
Adaptive Functional Programming∗

Umut A. Acar Guy E. Blelloch Robert Harper

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213
{umut,blelloch,rwh}@cs.cmu.edu

Abstract

An adaptive computation maintains the relationship be-
tween its input and output as the input changes. Although
various techniques for adaptive computing have been pro-
posed, they remained limited in their scope of applicabil-
ity. We propose a general mechanism for adaptive comput-
ing that enables one to make any purely-functional program
adaptive.

We show that the mechanism is practical by giving an
efficient implementation as a small ML library. The library
consists of three operations for making a program adaptive,
plus two operations for making changes to the input and
adapting the output to these changes. We give a general
bound on the time it takes to adapt the output and based
on this, show that an adaptive Quicksort adapts its output
in logarithmic time when its input is extended by one key.

To show the safety and correctness of the mechanism we
give a formal definition of AFL, a call-by-value functional
language extended with adaptivity primitives. The modal
type stem of AFL enforces correct usage of adaptivity mech-
anism, which can only be checked at run time with the ML
library. Based on the AFL dynamic semantics, we formalize
the change-propagation algorithm and prove that it is cor-
rect, that is, the adapted output is the same as the output
of a complete re-evaluation with the changed inputs.

1 Introduction

An adaptive program responds to input changes by updat-
ing its output while only re-evaluating those portions of the
program affected by the change. Adaptive programming is
useful in situations where input changes lead to relatively
small changes in the output. In limiting cases one cannot
avoid a complete re-computation of the output, but in many
cases the results of the previous computation may be re-used

∗This research was supported in part by NSF grants CCR-9706572,
CCR-0085982, and CCR-0122581.
Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee provided
that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or
a fee.

POPL ’02, Jan. 16-18, 2002 Portland, OR USA 2002 ACM ISBN
1-58113-450-9/02/01...$5.00

to obtain the updated output more quickly than a complete
re-evaluation. For example, as we shall see below, an adap-
tive version of Quicksort takes expected logarithmic time
to adapt its output when its input list is extended by one
key. This is an improvement by a linear factor over simply
re-evaluating the sort for the changed inputs.

In this paper we propose a general mechanism for adap-
tive programming. Our proposed mechanism extends call-
by-value functional languages with a small set of primitives
to support adaptive programming. Apart from requiring
that the host language be purely functional, we make no
other restriction on its expressive power. In particular our
mechanism is compatible with the full range of effect-free
constructs found in ML. Our proposed mechanism has these
strengths:

• Generality: It applies to any purely functional pro-
gram. The programmer can build adaptivity into an
application in a natural and modular way.

• Flexibility: It enables the programmer to control the
amount of adaptivity. For example, a programmer can
choose to make only one portion or aspect of a system
adaptive, leaving the others to be implemented conven-
tionally.

• Simplicity: It requires small changes to existing code.
For example, the adaptive version of Quicksort pre-
sented in the next section requires only minor changes
to the standard implementation.

• Efficiency: The mechanism admits a simple imple-
mentation and yields efficient adaptivity. For example,
the adaptive version of Quicksort updates the output
in expected O(log n) time upon extension to the input.

Our adaptivity mechanism is based on the idea of a mod-
ifiable reference (or modifiable, for short) and three opera-
tions for creating (mod), reading (read), and writing (write)
modifiables. A modifiable allows us to record the depen-
dence of one computation on the value of another. A modi-
fiable reference is essentially a write-once reference cell that
records the value of an expression whose value may change
as a (direct or indirect) result of changes to the inputs. Any
expression whose value can change must store its value in a
modifiable reference; such an expression is said to be change-
able. Expressions that are not changeable are said to be sta-
ble; stable expressions are not associated with modifiables.

Any expression that depends on the value of a changeable
expression must express this dependence by explicitly read-
ing the contents of the modifiable storing the value of that

changeable expression. This establishes a data dependency
between the expression reading that modifiable, called the
reader, and the expression that determines the value of that
modifiable, the writer. Since the value of the modifiable may
change as a result of changes to the input, the reader must
itself be deemed a changeable expression. This means that
a reader cannot be considered stable, but may only appear
as part of a changeable expression whose value is stored in
some other modifiable.

By choosing the extent to which modifiables are used in
a program, the programmer can control the extent to which
it is able to adapt to change. For example, a programmer
may wish to make a list manipulation program adaptive to
insertions into and deletions from the list, but not under
changes to the individual elements of the list. This can
be represented in our framework by making only the “tail”
elements of a list adaptive, leaving the “head” elements sta-
ble. However, once certain aspects are made changeable, all
parts of the program that depend on those aspects are, by
implication, also changeable.

The key to adapting the output to change of input is to
record the dependencies between readers and writers that
arise during the initial evaluation. These dependencies may
be maintained as a graph in which each node represents a
modifiable, and each edge represents a read whose source
is the modifiable being read and whose target is the modifi-
able being written. Also, each edge is tagged with the corre-
sponding reader. Whenever the source modifiable changes,
the new value of the target is determined by re-evaluating
the associated reader.

It is not enough, however, to maintain only this depen-
dency graph connecting readers to writers. It is also essen-
tial to maintain an ordering on the edges and keep track of
which edges (reads) are within the dynamic scope of which
other edges. We call this second relationship the contain-
ment hierarchy. The ordering among the edges enables us to
re-evaluate readers in the same order as they were evaluated
in the initial evaluation. The containment hierarchy enables
us to identify and remove edges that become obsolete. This
occurs, for example, when the result of a conditional inside
a reader takes a different branch than the initial evaluation.
The difficulty is maintaining the ordering and containment
information during re-evaluation. We show how to main-
tain this information efficiently using time-stamps and an
order-maintenance algorithm of Dietz and Sleator [4].

2 Related Work

Several researchers have studied approaches that are similar
to what we call adaptive programming. The idea of using de-
pendency graphs for incremental updates was introduced by
Demers, Reps and Teitelbaum [3] in the context of attribute
grammars. Reps then showed an algorithm to propagate a
change optimally [16], and Hoover generalized the approach
outside the domain of attribute grammars [9]. A crucial
difference between this previous work and ours is that the
previous work is based on static dependency graphs. Al-
though they allow the graph to be changed by the modify
step, the propagate step (i.e., the propagation algorithm)
can only pass values through a static graph. This severely
limits the types of adaptive computations that the technique
handles [14]. Another difference is that they don’t have the
notion of forming the initial graph/trace by running a com-
putation, but rather assume that it is given as input (often it

naturally arises from the application). Yellin and Strom use
the dependency graph ideas within the INC language [18],
and extend it by having incremental computations within
each of its array primitives. Since INC does not have re-
cursion or looping, however, the dependency graphs remain
static.

Another approach to incremental/adaptive computa-
tions is function caching [14, 13]. In function caching, a
computation reuses cached results from earlier evaluations
whenever appropriate. Thus, one must run the computa-
tion from scratch to identify the part of the computation
that does not change. In contrast, in our approach, an
input change pinpoints the parts of the computation that
need to be re-evaluated. Function caching therefore is bad
at handling “deep” modifications. We conjecture, for exam-
ple, that with function caching no algorithm can update a
sorted linked-list in less than linear expected time. This is
because the inserted element is expected to end up half way
down the list, and function caching will always recreate the
part of the list ahead of the inserted element. There are two
other problems with function caching. First it can be hard
to effectively check for equality of arguments for the pur-
pose of matching elements in the cache. This is particularly
true if the inputs are functions themselves, possibly with
captured environments. Second, for efficiency it is critical
to evict elements from the cache. The suggested methods
we have seen to decide when and what to evict seem ad-hoc,
although Liu and Teitelbaum have made some progress us-
ing automatic program transformation techniques to decide
what to cache [11, 10]. In spite of these problems, function
caching might have some advantages over our method for
“shallow” modifications. We expect that these techniques
can be integrated to further improve performance in certain
situations.

Other approaches are based on various forms of partial
evaluation [8, 17]. These approaches are arguably cleaner
than the function caching approach (they don’t have the is-
sues with equality of inputs or deciding when to evict from
the cache), but are even more limited in the type of adap-
tivity they allow. Ramalingam and Reps wrote an excellent
bibliography summarizing other work on incremental com-
putation [15].

