity Queries
	3.2 Inserting Batches of Edges
	3.3 Deleting Batches of Edges

	4 An Improved Algorithm
	4.1 The Interleaved Deletion Algorithm
	4.2 Cost Bounds
	4.3 A Better Work Bound

	5 Related Work
	6 Discussion
	References