3 Overview of the Paper

In Section 4 we illustrate the main ideas of adaptive func-
tional programming in an algorithmic setting. We first de-
scribe how to implement an adaptive form of Quicksort in
Standard ML based on the interface of a module implement-
ing the basic adaptivity mechanisms. We then describe the
change-propagation algorithm that lies at the heart of the
mechanism and establish an upper bound for its running
time. Using this bound, we then prove the expected O(log n)
time bound for adaptive Quicksort to accommodate an ex-
tension to its input. We finish by briefly describing the
implementation of the mechanism in terms of an abstract
ordered list data structure. This implementation requires
less than 100 lines of Standard ML code.

In Section 5 we define an adaptive functional program-
ming language, called AFL, which is an extension of a simple
call-by-value functional language with adaptivity primitives.
The static semantics of AFL enforces properties that can
only be enforced by run-time checks in our ML library. The
dynamic semantics of AFL is given by an evaluation rela-

signature ADAPTIVE =
sig

type ’a mod
type ’a dest
type changeable

val mod: (’a * ’a -> bool) ->
(’a dest -> changeable) -> ’a mod

val read: ’a mod * (’a -> changeable) -> changeable
val write: ’a dest * ’a -> changeable

val init: unit -> unit
val change: ’a mod * ’a -> unit
val propagate: unit -> unit

end

Figure 1: Signature of the adaptive library.

tion that maintains a record of the adaptive aspects of the
computation, called a trace, which is used by the change
propagation algorithm.

In Section 6 we present the change propagation algo-
rithm in the framework of the dynamic semantics of AFL.
The change propagation algorithm interprets a trace to de-
termine the correct order in which to propagate changes,
and to determine which expressions need to be re-executed.
The trace also records the containment structure of the com-
putation, which is updated during change propagation. Us-
ing this presentation we give a proof of correctness of the
change propagation algorithm stating that change propa-
gation yields essentially the same result as a complete re-
execution on the changed inputs.

We note that we had originally thought that incorpo-
rating an adaptivity mechanism in ML would require the
involvement of a compiler. Working out the semantics of
AFL led to the particular mechanism we describe and its
simple implementation as an ML library.

4 A Framework for Adaptive Computing

We give an overview of our adaptive framework based on
our ML library and an adaptive version of Quicksort.

The ML library. The signature of our adaptive library for
ML is given in Figure 1. The library provides functions to
create (mod), to read from (read), and to write to (write)
modifiables, as well as meta-functions to initialize the li-
brary (init), change input values (change) and propagate
changes to the output (propagate). The meta-functions are
described later in this section. The library distinguishes be-
tween two “handles” to each modifiable: a source of type
’a mod for reading from, and a destination of type ’a dest
for writing to. When a modifiable is created, correct usage
requires that it only be accessed as a destination until it is
written, and then only be accessed as a source.1 All change-
able expressions have type changeable, and are used in a
“destination passing” style—they do not return a value, but
rather take a destination to which they write a value. Cor-
rect usage requires that a changeable expression ends with a
write—we define “ends with” more precisely when we dis-
cuss time stamps. The destination written will be referred

1The library does not enforce this restriction statically, but can
enforce it with run-time checks. In the following discussion we will use
the term “correct usage” to describe similar restrictions in which run-
time checks are needed to check correctness. The language described
in Section 5 enforces all these restrictions statically using a modal
type system.

to as the target destination. The type changeable has no
interpretable value.

The mod takes two parameters, a conservative compari-
son function and an initializer. A conservative comparison
function returns false when the values are different but
may return true or false when the values are the same.
This function is used by the change-propagation algorithm
to avoid unnecessary propagation. The mod function creates
a modifiable and applies the initializer to the new modifi-
able’s destination. The initializer is responsible for writing
the modifiable. Its body is therefore a changeable expres-
sion, and correct usage requires that the body’s target match
the initializer’s argument. When the initializer completes,
mod returns the source handle of the modifiable it created.

The read takes the source of a modifiable and a reader,
a function whose body is changeable. The read accesses the
contents of the modifiable and applies the reader to it. Any
application of read is itself a changeable expression since the
value being read could change. If a call Ra to read is within
the dynamic scope of another call Rb to read, we say that Ra

is contained within Rb. This relation defines a hierarchy on
the reads, which we will refer to as the containment hierarchy
(of reads).

Making an Application Adaptive. The transformation of a
non-adaptive program to an adaptive program involves two
steps. First, the data structures are made “modifiable” by
placing desired elements in modifiables. Second, the original
program is updated by making the reads of modifiables ex-
plicit and placing the results of each expression that depends
on a modifiable into another modifiable. This means that
all values that directly or indirectly depend on modifiable
inputs are placed in modifiables.

As an example, consider the code for a standard Quick-
sort, qsort, and an adaptive Quicksort, qsort’, as shown in
Figure 2. To avoid linear-time concatenations, qsort uses
an accumulator to store the sorted tail of the input list.
The transformation is done in two steps. First, we make
the lists “modifiable” by placing the tail of each list ele-
ment into a modifiable as shown in lines 1,2,3 in Figure 2.
The resulting structure, a modifiable list, allows the user to
insert and delete items to and from the list. Second, we
change the program so that the values placed in modifiables
are accessed explicitly via a read. The adaptive Quicksort
uses a read (line 21) to determine whether the input list l
is empty and writes the result to a destination d (line 23).
This destination belongs to the modifiable that is created
by a call to mod (through modl) in line 28 or 33. These mod-
ifiables form the output list, which now is a modifiable list.
The function filter is similarly transformed into an adap-
tive one, filter’ (lines 6-18). The modl is defined to take
an initializer and pass it to the mod with a constant-time,
conservative comparison function for lists. The comparison
function returns true, if and only if both lists are NIL and
returns false otherwise. This comparison function is suf-
ficiently powerful to prove the O(log n) bound for adaptive
Quicksort.

Adaptivity. An adaptive computation allows the program-
mer to change input values and update the result. This
process can be repeated as desired. The library provides
the meta-function change to change the value of a modifi-
able and the meta-function propagate to propagate these
changes to the output. Figure 3 illustrates an example. The

1 datatype ’a list =
2 NIL
3 | CONS of (’a * ’a list)

4
5

6 fun filter f l =
7 let
8 fun filt(l) =
9 case l of
10 NIL => NIL
11 | CONS(h,r) =>
12 if f(h) then
13 CONS(h, filt(r))
14 else
15 filt(r)
16 in
17 filt(l)
18 end

19 fun qsort(l) =
20 let
21 fun qs(l,rest) =
22 case l of
23 NIL => rest
24 | CONS(h,r) =>
25 let
26 val l = filter (fn x => x < h) r
27 val g = filter (fn x => x >= h) r
28 val gs = qs(g,rest)
29 in
30 qs(l,CONS(h,gs))
31 end
32 in
33 qs(l,NIL)
34 end

1 datatype ’a list’ =
2 NIL
3 | CONS of (’a * ’a list’ mod)

4 fun modl f = mod (fn (NIL,NIL) => true
5 | => false) f

6 fun filter’ f l =
7 let
8 fun filt(l,d) = read(l, fn l’ =>
9 case l’ of
10 NIL => write(d, NIL)
11 | CONS(h,r) =>
12 if f(h) then write(d,
13 CONS(h, modl(fn d => filt(r,d))))
14 else
15 filt(r, d))
16 in
17 modl(fn d => filt(l, d))
18 end

19 fun qsort’(l) =
20 let
21 fun qs(l,rest,d) = read(l, fn l’ =>
22 case l’ of
23 NIL => write(d, rest)
24 | CONS(h,r) =>
25 let
26 val l = filter’ (fn x => x < h) r
27 val g = filter’ (fn x => x >= h) r
28 val gs = modl(fn d => qs(g,rest,d))
29 in
30 qs(l,CONS(h,gs),d)
31 end)
32 in
33 modl(fn d => qs(l,NIL,d))
34 end

Figure 2: The complete code for non-adaptive (left) and adaptive (right) versions of Quicksort.

1 fun newElt(v) = modl(fn d => write(d,v))

2 fun fromList(nil) =
3 let val m = newElt(NIL)
4 in (m,m)
5 end
6 | fromList(h::r) =
7 let val (l,last) = fromList(r)
8 in (newElt(CONS(h,l)),last)
9 end

10 fun test(lst,v) =
11 let
12 val = init()
13 val (l,last) = fromList(lst)
14 val r = qsort’(l)
15 in
16 (change(last,CONS(v,newElt(NIL)));
17 propagate();
18 r)
19 end

Figure 3: Example of changing input and change propaga-
tion for Quicksort.

fromList function converts a list to a modifiable list, return-
ing both the modifiable list and its last element. The test
function first performs an initial evaluation of the adaptive
Quicksort by converting the input list lst to a modifiable list
l and sorting it into r. It then changes the input by adding
a new key v to the end of l. To update the output r, test
calls propagate. The update will result in a list identical to
what would have been returned if v was added to the end of
l before the call to qsort. In general, any number of inputs
could be changed before running propagate.

Augmented Dependency Graphs. The crucial issue is to
support change propagation efficiently. To do this, an adap-

tive program, as it evaluates, creates a record of the adaptive
activity. It is helpful to visualize this record as a dependency
graph augmented with additional information regarding the
containment hierarchy and the evaluation order of reads. In
such a dependency graph, each node represents a modifiable
and each edge represents a read. An evaluation of mod adds
a node, and an evaluation of read adds an edge to the graph.
In a read, the node being read becomes the source, and the
target of the read (the modifiable that the reader finished
by writing to) becomes the target. We also tag the edges
with the reader function.

To operate correctly, the change-propagation algorithm
needs to know the containment hierarchy of reads. To main-
tain this information, we tag each edge and node with a time
stamp, which are generated by the mod and read. All expres-
sions are evaluated in a time range (ts, te) and time-stamps
generated by the expression are allocated sequentially within
that range, i.e., each generated time stamp is greater than
the previous one, but less than the end of the time range.
The time stamp of an edge is generated by the corresponding
read, before the reader is evaluated, and the time stamp of a
node is generated by the mod after the initializer is evaluated
(the time stamp of a node corresponds to the time it was
initialized). Correct usage of the library requires that the
order of time stamps is independent of whether the write
or mod generate the time stamp for the corresponding node.
This is what we mean by saying that a changeable expression
must end with a write to its target.

The time stamp of an edge is called its start time and
the time stamp of the target of the edge is called the edge’s
stop time. The start and the stop time of the edge define
the time span of the edge. We note that the time span can
be used to identify the containment relationship of reads. In
particular, a read Ra is contained in a read Rb if and only

= modifiable

= value

NIL

NIL

2 3

3

 = time stamp
= read

= CONS cell

Legend

l0

〈0.1〉 〈0.2〉

l1 l2

l4

〈0.3〉

〈∗〉 〈∗〉 〈∗〉

〈0.5〉 〈0.4〉
l3

li

〈. . .〉
li

Figure 4: The adg for an application of filter’ to the func-
tion fn x => x>2 and the input modifiable list 2::3::nil.
The output is the modifiable list 3::nil.

if the start time of the edge associated with Ra is within
the time span of the edge associated with Rb. For now,
we will represent time stamps with real numbers, and as-
sume that top-level expressions are evaluated in the range
(0.0, 1.0). Subsequently, we will show how the Dietz-Sleator
Order-Maintenance Algorithm can be used to maintain time
stamps efficiently [4].

We define an augmented dependency graph (adg) as a
DAG in which each edge has an associated reader and time
stamp, and each node has an associated value and time
stamp.2 We say that a node (and corresponding modifiable)
is an input if it has no incoming edges.

An example should help make the ideas clear. Con-
sider the adaptive filter function filter’ shown in Fig-
ure 2. The function takes another function f and a mod-
ifiable list l as parameters and outputs a modifiable list
that contains the items of l satisfying f. Figure 4 shows
the dependency graph for an evaluation of filter’ with
the function (fn x => x > 2) and a modifiable input list
of 2::3::nil. The output is the modifiable list 3::nil. Al-
though not shown in the figure, each edge is also tagged
with a reader. In this example, all edges have an instance of
reader (fn l’ => case l’ of ...) (lines 8-15 of qsort’ in
Figure 2). The time stamps for input nodes are not relevant,
and are marked with an asterisk in Figure 4.

Change Propagation. Given an augmented dependency
graph and a set of changed input modifiables, the change-
propagation algorithm updates the adg and the output by
propagating changes in the adg. We say that an edge, or
corresponding read, is invalidated if the source of the edge
changes value. We say that an edge is obsolete if it is con-
tained within an invalidated edge.

Figure 5 defines the change-propagation algorithm. The
algorithm maintains a Priority Queue of invalidated edges.
The queue is prioritized on the time stamp of each edge,
and is initialized with the out-edges of the changed input
values. Each iteration of the while loop processes one inval-
idated edge, and we call the iteration an edge update. The
update re-evaluates the associated reader. This makes any
code that was within the reader’s dynamic scope obsolete. A
key aspect of the algorithm is that when an edge is updated,
all nodes and edges that are contained within that edge are
deleted from both the graph and queue. This prevents the
reader of an obsolete edge from being re-evaluated. Eval-
uating such a reader on a changed input may incorrectly

2We do not formalize adgs more precisely here since we view them
as an implementation of a cleaner notion of traces, which we formalize
in Section 5.

Propagate Changes
I is the set of changed inputs
(V, E) = G is an adg

1 Q =
S

v∈I outEdges(v)

2 while Q is not empty
3 e = deleteMin(Q)
4 (Ts, Te) = timeSpan(e)
5 V = V − {v ∈ V |Ts < T (v) < Te}
6 E′ = {e′ ∈ E|Ts < T (e′) < Te}
7 E = E − E′

8 Q = Q− E′

9 v′ = apply(reader(e), val(src(e))) in time (Ts, Te)
10 if v′ 6= val(target(e)) then
11 val(target(e)) = v′

12 Q = Q + outEdges(target(e))

Figure 5: The change-propagation algorithm.

update a modifiable, incorrectly raise an exception, or even
not terminate. After the reader is re-evaluated we check if
the value of the target has changed (line 10) by using the
conservative comparison function passed to mod. If it has
changed, we add the out-edges of the target to the queue to
propagate that change.

As an example, consider an initial evaluation of filter
whose dependency graph is shown in Figure 4. Now, sup-
pose we change the modifiable input list from 2::3::nil to
2::4::7::nil by creating the modifiable list 4::7::nil and
changing the value of modifiable l1 to this list. The leftmost
frame in Figure 6 shows the input change. Now, we run the
change-propagation algorithm to update the output. First,
we insert the sole outgoing edge of l1, namely (l1,l3), into the
queue. Since this is the only (hence, the earliest) edge in the
queue, we remove it from the queue and establish the cur-
rent time-span as 〈0.2〉-〈0.5〉. Next, we delete all the nodes
and edges contained in this edge from the adg and from the
queue (which is empty) as shown by the middle frame in
Figure 6. Then we redo the read by re-evaluating the reader
(fn l’ => case l’ of ...) (8-15 in Figure 2) in the cur-
rent time span 〈0.2〉-〈0.5〉. The reader walks through the
modifiable list 4::7::nil as it filters the items and writes
the head of the result list to l3, as shown in the rightmost
frame in Figure 6. This creates two new edges, which are
given the time stamps, 〈0.3〉, and 〈0.4〉. The targets of these
edges, l7 and l8, are assigned the time stamps, 〈0.475〉, and
〈0.45〉, matching the order that they were initialized (these
time stamps are otherwise chosen arbitrarily to fit in the
range 〈0.4〉-〈0.5〉).

Implementing Change Propagation Efficiently. The
change-propagation algorithm described above can be
implemented efficiently using a standard representation
of graphs, a standard priority-queue algorithm, and an
Order-Maintenance Algorithm for time stamps. The
implementation of the adg needs to support deleting an
edge, a node, and finding the outgoing edges of a node.
An adjacency list representation in which the edges of a
node are maintained in a doubly-linked list implements
these operations in constant time. The algorithm also
needs to identify all the edges between two time stamps
so they can be deleted. This can be implemented with
a time-ordered, doubly-linked list of all edges. Inserting,
deleting, and find-next all take constant time per edge.

NIL

NIL

NIL

7

32

4

3

l0

〈0.1〉 〈0.2〉

l4

〈0.3〉

〈∗〉

〈0.5〉 〈0.4〉

l1 l2

〈∗〉 〈∗〉

l1

〈∗〉 〈∗〉

l3

l2

NIL

NIL

NIL

7

32

4

3

x
x

l0

l4

〈∗〉

〈0.5〉 〈0.4〉

〈∗〉 〈∗〉

l1

〈∗〉 〈∗〉

l5 l6

〈0.1〉 〈0.2〉 〈0.3〉

l3

l2 NIL

742

NIL

4 7

〈∗〉 〈∗〉
l5 l6l0

〈0.1〉

〈∗〉

〈0.5〉

l1

〈∗〉

l7

〈0.4〉

l8l3

〈0.2〉 〈0.3〉

〈0.45〉〈0.475〉

Figure 6: Snapshots of the adg during change propagation.

The priority queue should support addition, deletion,
and delete-minimum operations efficiently. Standard
balanced-tree based priority-queue algorithms perform
these operations in logarithmic time. This is sufficient for
our purposes and any of these algorithms can be used to
implement priority queues.

A more interesting question is how to implement time
stamps efficiently. To do this, we require efficient support
for four operations: compare two time stamps, insert a new
time stamp after a given time stamp, delete a time stamp,
and retrieve the next time stamp (used in deleting the time-
span of an edge). Using real numbers is not an efficient
solution, because, in change propagation, an arbitrary num-
ber of new time stamps could be inserted between two fixed
time stamps. This requires arbitrary precision real numbers,
which are costly. A simple alternative to real numbers is to
have all the time stamps ordered in a list. To insert or delete
a time stamp, we simply insert it into the list or delete it
from the list. To compare two time stamps, we compare
their positions in the list—the time stamp closer to the be-
ginning of the list is smaller. This comparison operation,
however, can take linear time in the length of the list. A
more efficient approach is to assign an integer rank to each
time stamp in the list such that nodes closer to the beginning
of the list have smaller ranks. This enables constant time
comparisons by comparing the ranks. The insertion algo-
rithm then may have to do some re-ranking to find space to
insert an integer between two adjacent integers. Dietz and
Sleator give two efficient algorithms for this problem, which
is known as the Order-Maintenance Problem [4]. The first
algorithm is a simple algorithm that performs all operations
in amortized constant time, the second more sophisticated
algorithm achieves worst case constant time.

Performance of Change Propagation. We show an upper
bound on the running time of change propagation. As dis-
cussed above, we assume an adjacency list representation for
augmented dependency graphs together with a time-ordered
list of edges, a priority queue that can support insertions,
deletions, and remove-minimum operations in logarithmic
time, and an order-maintenance structure that supports in-
sert, delete, compare, and find-next operations in constant
time.

We define several performance measures for change prop-
agation. Consider running the change-propagation algo-
rithm, and let I denote the set of all invalidated edges. Of
these edges, some of them participate in an edge update,

whereas some become obsolete and are deleted before par-
ticipating. We refer to the set of updated edges as Iu. For
an updated edge e ∈ Iu, let |e| denote the re-evaluation time
(complexity) of the reader associated with e assuming that
mod, read, write, take constant time, and let ||e|| denote the
number of time stamps created during the initial evaluation
of e. Let q be the maximum size of the priority queue at
any time during the algorithm. Theorem 1 bounds the time
of a propagate step.

Theorem 1 (Propagate)
Change propagation takes time

O

 X
e∈Iu

(|e|+ ||e||) + |I| log q

!
.

Proof: The time for propagate can be partitioned into
4 items: (1) re-evaluation of readers, (2) creation of time
stamps, (3) deletion of time stamps and contained edges,
and (4) insertion to and deletions from the priority queue.
Re-evaluation of the readers takes

P
e∈Iu

|e| time. The num-
ber of time stamps created during the re-evaluation of a
reader is no greater than the time it takes to re-evaluate the
reader. Since creating one time stamp takes constant time,
creating time stamps takes O(

P
e∈Iu

|e|) time. Determin-
ing each time stamp to delete, deleting the time stamp and
the corresponding node or edge from the adg and the time-
ordered doubly-linked edge list takes constant time. Thus
total time for these deletions is (

P
e∈Iu

||e||).
Finally, each edge is added to the priority queue

once and deleted from the queue once, thus the time for
maintaining the priority queue is O(|I| log q). The total
time is the sum of these terms. �

Performance of Adaptive Quicksort. We now analyze the
propagate time for Quicksort when the input list is modified
by adding a new key at the end. The analysis is based on
the bound given in Theorem 1.

Theorem 2
Change propagation updates the output of adaptive Quick-
sort in O(log n) time after the input list of length n is ex-
tended with a new key at the end.

Proof: The proof is by induction on the height h of a
call tree representing just the calls to qs. When the input

is extended, the value of the last element ln of the list is
changed from NIL to CONS(v,ln+1), where the value of ln+1

is NIL and v is the new key. The induction hypothesis is
that in change propagation on an input tree of height h,
the number of invalidated reads is at most 2h (|I| ≤ 2h
and Iu = I), each reader takes constant time to re-evaluate
(∀e ∈ I, |e| = O(1)), the time span of a reader contains no
other time stamps (∀e ∈ I, ||e|| = 0), and the maximum size
of the priority queue is 4 (q ≤ 4).

In the base case, we have h = 1, and the call tree cor-
responds to an evaluation of qs with an empty input list.
The only read of ln is the outer read in qs. The change
propagation algorithm will add the corresponding edge to
the priority queue, and then update it. Now that the list
has one element, the reader will make two calls to filter
and two calls to qs’ both with empty input lists. This takes
constant time and does not add any edges to the priority
queue. There are no time stamps in the time span of the
re-evaluated edge and the above bounds hold.

For the inductive case assume that the hypothesis holds
for trees up to height h− 1, and consider a tree with height
h > 1. Now, consider the change propagation starting with
the root call to qs. The list has at least one element in
it, therefore the initial read does not read the tail ln. The
only two functions that use the list are the two calls to fil-
ter’, and these will both read the tail in their last recursive
call. Therefore, during change propagation these two reads
(edges) are invalidated, will be added to the queue, and
then updated. Any other edges that these updates add to
the queue will have start times after the start times of these
edges. Re-evaluating the reader of one of the two edges
will rewrite NIL and therefore not change its target. Re-
evaluating the other will change its target from NIL to the
value CONS(v,ln+1), and therefore extend the correspond-
ing list. Re-evaluating both readers takes constant time and
the update deletes no time stamps. Only one of the two
recursive calls to qs has any changed data, and that one has
its input extended with one element. Since the call tree of
the qs has depth at most d − 1, the induction hypothesis
applies. Thus, |e| = O(1) and ||e|| = 0 for all invalidated
edges. Furthermore, the total number of invalidated edges
is |I| ≤ 2(d − 1) + 2 = 2d and all edges are re-evaluated
(Iu = I). To see that q ≤ 4, note that the queue contains
edges from at most 2 different qs calls and there are at most
2 edges invalidated from each call.

It is known that the expected height of the call
tree is O(log n) (expectation is over all inputs). Thus
we have: E [|I|] = O(log n), I = Iu, q = 4, and
∀e ∈ I, |e| = O(1), ||e|| = 0. Thus by taking the expectation
of the formula given in Theorem 1 and plugging in these
values gives expected O(log n) time for propagate. �

The ML Implementation. We present an implementation
of our adaptive mechanism in ML. It uses a library for or-
dered lists, which is an instance of the Order-Maintenance
Problem, and a standard priority queue. In the ordered-list
interface (shown in Figure 7), spliceOut deletes all time
stamps between two given time stamps and isSplicedOut
returns true if the time stamp has been deleted and false
otherwise.

Figure 8 shows the code for the ML implementation.
The implementation differs somewhat from the algorithm
described earlier, but the asymptotic performance remains

signature ORDERED LIST = sig
type t

val init : unit -> t (* Initialize *)
val compare: t*t -> order (* Compare two nodes *)
val insert : t ref -> t (* Insert a new node *)
val spliceOut: t*t -> unit (* Splice interval out *)
val isSplicedOut: t -> bool (* Is the node spliced? *)

end

Figure 7: The signature of an ordered list.

the same. The edge and node types correspond to edges and
nodes in the adg. The reader and time-span are represented
explicitly in the edge type, but the source and destination
are implicit in the reader. In particular the reader starts
by reading the source, and ends by writing to the desti-
nation. The node consists of the corresponding modifiable’s
value (value), its out-edges (outEdges), and a write function
(wrt) that implements writes or changes to the modifiable.
A time stamp is not needed since edges keep both start and
stop times. The currentTime is used to help generate the
sequential time stamps, which are generated for the edge on
line 37 and for the node on line 29 by the write operation.

Some of the tasks assigned to the change-propagate loop
in Figure 5 are performed by the write operation in the ML
code. This includes the functionality of lines 10–12 in Fig-
ure 5, which are executed by lines 20–25 in the ML code.
Another important difference is that the deletion of con-
tained edges is done lazily. Instead of deleting edges from
the Queue and from the graph immediately, the time stamp
of the edge is marked as invalid (by being removed from the
ordered-list data structure), and is deleted when it is next
encountered. This can be seen in line 55.

We note that the implementation given does not include
sufficient run-time checks to verify “correct usage”. For ex-
ample, the code does not verify that an initializer writes its
intended destination. The code, however, does check for a
read before write.

5 An Adaptive Functional Language

In the first part of the paper, we described an adaptivity
mechanism in an informal setting. The purpose was to in-
troduce the basic concepts of adaptivity and show that the
mechanism can be implemented efficiently. We now turn to
the question of whether the proposed mechanism is sound.
To this end, we present a small, purely functional language
with primitives for adaptive computation, called AFL. AFL
ensures correct usage of the adaptivity mechanism statically
by using a modal type system and employing implicit “des-
tination passing.”

The adaptivity mechanisms of AFL are similar to those of
the adaptive library presented in Section 4. The chief differ-
ence is that the target of a changeable expression is implicit
in AFL. Because of this, AFL also includes two forms of func-
tion type, one for functions whose body is stable, and one
for functions whose body is changeable. The former corre-
sponds to the standard function type found in any functional
language. The latter is included to improve efficiency by al-
lowing such functions to share their (implicit) target with
the caller. This avoids the need to allocate a modifiable for
the result of a procedure call, and is crucial to supporting
the tail recursion optimization in changeable mode.

AFL does not include analogues of the meta-operations

1 structure Adaptive :> ADAPTIVE = struct
2 type changeable = unit
3 exception unsetMod

4 type edge = {reader: (unit -> unit),
5 timeSpan: (Time.t * Time.t)}
6 type ’a node = {value : (unit -> ’a) red,
7 wrt : (’a -> unit) ref,
8 outEdges : edge list ref}
9 type ’a mod = ’a node
10 type ’a dest = ’a node

11 val currentTime = ref(Time.init())
12 val PQ = ref(Q.empty) (* Priority queue *)

13 fun init() = (currentTime := Time.init(); PQ := Q.empty)

14 fun mod cmp f = let
15 val value = ref(fn() => raise unsetMod)
16 val wrt = ref(fn(v) => raise unsetMod)
17 val outEdges = ref(nil)
18 val m = {value=value, wrt=wrt, outEdges=outEdges}
19 fun change t v =
20 (if cmp(v,(!value)()) then ()
21 else
22 (value := (fn() => v);
23 List.app (fn x => PQ := Q.insert(x,!PQ))
24 (!outEdges);
25 outEdges := nil);
26 currentTime := t)
27 fun write(v) =
28 (value := (fn() => v);
29 Time.insert(currentTime);
30 wrt:= change(!currentTime))
31 val = wrt := write
32 in
33 f(m); m
34 end

35 fun write({wrt, ...} : ’a dest, v) = (!wrt)(v)

36 fun read({value, outEdges, ...} : ’a mod, f) = let
37 val start = Time.insert(currentTime)
38 fun run() =
39 (f((!value)());
40 outEdges := {reader=run,
41 timeSpan=(start,(!currentTime))}
42 ::(!outEdges))
43 in
44 run()
45 end

46 fun change(l: ’a mod, v) = write(l, v)

47 fun propagate’() =
48 if (Q.isEmpty(!PQ)) then
49 ()
50 else let
51 val (edge, pq) = Q.deleteMin(!PQ)
52 val = PQ := pq
53 val {reader=f,timeSpan=(start,stop)} = edge
54 in
55 if (Time.isSplicedOut start) then
56 propagate’() (* Obsolete read, discard.*)
57 else
58 (Time.spliceOut(start,stop); (* Splice out *)
59 currentTime := start;
60 f(); (* Rerun the read *)
61 propagate’())
62 end

63 fun propagate() = let
64 val ctime = !currentTime
65 in
66 (propagate’();
67 currentTime := ctime)
68 end
69 end

Figure 8: The implementation of the adaptive library.

for making and propagating changes found in the ML li-
brary. Instead, we give a direct presentation of the change-
propagation algorithm in Section 6, which is defined in terms
of the dynamic semantics of AFL given here. Just as with

Types τ : : = int | bool | τ mod | τ1 s→ τ2 | τ1 c→ τ2

Values v : : = c | x | l | funs f(x : τ1) : τ2 is es end |
func f(x : τ1) : τ2 is ec end

Op’s o : : = not | + | - | = | < | . . .
Const’s c : : = n | true | false
Exp’s e : : = es | ec

St Exp’s es : : = v | o(v1, . . . , vn) | applys(v1, v2) |
let x be es in e′s end | modτ ec |
if v then es else e′s

Ch Exp’s ec : : = write(v) | applyc(v1, v2) |
let x be es in ec end

read v as x in e end |
if v then ec else e′c

Figure 9: The abstract syntax of AFL.

the ML implementation, the dynamic semantics must keep
a record of the adaptive aspects of the computation. How-
ever, rather than use adg’s, the semantics maintains this
information in the form of a trace, which guides the change
propagation algorithm. By doing so we are able to give a
relatively straightforward proof of correctness of the change
propagation algorithm in Section 6.

Abstract Syntax. The abstract syntax of AFL is given
in Figure 9. We use the meta-variables x, y, and z (and
variants) to range over an unspecified set of variables, and
the meta-variable l (and variants) to range over a separate,
unspecified set of locations. The syntax of AFL is restricted
to “2/3-cps”, or “named form”, to streamline the presenta-
tion of the dynamic semantics.

The types of AFL include the base types int and bool;

the stable function type, τ1
s→ τ2; the changeable function

type, τ1
c→ τ2; and the type τ mod of modifiable references

of type τ . Extending AFL with product, sum, recursive, or
polymorphic types presents no fundamental difficulties, but
they are omitted here for the sake of brevity.

Expressions are classified into two categories, the stable
and the changeable. The value of a stable expression is not
sensitive to modifications to the inputs, whereas the value
of a changeable expression may, directly or indirectly, be
affected by them. The familiar mechanisms of functional
programming are embedded in AFL as stable expressions.
These include basic types such as integers and booleans,
and a sequential let construct for ordering evaluation. Or-
dinary functions arise in AFL as stable functions. The body
of a stable function must be a stable expression; the appli-
cation of a stable function is correspondingly stable. The
stable expression modτ ec allocates a new modifiable refer-
ence whose value is determined by the changeable expression
ec. Note that the modifiable itself is stable, even though its
contents is subject to change.

Changeable expressions are written in destination-
passing style, with an implicit target. The changeable ex-
pression write(v) writes the value v into the target. The
changeable expression read v as x in ec end binds the
contents of the modifiable v to the variable x, then con-

Constants Λ; Γ `s n : int

Λ; Γ `s true : bool Λ;Γ `s false : bool

Locs, Vars
(Λ(l) = τ)

Λ; Γ `s l : τ mod

(Γ(x) = τ)

Λ; Γ `s x : τ

Fun
Λ; Γ, f : τ1

s→ τ2, x : τ1 `s e : τ2

Λ;Γ `s funs f(x : τ1) : τ2 is e end : (τ1
s→ τ2)

Λ; Γ, f : τ1
c→ τ2, x : τ1 `c e : τ2

Λ;Γ `s func f(x : τ1) : τ2 is e end : (τ1
c→ τ2)

Prim
Λ; Γ `s vi : τi (1 ≤ i ≤ n) `o o : (τ1, . . . , τn) τ

Λ;Γ `s o(v1, . . . , vn) : τ

If
Λ; Γ `s x : bool Λ; Γ `s e1 : τ Λ;Γ `s e2 : τ

Λ;Γ `s ifx then e1 else e2 : τ

Apply
Λ; Γ `s v1 : (τ1

s→ τ2) Λ; Γ `s v2 : τ1

Λ; Γ `s applys(v1, v2) : τ2

Let
Λ; Γ `s e1 : τ1 Λ;Γ, x : τ1 `s e2 : τ2

Λ; Γ `s let x be e1 in e2 end : τ2

Mod
Λ; Γ `c e : τ

Λ; Γ `s modτ e : τ mod

Figure 10: Typing of stable expressions.

tinues evaluation of ec. A read is considered changeable
because the contents of the modifiable on which it depends
is subject to change. A changeable function itself is stable,
but its body is changeable; correspondingly, the application
of a changeable function is a changeable expression. The
sequential let construct allows for the inclusion of stable
sub-computations in changeable mode. Finally, condition-
als with changeable branches are themselves changeable.

Static Semantics. The AFL type system is inspired by
the type theory of modal logic given by Pfenning and
Davies’ [12]. We distinguish two modes, the stable and the
changeable, corresponding to the distinction between terms
and expressions, respectively, in Pfenning and Davies’ work.
However, they have no analogue of our changeable function
type, and do not give an operational interpretation of their
type system.

The judgement Λ; Γ `s e : τ states that e is a well-formed
stable expression of type τ , relative to Λ and Γ. The judge-
ment Λ; Γ `c e : τ states that e is a well-formed changeable
expression of type τ , relative to Λ and Γ. Here Λ is a lo-
cation typing, a finite function assigning types to locations,
and Γ is a variable typing, a finite function assigning types
to variables. The rules for deriving these judgements are
given in Figures 10 and 11.

Dynamic Semantics. The evaluation judgements of AFL
have one of two forms. The judgement σ, es ⇓s v, σ′, Ts

states that evaluation of the stable expression es, relative to
the input store σ, yields the value v, the trace Ts, and the

Write
Λ; Γ `s v : τ

Λ; Γ `c write(v) : τ

If
Λ; Γ `s x : bool Λ; Γ `c e1 : τ Λ;Γ `c e2 : τ

Λ;Γ `c ifx then e1 else e2 : τ

Apply
Λ; Γ `s v1 : (τ1

c→ τ2) Λ; Γ `s v2 : τ1

Λ; Γ `c applyc(v1, v2) : τ2

Let
Λ; Γ `s e1 : τ1 Λ;Γ, x : τ1 `c e2 : τ2

Λ; Γ `c let x be e1 in e2 end : τ2

Read
Λ; Γ `s v1 : τ1 mod Λ;Γ, x : τ1 `c e2 : τ2

Λ; Γ `c read v1 as x in e2 end : τ2

Figure 11: Typing of changeable expressions.

updated store σ′. The judgement σ, l ← ec ⇓c σ′, Tc states
that evaluation of the changeable expression ec, relative to
the input store σ, writes its value to the target l, and yields
the trace Tc and the updated store σ′.

In the dynamic semantics, a store, σ, is a finite function
mapping each location in its domain, dom(σ), to either a
value v or a “hole” �. The defined domain, def(σ), of σ
consists of those locations in dom(σ) not mapped to � by
σ. When a location is created, it is assigned the value � to
reserve that location while its value is being determined.

A trace is a finite data structure recording the adaptive
aspects of evaluation. The abstract syntax of traces is given
by the following grammar:

Trace T : : = Ts | Tc

Stable Ts : : = ε | 〈Tc〉l:τ | Ts ; Ts

Changeable Tc : : = Wτ | Rx.e
l (Tc) | Ts ; Tc

When writing traces, we adopt the convention that “;” is
right-associative.

A stable trace records the sequence of allocations of mod-
ifiables that arise during the evaluation of a stable expres-
sion. The trace 〈Tc〉l:τ records the allocation of the modifi-
able, l, its type, τ , and the trace of the initialization code
for l. The trace Ts ; T′s results from evaluation of a let
expression in stable mode, the first trace resulting from the
bound expression, the second from its body.

A changeable trace has one of three forms. A write, Wτ ,
records the storage of a value of type τ in the target. A
sequence Ts ; Tc records the evaluation of a let expression
in changeable mode, with Ts corresponding to the bound
stable expression, and Tc corresponding to its body. A read
Rx.e

l (Tc) trace specifies the location read, l, the context of
use of its value, x.e, and the trace, Tc, of the remainder of
evaluation with the scope of that read. This records the
dependency of the target on the value of the location read.

The augmented dependency graphs described in Sec-
tion 4 may be seen as an efficient representation of traces.
Time stamps may be assigned to each read and write oper-
ation in the trace in left-to-right order. These correspond
to the time stamps in the adg representation. The contain-
ment hierarchy is directly represented by the structure of
the trace. Specifically, the trace Tc (and any read in Tc) is
contained within the read trace Rx.e

l (Tc).

Stable Evaluation. The evaluation rules for stable expres-
sions are given in Figure 12. Most of the rules are stan-

Value σ, v ⇓s v, σ, ε

Op’s
(v′ = app(o, (v1, . . . , vn)))

σ, o(v1, . . . , vn) ⇓s v′, σ, ε

If
σ, e1 ⇓s v, σ′, Ts

σ, if true then e1 else e2 ⇓s v, σ′, Ts

σ, e2 ⇓s v, σ′, Ts

σ, if false then e1 else e2 ⇓s v, σ′, Ts

Apply

(v1 = funs f(x : τ2) : τ is e end)
σ, [v1/f, v2/x] e ⇓s v′, σ′, Ts

σ, applys(v1, v2) ⇓s v′, σ′, Ts

Let

σ, e1 ⇓s v1, σ′, Ts

σ′, [v1/x]e2 ⇓s v1, σ′′, T′s
σ, let x be e1 in e2 end ⇓s v2, σ′′, (Ts ; T′s)

Mod
σ[l → �], l ← e ⇓c σ′, Tc (l 6∈ dom(σ))

σ, modτ e ⇓s l, σ′, 〈Tc〉l:τ

Figure 12: Evaluation of stable expressions.

Write σ, l ← write(v) ⇓c σ[l ← v], Wτ

If
σ, l ← e1 ⇓c σ′, Tc

σ, l ← if true then e1 else e2 ⇓c σ′, Tc

σ, l ← e2 ⇓c σ′, Tc

σ, l ← if false then e1 else e2 ⇓c σ′, Tc

Apply

(v1 = func f(x : τ1) : τ2 is e end)
σ, l ← [v1/f, v2/x] e ⇓c σ′, Tc

σ, l ← applyc(v1, v2) ⇓c σ′, Tc

Let

σ, e1 ⇓s v1, σ′, Ts

σ′, l ← [v1/x]e2 ⇓c σ′′, Tc

σ, l ← let x be e1 in e2 end ⇓c σ′′, (Ts ; Tc)

Read
σ, l′ ← [σ(l)/x] e ⇓c σ′, Tc

σ, l′ ← read l as x in e end ⇓c σ′, Rx.e
l (Tc)

Figure 13: Evaluation of changeable expressions.

dard for a store-passing semantics. For example, the let
rule sequences evaluation of its two expressions, and per-
forms binding by substitution. Less conventionally, it yields
a trace consisting of the sequential composition of the traces
of its sub-expressions.

The most interesting rule is the evaluation of modτ e.
Given a store σ, a fresh location l is allocated and initial-
ized to � prior to evaluation of e. The sub-expression e is
evaluated in changeable mode, with l as the target. Pre-
allocating l ensures that the target of e is not accidentally
re-used during evaluation; the static semantics ensures that
l cannot be read before its contents is set to some value v.

Changeable Evaluation. The evaluation rules for change-
able expressions are given in Figure 13. The let rule is sim-

ilar to the corresponding rule in stable mode, except that the
bound expression, e1, is evaluated in stable mode, whereas
the body, e2, is evaluated in changeable mode. The read ex-
pression substitutes the binding of location l in the store σ
for the variable x in e, and continues evaluation in change-
able mode. The read is recorded in the trace, along with
the expression that employs the value read. The write rule
simply assigns its argument to the target. Finally, applica-
tion of a changeable function passes the target of the caller
to the callee, avoiding the need to allocate a fresh target for
the callee and a corresponding read to return its value to
the caller.

Type Safety. The static semantics of AFL ensures these
four properties of its dynamic semantics: (1) each modifiable
is written exactly once; (2) no modifiable is read before it is
written; (3) dependencies are not lost, i.e. if a value depends
on a modifiable, then its value is also placed in a modifiable;
(4) the store is acyclic.

The proof of type safety for AFL hinges on a type preser-
vation theorem for the dynamic semantics. As may be ex-
pected, the preservation theorem ensures that the value of
a well-typed stable expression is also well-typed (indeed,
has the same type). In addition preservation ensures that
evaluation of a changeable expression preserves the type of
the store. The typing relation for stores ensures not only
that the contents of locations are consistent with their type,
but also that there are no cyclic dependencies among them.
Thus preservation for AFL ensures that no cycles can arise
during evaluation, which is consistent with pure functional
programming.

Space considerations preclude a rigorous presentation of
type safety for AFL. A complete proof is given in the com-
panion technical report [1].

6 Change Propagation is Sound

We formalize the notion of an input change and present a for-
mal version of the change-propagation algorithm. Using this
formal framework, we prove that the change-propagation al-
gorithm is correct.

Changing the Input. We represent an input change with
a difference store. A difference store is a finite mapping
assigning values to locations. Unlike a store, a difference
store may contain “dangling” locations that are not defined
within the store. The process of modifying a store with a
difference store is defined as follows.

Definition 3 (Store Modification)
Let σ be a store and let δ be a difference store. The modifi-
cation of σ by δ is the store σ′ = σ ⊕ δ given by the equation

σ ⊕ δ = δ ∪ { (l, σ(l)) | l 6∈ dom(δ) and l ∈ dom(σ) }.
This store modification yields an input change when it is
applied to an input store.

Change Propagation Algorithm. We present a formal ver-
sion of the change-propagation algorithm, which is infor-
mally described in Section 4. In the rest of this section, we
will use the term change-propagation algorithm to refer to
this formal algorithm.

σ, ε, C ⇓ps σ, ε, C

Mod
σ, l ← Tc, C ⇓pc σ′, T′c, C′

σ, 〈Tc〉l:τ , C ⇓ps σ′, 〈T′c〉l:τ , C′

Let

σ, Ts, C ⇓ps σ′, T′′s , C′

σ′, T′s, C′ ⇓ps σ′′, T′′′s , C′′

σ, (Ts ; T′s), C ⇓ps σ′′, (T′′s ; T′′′s), C′′

Write σ, l ← Wτ , C ⇓ps σ, Wτ , C

Read
σ, l′ ← Tc, C ⇓pc σ′, T′c, C′

σ, l′ ← Rx.e
l (Tc), C ⇓pc σ′, Rx.e

l (T′c), C′
(l 6∈ C)

σ, l′ ← [σ(l)/x]e ⇓c σ′, T′c
σ, l′ ← Rx.e

l (Tc), C ⇓pc σ′, Rx.e
l (T′c), C ∪ {l′}

(l ∈ C)

Let

σ, Ts, C ⇓ps σ′, T′s, C′

σ′, l′ ← Tc, C′ ⇓pc σ′′, T′c, C′′

σ, l′ ← (Ts ; Tc), C ⇓pc σ′′, (T′s ; T′c), C′′

Figure 14: Change propagation rules (stable and change-
able).

The change-propagation algorithm takes a modified
store, a trace obtained by evaluating an AFL program with
respect to the original store, and a set of input locations that
are changed by the store modification, called the changed
set. The algorithm scans the trace as it seeks for reads
of changed locations. When such a read is found, the as-
sociated expression is re-evaluated with the new value to
obtain a revised trace and store. Furthermore, the target
of a re-evaluated read is added to the changed set, be-
cause re-evaluation may change its value. Thus, the or-
der in which the reads are re-evaluated is important. The
change-propagation algorithm scans the trace in the order
that it was originally generated. This ensures that the trace
is scanned only once and is done by establishing a correspon-
dence between the change-propagation rule that handles a
trace and the AFL rule that generates that trace.

Formally, the change propagation algorithm is given by
two judgements:

1. Stable propagation: σ, Ts, C ⇓ps σ′, T′s, C
′

2. Changeable propagation: σ, l ← Tc, C ⇓pc σ′, T′c, C
′

These judgement define the change-propagation for a stable
and a changeable trace (Ts and Tc) with respect to a store
(σ) and a changed set (C). In changeable propagation, a
target (l) is maintained as in changeable evaluation mode of
AFL.

The rules defining the change-propagation judgements
are given in Figure 14. Given a trace, change propagation
mimics the evaluation rule of AFL that originally gener-
ated that trace. To stress this correspondence, each change-
propagation rule is marked with the name of the evaluation
rule to which it corresponds. For example, the propagation
rule for the trace Ts ; T′s mimics the let rule of the stable
mode that gives rise to this trace.

σi

σ′i

σm

σ′m

propagate

σs

σ′s

σi ⊕ δ

initial eval
σi, e ⇓s vi, σ

′
i, T

i
s

σ′i ⊕ δ

σm, Ti
s, C ⇓ps σ′m, Tm

s ,σs, e ⇓s vs, σ
′
s, T

s
s

subsequent eval

⊆

Figure 15: Change propagation simulates a complete re-
evaluation.

The most interesting rule is the read rule. This rule
mimics a read operation, which evaluates an expression af-
ter binding its specified variable to the value of the location
read. The read rule takes two different actions depending
on whether this location is in the changed set or not. If the
location has changed (is in the changed set), then the ex-
pression is re-evaluated with the new value of location. This
re-evaluation yields a revised store and a new trace. The new
trace “repairs” the original trace by replacing the trace of
the read. Also, the target location is added to the changed
set because it may now have a different value. Finally, the
“repaired” trace, the revised store, and the revised changed
set is yielded. If the read location has not been changed (is
not in the changed set), then there is no need to re-evaluate
this read and change-propagation continues by scanning the
rest of the trace. This is because a re-evaluation would gen-
erate the same effects to the store and to the trace as done by
the initial evaluation. Since these effects are already present
in the store and the trace, this read could safely be skipped.

Note that the purely functional change-propagation al-
gorithm presented here scans the whole trace. Therefore, a
direct implementation of this algorithm will run in time lin-
ear in the size of the trace. On the other hand, the change-
propagation algorithm revises the trace by only replacing
the changeable trace of re-evaluated reads. Thus, if one
is content with updating the trace with side effects, then
traces of re-evaluated reads can be replaced in place, while
skipping all the rest of the trace. This is indeed how the
ML implementation performs change propagation using an
augmented dependency graph as described in Section 4.

Correctness of Change Propagation. Change propagation
simulates a complete re-evaluation by only re-evaluating the
affected sub-expressions of an AFL program. Here we show
that change propagation yields the same output and the
trace as a complete re-evaluation and thus is correct.

Figure 15 illustrates this simulation process. First, we
evaluate a program e, which we assume to be a stable ex-
pression, with respect to an initial store σi obtaining a value
vi, an extended store σ′i, and a trace Ti

s. This is called the
initial evaluation. Then, we modify the initial store with a
difference store δ as σs = σi ⊕ δ and re-evaluate the program
with this store in a subsequent evaluation.

To simulate the subsequent evaluation via a change prop-
agation, we first apply the modifications δ to σ′i, to ob-

tain a new store σm as σm = σ′i ⊕ δ. We then perform
change propagation with respect to σm, using the trace
of the initial evaluation, and the set of changed locations
C = dom(σ′i) ∩ dom(δ). As a result, we obtain a revised
trace and store σ′m and a revised trace Tm

s . For the change-
propagation to work properly, we require that δ changes only
input locations, i.e., dom(σ′i) ∩ dom(δ) ⊆ dom(σi).

To prove correctness, we compare the trace and store ob-
tained by the subsequent evaluation to those obtained by the
change propagation. Since these two evaluations are inde-
pendent, we do not expect the locations generated in these
evaluations match. Thus, the two traces and the stores can
indeed contain different locations. On the other hand, this is
not a problem because locations themselves are transparent
to the user. To capture this, we introduce an equivalence re-
lation for stores and traces that disregards locations (names)
via a partial bijection between locations. A partial bijection
is a one-to-one mapping from a set of locations D to a set
of locations R that may not map all the locations in D.

Definition 4 (Partial Bijection)
B is a partial bijection from set D to set R if it satisfies the
following:

1. B ⊆ { (a, b) | a ∈ D, b ∈ R },
2. if (a, b) ∈ B and (a, b′) ∈ B then b = b′,

3. if (a, b) ∈ B and (a′, b) ∈ B then a = a′.

A partial bijection, B can be applied to a trace T or a
store σ, denoted B[T] and B[σ] by replacing each location l
in T or σ with its image B[l] whenever the image is defined.
The formal definitions for these are given in the compan-
ion technical report [1]. The theorem below states that the
change-propagation algorithm is correct, the proof of the
theorem is given in the companion technical report [1]. In
the theorem, the reason that the store σ′m is a super set of
σ′s is that σ′m contains remnant locations from the initial
evaluation, whereas σ′s does not.

Theorem 5 (Correctness)
Let σi be an initial store, δ be a difference store, σs = σi ⊕ δ,
and σm = σ′i ⊕ δ as shown in Figure 15. If

1. σi, e ⇓s vi, σ
′
i, T

i
s, (initial evaluation)

2. σs, e ⇓s vs, σ
′
s, T

s
s, (subsequent evaluation)

3. dom(σ′i) ∩ dom(δ) ⊆ dom(σi)

then the following holds:

1. σm, Ti
s, (dom(σ′i) ∩ dom(δ)) ⇓ps σ′m, Tm

s , ,

2. there is a partial bijection B such that

(a) B[vi] = vs,

(b) B[Tm
s] = Ts

s,

(c) B[σ′m] ⊇ σ′s.

Type Safety. The change-propagation algorithm also en-
joys a type preservation property stating that if the initial
state is well-formed, so is the result state. This ensures that
the results of change propagation can subsequently be used
as further inputs. The proof requires that store modification
operation respect the typing of the store being modified and
given in the companion report [1].

7 Discussion

Variants. In the process of developing the mechanisms pre-
sented in this paper we considered several variants. Here we
mention a few of them. One variant is to replace the explicit
write operation with an implicit one. In the ML library this
requires making the target destination an argument to the
read operation. In AFL it requires adding some implicit
type subsumption rules. We decided to include the explicit
write since we believe it is cleaner. We also considered a
variant of our mechanism in which the mod, read, and write
are combined into a single operation. This operation reads
a modifiable, evaluates an expression with the value of the
modifiable, and writes the result into a new modifiable. In
the ML library the operation can be defined as follows.

function modrw(x : ’a mod, f : ’a -> ’b) : ’b =
mod(fn d => read x (fn x’ => write(d, f(x’))))

This operation, along with another that does two reads,
were sufficient to express many of the examples we were
working with. The operations, however, are not expres-
sive enough for many other examples, and in particular for
Quicksort. In practice it would worthwhile including these
two operations in a comprehensive adaptive library since im-
plementing them directly would be more efficient than the
composition given above.

Side Effects. We require that the underlying language be
purely functional. The main reason for this is that each
edge (read) stores a closure (code and environment) which
might be re-evaluated. It is critical that this closure does not
change. The key requirement, therefore, is not that there are
no side-effects, but rather that all data is persistent (i.e., the
closure’s environment cannot be modified). It is therefore
likely that the adaptive mechanism could be made to work in
an imperative setting as long as relevant data structures are
persistent. There has been significant research on persistent
data-structures under an imperative setting [6, 5, 7].

We further note that certain “benign” side effects are
not harmful. For example, side effects to objects that are
not examined by the adaptive code itself are harmless. This
includes print statements, or any changes to “meta” data
structures that are somehow recording the progress of the
adaptive computation itself. For example, one way to de-
termine which parts of the code are being re-evaluated is to
sprinkle the code with print statements and see which ones
print during the change propagation. In fact, re-evaluations
of a function can be counted by simply inserting a counter
at the start of the function. Also, the memoization of the
kind done by lazy languages will not affect the correctness
of change-propagation, because the value remains the same
whether it has been calculated or not. We therefore expect
that our approach can be applied to lazy languages, but we
have not explored this direction.

Function Caching. As mentioned in the related work sec-
tion, it might be useful to add function caching to our frame-
work. We believe this is a promising extension, but should
note that it is not trivial to incorporate this feature. The
problem is that function caching and modifiables interact
in subtle ways—function caching requires purely functional
code, but our framework involves side-effects in its imple-
mentation.

Applications. The work in this paper was motivated by
the desire to make it easier to define kinetic data structures

for problems in computational geometry [2]. Consider the
problem of maintaining some property of a set of objects
in space as they move, such as the nearest neighbors or
convex hull of a set of points. Kinetic data structures are
designed to maintain such properties by re-evaluating parts
of the code when certain conditions become violated (e.g., a
point moves from one side of a line to the other). Currently,
however, every problem requires the design of its own kinetic
data structure. We believe that it is possible, instead, to use
adaptive versions of non-kinetic algorithms.

Full Adaptivity. It is not difficult to modify the AFL se-
mantics to interpret standard functional code (e.g. the
call-by-value lambda-calculus) in a fully adaptive way (i.e.,
all values are stored in modifiables, and all expressions are
changeable). It is also not hard to describe a translator for
converting functional code into AFL, such that the result is
fully adaptive. The only slightly tricky aspect is translat-
ing recursive functions. We in fact had originally considered
defining a fully adaptive version of AFL but decided against
it since we felt it would be more useful to selectively choose
what code is adaptive.

Meta Language. We have not included a “meta” language
for AFL that would allow a program to change input and
run change-propagation. There are some subtle issues in
defining such a language such as how to restrict changes
to inputs, and how to identify the “safe” parts of the code
in which the program can make changes. We worked on
a system that includes an additional type mode, which we
called meta-stable. Changes and change-propagation could
be performed only in this mode, and there was no way to get
into this mode other than from top-level. We felt, however,
that this system did not add much to the main concepts
covered in this paper.

8 Conclusion

We have presented a mechanism for adaptive computation
based on the idea of a modifiable reference. We expect that
this mechanism can be incorporated into any purely func-
tional call-by-value language. A key aspect of our mech-
anism is that it can dynamically create new computations
and delete old computations. The main contributions of
the paper are the particular set of primitives we suggest,
the change-propagation algorithm, and the semantics along
with the proofs that it is sound. The simplicity of the prim-
itives is achieved by using a destination passing style. The
efficiency of the change-propagation is achieved by using an
optimal order-maintenance algorithm. The soundness of the
semantics is aided by a modal type system.

Acknowledgements We are grateful to Frank Pfenning for
his advice on modal type systems. We also would like to
thank Mihai Budiu, Aleks Nanevski, and the anonymous
referees for their comments on the earlier drafts of this pa-
per.

References

[1] Umut A. Acar, Guy E. Blelloch, and Robert W. Harper.
Adaptive functional programming. Technical Report CMU-
CS-01-161, Carnegie Mellon University, Computer Science
Department, November 2001.

[2] Julien Basch, Leonidas J. Guibas, and John Hershberger.
Data structures for mobile data. Journal of Algorithms,
31(1):1–28, 1999.

[3] Alan Demers, Thomas Reps, and Tim Teitelbaum. Incre-
mental evaluation of attribute grammars with application
to syntax directed editors. In Conference Record of the 8th
Annual ACM Symposium on POPL, pages 105–116, January
1981.

[4] P. F. Dietz and D. D. Sleator. Two algorithms for maintain-
ing order in a list. In Proceedings. 19th ACM Symposium.
Theory of Computing, pages 365–372, 1987.

[5] Paul F. Dietz. Fully persistent arrays. In Workshop on Al-
gorithms and Data Structures, volume 382 of Lecture Notes
in Computer Science, pages 67–74. Springer-Verlag, August
1989.

[6] James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and
Robert E. Tarjan. Making data structures persistent. Jour-
nal of Computer and System Sciences, 38(1):86–124, Febru-
ary 1989.

[7] James R. Driscoll, Daniel D. Sleator, and Robert E. Tarjan.
Fully persistent lists with catenation. Journal of the ACM,
41(5):943–959, 1994.

[8] J. Field and T. Teitelbaum. Incremental reduction in the
lambda calculus. In Proceedings of the ACM ’90 Conference
on LISP and Functional Programming, pages 307–322, June
1990.

[9] Roger Hoover. Incremental Graph Evaluation. PhD thesis,
Department of Computer Science, Cornell University, May
1987.

[10] Yanhong A. Liu, Scott Stoller, and Tim Teitelbaum. Dis-
covering auxiliary information for incremental computation.
In Conference Record of the 23rd Annual ACM Symposium
on POPL, pages 157–170, January 1996.

[11] Yanhong A. Liu and Tim Teitelbaum. Systematic derivation
of incremental programs. Science of Computer Program-
ming, 24(1):1–30, February 1995.

[12] Frank Pfenning and Rowan Davies. A judgmental recon-
struction of modal logic. Mathematical Structures in Com-
puter Science, 11:511–540, 2001. Notes to an invited talk at
the Workshop on Intuitionistic Modal Logics and Applica-
tions (IMLA’99), Trento, Italy, July 1999.

[13] W. Pugh and T. Teitelbaum. Incremental computation via
function caching. In Conference Record of the 16th Annual
Symposium on POPL, pages 315–328, January 1989.

[14] William Pugh. Incremental computation via function
caching. PhD thesis, Department of Computer Science, Cor-
nell University, August 1987.

[15] G. Ramalingam and Thomas W. Reps. A categorized bibli-
ography on incremental computation. In Conference Record
of the 20th Annual ACM Symposium on POPL, pages 502–
510, January 1993.

[16] Thomas Reps. Generating Language-Based Environments.
PhD thesis, Department of Computer Science, Cornell Uni-
versity, August 1982.

[17] R. S. Sundaresh and Paul Hudak. Incremental compilation
via partial evaluation. In Conference Record of the 18th
Annual ACM Symposium on POPL, pages 1–13, January
1991.

[18] D. M. Yellin and R. E. Strom. Inc: A language for incre-
mental computations. ACM Transactions on Programming
Languages and Systems, 13(2):211–236, April 1991.

